Venezia, September 16-19, 2019 for Corrado's 70th birthday

Mario Salvetti Department of Mathematics Pisa University

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The $K(\pi, 1)$ conjecture for affine Artin groups

joint work with Giovanni Paolini [AWS Laboratory, Los Angeles] Proof of the $K(\pi, 1)$ conjecture for affine Artin groups, arkiv: 1907.11795

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Start with a (finitely generated) Coxeter group (\mathbf{W},S) :

$$\mathbf{W} = \langle s \in S : (st)^{m(s,t)} = 1 \rangle =$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Start with a (finitely generated) Coxeter group (\mathbf{W}, S) :

$$\mathbf{W} = < s \in S : \ (st)^{m(s,t)} = 1 > =$$

$$\begin{array}{rcl} = < s \in S: & s^2 & = & 1 \ , & \forall s \in S, \\ sts \ldots & = & tst \ldots \ , & s \neq t \ (m(s,t) \ {\rm factors}) > \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Start with a (finitely generated) Coxeter group (\mathbf{W}, S) :

$$\mathbf{W} = < s \in S : \ (st)^{m(s,t)} = 1 > =$$

$$\begin{array}{rcl} = < s \in S: & s^2 & = & 1 \ , & \forall s \in S, \\ & sts \ldots & = & tst \ldots \ , & s \neq t \ \left(m(s,t) \ \text{factors}\right) > \end{array}$$

Artin group of type W:

 $\mathbf{G}_{\mathbf{W}} = \langle g_s, \ s \in S : \ g_s g_t g_s \dots = g_t g_s g_t \dots, \ s \neq t \ (m(s,t) \text{ factors}) >$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Tits representation of \mathbf{W} :

Tits representation of \mathbf{W} :

$$\mathbb{R}^{|S|} = \oplus_{s \in S} \ \mathbb{R}e_s$$

with scalar product

$$B(e_s, e_t) = -\cos(\frac{\pi}{m(s, t)})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Tits representation of \mathbf{W} :

$$\mathbb{R}^{|S|} = \oplus_{s \in S} \ \mathbb{R}e_s$$

with scalar product

$$B(e_s, e_t) = -\cos(\frac{\pi}{m(s, t)})$$

and take

$$s \longrightarrow \rho_s$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where ρ_s is the reflection with respect to e_s

Tits representation of **W**:

$$\mathbb{R}^{|S|} = \oplus_{s \in S} \ \mathbb{R}e_s$$

with scalar product

$$B(e_s, e_t) = -\cos(\frac{\pi}{m(s, t)})$$

and take

$$s \longrightarrow \rho_s$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

where ρ_s is the reflection with respect to e_s

Tits cone: V = orbit of the base chamber $\{x_s > 0, s \in S\}$

Tits representation of **W**:

$$\mathbb{R}^{|S|} = \oplus_{s \in S} \ \mathbb{R}e_s$$

with scalar product

$$B(e_s, e_t) = -\cos(\frac{\pi}{m(s, t)})$$

and take

$$s \longrightarrow \rho_s$$

where ρ_s is the reflection with respect to e_s

Tits cone: V = orbit of the base chamber $\{x_s > 0, s \in S\}$

Reflection arrangement:

 $\mathcal{A} = \{ H : H \text{ is conjugate to some coordinate hyperplane } x_s = 0 \}$

W acts freely on the *Configuration Space*:

$$\mathbf{Y} = V_{\mathbb{C}} \setminus \bigcup_{H \in \mathcal{A}} H_{\mathbb{C}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

W acts freely on the Configuration Space:

$$\mathbf{Y} = V_{\mathbb{C}} \setminus \bigcup_{H \in \mathcal{A}} \ H_{\mathbb{C}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $(V_{\mathbb{C}} = V \oplus \mathbb{R}^{|S|}, \ H_{\mathbb{C}} = H \oplus H)$

Orbit configuration space: $\mathbf{Y}_{\mathbf{W}} = \mathbf{Y}/\mathbf{W}$

Remark: when **W** is finite then $V = \mathbb{R}^{|S|}$;

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Remark: when W is finite then $V = \mathbb{R}^{|S|}$; when W is affine then V is an half-space and one reduces to an action of W on the complexification of an affine space of dimension |S| - 1 through affine reflections.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

One has:

Theorem

 $\pi_1(\mathbf{Y}_{\mathbf{W}}) = \mathbf{G}_{\mathbf{W}}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

One has:

Theorem

$$\pi_1(\mathbf{Y}_{\mathbf{W}}) = \mathbf{G}_{\mathbf{W}}$$

Known for **W** finite since Brieskorn, etc., '71; in general it derives from the PhD thesis of [Van Der Lek, '80] (see also [Sal, 94], [DeCon-Sal, 96]).

Conjecture ($K(\pi, 1)$ -conjecture)

The orbit configuration space $\mathbf{Y}_{\mathbf{W}}$ is a $K(\mathbf{G}_{\mathbf{W}},1)\text{-space}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Conjecture ($K(\pi, 1)$ -conjecture)

The orbit configuration space $\mathbf{Y}_{\mathbf{W}}$ is a $K(\mathbf{G}_{\mathbf{W}}, 1)$ -space.

Proved for W finite in general by Deligne ['72] (more generally for *simplicial arrangements*, after Fox and Neuwirth (case A_n) and Brieskorn (cases C_n , D_n , G_2 , F_4 , and $I_2(p)$)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conjecture ($K(\pi, 1)$ -conjecture)

The orbit configuration space $\mathbf{Y}_{\mathbf{W}}$ is a $K(\mathbf{G}_{\mathbf{W}}, 1)$ -space.

Proved for W finite in general by Deligne ['72] (more generally for *simplicial arrangements*, after Fox and Neuwirth (case A_n) and Brieskorn (cases C_n , D_n , G_2 , F_4 , and $I_2(p)$)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Paolini, S.)

The $K(\pi, 1)$ conjecture holds for all affine Artin groups.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

It was known for type \tilde{A}_n , \tilde{C}_n (Okonek '79), \tilde{B}_n (Callegaro, S. JEMS, 2010)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

It was known for type \tilde{A}_n , \tilde{C}_n (Okonek '79), \tilde{B}_n (Callegaro, S. JEMS, 2010)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Few other cases are known.

It was known for type \tilde{A}_n , \tilde{C}_n (Okonek '79), \tilde{B}_n (Callegaro, S. JEMS, 2010)

Few other cases are known.

Configuration spaces of finite complex reflection groups (proved by Bessis '15).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proofs of the known affine cases are by ad hoc arguments.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Proofs of the known affine cases are by ad hoc arguments. Our proof is general (except for few details) so applies to all known cases.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Proofs of the known affine cases are by ad hoc arguments. Our proof is general (except for few details) so applies to all known cases.

It is based on recent advances by

McCammond and Sulway, "Artin groups of Euclidean type", Inv. Math. 210 (2017).

which use the theory of *dual* Artin groups.

Proofs of the known affine cases are by ad hoc arguments. Our proof is general (except for few details) so applies to all known cases.

It is based on recent advances by

McCammond and Sulway, "Artin groups of Euclidean type", Inv. Math. 210 (2017).

which use the theory of *dual* Artin groups.

They find finite dimensional classifying spaces (but with infinite number of cells) for affine Artin groups, but they do not relate them with the orbit spaces.

We get a much stronger result obtaining finite classifying spaces (we produce finite complexes whose structure is based on the "dual" structure of Artin groups,

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

We get a much stronger result obtaining finite classifying spaces (we produce finite complexes whose structure is based on the "dual" structure of Artin groups, we simultaneously prove that well-known finite complexes (Sal. complex), whose structure is based on the standard structure, are $K(\pi, 1)$).

We give a first outline of the proof.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We give a first outline of the proof. First we need to define *dual* Artin groups. We give some general definition.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let G be a group, with a (possibly infinite) generating set $R=R^{-1}. \label{eq:rescaled}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let G be a group, with a (possibly infinite) generating set $R = R^{-1}$. $\forall x \in G$, denote by $l(x) = min\{k : r_1r_2 \cdots r_k = x, r_j \in R\}$.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Let G be a group, with a (possibly infinite) generating set $R = R^{-1}$. $\forall x \in G$, denote by $l(x) = min\{k : r_1r_2 \cdots r_k = x, r_j \in R\}$. The group G becomes a poset setting

$$x \le y \iff l(x) + l(x^{-1}y) = l(y)$$

i.e. if there is a minimal length factorization of y that starts with a minimal length factorization of x.

Let G be a group, with a (possibly infinite) generating set $R = R^{-1}$. $\forall x \in G$, denote by $l(x) = min\{k : r_1r_2 \cdots r_k = x, r_j \in R\}$. The group G becomes a poset setting

$$x \le y \iff l(x) + l(x^{-1}y) = l(y)$$

i.e. if there is a minimal length factorization of y that starts with a minimal length factorization of x.
Given $g\in G,$ denote by $[1,g]^G\subseteq G$ the interval between 1 and g

Given $g \in G$, denote by $[1,g]^G \subseteq G$ the interval between 1 and g

Definition

The interval group G_g is the group presented as follows. Let $R_0 = R \cap [1,g]^G$. The group G_g has R_0 as its generating set, and relations given by all the closed loops inside the Hasse diagram of $[1,g]^G$.

Given $g \in G$, denote by $[1,g]^G \subseteq G$ the interval between 1 and g

Definition

The interval group G_g is the group presented as follows. Let $R_0 = R \cap [1,g]^G$. The group G_g has R_0 as its generating set, and relations given by all the closed loops inside the Hasse diagram of $[1,g]^G$.

The interval $[1,g]^G$ is balanced if: $\forall x \in G$, we have $l(x) + l(x^{-1}g) = l(g)$ if and only if $l(gx^{-1}) + l(x) = l(g)$.

Given $g\in G,$ denote by $[1,g]^G\subseteq G$ the interval between 1 and g

Definition

The interval group G_g is the group presented as follows. Let $R_0 = R \cap [1,g]^G$. The group G_g has R_0 as its generating set, and relations given by all the closed loops inside the Hasse diagram of $[1,g]^G$.

The interval $[1,g]^G$ is balanced if: $\forall x \in G$, we have $l(x) + l(x^{-1}g) = l(g)$ if and only if $l(gx^{-1}) + l(x) = l(g)$. This condition is automatically satisfied if the generating set R is closed under conjugation

Given $g \in G$, denote by $[1,g]^G \subseteq G$ the interval between 1 and g

Definition

The interval group G_g is the group presented as follows. Let $R_0 = R \cap [1,g]^G$. The group G_g has R_0 as its generating set, and relations given by all the closed loops inside the Hasse diagram of $[1,g]^G$.

The interval $[1,g]^G$ is balanced if: $\forall x \in G$, we have $l(x) + l(x^{-1}g) = l(g)$ if and only if $l(gx^{-1}) + l(x) = l(g)$. This condition is automatically satisfied if the generating set R is closed under conjugation

Theorem

If the interval $[1,g]^G$ is a balanced lattice, then the group G_g is a Garside group.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

A Garside group is the fraction group of a Garside monoid:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A Garside group is the fraction group of a Garside monoid:

it is a lattice with respect to left and right divisibility, with left and right cancellation and with an element Δ (the Garside element) whose (left and right) divisors generate the group.

A Garside group has an explicit classifying space.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A Garside group has an explicit classifying space. For example, the classifying space of the Garside group G_g of a balanced interval $[1,g]^G$ is a Δ -complex whose d-simplices correspond to the sequences

 x_1,\ldots,x_d

where $x_i \in [1,g]^G$ and the product $x_1 \dots x_d$ is the left part of a minimal factorization of g.

Let \mathbf{W}, S be a Coxeter group, let R be the set of all reflections

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let \mathbf{W}, S be a Coxeter group, let R be the set of all reflections Choose a Coxeter element $w \in W$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let \mathbf{W}, S be a Coxeter group, let R be the set of all reflections Choose a Coxeter element $w \in W$. Then

dual Artin group W_w : is the interval group constructed using R as a generator set and the interval $[1, w]^W$

Let \mathbf{W}, S be a Coxeter group, let R be the set of all reflections Choose a Coxeter element $w \in W$. Then

dual Artin group W_w : is the interval group constructed using R as a generator set and the interval $[1, w]^W$

So generators are all reflections $R_0 = R \cap [1, w]^W$ and relations all visible paths inside the interval.

Remark

1) There is a natural homomorphism

 $j:\mathbf{G}_{\mathbf{W}}\rightarrow \mathbf{W}_{\mathbf{w}}$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

Remark

1) There is a natural homomorphism

 $j:\mathbf{G}_{\mathbf{W}}\rightarrow \mathbf{W}_{\mathbf{w}}$

2) For W finite or W affine j is an isomorphism (we derive another proof in the affine case)

Remark

1) There is a natural homomorphism

 $j:\mathbf{G}_{\mathbf{W}}\rightarrow \mathbf{W}_{\mathbf{w}}$

2) For W finite or W affine j is an isomorphism (we derive another proof in the affine case)

3) When W is finite the interval $[1, w]^W$ is a lattice so W_w is a Garside group.

In case ${\bf W}$ affine the situation is more delicate.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $V = \mathbb{R}^n$, and let E be the n-dimensional affine space.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $V = \mathbb{R}^n$, and let E be the *n*-dimensional affine space. To every $u \in \text{Isom}(E)$ one associates two spaces:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let $V = \mathbb{R}^n$, and let E be the *n*-dimensional affine space. To every $u \in \text{Isom}(E)$ one associates two spaces:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Mov
$$(u) = \{u(a) - a \mid a \in E\} \subseteq V$$

Let $V = \mathbb{R}^n$, and let E be the *n*-dimensional affine space. To every $u \in \text{Isom}(E)$ one associates two spaces:

- Mov
$$(u) = \{u(a) - a \mid a \in E\} \subseteq V$$

This is an affine subspace of V, and let $\mu \in Mov(u)$ be the unique vector of minimal norm.

Let $V = \mathbb{R}^n$, and let E be the *n*-dimensional affine space. To every $u \in \text{Isom}(E)$ one associates two spaces:

- Mov
$$(u) = \{u(a) - a \mid a \in E\} \subseteq V$$

This is an affine subspace of V, and let $\mu \in Mov(u)$ be the unique vector of minimal norm.

- $MIN(u) = \{a \in E \mid u(a) = a + \mu\} \subseteq E$. This is an affine subspace of E.

 $V = \operatorname{Dir}(\operatorname{Mov}(u)) \oplus \operatorname{Dir}(\operatorname{Min}(u))$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $V = \operatorname{Dir}(\operatorname{Mov}(u)) \oplus \operatorname{Dir}(\operatorname{Min}(u))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

An isometry $u \in L$ is called *elliptic* if it fixes at least one point, and *hyperbolic* otherwise.

 $V = \operatorname{Dir}(\operatorname{Mov}(u)) \oplus \operatorname{Dir}(\operatorname{Min}(u))$

An isometry $u \in L$ is called *elliptic* if it fixes at least one point, and *hyperbolic* otherwise.

If u is elliptic, then Mov(u) is a linear subspace, $\mu = 0$, and MIN(u) coincides with the set of fixed points of u, which we denote by FIX(u).

 $V = \operatorname{Dir}(\operatorname{Mov}(u)) \oplus \operatorname{Dir}(\operatorname{Min}(u))$

An isometry $u \in L$ is called *elliptic* if it fixes at least one point, and *hyperbolic* otherwise.

If u is elliptic, then Mov(u) is a linear subspace, $\mu = 0$, and MIN(u) coincides with the set of fixed points of u, which we denote by FIX(u).

For example: choose one Coxeter element $w \in W$, where W is an irreducible affine Coxeter group acting as a reflection group on an n-dimensional affine space E, where n is the rank of W.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For example: choose one Coxeter element $w \in W$, where **W** is an irreducible affine Coxeter group acting as a reflection group on an n-dimensional affine space E, where n is the rank of W.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

w is a hyperbolic isometry of reflection length n+1, and its min-set is a line ℓ called the *Coxeter axis*.

For example: choose one Coxeter element $w \in W$, where **W** is an irreducible affine Coxeter group acting as a reflection group on an n-dimensional affine space E, where n is the rank of W.

w is a hyperbolic isometry of reflection length n+1, and its min-set is a line ℓ called the Coxeter axis.

See the example \tilde{G}_2, \tilde{A}_2 .

Let us call a reflection $r \in [1, w]^W$ horizontal if its fixed set is parallel to ℓ , otherwise it is called *vertical*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let us call a reflection $r \in [1, w]^W$ horizontal if its fixed set is parallel to ℓ , otherwise it is called *vertical*. In general, an isometry $u \in [1, w]^W$ is horizontal if it moves all points in a direction orthogonal to ℓ (in other words DIR MOV(u)is orthogonal to $\text{DIR}(\ell)$) otherwise it is *vertical*.

Coarse combinatorial structure of the interval $[1, w]^W$:

Coarse combinatorial structure of the interval $[1, w]^W$: the elements $u \in [1, w]^W$ are split into 3 rows according to the following cases (let v be the right complement of u):
Coarse combinatorial structure of the interval $[1, w]^W$: the elements $u \in [1, w]^W$ are split into 3 rows according to the following cases (let v be the right complement of u):

- (top row) u is hyperbolic and v is horizontal elliptic.
- (middle row) both u and v are vertical elliptic;
- (bottom row) u is horizontal elliptic and v is hyperbolic;

Coarse combinatorial structure of the interval $[1, w]^W$: the elements $u \in [1, w]^W$ are split into 3 rows according to the following cases (let v be the right complement of u):

- (top row) u is hyperbolic and v is horizontal elliptic.
- (middle row) both u and v are vertical elliptic;
- (bottom row) u is horizontal elliptic and v is hyperbolic;

The bottom and the top rows contain a finite number of elements, whereas the middle row contains infinitely many elements.

The roots corresponding to horizontal reflections form a root system $\Phi_h \subseteq \Phi$, called the *horizontal root system* associated with the Coxeter element $w \in W$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The roots corresponding to horizontal reflections form a root system $\Phi_h \subseteq \Phi$, called the *horizontal root system* associated with the Coxeter element $w \in W$.

It decomposes as a disjoint union of orthogonal irreducible root systems of type A, as shown in the table.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The roots corresponding to horizontal reflections form a root system $\Phi_h \subseteq \Phi$, called the *horizontal root system* associated with the Coxeter element $w \in W$.

It decomposes as a disjoint union of orthogonal irreducible root systems of type A, as shown in the table. The number k of irreducible components varies from 1 to 3.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Туре	Horizontal root system
\tilde{A}_n	$\Phi_{A_{p-1}} \sqcup \Phi_{A_{q-1}}$
\tilde{C}_n	$\Phi_{A_{n-1}}$
\tilde{B}_n	$\Phi_{A_1} \sqcup \Phi_{A_{n-2}}$
\tilde{D}_n	$\Phi_{A_1} \sqcup \Phi_{A_1} \sqcup \Phi_{A_{n-3}}$
\tilde{G}_2	Φ_{A_1}
\tilde{F}_4	$\Phi_{A_1} \sqcup \Phi_{A_2}$
\tilde{E}_6	$\Phi_{A_1} \sqcup \Phi_{A_2} \sqcup \Phi_{A_2}$
\tilde{E}_7	$\Phi_{A_1} \sqcup \Phi_{A_2} \sqcup \Phi_{A_3}$
\tilde{E}_8	$\Phi_{A_1} \sqcup \Phi_{A_2} \sqcup \Phi_{A_4}$

Table: Horizontal root systems. In the case \tilde{A}_n , the horizontal root system depends on the (p,q)-bigon Coxeter element.

Fact: Let W be an irreducible affine Coxeter group, and w one of its Coxeter elements. The interval $[1, w]^W$ is a lattice (and thus W_w is a Garside group) if and only if the horizontal root system associated with w is irreducible. This happens in the cases \tilde{C}_n , \tilde{G}_2 , and \tilde{A}_n if w is a (n, 1)-bigon Coxeter element.

The corresponding interval group C_w (called *braided crystallographic group*) is a Garside group, and there is a natural inclusion $W_w \subseteq C_w$.

The corresponding interval group C_w (called *braided crystallographic group*) is a Garside group, and there is a natural inclusion $W_w \subseteq C_w$.

By the result cited before, the interval complex K_C associated with $[1, w]^C$ is a (finite-dimensional) classifying space for C_w .

The corresponding interval group C_w (called *braided crystallographic group*) is a Garside group, and there is a natural inclusion $W_w \subseteq C_w$.

By the result cited before, the interval complex K_C associated with $[1, w]^C$ is a (finite-dimensional) classifying space for C_w .

The cover of K_C corresponding to the subgroup W_w is a classifying space for the (dual) affine Artin group W_w .

The corresponding interval group C_w (called *braided crystallographic group*) is a Garside group, and there is a natural inclusion $W_w \subseteq C_w$.

By the result cited before, the interval complex K_C associated with $[1, w]^C$ is a (finite-dimensional) classifying space for C_w .

The cover of K_C corresponding to the subgroup W_w is a classifying space for the (dual) affine Artin group W_w . Therefore affine Artin groups admit a finite-dimensional classifying space.

The corresponding interval group C_w (called *braided crystallographic group*) is a Garside group, and there is a natural inclusion $W_w \subseteq C_w$.

By the result cited before, the interval complex K_C associated with $[1, w]^C$ is a (finite-dimensional) classifying space for C_w .

The cover of K_C corresponding to the subgroup W_w is a classifying space for the (dual) affine Artin group W_w . Therefore affine Artin groups admit a finite-dimensional classifying space. This concludes the recall of what previous works did.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

This concludes the recall of what previous works did.

In our proof of the $K(\pi, 1)$ conjecture, one of the key points is to show that K_W is a already a classifying space for W_w , for every affine Coxeter group W, even when [1, w] is not a lattice.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This concludes the recall of what previous works did.

In our proof of the $K(\pi, 1)$ conjecture, one of the key points is to show that K_W is a already a classifying space for W_w , for every affine Coxeter group W, even when [1, w] is not a lattice. This can come as a surprise since the standard argument to show that K_W is a classifying space heavily relies on the lattice property.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

For this, we introduce a new family of CW models $X'_W \simeq Y_W$, which are subcomplexes of K_W whose structure depends on the dual Artin relations in W_w rather than on the standard Artin relations in G_W .

For this, we introduce a new family of CW models $X'_W \simeq Y_W$, which are subcomplexes of K_W whose structure depends on the dual Artin relations in W_w rather than on the standard Artin relations in G_W .

Using discrete Morse theory (one of the main new tools of the proof), we prove that K_W deformation retracts onto X'_W .

For this, we introduce a new family of CW models $X'_W \simeq Y_W$, which are subcomplexes of K_W whose structure depends on the dual Artin relations in W_w rather than on the standard Artin relations in G_W .

Using discrete Morse theory (one of the main new tools of the proof), we prove that K_W deformation retracts onto X'_W .

This completes the proof of the $K(\pi, 1)$ conjecture, and at the same time, it gives a new proof that the dual Artin group W_w is naturally isomorphic to the Artin group G_W (in the affine case).

Among the several technical intermediate steps, may be one of the most important to our proof of the deformation retraction $K_W \simeq X'_W$, is to construct an EL-labeling of the poset $[1, w]^W$.

The group enlargement $C \supset \mathbf{W}$ is obtained by enlarging the set T of translations contained in $[1, w]^W$: for each translation $t \in T$ one gets a finite number of extra translations t_1, \ldots, t_k which factorize t.

The group enlargement $C \supset \mathbf{W}$ is obtained by enlarging the set T of translations contained in $[1, w]^W$: for each translation $t \in T$ one gets a finite number of extra translations t_1, \ldots, t_k which factorize t. Let $T_F \supset T$ be this bigger set of translations (called *factored translations*).

The group enlargement $C \supset \mathbf{W}$ is obtained by enlarging the set T of translations contained in $[1, w]^W$: for each translation $t \in T$ one gets a finite number of extra translations t_1, \ldots, t_k which factorize t. Let $T_F \supset T$ be this bigger set of translations (called *factored translations*).

So C is generated by $R \cup T_F$.

The group enlargement $C \supset \mathbf{W}$ is obtained by enlarging the set T of translations contained in $[1, w]^W$: for each translation $t \in T$ one gets a finite number of extra translations t_1, \ldots, t_k which factorize t. Let $T_F \supset T$ be this bigger set of translations (called *factored translations*). So C is generated by $R \cup T_F$.

By denoting R_{hor} , $R_{ver} \subset [1, w]^W$ the reflections which divide w, one constructs several groups:

The group enlargement $C \supset \mathbf{W}$ is obtained by enlarging the set T of translations contained in $[1, w]^W$: for each translation $t \in T$ one gets a finite number of extra translations t_1, \ldots, t_k which factorize t. Let $T_F \supset T$ be this bigger set of translations (called *factored translations*). So C is generated by $R \cup T_F$.

By denoting R_{hor} , $R_{ver} \subset [1, w]^W$ the reflections which divide w, one constructs several groups:

• C generated by R_{hor}, R_{ver}, T_F

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- W generated by R_{hor}, R_{ver}
- F generated by R_{hor}, T_F
- D generated by R_{hor}, T

The interval groups are related as follows:

$$[1, w]^C = [1, w]^W \cup [1, w]^F$$
$$[1, w]^D = [1, w]^W \cap [1, w]^F.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The intervals $[1,w]^D$ and $[1,w]^F$ are finite, whereas $[1,w]^W$ and $[1,w]^C$ are infinite.

The intervals $[1,w]^D$ and $[1,w]^F$ are finite, whereas $[1,w]^W$ and $[1,w]^C$ are infinite. The intervals $[1,w]^F$ and $[1,w]^C$ are balanced lattices

The intervals $[1, w]^D$ and $[1, w]^F$ are finite, whereas $[1, w]^W$ and $[1, w]^C$ are infinite. The intervals $[1, w]^F$ and $[1, w]^C$ are balanced lattices On the other hand, the intervals $[1, w]^D$ and $[1, w]^W$ are lattices if and only if the horizontal root system Φ_h is irreducible, in which case D = F and W = C.

Construct the interval groups D_w , F_w , and C_w .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Construct the interval groups D_w , F_w , and C_w .

The inclusions between the four intervals induce inclusions between the corresponding interval groups: $D_w \hookrightarrow W_w$, $D_w \hookrightarrow F_w$, $W_w \hookrightarrow C_w$, and $F_w \hookrightarrow C_w$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Construct the interval groups D_w , F_w , and C_w .

The inclusions between the four intervals induce inclusions between the corresponding interval groups: $D_w \hookrightarrow W_w$, $D_w \hookrightarrow F_w$, $W_w \hookrightarrow C_w$, and $F_w \hookrightarrow C_w$ Since the intervals $[1, w]^F$ and $[1, w]^C$ are lattices, the interval groups F_w and C_w are Garside groups and the corresponding interval complexes K_F and K_C are classifying spaces.

A consequence of the relations between the four intervals is that

$$K_C = K_W \cup K_F$$

and

$$K_D = K_W \cap K_F$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Lemma (P.S.)

 K_D is a classifying space for D_w .

K_D is a classifying space for D_w .

This is obtained by explicitly finding a $K(\pi, 1)$ -space which covers K_D .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 K_D is a classifying space for D_w .

This is obtained by explicitly finding a $K(\pi, 1)$ -space which covers K_D .

That is $K_H \times \mathbb{R}$, where $K_H \subset K_D$ is the subcomplex given by all simplices $[x_1| \dots |x_d]$ such that $x_1 \dots x_d$ belongs to the subgroup $H \subset D$ generated by R_{hor} .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 K_D is a classifying space for D_w .

This is obtained by explicitly finding a $K(\pi, 1)$ -space which covers K_D .

That is $K_H \times \mathbb{R}$, where $K_H \subset K_D$ is the subcomplex given by all simplices $[x_1| \dots |x_d]$ such that $x_1 \dots x_d$ belongs to the subgroup $H \subset D$ generated by R_{hor} .

We show that K_H decompose as a product $K_1 \times \cdots \times K_k$ of subcomplexes, each of them being a classifying space of a group of type \tilde{A}_{k_i} , according to the decomposition into irreducible components of the horizontal root system.

 K_D is a classifying space for D_w .

This is obtained by explicitly finding a $K(\pi, 1)$ -space which covers K_D .

That is $K_H \times \mathbb{R}$, where $K_H \subset K_D$ is the subcomplex given by all simplices $[x_1| \dots |x_d]$ such that $x_1 \dots x_d$ belongs to the subgroup $H \subset D$ generated by R_{hor} .

We show that K_H decompose as a product $K_1 \times \cdots \times K_k$ of subcomplexes, each of them being a classifying space of a group of type \tilde{A}_{k_i} , according to the decomposition into irreducible components of the horizontal root system. Therefore K_H is a $K(\pi, 1)$ -space.

Theorem (P.S.)

Let W be an irreducible affine Coxeter group, and w one of its Coxeter elements. The interval complex K_W is a classifying space for the dual Artin group W_w .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (P.S.)

Let W be an irreducible affine Coxeter group, and w one of its Coxeter elements. The interval complex K_W is a classifying space for the dual Artin group W_w .

This is obtained by a Mayer-Vietoris argument applied to the universal covering and using that K_C , K_F and K_D are $K(\pi, 1)$ spaces.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Now remind that *d*-simplices in K_W are sequences $[x_1| \dots |x_d]$ such that the product $x_1 \dots x_d$ appears as a left factor of a minimal factorization of w.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Now remind that *d*-simplices in K_W are sequences $[x_1| \dots |x_d]$ such that the product $x_1 \dots x_d$ appears as a left factor of a minimal factorization of w.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We want to identify a much smaller complex inside K_W .

Now remind that *d*-simplices in K_W are sequences $[x_1| \dots |x_d]$ such that the product $x_1 \dots x_d$ appears as a left factor of a minimal factorization of w. We want to identify a much smaller complex inside K_W .

Fix a set of simple reflections $S = \{s_1, s_2, \ldots, s_n\} \subseteq R$, and a Coxeter element $w = s_1 s_2 \cdots s_n$.

Now remind that d-simplices in K_W are sequences $[x_1| \dots |x_d]$ such that the product $x_1 \dots x_d$ appears as a left factor of a minimal factorization of w. We want to identify a much smaller complex inside K_W . Fix a set of simple reflections $S = \{s_1, s_2, \dots, s_n\} \subseteq R$, and a Coxeter element $w = s_1 s_2 \cdots s_n$. Let

 $\Delta_W = \{T \subseteq S \mid \text{the standard parabolic subgroup } W_T \text{ is finite} \}.$

Now remind that d-simplices in K_W are sequences $[x_1| \dots |x_d]$ such that the product $x_1 \dots x_d$ appears as a left factor of a minimal factorization of w. We want to identify a much smaller complex inside K_W . Fix a set of simple reflections $S = \{s_1, s_2, \dots, s_n\} \subseteq R$, and a Coxeter element $w = s_1 s_2 \cdots s_n$. Let

 $\Delta_W = \{T \subseteq S \mid \text{the standard parabolic subgroup } W_T \text{ is finite} \}.$

For every $T \in \Delta_W$, denote by w_T the product of the elements of T in the same relative order as in the list s_1, s_2, \ldots, s_n .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Now remind that d-simplices in K_W are sequences $[x_1| \dots |x_d]$ such that the product $x_1 \dots x_d$ appears as a left factor of a minimal factorization of w. We want to identify a much smaller complex inside K_W . Fix a set of simple reflections $S = \{s_1, s_2, \dots, s_n\} \subseteq R$, and a Coxeter element $w = s_1 s_2 \cdots s_n$. Let

 $\Delta_W = \{T \subseteq S \mid \text{the standard parabolic subgroup } W_T \text{ is finite} \}.$

For every $T \in \Delta_W$, denote by w_T the product of the elements of T in the same relative order as in the list s_1, s_2, \ldots, s_n . Then w_T is a Coxeter element of the parabolic subgroup W_T , and it belongs to $[1, w]^W$. One can see that for every $T \subseteq S$ we have $[1, w_T]^{W_T} = [1, w_T]^W$, and the length functions of W_T and W agree on these intervals.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

One can see that for every $T \subseteq S$ we have $[1, w_T]^{W_T} = [1, w_T]^W$, and the length functions of W_T and W agree on these intervals.

Definition

Let X'_W be the finite subcomplex of K_W consisting of the simplices $[x_1|x_2|\cdots|x_d] \in K_W$ such that $x_1x_2\cdots x_d \in [1, w_T]$ for some $T \in \Delta_W$.

Remark that if W is finite, then $S \in \Delta_W$ and therefore $X'_W = K_W$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Remark that if W is finite, then $S \in \Delta_W$ and therefore $X'_W = K_W$. In this case, the interval complex K_W is a classifying space for the dual Artin group W_w , which is naturally isomorphic to the Artin group G_W .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For every $T \in \Delta_W$, the complex X'_W has a subcomplex consisting of the simplices $[x_1|x_2|\cdots|x_d]$ such that $x_1x_2\cdots x_d \in [1, w_T] = [1, w_T]^{W_T}$.

For every $T \in \Delta_W$, the complex X'_W has a subcomplex consisting of the simplices $[x_1|x_2|\cdots|x_d]$ such that $x_1x_2\cdots x_d \in [1, w_T] = [1, w_T]^{W_T}$. This is exactly the interval complex associated with $[1, w_T]^{W_T}$, which coincides with X'_{W_T} and is a classifying space for the Artin group G_{W_T} . By definition, X'_W is the union of all subcomplexes X'_{W_T} for $T \in \Delta_W$.

There is a well known complex X_W whose cells are indexed by the simplicial complex Δ_W , and which is known to be homotopy equivalent to the orbit configuration space $\mathbf{Y}_{\mathbf{W}}$ of \mathbf{W} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

There is a well known complex X_W whose cells are indexed by the simplicial complex Δ_W , and which is known to be homotopy equivalent to the orbit configuration space $\mathbf{Y}_{\mathbf{W}}$ of \mathbf{W} . Similarly to X'_W , the complex X_W is the union of the complexes X_{W_T} for $T \in \Delta_W$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

There is a well known complex X_W whose cells are indexed by the simplicial complex Δ_W , and which is known to be homotopy equivalent to the orbit configuration space $\mathbf{Y}_{\mathbf{W}}$ of \mathbf{W} .

Similarly to X'_W , the complex X_W is the union of the complexes X_{W_T} for $T \in \Delta_W$.

Each X_{W_T} is a classifying space for G_{W_T} , because the $K(\pi,1)$ conjecture holds for spherical Artin groups .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Our second main step is:

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Our second main step is:

Theorem

For every Coxeter group W, the complex X'_W is homotopy equivalent to the complex X_W and so to the orbit configuration space Y_W .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

As an alternative description of X^\prime_W we have

Remark

Let W be an irreducible affine Coxeter group, with a set S of simple reflections and a Coxeter element w obtained as a product of the elements of S. Denote by C_0 the chamber of the Coxeter complex associated with S. A simplex $[x_1|x_2|\cdots|x_d] \in K_W$ belongs to X'_W if and only if $x_1x_2\cdots x_d$ is an elliptic element that fixes at least one vertex of C_0 .

Now we come to the last step of our proof: we show that the complex K_W contracts to the finite subcomplex X'_W .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Now we come to the last step of our proof: we show that the complex K_W contracts to the finite subcomplex X'_W .

This is done by using discrete Morse theory: this is a combinatorial version of classical Morse theory, mainly Morse theory for CW-complexes K, which consists essentially in assigning a coherent sequence of contractions which reduce the complex to a smaller one.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The retraction of K_W onto the finite complex X'_W is done in two steps.

The retraction of K_W onto the finite complex X'_W is done in two steps. The first one reduces K_W into a finite complex $K' \supset X'_W$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The retraction of K_W onto the finite complex X'_W is done in two steps. The first one reduces K_W into a finite complex $K' \supset X'_W$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

For this, we need to look carefully at the Hasse graph Γ .

The retraction of K_W onto the finite complex X'_W is done in two steps.

The first one reduces K_W into a finite complex $K' \supset X'_W$.

For this, we need to look carefully at the Hasse graph Γ .

For every d-simplex $\sigma = [x_1| \dots |x_d] \subset K_W$ such that $x_1 \dots x_d = w$, we consider the left and right boundary faces $[x_1| \dots |x_{d-1}]$ and $[x_2| \dots |x_d]$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Let $\varphi \colon [1,w]^C \to [1,w]^C$ be the conjugation by the Coxeter element $w \colon \varphi(u) = w^{-1}uw$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let $\varphi \colon [1,w]^C \to [1,w]^C$ be the conjugation by the Coxeter element $w \colon \varphi(u) = w^{-1}uw$. Then we get factorizations:

$$w = x_1 \dots x_d = x_2 \dots x_d \varphi(x_1) = x_3 \dots x_d \varphi(x_1) \varphi(x_2) = \dots$$

and

$$w = x_1 \dots x_d = \varphi^{-1}(x_d) x_1 \dots x_{d-1} = \varphi^{-1}(x_{d-1}) \varphi^{-1}(x_d) x_1 \dots x_{d-2} = \varphi^{-1}(x_d) x_1 \dots x_{d-2}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Let $\varphi \colon [1,w]^C \to [1,w]^C$ be the conjugation by the Coxeter element $w \colon \varphi(u) = w^{-1}uw$. Then we get factorizations:

$$w = x_1 \dots x_d = x_2 \dots x_d \varphi(x_1) = x_3 \dots x_d \varphi(x_1) \varphi(x_2) = \dots$$

and

$$w = x_1 \dots x_d = \varphi^{-1}(x_d) x_1 \dots x_{d-1} = \varphi^{-1}(x_{d-1}) \varphi^{-1}(x_d) x_1 \dots x_{d-2} = \varphi^{-1}(x_d) x_1 \dots x_{d-2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

so a piece of the Hasse diagram is given by

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

where $x_{i+d} = \varphi(x_i)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $x_{i+d} = \varphi(x_i)$. We define this as *the component* containing $[x_1| \dots |x_d]$.
One can show:

Lemma

The component C of [x₁|...|x_d] is infinite iff one x_i is vertical elliptic (so all x_j are elliptic).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

One can show:

Lemma

The component C of [x₁|...|x_d] is infinite iff one x_i is vertical elliptic (so all x_j are elliptic).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Every component C intersects $\mathcal{F}(X'_W)$.

One can show:

Lemma

The component C of [x₁|...|x_d] is infinite iff one x_i is vertical elliptic (so all x_j are elliptic).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Every component C intersects $\mathcal{F}(X'_W)$.
- There are a finite number of components.

Now let $K' \subset K_W$ be the finite subcomplex such that:

- $\mathcal{F}(K')$ contains all the finite components of K;
- for every infinite component \mathcal{C} , one has that $\mathcal{F}(K') \cap \mathcal{C}$ is the path going from the leftmost to the rightmost element of $\mathcal{F}(X'_W) \cap \mathcal{C}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Now let $K' \subset K_W$ be the finite subcomplex such that:

- $\mathcal{F}(K')$ contains all the finite components of K;
- for every infinite component \mathcal{C} , one has that $\mathcal{F}(K') \cap \mathcal{C}$ is the path going from the leftmost to the rightmost element of $\mathcal{F}(X'_W) \cap \mathcal{C}$.

So $K' \supset X$ is an approximation of X'_W but it is larger.

Theorem

 K_W deformation retracts onto K'.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem

 K_W deformation retracts onto K'.

It remains to see that K' deformation retracts onto X'_W .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This is also achieved by discrete Morse theory but it requires much more work.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

This is also achieved by discrete Morse theory but it requires much more work.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In order to find an acyclic matching in $K' \setminus X'_W$ we prove an intermediate (interesting) result.

Theorem

Let W be an irreducible affine Coxeter group, and w one of its Coxeter elements. There exists a total ordering on $R_0 = R \cap [1, w]^W$ (the axial ordering) which makes the poset $[1, w]^W$ EL-shellable.

Theorem

Let W be an irreducible affine Coxeter group, and w one of its Coxeter elements. There exists a total ordering on $R_0 = R \cap [1, w]^W$ (the axial ordering) which makes the poset $[1, w]^W$ EL-shellable.

The *EL*-shellability of $[1, w]^W$ for finite *W* was already known.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- each interval $[u,v] \subset \mathcal{P}$ contains a unique weight-increasing maximal chain C;

- each interval $[u,v] \subset \mathcal{P}$ contains a unique weight-increasing maximal chain C;

- ${\boldsymbol{C}}$ is the minimum maximal chain with respect to lexicographic ordering.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- each interval $[u,v] \subset \mathcal{P}$ contains a unique weight-increasing maximal chain C;

- ${\boldsymbol{C}}$ is the minimum maximal chain with respect to lexicographic ordering.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition

An axial ordering of the set of reflections $R_0 = R \cap [1, w]$ is a total ordering of the following form:

Definition

An axial ordering of the set of reflections $R_0 = R \cap [1, w]$ is a total ordering of the following form:

 first, there are the vertical reflections that fix a point of ℓ above C₀, and r comes before r' if FIX(r) ∩ ℓ is below FIX(r') ∩ ℓ;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

An axial ordering of the set of reflections $R_0 = R \cap [1, w]$ is a total ordering of the following form:

- first, there are the vertical reflections that fix a point of ℓ above C₀, and r comes before r' if FIX(r) ∩ ℓ is below FIX(r') ∩ ℓ;
- then, there are the horizontal reflections in R_{hor}, following any suitable total ordering ≺_{hor} constructed separately;

Definition

An axial ordering of the set of reflections $R_0 = R \cap [1, w]$ is a total ordering of the following form:

- first, there are the vertical reflections that fix a point of ℓ above C_0 , and r comes before r' if $FIX(r) \cap \ell$ is below $FIX(r') \cap \ell$;
- then, there are the horizontal reflections in R_{hor}, following any suitable total ordering ≺_{hor} constructed separately;
- finally, there are the vertical reflections that fix a point of ℓ below C₀, and again r comes before r' if FIX(r) ∩ ℓ is below FIX(r') ∩ ℓ.

The relative order between vertical reflections that fix the same point of ℓ can be chosen arbitrarily, since one sees that such reflections commute.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The relative order between vertical reflections that fix the same point of ℓ can be chosen arbitrarily, since one sees that such reflections commute.

The ordering of the horizontal reflections is obtained by ordering separately each irreducible component: recall that Φ_{hor} decomposes in irreducible root systems of type $\tilde{A}_{n_i}, i = 1 \dots, k$. The corresponding reflections are suitably ordered and then one takes a shuffle ordering of them.

We want to find a perfect matching on $\mathcal{F}(K') \setminus \mathcal{F}(X'_W)$, proving that K' deformation retracts onto X'_W .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We want to find a perfect matching on $\mathcal{F}(K') \setminus \mathcal{F}(X'_W)$, proving that K' deformation retracts onto X'_W .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

First, given $\sigma = [x_1| \dots |x_d] \in K_W$, let $\pi(\sigma) = x_1 \dots x_d$ and let $\lambda(\sigma)$ and $\rho(\sigma)$

be the simplex which is immediately at the left (resp. right) of σ inside its component.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

First, given $\sigma = [x_1| \dots |x_d] \in K_W$, let $\pi(\sigma) = x_1 \dots x_d$ and let

 $\lambda(\sigma)$ and $\rho(\sigma)$

be the simplex which is immediately at the left (resp. right) of σ inside its component.

Next define

Definition

Let $\sigma = [x_1|x_2| \cdots |x_d] \in \mathcal{F}(K_W)$, with $\pi(\sigma) = w$. Define the *depth* $\delta(\sigma)$ of σ as the minimum $i \in \{1, 2, \ldots, d\}$ such that one of the following occurs:

First, given $\sigma = [x_1| \dots |x_d] \in K_W$, let $\pi(\sigma) = x_1 \dots x_d$ and let

 $\lambda(\sigma)$ and $\rho(\sigma)$

be the simplex which is immediately at the left (resp. right) of σ inside its component.

Next define

Definition

Let $\sigma = [x_1|x_2| \cdots |x_d] \in \mathcal{F}(K_W)$, with $\pi(\sigma) = w$. Define the *depth* $\delta(\sigma)$ of σ as the minimum $i \in \{1, 2, \ldots, d\}$ such that one of the following occurs:

(i)
$$l(x_i) \ge 2;$$

First, given $\sigma = [x_1| \dots |x_d] \in K_W$, let $\pi(\sigma) = x_1 \dots x_d$ and let

 $\lambda(\sigma)$ and $\rho(\sigma)$

be the simplex which is immediately at the left (resp. right) of σ inside its component.

Next define

Definition

Let $\sigma = [x_1|x_2|\cdots|x_d] \in \mathcal{F}(K_W)$, with $\pi(\sigma) = w$. Define the *depth* $\delta(\sigma)$ of σ as the minimum $i \in \{1, 2, \ldots, d\}$ such that one of the following occurs:

(i)
$$l(x_i) \ge 2$$
;
(ii) $l(x_i) = 1$, $i \le d - 1$, and $x_i \prec r$ for every reflection $r \le x_{i+1}$
in $[1, w]$.
If no such i exists, let $\delta(\sigma) = \infty$.

Given $\sigma \in \mathcal{F}(K'_W) \setminus \mathcal{F}(X'_W)$, define $\mu(\sigma) \in \mathcal{F}(K_W)$ as follows. (1) If $\pi(\sigma) \neq w$, let $\mu(\sigma) = \lambda(\sigma)$.

Given $\sigma \in \mathcal{F}(K'_W) \setminus \mathcal{F}(X'_W)$, define $\mu(\sigma) \in \mathcal{F}(K_W)$ as follows. [I] If $\pi(\sigma) \neq w$, let $\mu(\sigma) = \lambda(\sigma)$.

 $\label{eq:constraint} \begin{tabular}{ll} \begin{tabular}{ll} \label{eq:constraint} \begin{tabular}{ll} \label{eq:constraint} \begin{tabular}{ll} \label{eq:constraint} \begin{tabular}{ll} \label{eq:constraint} \begin{tabular}{ll} \label{eq:constraint} \label{eq:constraint} \begin{tabular}{ll} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \begin{tabular}{ll} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ll} \label{eq:constraint} \label$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Given $\sigma \in \mathcal{F}(K'_W) \setminus \mathcal{F}(X'_W)$, define $\mu(\sigma) \in \mathcal{F}(K_W)$ as follows. [I] If $\pi(\sigma) \neq w$, let $\mu(\sigma) = \lambda(\sigma)$.

(2) If $\pi(\sigma) = w$, and $\pi(\rho(\sigma))$ does not fix a vertex of C_0 , let $\mu(\sigma) = \rho(\sigma)$.

Suppose now that $\pi(\sigma) = w$, and $\pi(\rho(\sigma))$ fixes a vertex of C_0 .

Given $\sigma \in \mathcal{F}(K'_W) \setminus \mathcal{F}(X'_W)$, define $\mu(\sigma) \in \mathcal{F}(K_W)$ as follows. (1 If $\pi(\sigma) \neq w$, let $\mu(\sigma) = \lambda(\sigma)$.

 $\label{eq:constraint} \begin{tabular}{ll} \begin{tabular}{ll} \label{eq:constraint} \begin{tabular}{ll} \label{eq:constraint} \begin{tabular}{ll} \label{eq:constraint} \begin{tabular}{ll} \label{eq:constraint} \begin{tabular}{ll} \label{eq:constraint} \label{eq:constraint} \begin{tabular}{ll} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \begin{tabular}{ll} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ll} \label{eq:constraint} \label$

Suppose now that $\pi(\sigma) = w$, and $\pi(\rho(\sigma))$ fixes a vertex of C_0 . Let $\delta = \delta(\sigma)$. Notice that $\delta \neq \infty$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Given $\sigma \in \mathcal{F}(K'_W) \setminus \mathcal{F}(X'_W)$, define $\mu(\sigma) \in \mathcal{F}(K_W)$ as follows. [] If $\pi(\sigma) \neq w$, let $\mu(\sigma) = \lambda(\sigma)$.

(2) If $\pi(\sigma) = w$, and $\pi(\rho(\sigma))$ does not fix a vertex of C_0 , let $\mu(\sigma) = \rho(\sigma)$.

Suppose now that $\pi(\sigma) = w$, and $\pi(\rho(\sigma))$ fixes a vertex of C_0 . Let $\delta = \delta(\sigma)$. Notice that $\delta \neq \infty$.

(2 If $l(x_{\delta}) \geq 2$, define $\mu(\sigma) = [x_1| \cdots |x_{\delta-1}|y|z|x_{\delta+1}| \cdots |x_d]$, where y is the \prec -smallest reflection of $R_0 \cap [1, x_{\delta}]$, and $yz = x_{\delta}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Given $\sigma \in \mathcal{F}(K'_W) \setminus \mathcal{F}(X'_W)$, define $\mu(\sigma) \in \mathcal{F}(K_W)$ as follows. [] If $\pi(\sigma) \neq w$, let $\mu(\sigma) = \lambda(\sigma)$.

(2) If $\pi(\sigma) = w$, and $\pi(\rho(\sigma))$ does not fix a vertex of C_0 , let $\mu(\sigma) = \rho(\sigma)$.

Suppose now that $\pi(\sigma) = w$, and $\pi(\rho(\sigma))$ fixes a vertex of C_0 . Let $\delta = \delta(\sigma)$. Notice that $\delta \neq \infty$.

(2 If $l(x_{\delta}) \geq 2$, define $\mu(\sigma) = [x_1|\cdots|x_{\delta-1}|y|z|x_{\delta+1}|\cdots|x_d]$, where y is the \prec -smallest reflection of $R_0 \cap [1, x_{\delta}]$, and $yz = x_{\delta}$.

(4) If
$$l(x_{\delta}) = 1$$
, define $\mu(\sigma) = [x_1|\cdots|x_{\delta-1}|x_{\delta}x_{\delta+1}|x_{\delta+2}|\cdots|x_d]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Given $\sigma \in \mathcal{F}(K'_W) \setminus \mathcal{F}(X'_W)$, define $\mu(\sigma) \in \mathcal{F}(K_W)$ as follows. [] If $\pi(\sigma) \neq w$, let $\mu(\sigma) = \lambda(\sigma)$.

(2) If $\pi(\sigma) = w$, and $\pi(\rho(\sigma))$ does not fix a vertex of C_0 , let $\mu(\sigma) = \rho(\sigma)$.

Suppose now that $\pi(\sigma) = w$, and $\pi(\rho(\sigma))$ fixes a vertex of C_0 . Let $\delta = \delta(\sigma)$. Notice that $\delta \neq \infty$.

(2 If $l(x_{\delta}) \geq 2$, define $\mu(\sigma) = [x_1|\cdots|x_{\delta-1}|y|z|x_{\delta+1}|\cdots|x_d]$, where y is the \prec -smallest reflection of $R_0 \cap [1, x_{\delta}]$, and $yz = x_{\delta}$.

(4) If
$$l(x_{\delta}) = 1$$
, define $\mu(\sigma) = [x_1|\cdots|x_{\delta-1}|x_{\delta}x_{\delta+1}|x_{\delta+2}|\cdots|x_d]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Now we show
Now we show

Theorem

The function μ is an involution on the simplices in $\mathcal{F}(K') \setminus \mathcal{F}(X'_W)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Now we show

Theorem

The function μ is an involution on the simplices in $\mathcal{F}(K') \setminus \mathcal{F}(X'_W)$

Therefor μ gives a perfect matching in $\mathcal{F}(K') \setminus \mathcal{F}(X'_W)$.

Now we show

Theorem

The function μ is an involution on the simplices in $\mathcal{F}(K') \setminus \mathcal{F}(X'_W)$

Therefor μ gives a perfect matching in $\mathcal{F}(K') \setminus \mathcal{F}(X'_W)$.

It remains to show that such matching is acyclic.

Theorem

The matching \mathcal{M} on $\mathcal{F}(K'_W)$ is acyclic.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The proof is technical and consists in finding a sort of "invariant" which decreases along an alternating closed path

$$\sigma_1 > \tau_1 \lhd \sigma_2 > \tau_2 \lhd \cdots > \tau_m \lhd \sigma_{m+1} = \sigma_1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

giving a contradiction.

The proof is technical and consists in finding a sort of "invariant" which decreases along an alternating closed path

$$\sigma_1 > \tau_1 \lhd \sigma_2 > \tau_2 \lhd \cdots > \tau_m \lhd \sigma_{m+1} = \sigma_1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

giving a contradiction.

So

Theorem

Let W be an irreducible affine Coxeter group, with a set of simple reflections $S = \{s_1, s_2, \ldots, s_{n+1}\}$ and a Coxeter element $w = s_1 s_2 \cdots s_{n+1}$. The interval complex K_W deformation retracts onto its subcomplex X'_W .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (P.S.)

Let W be an irreducible affine Coxeter group. The $K(\pi, 1)$ conjecture holds for the corresponding Artin group G_W .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Thank you

(ロ)、(型)、(E)、(E)、 E) の(()

Thank you and

(ロ)、(型)、(E)、(E)、 E) の(()

Happy Birthday, Corrado!