Representation Theory In Venice A conference in honour of Corrado De Concini

Valuations and Standard Monomial Theory (work in progress)

Rocco Chirivi
Xin Fang
Peter Littelmann

September 21, 2019

Grassmann variety

\mathbb{K} algebraically closed.
The CLASSICAL CASE $G_{k, n} \hookrightarrow \mathbb{P}\left(\wedge^{k} \mathbb{K}^{n}\right)$
$R=$ homogeneous coordinate ring $=\bigoplus_{i \geq 0} R_{i}$

Grassmann variety

\mathbb{K} algebraically closed.
The CLASSical CASE $G_{k, n} \hookrightarrow \mathbb{P}\left(\wedge^{k} \mathbb{K}^{n}\right)$
$R=$ homogeneous coordinate ring $=\bigoplus_{i \geq 0} R_{i}$
$\mathrm{I}_{k, n}=\left\{\underline{i}=\left(i_{1}, \ldots, i_{k}\right) \mid 1 \leq i_{1}<\ldots<i_{k} \leq n\right\}$
$\mathrm{I}_{k, n}$ partially ordered set: $\underline{i} \leq \underline{j} \Leftrightarrow i_{1} \leq j_{1}, \ldots, i_{k} \leq j_{k}$

Grassmann variety

\mathbb{K} algebraically closed.
The CLASSical CASE $G_{k, n} \hookrightarrow \mathbb{P}\left(\Lambda^{k} \mathbb{K}^{n}\right)$
$R=$ homogeneous coordinate ring $=\bigoplus_{i \geq 0} R_{i}$
$\mathrm{I}_{k, n}=\left\{\underline{i}=\left(i_{1}, \ldots, i_{k}\right) \mid 1 \leq i_{1}<\ldots<i_{k} \leq n\right\}$
$\mathrm{I}_{k, n}$ partially ordered set: $\underline{i} \leq \underline{j} \Leftrightarrow i_{1} \leq j_{1}, \ldots, i_{k} \leq j_{k}$
$\left\{p_{\underline{i}} \mid \underline{i} \in \mathrm{I}_{k, n}\right\}$ Plücker coordinates $\subset R_{1}=\left(\wedge^{k} \mathbb{K}^{n}\right)^{*}$, dual basis:
$\Lambda^{k} \mathbb{K}^{n}:\left\{e_{\underline{i}}=e_{i_{1}} \wedge \ldots \wedge e_{i_{k}} \mid \underline{i} \in \mathrm{I}_{k, n}\right\}, \mathbb{K}^{n}:\left\{e_{1}, \ldots e_{n}\right\}$,

Grassmann variety

\mathbb{K} algebraically closed.
The Classical case $G_{k, n} \hookrightarrow \mathbb{P}\left(\Lambda^{k} \mathbb{K}^{n}\right)$
$R=$ homogeneous coordinate ring $=\bigoplus_{i \geq 0} R_{i}$
$\mathrm{I}_{k, n}=\left\{\underline{i}=\left(i_{1}, \ldots, i_{k}\right) \mid 1 \leq i_{1}<\ldots<i_{k} \leq n\right\}$
$\mathrm{I}_{k, n}$ partially ordered set: $\underline{i} \leq \underline{j} \Leftrightarrow i_{1} \leq j_{1}, \ldots, i_{k} \leq j_{k}$
$\left\{p_{\underline{i}} \mid \underline{i} \in \mathrm{I}_{k, n}\right\}$ Plücker coordinates $\subset R_{1}=\left(\Lambda^{k} \mathbb{K}^{n}\right)^{*}$, dual basis:
$\Lambda^{k} \mathbb{K}^{n}:\left\{e_{\underline{i}}=e_{i_{1}} \wedge \ldots \wedge e_{i_{k}} \mid \underline{i} \in \mathrm{I}_{k, n}\right\}, \mathbb{K}^{n}:\left\{e_{1}, \ldots e_{n}\right\}$,

Definition

Standard monomial: $p_{\underline{i}} p_{\underline{j}} \cdots p_{\underline{\ell}}$ standard $\Leftrightarrow \underline{i} \leq \underline{j} \leq \ldots \leq \underline{\ell}$

Example: $G r_{2,5}$

some standard monomials
of degree 2
$p_{12} p_{12}, p_{12} p_{13}, p_{12} p_{14}, \ldots$
$p_{13} p_{13}, p_{13} p_{14}, p_{13} p_{15}, \ldots$
$p_{13} p_{25}, p_{13} p_{34}, \ldots$

Example: $G r_{2,5}$

some standard monomials of degree 2
$p_{12} p_{12}, p_{12} p_{13}, p_{12} p_{14}, \ldots$
$p_{13} p_{13}, p_{13} p_{14}, p_{13} p_{15}, \ldots$
$p_{13} p_{25}, p_{13} p_{34}, \ldots$
straightening relations
$p_{23} p_{14}=p_{13} p_{24}-p_{12} p_{34}$
$p_{23} p_{15}=p_{13} p_{25}-p_{12} p_{35}$
...

Standard monomial theory

Theorem

(Hodge, Seshadri)
$R=\bigoplus_{i \geq 0} R_{i}=$ homogeneous coordinate ring of

$$
G_{k, n} \hookrightarrow \mathbb{P}\left(\Lambda^{k} \mathbb{K}^{n}\right)
$$

- the standard monomials of degree m form a basis of R_{m}
- straightening relations of degree two (= express non-standard monomials as sum of standard monomials) generate the vanishing ideal of $G_{k, n} \subset \mathbb{P}\left(\Lambda^{k} \mathbb{K}^{n}\right)$.
- flat degeneration of $G_{k, n}$ into a union of projective spaces, the number of irreducible components equals the number of maximal chains in $\mathrm{I}_{k, n}$.

Some generalizations:

Generalizations:

Some generalizations:

Generalizations:
C. S. Seshadri, C. Musili, V. Lakshmibai, C. De Concini, L, ... Standard monomial theory for Schubert varieties in G/B

Some generalizations:

Generalizations:
C. S. Seshadri, C. Musili, V. Lakshmibai, C. De Concini, L, ... Standard monomial theory for Schubert varieties in G/B
C. De Concini, D. Eisenbud and C. Procesi, Hibi, Chirivì, ... Hodge algebras (or algebras with straightening laws)

Some generalizations:

Generalizations:
C. S. Seshadri, C. Musili, V. Lakshmibai, C. De Concini, L, ... Standard monomial theory for Schubert varieties in G/B
C. De Concini, D. Eisenbud and C. Procesi, Hibi, Chirivì, ... Hodge algebras (or algebras with straightening laws)

We try to get a new approach via valuation theory and Newton-Okounkov bodies

An example

A family of subvarieties and a family of functions - (affine picture): $X=\mathbb{A}^{3}=\left\langle e_{1}, e_{2}, e_{3}\right\rangle, \mathbb{K}[X]=\mathbb{K}\left[x_{1}, x_{2}, x_{3}\right]$

An example

A family of subvarieties and a family of functions - (affine picture):

$$
X=\mathbb{A}^{3}=\left\langle e_{1}, e_{2}, e_{3}\right\rangle, \mathbb{K}[X]=\mathbb{K}\left[x_{1}, x_{2}, x_{3}\right]
$$

An example

A family of subvarieties and a family of functions - (affine picture):
$X=\mathbb{A}^{3}=\left\langle e_{1}, e_{2}, e_{3}\right\rangle, \mathbb{K}[X]=\mathbb{K}\left[x_{1}, x_{2}, x_{3}\right]$

family of functions defining (set theoretically) family of subvarieties.

The general picture

$X \subset \mathbb{P}(V)$ embedded projective variety $R=\mathbb{K}[X]$ homogeneous coordinate ring

The general picture

$X \subset \mathbb{P}(V)$ embedded projective variety $R=\mathbb{K}[X]$ homogeneous coordinate ring

A finite partially ordered set, graded, unique minimal element + maximal element

The general picture

$X \subset \mathbb{P}(V)$ embedded projective variety
$R=\mathbb{K}[X]$ homogeneous coordinate ring
A finite partially ordered set, graded, unique minimal element + maximal element

- $\left\{Y_{p}\right\}_{p \in A}$ family of projective subvarieties of X

$$
Y_{p_{\min }}=p t, Y_{p_{\max }}=X, Y_{p} \supseteq Y_{q} \Leftrightarrow p \geq q
$$

- $\left\{f_{p}\right\}_{p \in A}$ family of homogeneous functions (on V) such that
- $f_{p} \mid Y_{p} \not \equiv 0$
- $Y_{p}=\left\{x \in X \mid f_{q}(x)=0 \forall q \not \leq p\right\}$ (set theoretically)
- $H_{p}=\left\{[v] \in \mathbb{P}(V) \mid f_{p}(v)=0\right\}$
$H_{p} \cap Y_{p}=\bigcup_{q} Y_{q}, p$ covers q (set theoretically)

The general picture

$X \subset \mathbb{P}(V)$ embedded projective variety
$R=\mathbb{K}[X]$ homogeneous coordinate ring
A finite partially ordered set, graded, unique minimal element + maximal element

- $\left\{Y_{p}\right\}_{p \in A}$ family of projective subvarieties of X

$$
Y_{p_{\min }}=p t, Y_{p_{\max }}=X, Y_{p} \supseteq Y_{q} \Leftrightarrow p \geq q
$$

- $\left\{f_{p}\right\}_{p \in A}$ family of homogeneous functions (on V) such that
- $\left.f_{p}\right|_{Y_{p}} \not \equiv 0$
- $Y_{p}=\left\{x \in X \mid f_{q}(x)=0 \forall q \not \leq p\right\}$ (set theoretically)
- $H_{p}=\left\{[v] \in \mathbb{P}(V) \mid f_{p}(v)=0\right\}$
$H_{p} \cap Y_{p}=\bigcup_{q} Y_{q}, p$ covers q (set theoretically)
- to make presentation more consistent, we assume in the following the Y_{p} are projectively normal, in applications we do not need it

Examples

$$
\begin{aligned}
& \text { Example } \\
& X=G_{k, n} \text { Grassmann variety, } \\
& A=\mathrm{I}_{k, n}=\left\{\underline{i}=\left(i_{1}, \ldots, i_{k}\right) \mid 1 \leq i_{1}<\ldots<i_{k} \leq n\right\} . \\
& Y_{p} \text { 's }=\left\{X(\underline{i}) \mid \underline{i} \in \mathrm{I}_{k, n}\right\} \text { Schubert varieties } \\
& f_{p}^{\prime} s=\left\{p_{\underline{i}} \mid \underline{i} \in \mathrm{I}_{k, n}\right\} \text { Plücker coordinates. }
\end{aligned}
$$

Examples

Example

$X=G_{k, n}$ Grassmann variety,
$A=\mathrm{I}_{k, n}=\left\{\underline{i}=\left(i_{1}, \ldots, i_{k}\right) \mid 1 \leq i_{1}<\ldots<i_{k} \leq n\right\}$.
Y_{p} 's $=\left\{X(\underline{i}) \mid \underline{i} \in \mathrm{I}_{k, n}\right\}$ Schubert varieties
f_{p} 's $=\left\{p_{\underline{i}} \mid \underline{i} \in \mathrm{I}_{k, n}\right\}$ Plücker coordinates.
Example
$X=G / B \subset \mathbb{P}(V(\lambda))$.
$A=W$ Weyl group, Bruhat order.
$Y_{p}{ }^{\prime} s=X(\tau)$ Schubert varieties, $\tau \in W$.
$f_{p} ' s=\left\{p_{\tau}\right\}_{\tau \in W}$ duals of extremal weight vectors $\tau\left(v_{\lambda}\right)$

A graph

Hasse graph \mathcal{G}_{A} of A with weights: assume $p>q$ and p covers q :

$$
p \xrightarrow{b} q \quad \text { where } b=\text { vanishing multiplictity of } f_{p} \mid Y_{p} \text { in } Y_{q}
$$

A graph

Hasse graph \mathcal{G}_{A} of A with weights: assume $p>q$ and p covers q :

$$
p \xrightarrow{b} q \quad \text { where } b=\text { vanishing multiplictity of } f_{p} \mid Y_{p} \text { in } Y_{q}
$$

Example

$X=G / B: \mathcal{G}_{A}=$ Bruhat graph, weights $=$ Pieri-Chevalley formula

$$
S L_{3} / B \hookrightarrow \mathbb{P}\left(\mathfrak{s l}_{3}\right):
$$

Valuations

In the following: $N=\operatorname{lcm}$ (weights in \mathcal{G}_{A}).
Fix a maximal chain \mathfrak{C} in A : (maximally linearly ordered subset of A)

$$
\mathfrak{C}: \begin{array}{ccc}
p_{r} & >p_{r-1} & >\ldots>p_{1} \quad>p_{0}
\end{array}
$$

Valuations

In the following: $N=\operatorname{Icm}$ (weights in \mathcal{G}_{A}).
Fix a maximal chain \mathfrak{C} in A : (maximally linearly ordered subset of A)

$$
\begin{array}{rlll}
\mathfrak{C} & : & p_{r} & >p_{r-1} \\
\text { sub- } & >\ldots>p_{1} & >p_{0} \\
\text { varieties } & X=Y_{p_{r}} & \supset Y_{p_{r-1}} & \supset \ldots \supset Y_{p_{1}} \quad \supset Y_{0}=p t
\end{array}
$$

Valuations

In the following: $N=\operatorname{lcm}$ (weights in \mathcal{G}_{A}).
Fix a maximal chain \mathfrak{C} in A : (maximally linearly ordered subset of A)

$$
\begin{array}{rcccll}
\mathfrak{C} & : & p_{r} & >p_{r-1} & >\ldots>p_{1} & >p_{0} \\
\begin{array}{r}
\text { sub- }
\end{array} \\
\begin{array}{r}
\text { varieties } \\
\text { valuation }
\end{array} & X=Y_{p_{r}} & \supset Y_{p_{r-1}} & \supset \ldots \supset Y_{p_{1}} & \supset Y_{0}=p t \\
\begin{array}{r}
\text { ass.to } \\
\text { divisor }
\end{array} & \nu_{r} & \nu_{r-1} & \ldots & \nu_{1} &
\end{array}
$$

Valuations

In the following: $N=\operatorname{Icm}$ (weights in \mathcal{G}_{A}).
Fix a maximal chain \mathfrak{C} in A : (maximally linearly ordered subset of A)

\mathfrak{C}	p_{r}	$>p_{r-1}$	$>\ldots>p_{1}$	$>p_{0}$	
sub-					
varieties valuation	$X=Y_{p_{r}}$	$\supset Y_{p_{r-1}}$	$\supset \ldots \supset Y_{p_{1}}$	$\supset Y_{0}=p t$	
ass.to divisor	ν_{r}	ν_{r-1}	\ldots	ν_{1}	
functions	$f_{p_{r}}$	$f_{p_{r-1}}$	\ldots	f_{1}	$f_{p_{0}}$

Valuations

In the following: $N=\operatorname{lcm}$ (weights in \mathcal{G}_{A}).
Fix a maximal chain \mathfrak{C} in A : (maximally linearly ordered subset of A)

| \mathfrak{C} | p_{r} | $>p_{r-1}$ | $>\ldots>p_{1}$ | $>p_{0}$ |
| ---: | :---: | :---: | :---: | :---: | :---: |
| sub- | varieties | | | |$\quad X=Y_{p_{r}} \quad \supset Y_{p_{r-1}} \quad \supset \ldots \supset Y_{p_{1}}>Y_{0}=p t$

Idea: use ν_{j} and $f_{p_{j}}$ to define a \mathbb{Q}^{r+1}-valued valuation on R

Valuations

Fixed maximal chain $\mathfrak{C} \rightarrow$ affine cones:

$$
\begin{aligned}
\begin{array}{r}
\text { sub- } \\
\text { varieties }
\end{array} & \hat{X}=\hat{Y}_{p_{r}} \\
\supset \hat{Y}_{p_{r-1}} & \supset \ldots \supset \hat{Y}_{p_{1}}
\end{aligned} \supset \hat{Y}_{0}
$$

Valuations

Fixed maximal chain $\mathfrak{C} \rightarrow$ affine cones:

$$
\begin{array}{llllll}
\begin{array}{c}
\text { sub- } \\
\text { varieties }
\end{array} & \hat{X}=\hat{Y}_{p_{r}} & \supset \hat{Y}_{p_{r-1}} & \supset \ldots \supset \hat{Y}_{p_{1}} & \supset \hat{Y}_{0} \\
\begin{array}{c}
\text { h regular } \\
\text { function }
\end{array} & \rightarrow & h_{r}=h & h_{r-1} & \ldots & h_{1}
\end{array}
$$

Valuations

Fixed maximal chain $\mathfrak{C} \rightarrow$ affine cones:

$$
\begin{array}{cccccc}
\begin{array}{c}
\text { sub- } \\
\text { varieties }
\end{array} & \hat{X}=\hat{Y}_{p_{r}} & \supset \hat{Y}_{p_{r-1}} & \supset \ldots \supset \hat{Y}_{p_{1}} & \supset \hat{Y}_{0} \\
\begin{array}{r}
\text { h regular } \\
\text { function }
\end{array} & \rightarrow & h_{r}=h & h_{r-1} & \ldots & h_{1}
\end{array}
$$

h_{r-1}, \ldots, h_{0} are rational functions on $\hat{Y}_{p_{r-1}}, \ldots, \hat{Y}_{p_{1}}, \hat{Y}_{p_{0}}$.

Valuations

Fixed maximal chain $\mathfrak{C} \rightarrow$ affine cones:

$$
\begin{array}{rlllll}
\begin{array}{r}
\text { sub- } \\
\text { varieties }
\end{array} & \hat{X}=\hat{Y}_{p_{r}} & \supset \hat{Y}_{p_{r-1}} & \supset \ldots \supset \hat{Y}_{p_{1}} & \supset \hat{Y}_{0} \\
\begin{array}{r}
\text { h regular } \\
\text { function }
\end{array} & \rightarrow & h_{r}=h & h_{r-1} & \ldots & h_{1}
\end{array}
$$

h_{r-1}, \ldots, h_{0} are rational functions on $\hat{Y}_{p_{r-1}}, \ldots, \hat{Y}_{p_{1}}, \hat{Y}_{p_{0}}$.

Definition

$$
h_{j-1}:=\left.\frac{h_{j}^{N}}{f_{p_{j}}^{N \nu_{j}}\left(h_{j}\right) / b_{j}}\right|_{\hat{r}_{p_{j-1}}}
$$

Valuations

Forget about the numbers, but keep in mind: by Nagata, Rees and Samuel on asymptotic theory of ideals:

Lemma

Given h homogeneous, there exists always a maximal chain such that $\forall j=0, \ldots, r$: h_{j} is a regular homogeneous function on $\hat{Y}_{p_{j}}$.

Valuations

Forget about the numbers, but keep in mind: by Nagata, Rees and Samuel on asymptotic theory of ideals:

Lemma

Given h homogeneous, there exists always a maximal chain such that $\forall j=0, \ldots, r$: h_{j} is a regular homogeneous function on $\hat{Y}_{p_{j}}$.

Definition

Let $\mathcal{V}_{\mathbb{C}}: R-\{0\} \rightarrow \mathbb{Q}^{r+1}$ be defined by

$$
h \mapsto\left(c_{r} \nu_{r}\left(h_{r}\right), c_{r-1} \nu_{r}\left(h_{r-1}\right) \ldots, c_{0} \nu_{0}\left(h_{0}\right)\right)
$$

where $\nu_{0}\left(h_{0}\right)$ is the vanishing order of h_{0} in the origin of \hat{Y}_{0}.
c_{r}, \ldots, c_{0} are renormalization factors. \dagger

Valuations

Remark

The renormalization factors c_{r}, \ldots, c_{0} are chosen such that the functions $f_{p_{r}}, \ldots, f_{p_{0}}$ are mapped onto the corners of the standard simplex:

$$
\mathcal{V}_{\mathfrak{C}}\left(f_{p_{j}}\right)=(0, \ldots, 0, \underbrace{1,0, \ldots, 0}_{j+1})
$$

Valuations

Remark

The renormalization factors c_{r}, \ldots, c_{0} are chosen such that the functions $f_{p_{r}}, \ldots, f_{p_{0}}$ are mapped onto the corners of the standard simplex:

$$
\mathcal{V}_{\mathfrak{C}}\left(f_{p_{j}}\right)=(0, \ldots, 0, \underbrace{1,0, \ldots, 0}_{j+1})
$$

Theorem

$\mathcal{V}_{\mathbb{C}}: R-\{0\} \rightarrow \mathbb{Q}^{r+1}$ is a valuation with at most one-dimensional leaves.

Quasi-Valuation

$\mathcal{V}_{\mathfrak{C}}$ induces filtration, but:
in general difficult to prove that $\operatorname{gr}_{\mathfrak{C}} R$ finitely generated.

Quasi-Valuation

$\mathcal{V}_{\mathfrak{C}}$ induces filtration, but:
in general difficult to prove that $\operatorname{gr}_{\mathfrak{C}} R$ finitely generated.
Non-negativity often helps:
regular functions \Rightarrow non-negative valuations.

Quasi-Valuation

$\mathcal{V}_{\mathfrak{C}}$ induces filtration, but:
in general difficult to prove that $\mathrm{gr}_{\mathfrak{C}} R$ finitely generated.
Non-negativity often helps:
regular functions \Rightarrow non-negative valuations.
Endow \mathbb{Q}^{r+1} with a lexicographic order, and define:

Quasi-Valuation

$\mathcal{V}_{\mathfrak{C}}$ induces filtration, but:
in general difficult to prove that $\mathrm{gr}_{\mathfrak{C}} R$ finitely generated.
Non-negativity often helps:
regular functions \Rightarrow non-negative valuations.
Endow \mathbb{Q}^{r+1} with a lexicographic order, and define:

Definition

A quasi-valuation:

$$
\begin{gathered}
h \mapsto \min \left\{\mathcal{V}_{\mathfrak{C}}(h) \mid \mathfrak{C} \text { maximal chain }\right\} \\
\mathcal{V}: R-\{0\} \rightarrow \mathbb{Q}^{r+1}
\end{gathered}
$$

Quasi-Valuation

$\mathcal{V}_{\mathfrak{C}}$ induces filtration, but:
in general difficult to prove that $\mathrm{gr}_{\mathfrak{C}} R$ finitely generated.
Non-negativity often helps:
regular functions \Rightarrow non-negative valuations.
Endow \mathbb{Q}^{r+1} with a lexicographic order, and define:

Definition

A quasi-valuation:

$$
\begin{gathered}
h \mapsto \min \left\{\mathcal{V}_{\mathcal{C}}(h) \mid \mathfrak{C} \text { maximal chain }\right\} \\
\mathcal{V}: R-\{0\} \rightarrow \mathbb{Q}_{\geq 0}^{r+1}
\end{gathered}
$$

non-negativity: Rees

Quasi-Valuations

Theorem

- The quasi-valuation induces a filtration of R, such that the associated graded $g r_{\mathcal{V}} R$ is finitely generated.

Quasi-Valuations

Theorem

- The quasi-valuation induces a filtration of R, such that the associated graded $g r_{\mathcal{V}} R$ is finitely generated.
- The irreducible components of the associated variety are in bijection with maximal chains in the partially ordered set A.

Quasi-Valuations

Theorem

- The quasi-valuation induces a filtration of R, such that the associated graded $g r_{\mathcal{V}} R$ is finitely generated.
- The irreducible components of the associated variety are in bijection with maximal chains in the partially ordered set A.
- The irreducible component associated to a maximal chain \mathfrak{C} is the toric variety associated to the semigroup

$$
\Gamma_{\mathfrak{C}}:=\left\{\mathcal{V}(h) \mid h \in R \text { homogeneous, } \mathcal{V}_{\mathbb{C}}(h) \text { is minimal }\right\} \subset \mathbb{Q}_{\geq 0}^{r+1}
$$

Remark

- If g is homogeneous and $\mathcal{V}_{\mathscr{C}}(h)=\left(a_{r}, \ldots, a_{0}\right)$ is minimal, then $\operatorname{deg} g=a_{0} \operatorname{deg} f_{p_{0}}+a_{1} \operatorname{deg} f_{p_{1}}+\ldots+a_{r} \operatorname{deg} f_{p_{r}}$.

Remark

- If g is homogeneous and $\mathcal{V}_{\mathscr{C}}(h)=\left(a_{r}, \ldots, a_{0}\right)$ is minimal, then

$$
\operatorname{deg} g=a_{0} \operatorname{deg} f_{p_{0}}+a_{1} \operatorname{deg} f_{p_{1}}+\ldots+a_{r} \operatorname{deg} f_{p_{r}} .
$$

- If $\mathcal{V}_{\mathbb{C}}(h)=\left(a_{r}, \ldots, a_{0}\right)$ is minimal, then $\bar{h}^{N}=\bar{f}_{p_{r}}^{N a_{r}} \ldots \bar{f}_{p_{0}}^{N a_{0}}$ in $g r_{\mathcal{V}} R$

Remark

- If g is homogeneous and $\mathcal{V}_{\mathscr{C}}(h)=\left(a_{r}, \ldots, a_{0}\right)$ is minimal, then

$$
\operatorname{deg} g=a_{0} \operatorname{deg} f_{p_{0}}+a_{1} \operatorname{deg} f_{p_{1}}+\ldots+a_{r} \operatorname{deg} f_{p_{r}} .
$$

- If $\mathcal{V}_{\mathcal{C}}(h)=\left(a_{r}, \ldots, a_{0}\right)$ is minimal, then $\bar{h}^{N}=\bar{f}_{p_{r}}^{N a_{r}} \ldots \bar{f}_{p_{0}}^{N a_{0}}$ in $g r_{\mathcal{V}} R$
- If $g, h \in R$ have $N O$ common maximal chain \mathfrak{C} such that $\mathcal{V}_{\mathfrak{C}}(g)$ and $\mathcal{V}_{\mathcal{C}}(h)$ are minimal then $\bar{g} \bar{h}=0$ in $\operatorname{gr}{ }_{\mathcal{V}} R$.

Remark

- If g is homogeneous and $\mathcal{V}_{\mathscr{C}}(h)=\left(a_{r}, \ldots, a_{0}\right)$ is minimal, then

$$
\operatorname{deg} g=a_{0} \operatorname{deg} f_{p_{0}}+a_{1} \operatorname{deg} f_{p_{1}}+\ldots+a_{r} \operatorname{deg} f_{p_{r}} .
$$

- If $\mathcal{V}_{\mathbb{C}}(h)=\left(a_{r}, \ldots, a_{0}\right)$ is minimal, then $\bar{h}^{N}=\bar{f}_{p_{r}}^{N a_{r}} \cdots \bar{f}_{p_{0}}^{N a_{0}}$ in $g r_{\mathcal{V}} R$
- If $g, h \in R$ have $N O$ common maximal chain \mathfrak{C} such that $\mathcal{V}_{\mathfrak{C}}(g)$ and $\mathcal{V}_{\mathcal{C}}(h)$ are minimal then $\bar{g} \bar{h}=0$ in $g r_{\mathcal{V}} R$.

Remark

Grassmann variety, $G_{k, n}, p_{\underline{\underline{I}}}$ Plücker coordinate:
$\mathcal{V}_{\mathcal{C}}\left(p_{i}\right)$ is minimal if and only if $\underline{i} \in \mathfrak{C}$.
So $\bar{p}_{i} \bar{p}_{j}=0$ in $g r_{\mathcal{V}} R \Leftrightarrow \underline{i}$ and \underline{j} are not comparable.
Further $N=1$, so all elements in $g r_{\mathcal{V}} R$ are standard monomials.

Back to the example

$$
X=\mathbb{A}^{3}=\left\langle e_{1}, e_{2}, e_{3}\right\rangle, \mathbb{K}[X]=\mathbb{K}\left[x_{1}, x_{2}, x_{3}\right]
$$

Back to the example

$$
X=\mathbb{A}^{3}=\left\langle e_{1}, e_{2}, e_{3}\right\rangle, \mathbb{K}[X]=\mathbb{K}\left[x_{1}, x_{2}, x_{3}\right]
$$

Applying the machinery to this example $=$ cutting a cone into 6 pieces:

$\left\{x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}} \mid a_{1}, a_{2}, a_{3} \in \mathbb{N}\right\}$
R

$\bigcup_{\sigma \in S_{3}}\left\{\begin{array}{lc}x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}} \mid & a_{1}, a_{2}, a_{3} \in \mathbb{N} ; \\ a_{\sigma(1)} \leq a_{\sigma(2)} \leq a_{\sigma(3)}\end{array}\right\}$
gr R

A kind of root operator

Open question:
generators of the semi-group $\Gamma_{\mathfrak{C}}$? (= semigroup, irr. comp. $\rightarrow \mathrm{gr} R$)

A kind of root operator

Open question:
generators of the semi-group $\Gamma_{\mathfrak{C}}$? (= semigroup, irr. comp. $\rightarrow \mathrm{gr} R$)
We assume in the following: our familiy of projective subvarieties and the functions $\left\{f_{p}\right\}_{p \in A}$ satisfies in addition the following condition:

- all f_{p} have the same degree (not really necessary)
- for every $p \rightarrow^{b} q$, one can extract a root, i.e $\exists \eta \in \mathbb{K}\left(Y_{p}\right)$, such:

$$
\eta^{b}=\left.\frac{f_{q}}{f_{p}}\right|_{Y_{p}} .
$$

Lemma

The functions $f_{p}, \eta f_{p}, \eta^{2} f_{p}, \ldots, \eta^{b} f_{p}=f_{q}$ regular homogeneous functions of the same degree on \hat{Y}_{p}.

A kind of root operator

Lemma

Let $g \in R$ be a homogeneous function. Let $\mathfrak{C}=\left(p_{r}, \ldots, p_{0}\right)$ be a maximal chain in A such that $\mathcal{V}_{\mathfrak{C}}(g)=\left(a_{r}, \ldots, a_{0}\right)$ is minimimal. Set $\ell=a_{r} b$ where $p_{r} \rightarrow^{b} p_{r-1}$).

- the functions below are homogeneous regular functions on $Y_{p_{r}}$, of the same degree as g :

$$
g, \eta g, \eta^{2} g, \ldots, \eta^{\ell} g
$$

- the last function does not vanish on $Y_{p_{r-1}}$.
- $\mathcal{V}\left(\eta^{j} g\right)=\mathcal{V}(g)-\frac{j}{b_{r}}\left(e_{r}-e_{r-1}\right)$ for $j \leq \ell$

The semigroup

Using an inductive procedure....

Proposition

The semigroup $\Gamma_{\mathfrak{C}}$ is contained in

$$
\Gamma_{\mathfrak{C}} \subseteq\left\{v=\left(\begin{array}{c}
a_{r} \\
\vdots \\
a_{0}
\end{array}\right) \in \mathbb{Q}_{\geq 0}^{r+1} \left\lvert\, \begin{array}{r}
b_{r} a_{r} \in \mathbb{Z} \\
b_{r-1}\left(a_{r}+a_{r-1}\right) \in \mathbb{Z} \\
\\
a_{0} \operatorname{deg} f_{p_{0}}+a_{1} \operatorname{deg} f_{p_{1}}+\ldots+a_{r} \operatorname{deg} f_{p_{r}} \in \mathbb{N}
\end{array}\right.\right\}
$$

Some conjectures

Conjecture

Equality holds!

$$
\Gamma_{\mathfrak{C}}=\left\{v=\left(\begin{array}{c}
a_{r} \\
\vdots \\
a_{0}
\end{array}\right) \in \mathbb{Q}_{\geq 0}^{r+1} \left\lvert\, \begin{array}{r}
b_{r} a_{r} \in \mathbb{Z} \\
b_{r-1}\left(a_{r}+a_{r-1}\right) \in \mathbb{Z} \\
a_{0} \operatorname{deg} f_{p_{0}}+a_{1} \operatorname{deg} f_{p_{1}}+\ldots+a_{r}+\ldots+a_{r} \operatorname{deg} f_{p_{r}} \in \mathbb{Z}
\end{array}\right.\right\}
$$

Some conjectures

Conjecture
Equality holds!

Expected consequences (up to glueing!!)

- Get standard monomial theory (ordered monomials in the f_{p} 's $+a$ finite number of extra elements)

Some conjectures

Conjecture
Equality holds!

Expected consequences (up to glueing!!)

- Get standard monomial theory (ordered monomials in the f_{p} 's $+a$ finite number of extra elements)
- Get a Newton-Okounkov body $\Delta(R) \subset \mathbb{Q}^{|A|}$ (bigger ambient space!)

Some conjectures

Conjecture
Equality holds!

Expected consequences (up to glueing!!)

- Get standard monomial theory (ordered monomials in the f_{p} 's $+a$ finite number of extra elements)
- Get a Newton-Okounkov body $\Delta(R) \subset \mathbb{Q}^{|A|}$ (bigger ambient space!)
- $\operatorname{Proj}(\operatorname{gr} R)$ is a flat degeneration of X.

Some conjectures

Conjecture

Equality holds!

$$
\Gamma_{\mathfrak{C}}=\left\{v=\left(\begin{array}{c}
a_{r} \\
\vdots \\
a_{0}
\end{array}\right) \in \mathbb{Q}_{\geq 0}^{r+1} \left\lvert\, \begin{array}{r}
b_{r} a_{r} \in \mathbb{Z} \\
b_{r-1}\left(a_{r}+a_{r-1}\right) \in \mathbb{Z} \\
a_{0} \operatorname{deg} f_{p_{0}}+a_{1} \operatorname{deg} f_{p_{1}}+\ldots+a_{r}+\ldots+a_{r} \operatorname{deg} f_{p_{r}} \in \mathbb{Z}
\end{array}\right.\right\}
$$

Expected consequences (up to glueing!!)

- Get standard monomial theory (ordered monomials in the f_{p} 's $+a$ finite number of extra elements)
- Get a Newton-Okounkov body $\Delta(R) \subset \mathbb{Q}^{|A|}$ (bigger ambient space!)
- $\operatorname{Proj}(\mathrm{gr} R)$ is a flat degeneration of X.
- the degree of $X \subseteq \mathbb{P}(V)$ is equal to

$$
\left.\sum_{\text {maximal chains }} \prod \text { (weights on the chain }\right)
$$

Conjecture holds:

Remark

- If all weights are equal to 1 (and hence $N=1$), the conjecture and the expected consequences hold (\sim Hodge algebra case)

Conjecture holds:

Remark

- If all weights are equal to 1 (and hence $N=1$), the conjecture and the expected consequences hold (\sim Hodge algebra case)
- If $X=X(\tau)$ is a Schubert variety (G symmetrizable Kac-Moody), then the conjecture and the expected consequences hold!

Conjecture holds:

Remark

- If all weights are equal to 1 (and hence $N=1$), the conjecture and the expected consequences hold (\sim Hodge algebra case)
- If $X=X(\tau)$ is a Schubert variety (G symmetrizable Kac-Moody), then the conjecture and the expected consequences hold!
- semigroups \rightarrow recover the Lakshmibai-Seshadri path model theory in an algebraic-geometric context

Conjecture holds:

Remark

- If all weights are equal to 1 (and hence $N=1$), the conjecture and the expected consequences hold (\sim Hodge algebra case)
- If $X=X(\tau)$ is a Schubert variety (G symmetrizable Kac-Moody), then the conjecture and the expected consequences hold!
- semigroups \rightarrow recover the Lakshmibai-Seshadri path model theory in an algebraic-geometric context
- Newton-Okounkov body $\Delta(R) \rightarrow$ recover polytope with integral structure constructed by R. Dehy

Conjecture holds:

Remark

- If all weights are equal to 1 (and hence $N=1$), the conjecture and the expected consequences hold (\sim Hodge algebra case)
- If $X=X(\tau)$ is a Schubert variety (G symmetrizable Kac-Moody), then the conjecture and the expected consequences hold!
- semigroups \rightarrow recover the Lakshmibai-Seshadri path model theory in an algebraic-geometric context
- Newton-Okounkov body $\Delta(R) \rightarrow$ recover polytope with integral structure constructed by R. Dehy
- flat degeneration \rightarrow recover LS-Algebra structure by R. Chirivì

Conjecture holds:

Remark

- If all weights are equal to 1 (and hence $N=1$), the conjecture and the expected consequences hold (\sim Hodge algebra case)
- If $X=X(\tau)$ is a Schubert variety (G symmetrizable Kac-Moody), then the conjecture and the expected consequences hold!
- semigroups \rightarrow recover the Lakshmibai-Seshadri path model theory in an algebraic-geometric context
- Newton-Okounkov body $\Delta(R) \rightarrow$ recover polytope with integral structure constructed by R. Dehy
- flat degeneration \rightarrow recover LS-Algebra structure by R. Chirivì
- combinatoric implies Cohen-Macaulayness etc.

Conjecture holds:

Remark

- If all weights are equal to 1 (and hence $N=1$), the conjecture and the expected consequences hold (\sim Hodge algebra case)
- If $X=X(\tau)$ is a Schubert variety (G symmetrizable Kac-Moody), then the conjecture and the expected consequences hold!
- semigroups \rightarrow recover the Lakshmibai-Seshadri path model theory in an algebraic-geometric context
- Newton-Okounkov body $\Delta(R) \rightarrow$ recover polytope with integral structure constructed by R. Dehy
- flat degeneration \rightarrow recover LS-Algebra structure by R. Chirivì
- combinatoric implies Cohen-Macaulayness etc.
- So far our proof of the conjecture uses quantum groups at roots of unity.

Conjecture holds:

Remark

- If all weights are equal to 1 (and hence $N=1$), the conjecture and the expected consequences hold (\sim Hodge algebra case)
- If $X=X(\tau)$ is a Schubert variety (G symmetrizable Kac-Moody), then the conjecture and the expected consequences hold!
- semigroups \rightarrow recover the Lakshmibai-Seshadri path model theory in an algebraic-geometric context
- Newton-Okounkov body $\Delta(R) \rightarrow$ recover polytope with integral structure constructed by R. Dehy
- flat degeneration \rightarrow recover LS-Algebra structure by R. Chirivì
- combinatoric implies Cohen-Macaulayness etc.
- So far our proof of the conjecture uses quantum groups at roots of unity. "Bad news": Not available in the general context

Remark

- further candidates for theory: Richardson varieties, Bott-Samelson varieties, complete symmetric spaces, .. . Most of them are known to have a standard monomial theory. Uniform construction?
- are the "algebraic geometric root operators" invertible?
- connection with cluster varieties? Even not clear for Grassmann varieties.
!! Happy Birthday Corrado !!

!! Best wishes for Elisabetta !!

