Representation Theory In Venice A conference in honour of Corrado De Concini

Valuations and Standard Monomial Theory (work in progress)

> Rocco Chirivì Xin Fang Peter Littelmann

September 21, 2019

イロト イヨト イヨト イヨト

Grassmann variety

 \mathbb{K} algebraically closed.

The classical case $G_{k,n} \hookrightarrow \mathbb{P}(\Lambda^k \mathbb{K}^n)$

R = homogeneous coordinate ring = $\bigoplus_{i>0} R_i$

 \mathbbm{K} algebraically closed.

The classical case $G_{k,n} \hookrightarrow \mathbb{P}(\Lambda^k \mathbb{K}^n)$

R = homogeneous coordinate ring = $\bigoplus_{i>0} R_i$

 $I_{k,n} = \{ \underline{i} = (i_1, \dots, i_k) \mid 1 \le i_1 < \dots < i_k \le n \}$

 $I_{k,n}$ partially ordered set: $\underline{i} \leq \underline{j} \Leftrightarrow i_1 \leq j_1, \dots, i_k \leq j_k$

 \mathbb{K} algebraically closed.

The classical case $G_{k,n} \hookrightarrow \mathbb{P}(\Lambda^k \mathbb{K}^n)$

 $R = \text{homogeneous coordinate ring} = \bigoplus_{i \geq 0} R_i$

$$\begin{split} \mathrm{I}_{k,n} &= \{\underline{i} = (i_1, \dots, i_k) \mid 1 \leq i_1 < \dots < i_k \leq n\} \\ \mathrm{I}_{k,n} \text{ partially ordered set: } \underline{i} \leq \underline{j} \Leftrightarrow i_1 \leq j_1, \dots, i_k \leq j_k \end{split}$$

 $\{p_{\underline{i}} \mid \underline{i} \in I_{k,n}\}$ Plücker coordinates $\subset R_1 = (\Lambda^k \mathbb{K}^n)^*$, dual basis: $\Lambda^k \mathbb{K}^n$: $\{e_{\underline{i}} = e_{i_1} \land \ldots \land e_{i_k} \mid \underline{i} \in I_{k,n}\}$, \mathbb{K}^n : $\{e_1, \ldots e_n\}$,

 \mathbb{K} algebraically closed.

The classical case $G_{k,n} \hookrightarrow \mathbb{P}(\Lambda^k \mathbb{K}^n)$

 $R = \text{homogeneous coordinate ring} = \bigoplus_{i \geq 0} R_i$

$$\begin{split} \mathrm{I}_{k,n} &= \{\underline{i} = (i_1, \dots, i_k) \mid 1 \leq i_1 < \dots < i_k \leq n\} \\ \mathrm{I}_{k,n} \text{ partially ordered set: } \underline{i} \leq j \Leftrightarrow i_1 \leq j_1, \dots, i_k \leq j_k \end{split}$$

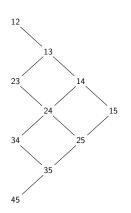
 $\{p_{\underline{i}} \mid \underline{i} \in I_{k,n}\}$ Plücker coordinates $\subset R_1 = (\Lambda^k \mathbb{K}^n)^*$, dual basis: $\Lambda^k \mathbb{K}^n$: $\{e_{\underline{i}} = e_{i_1} \land \ldots \land e_{i_k} \mid \underline{i} \in I_{k,n}\}$, \mathbb{K}^n : $\{e_1, \ldots e_n\}$,

Definition

Standard monomial: $p_{\underline{i}}p_{j}\cdots p_{\underline{\ell}}$ standard $\Leftrightarrow \underline{i} \leq \underline{j} \leq \ldots \leq \underline{\ell}$

Example: *Gr*_{2,5}

 $I_{2,5}$



some standard monomials of degree 2 $p_{12}p_{12}, p_{12}p_{13}, p_{12}p_{14}, \dots$ \dots $p_{13}p_{13}, p_{13}p_{14}, p_{13}p_{15}, \dots$

<ロト < 団 > < 巨 > < 巨 > -

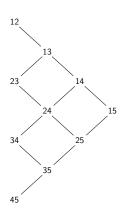
Ξ

590

 $p_{13}p_{25}, p_{13}p_{34}, \ldots$

Example: Gr_{2,5}

I_{2.5}



some standard monomials of degree 2 $p_{12}p_{12}$, $p_{12}p_{13}$, $p_{12}p_{14}$,

 $p_{13}p_{13}, p_{13}p_{14}, p_{13}p_{15}, \dots$ $p_{13}p_{25}, p_{13}p_{34}, \dots$

straightening relations $p_{23}p_{14} = p_{13}p_{24} - p_{12}p_{34}$ $p_{23}p_{15} = p_{13}p_{25} - p_{12}p_{35}$

. . .

<ロト < 団 ト < 臣 ト < 臣 ト 三 三 のへの</p>

Standard monomial theory

Theorem

(Hodge, Seshadri) $R = \bigoplus_{i \ge 0} R_i$ = homogeneous coordinate ring of

$$G_{k,n} \hookrightarrow \mathbb{P}(\Lambda^k \mathbb{K}^n)$$

- the standard monomials of degree m form a basis of R_m
- straightening relations of degree two (= express non-standard monomials as sum of standard monomials) generate the vanishing ideal of G_{k,n} ⊂ ℙ(Λ^kKⁿ).
- flat degeneration of G_{k,n} into a union of projective spaces, the number of irreducible components equals the number of maximal chains in I_{k,n}.

イロト イヨト イヨト イヨト

Some generalizations:

Generalizations:

Generalizations:

C. S. Seshadri, C. Musili, V. Lakshmibai, C. De Concini, L, \ldots Standard monomial theory for Schubert varieties in G/B

Generalizations:

C. S. Seshadri, C. Musili, V. Lakshmibai, C. De Concini, L, \ldots Standard monomial theory for Schubert varieties in G/B

C. De Concini, D. Eisenbud and C. Procesi, Hibi, Chirivì, ... Hodge algebras (or algebras with straightening laws)

・ 回 ト ・ ヨ ト ・ ヨ ト …

Generalizations:

C. S. Seshadri, C. Musili, V. Lakshmibai, C. De Concini, L, \ldots Standard monomial theory for Schubert varieties in G/B

C. De Concini, D. Eisenbud and C. Procesi, Hibi, Chirivì, ... Hodge algebras (or algebras with straightening laws)

We try to get a new approach via valuation theory and Newton-Okounkov bodies

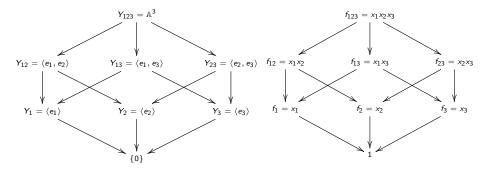
回トメミトメヨト

An example

A family of subvarieties and a family of functions - (affine picture): $X = \mathbb{A}^3 = \langle e_1, e_2, e_3 \rangle$, $\mathbb{K}[X] = \mathbb{K}[x_1, x_2, x_3]$

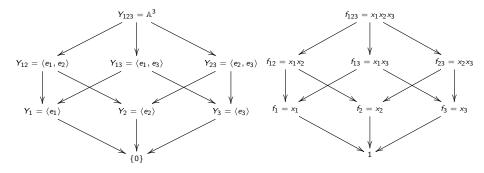
An example

A family of subvarieties and a family of functions - (affine picture): $X = \mathbb{A}^3 = \langle e_1, e_2, e_3 \rangle$, $\mathbb{K}[X] = \mathbb{K}[x_1, x_2, x_3]$



An example

A family of subvarieties and a family of functions - (affine picture): $X = \mathbb{A}^3 = \langle e_1, e_2, e_3 \rangle$, $\mathbb{K}[X] = \mathbb{K}[x_1, x_2, x_3]$



family of functions defining (set theoretically) family of subvarieties.

 $X \subset \mathbb{P}(V)$ embedded projective variety $R = \mathbb{K}[X]$ homogeneous coordinate ring

 $X \subset \mathbb{P}(V)$ embedded projective variety $R = \mathbb{K}[X]$ homogeneous coordinate ring

A finite partially ordered set,

graded, unique minimal element + maximal element

 $X \subset \mathbb{P}(V)$ embedded projective variety $R = \mathbb{K}[X]$ homogeneous coordinate ring

A finite partially ordered set,

graded, unique minimal element + maximal element

•
$$\{Y_p\}_{p \in A}$$
 family of projective subvarieties of X
 $Y_{p_{min}} = pt, Y_{p_{max}} = X, Y_p \supseteq Y_q \Leftrightarrow p \ge q$

• ${f_p}_{p \in A}$ family of homogeneous functions (on V) such that

•
$$f_p|_{Y_p} \neq 0$$

• $Y_p = \{x \in X \mid f_q(x) = 0 \forall q \leq p\}$ (set theoretically)
• $H_p = \{[v] \in \mathbb{P}(V) \mid f_p(v) = 0\}$
 $H_p \cap Y_p = \bigcup_q Y_q$, p covers q (set theoretically)

イロト イヨト イヨト イヨト

 $X \subset \mathbb{P}(V)$ embedded projective variety $R = \mathbb{K}[X]$ homogeneous coordinate ring

A finite partially ordered set,

graded, unique minimal element + maximal element

•
$$\{Y_p\}_{p \in A}$$
 family of projective subvarieties of X
 $Y_{p_{min}} = pt, Y_{p_{max}} = X, Y_p \supseteq Y_q \Leftrightarrow p \ge q$

- ${f_p}_{p \in A}$ family of homogeneous functions (on V) such that
 - $f_p|_{Y_p} \neq 0$ • $Y_p = \{x \in X \mid f_q(x) = 0 \forall q \leq p\}$ (set theoretically) • $H_p = \{[v] \in \mathbb{P}(V) \mid f_p(v) = 0\}$ $H_p \cap Y_p = \bigcup_q Y_q, p \text{ covers } q \text{ (set theoretically)}$
- to make presentation more consistent, we assume in the following the Y_p are projectively normal, in applications we do not need it

Examples

Example

 $\begin{array}{l} X = G_{k,n} \text{ Grassmann variety,} \\ A = I_{k,n} = \{ \underline{i} = (i_1, \ldots, i_k) \mid 1 \leq i_1 < \ldots < i_k \leq n \} . \\ Y_p 's = \{ X(\underline{i}) \mid \underline{i} \in I_{k,n} \} \text{ Schubert varieties} \\ f_p 's = \{ p_{\underline{i}} \mid \underline{i} \in I_{k,n} \} \text{ Plücker coordinates} . \end{array}$

Examples

Example

 $\begin{array}{l} X = G_{k,n} \ Grassmann \ variety, \\ A = I_{k,n} = \{ \underline{i} = (i_1, \ldots, i_k) \mid 1 \leq i_1 < \ldots < i_k \leq n \}. \\ Y_p \ 's = \{ X(\underline{i}) \mid \underline{i} \in I_{k,n} \} \ Schubert \ varieties \\ f_p \ 's = \{ p_{\underline{i}} \mid \underline{i} \in I_{k,n} \} \ Pl \ ucker \ coordinates \ . \end{array}$

Example

$$\begin{split} &X = G/B \subset \mathbb{P}(V(\lambda)). \\ &A = W \text{ Weyl group, Bruhat order.} \\ &Y_p \text{'s} = X(\tau) \text{ Schubert varieties, } \tau \in W. \\ &f_p \text{'s} = \{p_\tau\}_{\tau \in W} \text{ duals of extremal weight vectors } \tau(v_\lambda) \end{split}$$

(日) (四) (三) (三) (三)

A graph

Hasse graph \mathcal{G}_A of A with weights: assume p > q and p covers q:

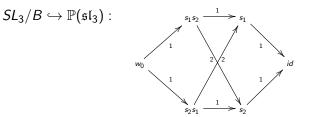
 $p \xrightarrow{b} q$ where b = vanishing multiplicity of $f_p | Y_p$ in Y_q

A graph

Hasse graph \mathcal{G}_A of A with weights: assume p > q and p covers q:

 $p \xrightarrow{b} q$ where b = vanishing multiplicity of $f_p | Y_p$ in Y_q

Example $X = G/B: \mathcal{G}_A = Bruhat graph, weights = Pieri-Chevalley formula$



In the following: $N = lcm(weights in G_A)$.

Fix a maximal chain \mathfrak{C} in A: (maximally linearly ordered subset of A)

 \mathfrak{C} : p_r $> p_{r-1}$ $> \ldots > p_1$ $> p_0$

In the following: $N = lcm(weights in G_A)$.

Fix a maximal chain \mathfrak{C} in A: (maximally linearly ordered subset of A)

$$\begin{array}{rcl} \mathfrak{C} & : & p_r & > p_{r-1} & > \ldots > p_1 & > p_0 \\ sub- & & \\ varieties & X = Y_{p_r} & \supset Y_{p_{r-1}} & \supset \ldots \supset Y_{p_1} & \supset Y_0 = pt \end{array}$$

In the following: $N = lcm(weights in G_A)$.

Fix a maximal chain \mathfrak{C} in A: (maximally linearly ordered subset of A)

$$\begin{array}{cccc} \mathfrak{C} & : & p_r & > p_{r-1} & > \ldots > p_1 & > p_0 \\ sub- & & & \\ varieties & X = Y_{p_r} & \supset Y_{p_{r-1}} & \supset \ldots \supset Y_{p_1} & \supset Y_0 = pt \\ \hline valuation & & & \\ ass.to & \nu_r & \nu_{r-1} & \ldots & \nu_1 \\ \hline divisor & & & \end{array}$$

In the following: $N = lcm(weights in G_A)$.

Fix a maximal chain \mathfrak{C} in A: (maximally linearly ordered subset of A)

C	:	p _r	$> p_{r-1}$	$> \dots$	$> p_1$	$> p_0$
sub— varieties valuation		$X = Y_{p_r}$	$\supset Y_{p_{r-1}}$	⊃	$\supset Y_{p_1}$	$\supset Y_0 = pt$
ass.to divisor		ν _r	ν_{r-1}		$ u_1 $	
functions		f_{p_r}	$f_{p_{r-1}}$		f_1	f_{ρ_0}

In the following: $N = lcm(weights in G_A)$.

Fix a maximal chain \mathfrak{C} in A: (maximally linearly ordered subset of A)

C	:	pr	$> p_{r-1}$	$> \dots$	$> p_1$	$> p_0$
sub— varieties valuation		$X = Y_{p_r}$	$\supset Y_{p_{r-1}}$	⊃∶	$\supset Y_{p_1}$	$\supset Y_0 = pt$
ass.to divisor		ν_r	ν_{r-1}		$ u_1 $	
functions		f_{p_r}	$f_{p_{r-1}}$		f_1	f_{P_0}

Idea: use ν_i and f_{p_i} to define a \mathbb{Q}^{r+1} -valued valuation on R

Fixed maximal chain $\mathfrak{C} \to \mathsf{affine}$ cones:

 $\begin{array}{ll} \textit{sub-} \\ \textit{varieties} & \hat{X} = \hat{Y}_{p_r} \ \supset \hat{Y}_{p_{r-1}} \ \supset \ldots \supset \hat{Y}_{p_1} \ \supset \hat{Y}_0 \end{array}$

Fixed maximal chain $\mathfrak{C} \to \mathsf{affine}$ cones:

 $\begin{array}{lll} sub-\\ varieties & \hat{X} = \hat{Y}_{p_r} & \supset \hat{Y}_{p_{r-1}} & \supset \ldots \supset \hat{Y}_{p_1} & \supset \hat{Y}_0 \\ h \ regular & \rightarrow & h_r = h & h_{r-1} & \ldots & h_1 & h_0 \\ function & & & \end{array}$

Fixed maximal chain $\mathfrak{C} \to \mathsf{affine}$ cones:

$$\begin{array}{lll} sub-\\ varieties & \hat{X} = \hat{Y}_{p_r} & \supset \hat{Y}_{p_{r-1}} & \supset \ldots \supset \hat{Y}_{p_1} & \supset \hat{Y}_0 \\ h \ regular & \rightarrow & h_r = h & h_{r-1} & \ldots & h_1 & h_0 \\ function & & \end{array}$$

 h_{r-1},\ldots,h_0 are rational functions on $\hat{Y}_{p_{r-1}},\ldots,\hat{Y}_{p_1},\hat{Y}_{p_0}.$

Fixed maximal chain $\mathfrak{C} \to \mathsf{affine}$ cones:

$$\begin{array}{lll} sub-\\ varieties & \hat{X} = \hat{Y}_{p_r} & \supset \hat{Y}_{p_{r-1}} & \supset \ldots \supset \hat{Y}_{p_1} & \supset \hat{Y}_0 \\ h \ regular & \to & h_r = h & h_{r-1} & \ldots & h_1 & h_0 \\ function & & \end{array}$$

 h_{r-1},\ldots,h_0 are rational functions on $\hat{Y}_{p_{r-1}},\ldots,\hat{Y}_{p_1},\hat{Y}_{p_0}.$

Definition

$$h_{j-1} := \left. rac{h_j^N}{f_{p_j}^{N
u_j(h_j)/b_j}}
ight|_{\hat{Y}_{p_{j-1}}}$$

Forget about the numbers, but keep in mind: by Nagata, Rees and Samuel on asymptotic theory of ideals:

Lemma

Given h homogeneous, there exists always a maximal chain such that $\forall j = 0, ..., r$: h_j is a regular homogeneous function on \hat{Y}_{p_j} .

Forget about the numbers, but keep in mind: by Nagata, Rees and Samuel on asymptotic theory of ideals:

Lemma

Given h homogeneous, there exists always a maximal chain such that $\forall j = 0, ..., r$: h_j is a regular homogeneous function on \hat{Y}_{p_j} .

Definition

Let
$$\mathcal{V}_{\mathfrak{C}} : R - \{0\} \to \mathbb{Q}^{r+1}$$
 be defined by

$$h\mapsto (c_r\nu_r(h_r),c_{r-1}\nu_r(h_{r-1})\ldots,c_0\nu_0(h_0))$$

イロト イヨト イヨト イヨト

where $\nu_0(h_0)$ is the vanishing order of h_0 in the origin of \hat{Y}_0 .

 c_r, \ldots, c_0 are renormalization factors. \dagger

Remark

The renormalization factors c_r, \ldots, c_0 are chosen such that the functions f_{p_r}, \ldots, f_{p_0} are mapped onto the corners of the standard simplex:

$$\mathcal{V}_{\mathfrak{C}}(f_{p_j}) = (0,\ldots,0,\underbrace{1,0,\ldots,0}_{j+1})$$

Remark

The renormalization factors c_r, \ldots, c_0 are chosen such that the functions f_{p_r}, \ldots, f_{p_0} are mapped onto the corners of the standard simplex:

$$\mathcal{V}_{\mathfrak{C}}(f_{p_j}) = (0,\ldots,0,\underbrace{1,0,\ldots,0}_{j+1})$$

Theorem

 $\mathcal{V}_{\mathfrak{C}}: R - \{0\} \to \mathbb{Q}^{r+1}$ is a valuation with at most one-dimensional leaves.

イロト イヨト イヨト イヨト 三日

 $\mathcal{V}_{\mathfrak{C}}$ induces filtration, but:

in general difficult to prove that $\operatorname{gr}_{\mathfrak{C}} R$ finitely generated.

 $\mathcal{V}_{\mathfrak{C}}$ induces filtration, but:

in general difficult to prove that $\operatorname{gr}_{\mathfrak{C}} R$ finitely generated.

Non-negativity often helps:

regular functions \Rightarrow non-negative valuations.

 $\mathcal{V}_{\mathfrak{C}}$ induces filtration, but:

in general difficult to prove that $\operatorname{gr}_{\mathfrak{C}} R$ finitely generated.

Non-negativity often helps:

regular functions \Rightarrow non-negative valuations.

Endow \mathbb{Q}^{r+1} with a lexicographic order, and define:

 $\mathcal{V}_{\mathfrak{C}}$ induces filtration, but:

in general difficult to prove that $\operatorname{gr}_{\mathfrak{C}} R$ finitely generated.

Non-negativity often helps:

regular functions \Rightarrow non-negative valuations.

Endow \mathbb{Q}^{r+1} with a lexicographic order, and define:

Definition

A quasi-valuation:

 $h \mapsto \min\{\mathcal{V}_{\mathfrak{C}}(h) \mid \mathfrak{C} \text{ maximal chain}\}$

 $\mathcal{V}: R - \{0\} \to \mathbb{Q}^{r+1}$

(日) (四) (三) (三) (三)

 $\mathcal{V}_{\mathfrak{C}}$ induces filtration, but:

in general difficult to prove that $\operatorname{gr}_{\mathfrak{C}} R$ finitely generated.

Non-negativity often helps:

regular functions \Rightarrow non-negative valuations.

Endow \mathbb{Q}^{r+1} with a lexicographic order, and define:

Definition

A quasi-valuation:

 $h \mapsto \min\{\mathcal{V}_{\mathfrak{C}}(h) \mid \mathfrak{C} \text{ maximal chain}\}$

$$\mathcal{V}: R - \{0\} \to \mathbb{Q}^{r+1}_{>0}$$

(1日) (1日) (日) (日) (日)

non-negativity: Rees

Theorem

• The quasi-valuation induces a filtration of R, such that the associated graded $gr_{\mathcal{V}}R$ is finitely generated.

Theorem

- The quasi-valuation induces a filtration of R, such that the associated graded gr_VR is finitely generated.
- The irreducible components of the associated variety are in bijection with maximal chains in the partially ordered set A.

Theorem

- The quasi-valuation induces a filtration of R, such that the associated graded gr_VR is finitely generated.
- The irreducible components of the associated variety are in bijection with maximal chains in the partially ordered set A.
- The irreducible component associated to a maximal chain \mathfrak{C} is the toric variety associated to the semigroup

 $\Gamma_{\mathfrak{C}} := \{\mathcal{V}(h) \mid h \in R \text{ homogeneous}, \mathcal{V}_{\mathfrak{C}}(h) \text{ is minimal}\} \subset \mathbb{Q}_{>0}^{r+1}$

• If g is homogeneous and $\mathcal{V}_{\mathfrak{C}}(h)=(a_r,\ldots,a_0)$ is minimal, then

 $\deg g = a_0 \deg f_{p_0} + a_1 \deg f_{p_1} + \ldots + a_r \deg f_{p_r}.$

• If g is homogeneous and $\mathcal{V}_\mathfrak{C}(h)=(a_r,\ldots,a_0)$ is minimal, then

$$\deg g = a_0 \deg f_{\rho_0} + a_1 \deg f_{\rho_1} + \ldots + a_r \deg f_{\rho_r}.$$

• If
$$\mathcal{V}_{\mathfrak{C}}(h) = (a_r, \dots, a_0)$$
 is minimal, then $\overline{h}^N = \overline{f}_{p_r}^{Na_r} \cdots \overline{f}_{p_0}^{Na_0}$ in $gr_{\mathcal{V}}R$

• If g is homogeneous and $\mathcal{V}_{\mathfrak{C}}(h)=(a_r,\ldots,a_0)$ is minimal, then

$$\deg g = a_0 \deg f_{\rho_0} + a_1 \deg f_{\rho_1} + \ldots + a_r \deg f_{\rho_r}.$$

- If $\mathcal{V}_{\mathfrak{C}}(h) = (a_r, \dots, a_0)$ is minimal, then $\bar{h}^N = \bar{f}_{p_r}^{Na_r} \cdots \bar{f}_{p_0}^{Na_0}$ in $gr_{\mathcal{V}}R$
- If $g, h \in R$ have NO common maximal chain \mathfrak{C} such that $\mathcal{V}_{\mathfrak{C}}(g)$ and $\mathcal{V}_{\mathfrak{C}}(h)$ are minimal then $\overline{g}\overline{h} = 0$ in $gr_{\mathcal{V}}R$.

A (10) A (10)

• If g is homogeneous and $\mathcal{V}_{\mathfrak{C}}(h) = (a_r, \ldots, a_0)$ is minimal, then

$$\deg g = a_0 \deg f_{p_0} + a_1 \deg f_{p_1} + \ldots + a_r \deg f_{p_r}.$$

- If $\mathcal{V}_{\mathfrak{C}}(h) = (a_r, \dots, a_0)$ is minimal, then $\bar{h}^N = \bar{f}_{p_r}^{Na_r} \cdots \bar{f}_{p_0}^{Na_0}$ in $gr_{\mathcal{V}}R$
- If $g, h \in R$ have NO common maximal chain \mathfrak{C} such that $\mathcal{V}_{\mathfrak{C}}(g)$ and $\mathcal{V}_{\mathfrak{C}}(h)$ are minimal then $\overline{g}\overline{h} = 0$ in $gr_{\mathcal{V}}R$.

Remark

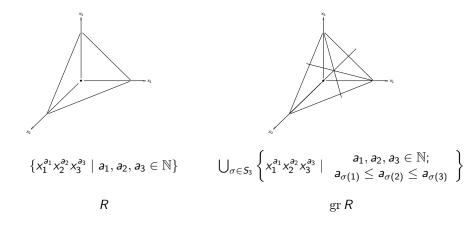
Grassmann variety, $G_{k,n}$, $p_{\underline{i}}$ Plücker coordinate: $\mathcal{V}_{\mathfrak{C}}(p_{\underline{i}})$ is minimal if and only if $\underline{i} \in \mathfrak{C}$. So $\overline{p}_{\underline{i}}\overline{p}_{\underline{j}} = 0$ in $gr_{\mathcal{V}}R \Leftrightarrow \underline{i}$ and \underline{j} are not comparable. Further N = 1, so all elements in $gr_{\mathcal{V}}R$ are standard monomials.

Back to the example

$$X = \mathbb{A}^3 = \langle e_1, e_2, e_3 \rangle$$
, $\mathbb{K}[X] = \mathbb{K}[x_1, x_2, x_3]$

Back to the example

 $X = \mathbb{A}^3 = \langle e_1, e_2, e_3 \rangle$, $\mathbb{K}[X] = \mathbb{K}[x_1, x_2, x_3]$ Applying the machinery to this example = cutting a cone into 6 pieces:



▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ● ●

A kind of root operator

Open question:

generators of the semi-group $\Gamma_{\mathfrak{C}}$? (= semigroup, irr. comp. \rightarrow gr R)

A kind of root operator

Open question:

generators of the semi-group $\Gamma_{\mathfrak{C}}$? (= semigroup, irr. comp. \rightarrow gr R)

We assume in the following: our familiy of projective subvarieties and the functions $\{f_p\}_{p \in A}$ satisfies in addition the following condition:

- all f_p have the same degree (not really necessary)
- for every $p \rightarrow^{b} q$, one can extract a root, i.e $\exists \eta \in \mathbb{K}(Y_p)$, such:

$$\eta^b = \frac{f_q}{f_p}|_{Y_p}.$$

Lemma

The functions f_p , ηf_p , $\eta^2 f_p$, ..., $\eta^b f_p = f_q$ regular homogeneous functions of the same degree on \hat{Y}_p .

A kind of root operator

Lemma

Let $g \in R$ be a homogeneous function. Let $\mathfrak{C} = (p_r, \ldots, p_0)$ be a maximal chain in A such that $\mathcal{V}_{\mathfrak{C}}(g) = (a_r, \ldots, a_0)$ is minimimal. Set $\ell = a_r b$ where $p_r \to^b p_{r-1}$).

• the functions below are homogeneous regular functions on Y_{pr}, of the same degree as g:

$$g, \eta g, \eta^2 g, \ldots, \eta^\ell g,$$

イロト イヨト イヨト イヨト

- the last function does not vanish on $Y_{p_{r-1}}$.
- $\mathcal{V}(\eta^j g) = \mathcal{V}(g) \frac{j}{b_r}(e_r e_{r-1})$ for $j \leq \ell$

The semigroup

Using an inductive procedure....

Proposition

The semigroup $\Gamma_{\mathfrak{C}}$ is contained in

$$\Gamma_{\mathfrak{C}} \subseteq \left\{ v = \begin{pmatrix} a_r \\ \vdots \\ a_0 \end{pmatrix} \in \mathbb{Q}_{\geq 0}^{r+1} \middle| \begin{array}{c} b_r a_r \in \mathbb{Z} \\ b_{r-1}(a_r + a_{r-1}) \in \mathbb{Z} \\ \vdots \\ a_0 \deg f_{\rho_0} + a_1 \deg f_{\rho_1} + \ldots + a_r \deg f_{\rho_r} \in \mathbb{N} \end{array} \right\}$$

Conjecture

Equality holds!

$$\Gamma_{\mathfrak{C}} = \left\{ \mathbf{v} = \begin{pmatrix} a_r \\ \vdots \\ a_0 \end{pmatrix} \in \mathbb{Q}_{\geq 0}^{r+1} \middle| \begin{array}{c} b_r a_r \in \mathbb{Z} \\ b_{r-1}(a_r + a_{r-1}) \in \mathbb{Z} \\ b_1(a_r + a_{r-1} + \ldots + a_1) \in \mathbb{Z} \\ a_0 \deg f_{p_0} + a_1 \deg f_{p_1} + \ldots + a_r \deg f_{p_r} \in \mathbb{N} \end{array} \right\}$$

Conjecture

Equality holds!

$$\Gamma_{\mathfrak{C}} = \left\{ \mathbf{v} = \begin{pmatrix} a_r \\ \vdots \\ a_0 \end{pmatrix} \in \mathbb{Q}_{\geq 0}^{r+1} \middle| \begin{array}{c} b_r a_r \in \mathbb{Z} \\ b_{r-1}(a_r + a_{r-1}) \in \mathbb{Z} \\ \vdots \\ b_1(a_r + a_{r-1} + \dots + a_1) \in \mathbb{Z} \\ a_0 \deg f_{\rho_0} + a_1 \deg f_{\rho_1} + \dots + a_r \deg f_{\rho_r} \in \mathbb{N} \end{array} \right\}$$

Expected consequences (up to glueing!!)

• Get standard monomial theory (ordered monomials in the f_p's + a finite number of extra elements)

Conjecture

Equality holds!

$$\Gamma_{\mathfrak{C}} = \left\{ \mathbf{v} = \begin{pmatrix} a_r \\ \vdots \\ a_0 \end{pmatrix} \in \mathbb{Q}_{\geq 0}^{r+1} \middle| \begin{array}{c} b_r a_r \in \mathbb{Z} \\ b_{r-1}(a_r + a_{r-1}) \in \mathbb{Z} \\ \vdots \\ b_1(a_r + a_{r-1} + \dots + a_1) \in \mathbb{Z} \\ a_0 \deg f_{\rho_0} + a_1 \deg f_{\rho_1} + \dots + a_r \deg f_{\rho_r} \in \mathbb{N} \end{array} \right\}$$

Expected consequences (up to glueing!!)

- Get standard monomial theory (ordered monomials in the f_p's + a finite number of extra elements)
- Get a Newton-Okounkov body $\Delta(R) \subset \mathbb{Q}^{|A|}$ (bigger ambient space!)

Conjecture

Equality holds!

$$\Gamma_{\mathfrak{C}} = \left\{ v = \begin{pmatrix} a_r \\ \vdots \\ a_0 \end{pmatrix} \in \mathbb{Q}_{\geq 0}^{r+1} \middle| \begin{array}{c} b_r a_r \in \mathbb{Z} \\ b_{r-1}(a_r + a_{r-1}) \in \mathbb{Z} \\ \vdots \\ b_1(a_r + a_{r-1} + \ldots + a_1) \in \mathbb{Z} \\ a_0 \deg f_{p_0} + a_1 \deg f_{p_1} + \ldots + a_r \deg f_{p_r} \in \mathbb{N} \end{array} \right\}$$

Expected consequences (up to glueing!!)

- Get standard monomial theory (ordered monomials in the f_p's + a finite number of extra elements)
- Get a Newton-Okounkov body $\Delta(R) \subset \mathbb{Q}^{|A|}$ (bigger ambient space!)
- Proj(gr R) is a flat degeneration of X.

Conjecture

Equality holds!

$$\Gamma_{\mathfrak{C}} = \left\{ v = \begin{pmatrix} a_r \\ \vdots \\ a_0 \end{pmatrix} \in \mathbb{Q}_{\geq 0}^{r+1} \middle| \begin{array}{c} b_{r-1}(a_r + a_{r-1}) \in \mathbb{Z} \\ b_{1}(a_r + a_{r-1} + \ldots + a_1) \in \mathbb{Z} \\ a_0 \deg f_{p_0} + a_1 \deg f_{p_1} + \ldots + a_r \deg f_{p_r} \in \mathbb{N} \end{array} \right\}$$

Expected consequences (up to glueing!!)

- Get standard monomial theory (ordered monomials in the f_p's + a finite number of extra elements)
- Get a Newton-Okounkov body $\Delta(R) \subset \mathbb{Q}^{|A|}$ (bigger ambient space!)
- Proj(gr R) is a flat degeneration of X.
- the degree of $X \subseteq \mathbb{P}(V)$ is equal to

$$\sum_{\text{naximal chains}} \prod(\text{weights on the chain})$$

Remark

 If all weights are equal to 1 (and hence N = 1), the conjecture and the expected consequences hold (~ Hodge algebra case)

- If all weights are equal to 1 (and hence N = 1), the conjecture and the expected consequences hold (~ Hodge algebra case)
- If X = X(τ) is a Schubert variety (G symmetrizable Kac-Moody), then the conjecture and the expected consequences hold!

- If all weights are equal to 1 (and hence N = 1), the conjecture and the expected consequences hold (~ Hodge algebra case)
- If X = X(τ) is a Schubert variety (G symmetrizable Kac-Moody), then the conjecture and the expected consequences hold!
 - semigroups → recover the Lakshmibai-Seshadri path model theory in an algebraic-geometric context

- If all weights are equal to 1 (and hence N = 1), the conjecture and the expected consequences hold (~ Hodge algebra case)
- If X = X(τ) is a Schubert variety (G symmetrizable Kac-Moody), then the conjecture and the expected consequences hold!
 - semigroups → recover the Lakshmibai-Seshadri path model theory in an algebraic-geometric context
 - Newton-Okounkov body Δ(R) → recover polytope with integral structure constructed by R. Dehy

- If all weights are equal to 1 (and hence N = 1), the conjecture and the expected consequences hold (~ Hodge algebra case)
- If X = X(τ) is a Schubert variety (G symmetrizable Kac-Moody), then the conjecture and the expected consequences hold!
 - semigroups → recover the Lakshmibai-Seshadri path model theory in an algebraic-geometric context
 - Newton-Okounkov body $\Delta(R) \rightarrow$ recover polytope with integral structure constructed by R. Dehy
 - flat degeneration \rightarrow recover LS-Algebra structure by R. Chirivì

- If all weights are equal to 1 (and hence N = 1), the conjecture and the expected consequences hold (~ Hodge algebra case)
- If X = X(τ) is a Schubert variety (G symmetrizable Kac-Moody), then the conjecture and the expected consequences hold!
 - semigroups → recover the Lakshmibai-Seshadri path model theory in an algebraic-geometric context
 - Newton-Okounkov body Δ(R) → recover polytope with integral structure constructed by R. Dehy
 - flat degeneration \rightarrow recover LS-Algebra structure by R. Chirivì
 - combinatoric implies Cohen-Macaulayness etc.

- If all weights are equal to 1 (and hence N = 1), the conjecture and the expected consequences hold (~ Hodge algebra case)
- If X = X(τ) is a Schubert variety (G symmetrizable Kac-Moody), then the conjecture and the expected consequences hold!
 - semigroups → recover the Lakshmibai-Seshadri path model theory in an algebraic-geometric context
 - Newton-Okounkov body Δ(R) → recover polytope with integral structure constructed by R. Dehy
 - flat degeneration \rightarrow recover LS-Algebra structure by R. Chirivì
 - combinatoric implies Cohen-Macaulayness etc.
 - So far our proof of the conjecture uses quantum groups at roots of unity.

- If all weights are equal to 1 (and hence N = 1), the conjecture and the expected consequences hold (~ Hodge algebra case)
- If X = X(τ) is a Schubert variety (G symmetrizable Kac-Moody), then the conjecture and the expected consequences hold!
 - semigroups → recover the Lakshmibai-Seshadri path model theory in an algebraic-geometric context
 - Newton-Okounkov body Δ(R) → recover polytope with integral structure constructed by R. Dehy
 - flat degeneration \rightarrow recover LS-Algebra structure by R. Chirivì
 - combinatoric implies Cohen-Macaulayness etc.
 - So far our proof of the conjecture uses quantum groups at roots of unity. "Bad news": Not available in the general context

To do

Remark

 further candidates for theory: Richardson varieties, Bott-Samelson varieties, complete symmetric spaces, ... Most of them are known to have a standard monomial theory. Uniform construction?

E

- are the "algebraic geometric root operators" invertible?
- connection with cluster varieties? Even not clear for Grassmann varieties.

!! Happy Birthday Corrado !!

!! Best wishes for Elisabetta !!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

E