Cayley Hamilton algebras

Claudio Procesi

Claudio Procesi Roma, La Sapienza

Venezia, 18-september-2019

Representation Theory In Venice A conference in honour of Corrado De Concini Introduction

Norm algebras

Cayley–Hamilton algebras

The embedding problem

The embedding problem

When is that a non commutative ring R can be embedded into the ring $M_n(A)$ of $n \times n$ matrices over a commutative ring A?

This question, addressed for the first time by Malcev, may have several possible answers.

The heart of the question is related to the existence of: *polynomial identities satisfied by matrices over a commutative ring.*

The theorem of Amitsur-Levitzki

Amitsur and Levitzki discovered that the ring of $n \times n$ matrices over a commutative ring A satisfies a kind of higher order commutative law, the *standard identity*

$$St_{2n}(x_1, x_2, \ldots, x_{2n}) := \sum_{\sigma \in S_{2n}} \epsilon_{\sigma} x_{\sigma(1)} \ldots x_{\sigma(2n)}$$

where S_{2n} denotes the symmetric group on 2n elements and ϵ_{σ} the sign of a permutation σ .

Necessary and sufficient conditions

In fact there are other polynomial identities of $n \times n$ matrices which are independent of the standard identity.

Thus, the first condition for a ring R to be embeddable in $M_n(A)$ with A commutative is that it should satisfy all the polynomial identities satisfied by $n \times n$ matrices over a commutative ring.

Several examples show that in general this is not sufficient.

A universal map

Notice that, given any ring R and integer n there is always a *universal map*

$$j_{n,R}: R \to M_n(A_{n,R})$$

with $A_{n,R}$ commutative.

For the free algebra in *m* variables over *F* the algebra $A_{n,R}$ is the polynomial ring over $M_n(F)^m$ and x_i maps to the corresponding *generic matrix*.

In fact $A_{n,R}$ represents the set valued functor on the category of commutative rings which to a commutative ring B associates the set hom $(R, M_n(B))$ of homomorphisms. That is

 $hom(A_{n,R}, B) \simeq hom(R, M_n(B)), \quad \forall B \text{ commutative ring.}$

So the embedding problem may be reformulated to

find conditions under which $j_{n,R}$ is an embedding.

The projective group is the representable group valued functor which to a commutative ring B associates the group of B automorphisms of $M_n(B)$.

By general facts the projective group PGL_n acts on $M_n(A_{n,R})$ and $j_{n,R}$ maps R to the invariants $M_n(A_{n,R})^{PGL_n}$ which contain all coefficients of the characteristic polynomials of elements of $j_{n,R}(R)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Trace algebras	The Cayley–Hamilton identity	Norm algebras	Cayley–Hamilton algebras

Finally the spectrum of the invariants $A_{n,R}^{PGL_n}$ parametrizes equivalence classes of semisimple representations of R.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Trace algebras

This fact suggested a new paradigm

in 1987 I proposed to change the problem by adding to the structure of a ring a *trace* and using instead of polynomial identities *trace identities*.

Surprisingly this makes the theory work smoothly.

Norm algebras

Cayley–Hamilton algebras

ヘロト ヘヨト ヘヨト ヘヨト

€ 990

Trace algebras

Trace algebras

Trace algebras

Definition

An associative algebra with trace, over a commutative ring A is an associative algebra R with a 1-ary operation

 $t: R \rightarrow R$

which is assumed to satisfy the following axioms:

This operation is called a *formal trace*.

Trace algebras

We denote $t(R) := \{t(a), a \in R\}$ the image of t. From the axioms it follows that t(R) is a commutative algebra which we call the *trace algebra of R*.

Remark

We have the following implications: Axiom 1) implies that t(R) is an A-submodule. Axiom 2) implies that t(R) is in the center of R. Axiom 3) implies that t is 0 on the space of commutators [R, R]. Axiom 4) implies that t(R) is an A-subalgebra and that t is t(R)-linear.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The definition is in the spirit of *universal algebra*, thus clearly there exist the free algebra with trace in variables X and trace identities for a given trace algebra.

Free algebras with trace

The free A algebra with trace in variables $X = \{x_i\}_{i \in I}$ is obtained from the usual free algebra $A\langle X \rangle$, by adding as polynomial variables, the classes of cyclic equivalence of monomials M, which we formally denote t(M).

 $A\langle X\rangle[t(M)].$

Introduction

Trace algebras

The Cayley-Hamilton identity

Norm algebras

Cayley-Hamilton algebras

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The Cayley–Hamilton identity

The Cayley–Hamilton identity

The Cayley–Hamilton identity

We now assume to be in characteristic 0, that is on \mathbb{Q} algebras. From the theory of symmetric functions it follows that the Cayley–Hamilton theorem for $n \times n$ matrices may be viewed as a *trace identity* in one variable x denoted by $CH_n(x)$, as example:

$$CH_2(x) = x^2 - tr(x)x + det(x) = x^2 - tr(x)x + \frac{1}{2}(tr(x)^2 - tr(x^2)).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Two theorems

A theorem of Razmyslov and Procesi states that:

Theorem

All trace identities of $M_n(\mathbb{Q})$ (in any number of variables) can be deduced from $CH_n(x)$.

A theorem of Procesi states that:

Theorem

The free algebra in the variables X, modulo the ideal of trace identities of $M_n(\mathbb{Q})$ is the algebra of polynomial maps of the space $M_n(\mathbb{Q})^X$ to $M_n(\mathbb{Q})$ which are equivariant under conjugation.

This is a *relatively free algebra* in the variety of trace algebras satisfying $CH_n(x)$.

if X has m elements, let $A_{m,n}$ denote the polynomial functions on the space $M_n(\mathbb{Q})^m$ (polynomials in mn^2 variables). On this space, and hence on $A_{m,n}$, acts the group $PGL(n,\mathbb{Q})$ by conjugation.

The space of polynomial maps from $M_n(\mathbb{Q})^m$ to $M_n(\mathbb{Q})$ is

$$M_n(A_{m,n}) = M_n(\mathbb{Q}) \otimes A_{m,n}.$$

On this space acts diagonally $PGL(n, \mathbb{Q})$ and the invariants

$$M_n(A_{m,n})^{PGL(n,\mathbb{Q})} = (M_n(\mathbb{Q}) \otimes A_{m,n})^{PGL(n,\mathbb{Q})}$$

give the relatively free algebra in m variables in the variety of trace algebras satisfying $CH_n(x)$.

Cayley–Hamilton algebras

Definition

An *n* Cayley–Hamilton algebra, is a \mathbb{Q} trace algebra *R* which satisfies the trace identity $CH_n(x)$.

Examples of *n* Cayley–Hamilton algebras are \mathbb{Q} subalgebras, closed under trace of an algebra $M_n(A)$ with A a commutative \mathbb{Q} algebra.

Surprise, these are all the *n* Cayley–Hamilton algebras!

The main Theorem

Let *R* be a trace algebra which satisfies the trace identity $CH_n(x)$ and tr(1) = n. Let $j_{n,R} : R \to M_n(A_{n,R})$ be the universal map (trace compatible) into $n \times n$ matrices over a commutative \mathbb{Q} algebra.

Theorem

The map

$$j_{n,R}: R \xrightarrow{\simeq} M_n(A_{n,R})^{PGL(n,\mathbb{Q})}$$

is an isomorphism.

The category of *n* Cayley–Hamilton algebras is equivalent to a full subcategory of the category of commutative \mathbb{Q} algebras equipped with a $PGL(n, \mathbb{Q})$ action.

This category is only partially studied

A program would be to establish a full theory of this category, describing the interplay between the commutative algebra and associated invariant theory with the structure and representation theory of the corresponding non commutative algebras.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A generalization

The question is, can we extend the theory for a general algebra over a field of positive characteristic or even over the integers?

In this case rather than introducing an abstract trace one should introduce an abstract *determinant*, that is a *Norm*. In order to do this let us recall the theory of *multiplicative polynomial maps*.

Norm algebras

Cayley-Hamilton algebras

Norm algebras

Norm algebras

Norm algebras

Definition

An associative algebra with an n norm, over a commutative ring A is an associative algebra R with a 1-ary operation

 $N: R \rightarrow R$

which is assumed to satisfy the following axioms:

• N is an A-polynomial map homogeneous of degree n.

- $N(N(a)b) = N(a)^n N(b), \quad \forall a, b \in R.$

This operation is called a *formal norm*.

We denote N(R) the subalgebra of R generated by the (polarizations of the) elements N(a), $a \in R$. It follows that N(R) is a commutative algebra which we call the *norm algebra of* R.

A polynomial map $F : R \to S$ between two associative algebras which satisfies $F(ab) = F(a)F(b), F(1) = 1, \quad \forall a, b \in R$ is called *multiplicative*.

It can be treated by the theory of *divided powers* $\Gamma_n(R)$.

Multiplicative maps

Under mild conditions the *n*-divided power of *R* equals the symmetric tensors of $R^{\otimes n}$:

$$\Gamma_n(R)=[R^{\otimes n}]^{S_n}.$$

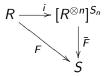
If R is an algebra also $[R^{\otimes n}]^{S_n}$ is an algebra, called the *n*-Schur algebra of R.

Multiplicative maps

The map

$$i: R \to [R^{\otimes n}]^{S_n}, \quad i: r \mapsto r^{\otimes n}$$

is a *universal multiplicative map*, that is, by a Theorem of Roby a multiplicative polynomial map $F : R \to S$ between two associative algebras, homogeneous of degree n factors as



with \overline{F} a homomorphism of algebras.

Norm algebras

Remark

The axioms of a norm imply that the norm N factors through a homomorphism $\overline{N} : [R^{\otimes n}]^{S_n} \to R$ with image the norm algebra. Moreover N is a polynomial map with respect also to the norm algebra.

By the theory of polynomial maps one can then define a formal characteristic polynomial

$$\chi_{a}(t) := N(t-a), \quad \forall a \in R.$$

Introduction

Norm algebras

Cayley-Hamilton algebras

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Cayley–Hamilton algebras

Cayley–Hamilton algebras

Cayley–Hamilton algebras

Definition

An algebra R with an *n*-norm is a *n*-Cayley-Hamilton algebra if every element $a \in R$ satisfies its characteristic polynomial.

This definition is equivalent to the one given by trace in characteristic 0.

Cayley-Hamilton algebras, what can we say?

The problem is to see what holds of the theory developed in characteristic 0 in this general case.

Clearly we still have the universal map into matrices over a commutative algebra, compatible with the norms (the second is the determinant).

There is also a free *n*-Cayley-Hamilton algebra.

In order to identify this, we need a generalization of the approach of Ziplies and Vaccarino to the invariant theory of $n \times n$ matrices.

Matrix invariants

Given a commutative ring A and an integer n one can construct for each m the ring of m generic $n \times n$ matrices

$$A\langle \xi_1,\ldots,\xi_m\rangle$$

and then the commutative algebra $B_{n,m}$ generated by all coefficients of the characteristic polynomials of elements of $A\langle \xi_1, \ldots, \xi_m \rangle$.

Matrix invariants

If A is a field or the integers, by a theorem of Donkin, one has that $B_{n,m}$ is the ring of invariants of *m*-tuples of $n \times n$ matrices under simultaneous conjugation.

Finally the ring

$$A\langle \xi_1,\ldots,\xi_m\rangle B_{n,m}$$

is the ring of polynomial maps from *m*-tuples of $n \times n$ matrices to $n \times n$ matrices, which are equivariant under simultaneous conjugation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Matrix invariants, Zubkov, Ziplies and Vaccarino.

Consider the multiplicative polynomial map

$$A\langle x_1,\ldots,x_m\rangle \to A\langle \xi_1,\ldots,\xi_m\rangle \stackrel{\mathsf{det}}{\to} B_{n,m}$$

from the free algebra to the matrix invariants. It factors through a homomorphism

$$D: [A\langle x_1,\ldots,x_m\rangle^{\otimes n}]^{S_n} \to B_{n,m}$$

Matrix invariants, Zubkov, Ziplies and Vaccarino.

Putting together, a Theorem of Zubkov on the relations between matrix invariants with the approach of Ziplies and Vaccarino one finally has:

Theorem

The homomorphism D is surjective and its kernel is the ideal generated by the commutators.

Corollary

The algebra $A(\xi_1, \ldots, \xi_m) B_{n,m}$ of equivariant maps is the free n–Cayley–Hamilton algebra in m variables.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

This last material can be found in a recent book with Corrado:

C. De Concini, C. Procesi, *The invariant theory of matrices* A.M.S. University Lecture Series v. **69**, 151 pp. (2017).

An open problem

What can one say about the universal map into matrices $j_{n,R}: R \to M_n(A_{n,R})^{PGL_n}$ for an *n*-Cayley-Hamilton algebra? For *R* free we have seen that this is isomorphism, as well for all *R* containing \mathbb{Q} .

This last fact is due to the property that $PGL_n(\mathbb{Q})$ is linearly reductive. But if F is a field of positive characteristic $PGL_n(F)$ is NOT linearly reductive so the methods used in characteristic 0 fail.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

I suspect that there may be examples of R where $j_{n,R}$ is neither injective nor surjective but I have not tried hard enough to find them!

Norm algebras

Cayley–Hamilton algebras

THE END

AUGURI CORRADO

ヘロト 人間ト 人間ト 人間ト

æ