Venezia, September 16-19, 2019 for Corrado's 70th birthday

Mario Salvetti
Department of Mathematics
Pisa University

The $K(\pi, 1)$ conjecture for affine Artin groups

joint work with Giovanni Paolini [AWS Laboratory, Los Angeles] Proof of the $K(\pi, 1)$ conjecture for affine Artin groups, arkiv: 1907.11795

Priveton, le 3 aoutt 2019

Dean Paolinc, dear Salnette,
Beautiful theonem!

Start with a (finitely generated) Coxeter group (\mathbf{W}, S):

$$
\mathbf{W}=<s \in S:(s t)^{m(s, t)}=1>=
$$

Start with a (finitely generated) Coxeter group (\mathbf{W}, S):

$$
\mathbf{W}=<s \in S:(s t)^{m(s, t)}=1>=
$$

$=<s \in S: \quad s^{2}=1, \quad \forall s \in S$, sts... $=t s t \ldots, \quad s \neq t(m(s, t)$ factors $)>$

Start with a (finitely generated) Coxeter group (\mathbf{W}, S):

$$
\begin{aligned}
& \mathbf{W}=<s \in S:(s t)^{m(s, t)}=1>= \\
& =<s \in S: \quad s^{2}=1, \quad \forall s \in S, \\
& \text { sts... }=t s t \ldots, \quad s \neq t(m(s, t) \text { factors })>
\end{aligned}
$$

Artin group of type W :
$\mathbf{G}_{\mathbf{W}}=<g_{s}, s \in S: g_{s} g_{t} g_{s} \cdots=g_{t} g_{s} g_{t} \ldots, s \neq t \quad(m(s, t)$ factors $)>$

Tits representation of \mathbf{W} :

Tits representation of \mathbf{W} :

$$
\mathbb{R}^{|S|}=\oplus_{s \in S} \mathbb{R} e_{s}
$$

with scalar product

$$
B\left(e_{s}, e_{t}\right)=-\cos \left(\frac{\pi}{m(s, t)}\right)
$$

Tits representation of \mathbf{W} :

$$
\mathbb{R}^{|S|}=\oplus_{s \in S} \mathbb{R} e_{s}
$$

with scalar product

$$
B\left(e_{s}, e_{t}\right)=-\cos \left(\frac{\pi}{m(s, t)}\right)
$$

and take

$$
s \longrightarrow \rho_{s}
$$

where ρ_{s} is the reflection with respect to e_{s}

Tits representation of \mathbf{W} :

$$
\mathbb{R}^{|S|}=\oplus_{s \in S} \mathbb{R} e_{s}
$$

with scalar product

$$
B\left(e_{s}, e_{t}\right)=-\cos \left(\frac{\pi}{m(s, t)}\right)
$$

and take

$$
s \longrightarrow \rho_{s}
$$

where ρ_{s} is the reflection with respect to e_{s}
Tits cone: $V=$ orbit of the base chamber $\left\{x_{s}>0, s \in S\right\}$

Tits representation of \mathbf{W} :

$$
\mathbb{R}^{|S|}=\oplus_{s \in S} \mathbb{R} e_{s}
$$

with scalar product

$$
B\left(e_{s}, e_{t}\right)=-\cos \left(\frac{\pi}{m(s, t)}\right)
$$

and take

$$
s \longrightarrow \rho_{s}
$$

where ρ_{s} is the reflection with respect to e_{s}
Tits cone: $V=$ orbit of the base chamber $\left\{x_{s}>0, s \in S\right\}$
Reflection arrangement:
$\mathcal{A}=\left\{H: H\right.$ is conjugate to some coordinate hyperplane $\left.x_{s}=0\right\}$

W acts freely on the Configuration Space:

$$
\mathbf{Y}=V_{\mathbb{C}} \backslash \bigcup_{H \in \mathcal{A}} H_{\mathbb{C}}
$$

W acts freely on the Configuration Space:

$$
\mathbf{Y}=V_{\mathbb{C}} \backslash \bigcup_{H \in \mathcal{A}} H_{\mathbb{C}}
$$

$\left(V_{\mathbb{C}}=V \oplus \mathbb{R}^{|S|}, H_{\mathbb{C}}=H \oplus H\right)$
Orbit configuration space: $\mathbf{Y}_{\mathbf{W}}=\mathbf{Y} / \mathbf{W}$

Remark: when \mathbf{W} is finite then $V=\mathbb{R}^{|S|}$;

Remark: when \mathbf{W} is finite then $V=\mathbb{R}^{|S|}$; when \mathbf{W} is affine then V is an half-space and one reduces to an action of \mathbf{W} on the complexification of an affine space of dimension $|S|-1$ through affine reflections.

One has:
Theorem

$$
\pi_{1}\left(\mathbf{Y}_{\mathbf{W}}\right)=\mathbf{G}_{\mathbf{W}}
$$

One has:

Theorem

$$
\pi_{1}\left(\mathbf{Y}_{\mathbf{W}}\right)=\mathbf{G}_{\mathbf{W}}
$$

Known for W finite since Brieskorn, etc., '71; in general it derives from the PhD thesis of [Van Der Lek, '80] (see also [Sal, 94], [DeCon-Sal, 96]).

Conjecture ($K(\pi, 1)$-conjecture)
The orbit configuration space $\mathbf{Y}_{\mathbf{W}}$ is a $K\left(\mathbf{G}_{\mathbf{W}}, 1\right)$-space.

Conjecture ($K(\pi, 1)$-conjecture)
The orbit configuration space $\mathbf{Y}_{\mathbf{W}}$ is a $K\left(\mathbf{G}_{\mathbf{W}}, 1\right)$-space.

Proved for \mathbf{W} finite in general by Deligne ['72] (more generally for simplicial arrangements, after Fox and Neuwirth (case A_{n}) and Brieskorn (cases $C_{n}, D_{n}, G_{2}, F_{4}$, and $I_{2}(p)$)

Conjecture ($K(\pi, 1)$-conjecture)
The orbit configuration space $\mathbf{Y}_{\mathbf{W}}$ is a $K\left(\mathbf{G}_{\mathbf{W}}, 1\right)$-space.

Proved for \mathbf{W} finite in general by Deligne ['72] (more generally for simplicial arrangements, after Fox and Neuwirth (case A_{n}) and Brieskorn (cases $C_{n}, D_{n}, G_{2}, F_{4}$, and $I_{2}(p)$)

Theorem (Paolini, S.)
The $K(\pi, 1)$ conjecture holds for all affine Artin groups.

It was known for type $\tilde{A}_{n}, \tilde{C}_{n}$ (Okonek '79), \tilde{B}_{n} (Callegaro, S. JEMS, 2010)

It was known for type $\tilde{A}_{n}, \tilde{C}_{n}$ (Okonek '79), \tilde{B}_{n} (Callegaro, S. JEMS, 2010)

Few other cases are known.

It was known for type $\tilde{A}_{n}, \tilde{C}_{n}$ (Okonek '79), \tilde{B}_{n} (Callegaro, S. JEMS, 2010)

Few other cases are known.
Configuration spaces of finite complex reflection groups (proved by Bessis '15).

Proofs of the known affine cases are by ad hoc arguments.

Proofs of the known affine cases are by ad hoc arguments.
Our proof is general (except for few details) so applies to all known cases.

Proofs of the known affine cases are by ad hoc arguments.
Our proof is general (except for few details) so applies to all known cases.

It is based on recent advances by
McCammond and Sulway, "Artin groups of Euclidean type", Inv. Math. 210 (2017).
which use the theory of dual Artin groups.

Proofs of the known affine cases are by ad hoc arguments.
Our proof is general (except for few details) so applies to all known cases.

It is based on recent advances by
McCammond and Sulway, "Artin groups of Euclidean type", Inv. Math. 210 (2017).
which use the theory of dual Artin groups.
They find finite dimensional classifying spaces (but with infinite number of cells) for affine Artin groups, but they do not relate them with the orbit spaces.

We get a much stronger result obtaining finite classifying spaces (we produce finite complexes whose structure is based on the "dual" structure of Artin groups,

We get a much stronger result obtaining finite classifying spaces (we produce finite complexes whose structure is based on the "dual" structure of Artin groups, we simultaneously prove that well-known finite complexes (Sal. complex), whose structure is based on the standard structure, are $K(\pi, 1)$).

We give a first outline of the proof.

We give a first outline of the proof.
First we need to define dual Artin groups.
We give some general definition.

Let G be a group, with a (possibly infinite) generating set $R=R^{-1}$.

Let G be a group, with a (possibly infinite) generating set $R=R^{-1}$.
$\forall x \in G$, denote by $l(x)=\min \left\{k: r_{1} r_{2} \cdots r_{k}=x, r_{j} \in R\right\}$.

Let G be a group, with a (possibly infinite) generating set $R=R^{-1}$.
$\forall x \in G$, denote by $l(x)=\min \left\{k: r_{1} r_{2} \cdots r_{k}=x, r_{j} \in R\right\}$.
The group G becomes a poset setting

$$
x \leq y \Longleftrightarrow l(x)+l\left(x^{-1} y\right)=l(y)
$$

i.e. if there is a minimal length factorization of y that starts with a minimal length factorization of x.

Let G be a group, with a (possibly infinite) generating set $R=R^{-1}$.
$\forall x \in G$, denote by $l(x)=\min \left\{k: r_{1} r_{2} \cdots r_{k}=x, r_{j} \in R\right\}$.
The group G becomes a poset setting

$$
x \leq y \Longleftrightarrow l(x)+l\left(x^{-1} y\right)=l(y)
$$

i.e. if there is a minimal length factorization of y that starts with a minimal length factorization of x.

Given $g \in G$, denote by $[1, g]^{G} \subseteq G$ the interval between 1 and g

Given $g \in G$, denote by $[1, g]^{G} \subseteq G$ the interval between 1 and g

Definition

The interval group G_{g} is the group presented as follows. Let $R_{0}=R \cap[1, g]^{G}$. The group G_{g} has R_{0} as its generating set, and relations given by all the closed loops inside the Hasse diagram of $[1, g]^{G}$.

Given $g \in G$, denote by $[1, g]^{G} \subseteq G$ the interval between 1 and g

Definition

The interval group G_{g} is the group presented as follows. Let $R_{0}=R \cap[1, g]^{G}$. The group G_{g} has R_{0} as its generating set, and relations given by all the closed loops inside the Hasse diagram of $[1, g]^{G}$.

The interval $[1, g]^{G}$ is balanced if: $\forall x \in G$, we have $l(x)+l\left(x^{-1} g\right)=l(g)$ if and only if $l\left(g x^{-1}\right)+l(x)=l(g)$.

Given $g \in G$, denote by $[1, g]^{G} \subseteq G$ the interval between 1 and g

Definition

The interval group G_{g} is the group presented as follows. Let $R_{0}=R \cap[1, g]^{G}$. The group G_{g} has R_{0} as its generating set, and relations given by all the closed loops inside the Hasse diagram of $[1, g]^{G}$.

The interval $[1, g]^{G}$ is balanced if: $\forall x \in G$, we have $l(x)+l\left(x^{-1} g\right)=l(g)$ if and only if $l\left(g x^{-1}\right)+l(x)=l(g)$. This condition is automatically satisfied if the generating set R is closed under conjugation

Given $g \in G$, denote by $[1, g]^{G} \subseteq G$ the interval between 1 and g

Definition

The interval group G_{g} is the group presented as follows. Let $R_{0}=R \cap[1, g]^{G}$. The group G_{g} has R_{0} as its generating set, and relations given by all the closed loops inside the Hasse diagram of $[1, g]^{G}$.

The interval $[1, g]^{G}$ is balanced if: $\forall x \in G$, we have $l(x)+l\left(x^{-1} g\right)=l(g)$ if and only if $l\left(g x^{-1}\right)+l(x)=l(g)$. This condition is automatically satisfied if the generating set R is closed under conjugation

Theorem

If the interval $[1, g]^{G}$ is a balanced lattice, then the group G_{g} is a Garside group.

A Garside group is the fraction group of a Garside monoid:

A Garside group is the fraction group of a Garside monoid: it is a lattice with respect to left and right divisibility, with left and right cancellation and with an element Δ (the Garside element) whose (left and right) divisors generate the group.

A Garside group has an explicit classifying space.

A Garside group has an explicit classifying space.
For example, the classifying space of the Garside group G_{g} of a balanced interval $[1, g]^{G}$ is a Δ-complex whose d-simplices correspond to the sequences

$$
x_{1}, \ldots, x_{d}
$$

where $x_{i} \in[1, g]^{G}$ and the product $x_{1} \ldots x_{d}$ is the left part of a minimal factorization of g.

Let \mathbf{W}, S be a Coxeter group, let R be the set of all reflections

Let \mathbf{W}, S be a Coxeter group, let R be the set of all reflections
Choose a Coxeter element $w \in W$.

Let \mathbf{W}, S be a Coxeter group, let R be the set of all reflections
Choose a Coxeter element $w \in W$. Then
dual Artin group $\mathbf{W}_{\mathbf{w}}$: is the interval group constructed using R as a generator set and the interval $[1, w]^{W}$

Let \mathbf{W}, S be a Coxeter group, let R be the set of all reflections
Choose a Coxeter element $w \in W$. Then
dual Artin group $\mathbf{W}_{\mathbf{w}}$: is the interval group constructed using R as a generator set and the interval $[1, w]^{W}$
So generators are all reflections $R_{0}=R \cap[1, w]^{W}$ and relations all visible paths inside the interval.

Remark

1) There is a natural homomorphism

$$
j: \mathbf{G}_{\mathbf{W}} \rightarrow \mathbf{W}_{\mathbf{w}}
$$

Remark

1) There is a natural homomorphism

$$
j: \mathbf{G}_{\mathbf{W}} \rightarrow \mathbf{W}_{\mathbf{w}}
$$

2) For \mathbf{W} finite or \mathbf{W} affine j is an isomorphism (we derive another proof in the affine case)

Remark

1) There is a natural homomorphism

$$
j: \mathbf{G}_{\mathbf{W}} \rightarrow \mathbf{W}_{\mathbf{w}}
$$

2) For \mathbf{W} finite or \mathbf{W} affine j is an isomorphism (we derive another proof in the affine case)
3) When \mathbf{W} is finite the interval $[1, w]^{W}$ is a lattice so $\mathbf{W}_{\mathbf{w}}$ is a Garside group.

In case \mathbf{W} affine the situation is more delicate.

In case \mathbf{W} affine the situation is more delicate.
Some geometrical study of the affine groups is needed.

In case \mathbf{W} affine the situation is more delicate.
Some geometrical study of the affine groups is needed.
Let $V=\mathbb{R}^{n}$, and let E be the n-dimensional affine space.

In case \mathbf{W} affine the situation is more delicate.
Some geometrical study of the affine groups is needed.
Let $V=\mathbb{R}^{n}$, and let E be the n-dimensional affine space.
To every $u \in \operatorname{Isom}(E)$ one associates two spaces:

In case \mathbf{W} affine the situation is more delicate.
Some geometrical study of the affine groups is needed.
Let $V=\mathbb{R}^{n}$, and let E be the n-dimensional affine space.
To every $u \in \operatorname{Isom}(E)$ one associates two spaces:

- $\operatorname{Mov}(u)=\{u(a)-a \mid a \in E\} \subseteq V$

In case \mathbf{W} affine the situation is more delicate.
Some geometrical study of the affine groups is needed.
Let $V=\mathbb{R}^{n}$, and let E be the n-dimensional affine space.
To every $u \in \operatorname{Isom}(E)$ one associates two spaces:

- $\operatorname{Mov}(u)=\{u(a)-a \mid a \in E\} \subseteq V$

This is an affine subspace of V, and let $\mu \in \operatorname{Mov}(u)$ be the unique vector of minimal norm.

In case \mathbf{W} affine the situation is more delicate.
Some geometrical study of the affine groups is needed.
Let $V=\mathbb{R}^{n}$, and let E be the n-dimensional affine space.
To every $u \in \operatorname{Isom}(E)$ one associates two spaces:

- $\operatorname{Mov}(u)=\{u(a)-a \mid a \in E\} \subseteq V$

This is an affine subspace of V, and let $\mu \in \operatorname{Mov}(u)$ be the unique vector of minimal norm.

- $\operatorname{Min}(u)=\{a \in E \mid u(a)=a+\mu\} \subseteq E$. This is an affine subspace of E.

There is an orthogonal decomposition

$$
V=\operatorname{Dir}(\operatorname{Mov}(u)) \oplus \operatorname{Dir}(\operatorname{Min}(u))
$$

There is an orthogonal decomposition

$$
V=\operatorname{DiR}(\operatorname{Mov}(u)) \oplus \operatorname{DiR}(\operatorname{Min}(u))
$$

An isometry $u \in L$ is called elliptic if it fixes at least one point, and hyperbolic otherwise.

There is an orthogonal decomposition

$$
V=\operatorname{Dir}(\operatorname{Mov}(u)) \oplus \operatorname{Dir}(\operatorname{Min}(u))
$$

An isometry $u \in L$ is called elliptic if it fixes at least one point, and hyperbolic otherwise.

If u is elliptic, then $\operatorname{Mov}(u)$ is a linear subspace, $\mu=0$, and $\operatorname{Min}(u)$ coincides with the set of fixed points of u, which we denote by $\operatorname{Fix}(u)$.

There is an orthogonal decomposition

$$
V=\operatorname{Dir}(\operatorname{Mov}(u)) \oplus \operatorname{Dir}(\operatorname{Min}(u))
$$

An isometry $u \in L$ is called elliptic if it fixes at least one point, and hyperbolic otherwise.

If u is elliptic, then $\operatorname{Mov}(u)$ is a linear subspace, $\mu=0$, and $\operatorname{Min}(u)$ coincides with the set of fixed points of u, which we denote by $\operatorname{Fix}(u)$.

For example: choose one Coxeter element $w \in W$, where \mathbf{W} is an irreducible affine Coxeter group acting as a reflection group on an n-dimensional affine space E, where n is the rank of W.

For example: choose one Coxeter element $w \in W$, where \mathbf{W} is an irreducible affine Coxeter group acting as a reflection group on an n-dimensional affine space E, where n is the rank of W.
w is a hyperbolic isometry of reflection length $n+1$, and its min-set is a line ℓ called the Coxeter axis.

For example: choose one Coxeter element $w \in W$, where \mathbf{W} is an irreducible affine Coxeter group acting as a reflection group on an n-dimensional affine space E, where n is the rank of W.
w is a hyperbolic isometry of reflection length $n+1$, and its min-set is a line ℓ called the Coxeter axis.
See the example $\tilde{G}_{2}, \tilde{A}_{2}$.

Let us call a reflection $r \in[1, w]^{W}$ horizontal if its fixed set is parallel to ℓ, otherwise it is called vertical.

Let us call a reflection $r \in[1, w]^{W}$ horizontal if its fixed set is parallel to ℓ, otherwise it is called vertical. In general, an isometry $u \in[1, w]^{W}$ is horizontal if it moves all points in a direction orthogonal to ℓ (in other words $\operatorname{Dir} \operatorname{Mov}(u)$ is orthogonal to $\operatorname{DIR}(\ell))$ otherwise it is vertical.

Coarse combinatorial structure of the interval $[1, w]^{W}$:

Coarse combinatorial structure of the interval $[1, w]^{W}$: the elements $u \in[1, w]^{W}$ are split into 3 rows according to the following cases (let v be the right complement of u):

Coarse combinatorial structure of the interval $[1, w]^{W}$: the elements $u \in[1, w]^{W}$ are split into 3 rows according to the following cases (let v be the right complement of u):

- (top row) u is hyperbolic and v is horizontal elliptic.
- (middle row) both u and v are vertical elliptic;
- (bottom row) u is horizontal elliptic and v is hyperbolic;

Coarse combinatorial structure of the interval $[1, w]^{W}$: the elements $u \in[1, w]^{W}$ are split into 3 rows according to the following cases (let v be the right complement of u):

- (top row) u is hyperbolic and v is horizontal elliptic.
- (middle row) both u and v are vertical elliptic;
- (bottom row) u is horizontal elliptic and v is hyperbolic;

The bottom and the top rows contain a finite number of elements, whereas the middle row contains infinitely many elements.

The roots corresponding to horizontal reflections form a root system $\Phi_{h} \subseteq \Phi$, called the horizontal root system associated with the Coxeter element $w \in W$.

The roots corresponding to horizontal reflections form a root system $\Phi_{h} \subseteq \Phi$, called the horizontal root system associated with the Coxeter element $w \in W$.

It decomposes as a disjoint union of orthogonal irreducible root systems of type A, as shown in the table.

The roots corresponding to horizontal reflections form a root system $\Phi_{h} \subseteq \Phi$, called the horizontal root system associated with the Coxeter element $w \in W$.

It decomposes as a disjoint union of orthogonal irreducible root systems of type A, as shown in the table.
The number k of irreducible components varies from 1 to 3 .

Type	Horizontal root system
\tilde{A}_{n}	$\Phi_{A_{p-1}} \sqcup \Phi_{A_{q-1}}$
\tilde{C}_{n}	$\Phi_{A_{n-1}}$
\tilde{B}_{n}	$\Phi_{A_{1}} \sqcup \Phi_{A_{n-2}}$
\tilde{D}_{n}	$\Phi_{A_{1}} \sqcup \Phi_{A_{1}} \sqcup \Phi_{A_{n-3}}$
\tilde{G}_{2}	$\Phi_{A_{1}}$
\tilde{F}_{4}	$\Phi_{A_{1}} \sqcup \Phi_{A_{2}}$
\tilde{E}_{6}	$\Phi_{A_{1}} \sqcup \Phi_{A_{2}} \sqcup \Phi_{A_{2}}$
\tilde{E}_{7}	$\Phi_{A_{1}} \sqcup \Phi_{A_{2}} \sqcup \Phi_{A_{3}}$
\tilde{E}_{8}	$\Phi_{A_{1}} \sqcup \Phi_{A_{2}} \sqcup \Phi_{A_{4}}$

Table: Horizontal root systems. In the case \tilde{A}_{n}, the horizontal root system depends on the (p, q)-bigon Coxeter element.

Fact: Let W be an irreducible affine Coxeter group, and w one of its Coxeter elements. The interval $[1, w]^{W}$ is a lattice (and thus W_{w} is a Garside group) if and only if the horizontal root system associated with w is irreducible. This happens in the cases $\tilde{C}_{n}, \tilde{G}_{2}$, and \tilde{A}_{n} if w is a $(n, 1)$-bigon Coxeter element.

Since the interval $[1, w]^{W}$ is not a lattice in general, in [mccammond2017] a new group of isometries $C \supseteq W$ is constructed, with the property that $[1, w]^{C}$ is a balanced lattice and $[1, w]^{W} \subseteq[1, w]^{C}$.

Since the interval $[1, w]^{W}$ is not a lattice in general, in [mccammond2017] a new group of isometries $C \supseteq W$ is constructed, with the property that $[1, w]^{C}$ is a balanced lattice and $[1, w]^{W} \subseteq[1, w]^{C}$.

The corresponding interval group C_{w} (called braided crystallographic group) is a Garside group, and there is a natural inclusion $W_{w} \subseteq C_{w}$.

Since the interval $[1, w]^{W}$ is not a lattice in general, in [mccammond2017] a new group of isometries $C \supseteq W$ is constructed, with the property that $[1, w]^{C}$ is a balanced lattice and $[1, w]^{W} \subseteq[1, w]^{C}$.

The corresponding interval group C_{w} (called braided crystallographic group) is a Garside group, and there is a natural inclusion $W_{w} \subseteq C_{w}$.

By the result cited before, the interval complex K_{C} associated with $[1, w]^{C}$ is a (finite-dimensional) classifying space for C_{w}.

Since the interval $[1, w]^{W}$ is not a lattice in general, in [mccammond2017] a new group of isometries $C \supseteq W$ is constructed, with the property that $[1, w]^{C}$ is a balanced lattice and $[1, w]^{W} \subseteq[1, w]^{C}$.

The corresponding interval group C_{w} (called braided crystallographic group) is a Garside group, and there is a natural inclusion $W_{w} \subseteq C_{w}$.

By the result cited before, the interval complex K_{C} associated with $[1, w]^{C}$ is a (finite-dimensional) classifying space for C_{w}.

The cover of K_{C} corresponding to the subgroup W_{w} is a classifying space for the (dual) affine Artin group W_{w}.

Since the interval $[1, w]^{W}$ is not a lattice in general, in [mccammond2017] a new group of isometries $C \supseteq W$ is constructed, with the property that $[1, w]^{C}$ is a balanced lattice and $[1, w]^{W} \subseteq[1, w]^{C}$.

The corresponding interval group C_{w} (called braided crystallographic group) is a Garside group, and there is a natural inclusion $W_{w} \subseteq C_{w}$.

By the result cited before, the interval complex K_{C} associated with $[1, w]^{C}$ is a (finite-dimensional) classifying space for C_{w}.

The cover of K_{C} corresponding to the subgroup W_{w} is a classifying space for the (dual) affine Artin group W_{w}. Therefore affine Artin groups admit a finite-dimensional classifying space.

Since the interval $[1, w]^{W}$ is not a lattice in general, in [mccammond2017] a new group of isometries $C \supseteq W$ is constructed, with the property that $[1, w]^{C}$ is a balanced lattice and $[1, w]^{W} \subseteq[1, w]^{C}$.

The corresponding interval group C_{w} (called braided crystallographic group) is a Garside group, and there is a natural inclusion $W_{w} \subseteq C_{w}$.

By the result cited before, the interval complex K_{C} associated with $[1, w]^{C}$ is a (finite-dimensional) classifying space for C_{w}.

The cover of K_{C} corresponding to the subgroup W_{w} is a classifying space for the (dual) affine Artin group W_{w}. Therefore affine Artin groups admit a finite-dimensional classifying space.

This concludes the recall of what previous works did.

This concludes the recall of what previous works did.
In our proof of the $K(\pi, 1)$ conjecture, one of the key points is to show that K_{W} is a already a classifying space for W_{w}, for every affine Coxeter group W, even when $[1, w]$ is not a lattice.

This concludes the recall of what previous works did.
In our proof of the $K(\pi, 1)$ conjecture, one of the key points is to show that K_{W} is a already a classifying space for W_{w}, for every affine Coxeter group W, even when $[1, w]$ is not a lattice.
This can come as a surprise since the standard argument to show that K_{W} is a classifying space heavily relies on the lattice property.

Then we show that K_{W} is homotopy equivalent to the orbit configuration space Y_{W}.

Then we show that K_{W} is homotopy equivalent to the orbit configuration space Y_{W}.
For this, we introduce a new family of CW models $X_{W}^{\prime} \simeq Y_{W}$, which are subcomplexes of K_{W} whose structure depends on the dual Artin relations in W_{w} rather than on the standard Artin relations in G_{W}.

Then we show that K_{W} is homotopy equivalent to the orbit configuration space Y_{W}.
For this, we introduce a new family of CW models $X_{W}^{\prime} \simeq Y_{W}$, which are subcomplexes of K_{W} whose structure depends on the dual Artin relations in W_{w} rather than on the standard Artin relations in G_{W}.
Using discrete Morse theory (one of the main new tools of the proof), we prove that K_{W} deformation retracts onto X_{W}^{\prime}.

Then we show that K_{W} is homotopy equivalent to the orbit configuration space Y_{W}.
For this, we introduce a new family of CW models $X_{W}^{\prime} \simeq Y_{W}$, which are subcomplexes of K_{W} whose structure depends on the dual Artin relations in W_{w} rather than on the standard Artin relations in G_{W}.
Using discrete Morse theory (one of the main new tools of the proof), we prove that K_{W} deformation retracts onto X_{W}^{\prime}.
This completes the proof of the $K(\pi, 1)$ conjecture, and at the same time, it gives a new proof that the dual Artin group W_{w} is naturally isomorphic to the Artin group G_{W} (in the affine case).

Among the several technical intermediate steps, may be one of the most important to our proof of the deformation retraction $K_{W} \simeq X_{W}^{\prime}$, is to construct an EL-labeling of the poset $[1, w]^{W}$.

The group enlargement $C \supset \mathbf{W}$ is obtained by enlarging the set T of translations contained in $[1, w]^{W}$: for each translation $t \in T$ one gets a finite number of extra translations t_{1}, \ldots, t_{k} which factorize t.

The group enlargement $C \supset \mathbf{W}$ is obtained by enlarging the set T of translations contained in $[1, w]^{W}$: for each translation $t \in T$ one gets a finite number of extra translations t_{1}, \ldots, t_{k} which factorize t. Let $T_{F} \supset T$ be this bigger set of translations (called factored translations).

The group enlargement $C \supset \mathbf{W}$ is obtained by enlarging the set T of translations contained in $[1, w]^{W}$: for each translation $t \in T$ one gets a finite number of extra translations t_{1}, \ldots, t_{k} which factorize t. Let $T_{F} \supset T$ be this bigger set of translations (called factored translations).
So C is generated by $R \cup T_{F}$.

The group enlargement $C \supset \mathbf{W}$ is obtained by enlarging the set T of translations contained in $[1, w]^{W}$: for each translation $t \in T$ one gets a finite number of extra translations t_{1}, \ldots, t_{k} which factorize t. Let $T_{F} \supset T$ be this bigger set of translations (called factored translations).
So C is generated by $R \cup T_{F}$.
By denoting $R_{\text {hor }}, R_{v e r} \subset[1, w]^{W}$ the reflections which divide w, one constructs several groups:

The group enlargement $C \supset \mathbf{W}$ is obtained by enlarging the set T of translations contained in $[1, w]^{W}$: for each translation $t \in T$ one gets a finite number of extra translations t_{1}, \ldots, t_{k} which factorize t. Let $T_{F} \supset T$ be this bigger set of translations (called factored translations).
So C is generated by $R \cup T_{F}$.
By denoting $R_{\text {hor }}, R_{v e r} \subset[1, w]^{W}$ the reflections which divide w, one constructs several groups:

■ C generated by $R_{\text {hor }}, R_{v e r}, T_{F}$

- \mathbf{W} generated by $R_{\text {hor }}, R_{v e r}$
- F generated by $R_{h o r}, T_{F}$
- D generated by $R_{\text {hor }}, T$

The interval groups are related as follows:

$$
\begin{aligned}
{[1, w]^{C} } & =[1, w]^{W} \cup[1, w]^{F} \\
{[1, w]^{D} } & =[1, w]^{W} \cap[1, w]^{F} .
\end{aligned}
$$

The intervals $[1, w]^{D}$ and $[1, w]^{F}$ are finite, whereas $[1, w]^{W}$ and $[1, w]^{C}$ are infinite.

The intervals $[1, w]^{D}$ and $[1, w]^{F}$ are finite, whereas $[1, w]^{W}$ and $[1, w]^{C}$ are infinite.
The intervals $[1, w]^{F}$ and $[1, w]^{C}$ are balanced lattices

The intervals $[1, w]^{D}$ and $[1, w]^{F}$ are finite, whereas $[1, w]^{W}$ and $[1, w]^{C}$ are infinite.
The intervals $[1, w]^{F}$ and $[1, w]^{C}$ are balanced lattices
On the other hand, the intervals $[1, w]^{D}$ and $[1, w]^{W}$ are lattices if and only if the horizontal root system Φ_{h} is irreducible, in which case $D=F$ and $W=C$.

Construct the interval groups D_{w}, F_{w}, and C_{w}.

Construct the interval groups D_{w}, F_{w}, and C_{w}.
The inclusions between the four intervals induce inclusions between the corresponding interval groups: $D_{w} \hookrightarrow W_{w}, D_{w} \hookrightarrow F_{w}$, $W_{w} \hookrightarrow C_{w}$, and $F_{w} \hookrightarrow C_{w}$

Construct the interval groups D_{w}, F_{w}, and C_{w}.
The inclusions between the four intervals induce inclusions between the corresponding interval groups: $D_{w} \hookrightarrow W_{w}, D_{w} \hookrightarrow F_{w}$, $W_{w} \hookrightarrow C_{w}$, and $F_{w} \hookrightarrow C_{w}$
Since the intervals $[1, w]^{F}$ and $[1, w]^{C}$ are lattices, the interval groups F_{w} and C_{w} are Garside groups and the corresponding interval complexes K_{F} and K_{C} are classifying spaces.

A consequence of the relations between the four intervals is that

$$
K_{C}=K_{W} \cup K_{F}
$$

and

$$
K_{D}=K_{W} \cap K_{F}
$$

Lemma (P.S.)

K_{D} is a classifying space for D_{w}.

Lemma (P.S.)

K_{D} is a classifying space for D_{w}.

This is obtained by explicitly finding a $K(\pi, 1)$-space which covers K_{D}.

Lemma (P.S.)

K_{D} is a classifying space for D_{w}.

This is obtained by explicitly finding a $K(\pi, 1)$-space which covers K_{D}.
That is $K_{H} \times \mathbb{R}$, where $K_{H} \subset K_{D}$ is the subcomplex given by all simplices $\left[x_{1}|\ldots| x_{d}\right]$ such that $x_{1} \ldots x_{d}$ belongs to the subgroup $H \subset D$ generated by $R_{\text {hor }}$.

Lemma (P.S.)

K_{D} is a classifying space for D_{w}.

This is obtained by explicitly finding a $K(\pi, 1)$-space which covers K_{D}.
That is $K_{H} \times \mathbb{R}$, where $K_{H} \subset K_{D}$ is the subcomplex given by all simplices $\left[x_{1}|\ldots| x_{d}\right]$ such that $x_{1} \ldots x_{d}$ belongs to the subgroup $H \subset D$ generated by $R_{\text {hor }}$.
We show that K_{H} decompose as a product $K_{1} \times \cdots \times K_{k}$ of subcomplexes, each of them being a classifying space of a group of type $\tilde{A}_{k_{i}}$, according to the decomposition into irreducible components of the horizontal root system.

Lemma (P.S.)

K_{D} is a classifying space for D_{w}.

This is obtained by explicitly finding a $K(\pi, 1)$-space which covers K_{D}.
That is $K_{H} \times \mathbb{R}$, where $K_{H} \subset K_{D}$ is the subcomplex given by all simplices $\left[x_{1}|\ldots| x_{d}\right]$ such that $x_{1} \ldots x_{d}$ belongs to the subgroup $H \subset D$ generated by $R_{\text {hor }}$.
We show that K_{H} decompose as a product $K_{1} \times \cdots \times K_{k}$ of subcomplexes, each of them being a classifying space of a group of type $\tilde{A}_{k_{i}}$, according to the decomposition into irreducible components of the horizontal root system. Therefore K_{H} is a $K(\pi, 1)$-space.

Theorem (P.S.)

Let W be an irreducible affine Coxeter group, and w one of its Coxeter elements. The interval complex K_{W} is a classifying space for the dual Artin group W_{w}.

Theorem (P.S.)

Let W be an irreducible affine Coxeter group, and w one of its Coxeter elements. The interval complex K_{W} is a classifying space for the dual Artin group W_{w}.

This is obtained by a Mayer-Vietoris argument applied to the universal covering and using that K_{C}, K_{F} and K_{D} are $K(\pi, 1)$ spaces.

Now remind that d-simplices in K_{W} are sequences $\left[x_{1}|\ldots| x_{d}\right]$ such that the product $x_{1} \ldots x_{d}$ appears as a left factor of a minimal factorization of w.

Now remind that d-simplices in K_{W} are sequences $\left[x_{1}|\ldots| x_{d}\right]$ such that the product $x_{1} \ldots x_{d}$ appears as a left factor of a minimal factorization of w.
We want to identify a much smaller complex inside K_{W}.

Now remind that d-simplices in K_{W} are sequences $\left[x_{1}|\ldots| x_{d}\right]$ such that the product $x_{1} \ldots x_{d}$ appears as a left factor of a minimal factorization of w.
We want to identify a much smaller complex inside K_{W}.
Fix a set of simple reflections $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\} \subseteq R$, and a Coxeter element $w=s_{1} s_{2} \cdots s_{n}$.

Now remind that d-simplices in K_{W} are sequences $\left[x_{1}|\ldots| x_{d}\right]$ such that the product $x_{1} \ldots x_{d}$ appears as a left factor of a minimal factorization of w.
We want to identify a much smaller complex inside K_{W}.
Fix a set of simple reflections $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\} \subseteq R$, and a Coxeter element $w=s_{1} s_{2} \cdots s_{n}$.
Let
$\Delta_{W}=\left\{T \subseteq S \mid\right.$ the standard parabolic subgroup W_{T} is finite $\}$.

Now remind that d-simplices in K_{W} are sequences $\left[x_{1}|\ldots| x_{d}\right]$ such that the product $x_{1} \ldots x_{d}$ appears as a left factor of a minimal factorization of w.
We want to identify a much smaller complex inside K_{W}.
Fix a set of simple reflections $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\} \subseteq R$, and a
Coxeter element $w=s_{1} s_{2} \cdots s_{n}$.
Let
$\Delta_{W}=\left\{T \subseteq S \mid\right.$ the standard parabolic subgroup W_{T} is finite $\}$.

For every $T \in \Delta_{W}$, denote by w_{T} the product of the elements of T in the same relative order as in the list $s_{1}, s_{2}, \ldots, s_{n}$.

Now remind that d-simplices in K_{W} are sequences $\left[x_{1}|\ldots| x_{d}\right]$ such that the product $x_{1} \ldots x_{d}$ appears as a left factor of a minimal factorization of w.
We want to identify a much smaller complex inside K_{W}.
Fix a set of simple reflections $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\} \subseteq R$, and a
Coxeter element $w=s_{1} s_{2} \cdots s_{n}$.
Let
$\Delta_{W}=\left\{T \subseteq S \mid\right.$ the standard parabolic subgroup W_{T} is finite $\}$.

For every $T \in \Delta_{W}$, denote by w_{T} the product of the elements of T in the same relative order as in the list $s_{1}, s_{2}, \ldots, s_{n}$. Then w_{T} is a Coxeter element of the parabolic subgroup W_{T}, and it belongs to $[1, w]^{W}$.

One can see that for every $T \subseteq S$ we have $\left[1, w_{T}\right]^{W_{T}}=\left[1, w_{T}\right]^{W}$, and the length functions of W_{T} and W agree on these intervals.

One can see that for every $T \subseteq S$ we have $\left[1, w_{T}\right]^{W_{T}}=\left[1, w_{T}\right]^{W}$, and the length functions of W_{T} and W agree on these intervals.

Definition

Let X_{W}^{\prime} be the finite subcomplex of K_{W} consisting of the simplices $\left[x_{1}\left|x_{2}\right| \cdots \mid x_{d}\right] \in K_{W}$ such that $x_{1} x_{2} \cdots x_{d} \in\left[1, w_{T}\right]$ for some $T \in \Delta_{W}$.

Remark that if \mathbf{W} is finite, then $S \in \Delta_{W}$ and therefore $X_{W}^{\prime}=K_{W}$.

Remark that if \mathbf{W} is finite, then $S \in \Delta_{W}$ and therefore $X_{W}^{\prime}=K_{W}$.
In this case, the interval complex K_{W} is a classifying space for the dual Artin group W_{w}, which is naturally isomorphic to the Artin group G_{W}.

For every $T \in \Delta_{W}$, the complex X_{W}^{\prime} has a subcomplex consisting of the simplices $\left[x_{1}\left|x_{2}\right| \cdots \mid x_{d}\right]$ such that $x_{1} x_{2} \cdots x_{d} \in\left[1, w_{T}\right]=\left[1, w_{T}\right]^{W_{T}}$.

For every $T \in \Delta_{W}$, the complex X_{W}^{\prime} has a subcomplex consisting of the simplices $\left[x_{1}\left|x_{2}\right| \cdots \mid x_{d}\right]$ such that $x_{1} x_{2} \cdots x_{d} \in\left[1, w_{T}\right]=\left[1, w_{T}\right]^{W_{T}}$.
This is exactly the interval complex associated with $\left[1, w_{T}\right]^{W_{T}}$, which coincides with $X_{W_{T}}^{\prime}$ and is a classifying space for the Artin group $G_{W_{T}}$.
By definition, X_{W}^{\prime} is the union of all subcomplexes $X_{W_{T}}^{\prime}$ for $T \in \Delta_{W}$.

There is a well known complex X_{W} whose cells are indexed by the simplicial complex Δ_{W}, and which is known to be homotopy equivalent to the orbit configuration space $\mathbf{Y}_{\mathbf{W}}$ of \mathbf{W}.

There is a well known complex X_{W} whose cells are indexed by the simplicial complex Δ_{W}, and which is known to be homotopy equivalent to the orbit configuration space $\mathbf{Y}_{\mathbf{W}}$ of \mathbf{W}.
Similarly to X_{W}^{\prime}, the complex X_{W} is the union of the complexes $X_{W_{T}}$ for $T \in \Delta_{W}$.

There is a well known complex X_{W} whose cells are indexed by the simplicial complex Δ_{W}, and which is known to be homotopy equivalent to the orbit configuration space $\mathbf{Y}_{\mathbf{W}}$ of \mathbf{W}.
Similarly to X_{W}^{\prime}, the complex X_{W} is the union of the complexes $X_{W_{T}}$ for $T \in \Delta_{W}$.
Each $X_{W_{T}}$ is a classifying space for $G_{W_{T}}$, because the $K(\pi, 1)$ conjecture holds for spherical Artin groups .

Our second main step is:

Our second main step is:

Theorem
 For every Coxeter group W, the complex X_{W}^{\prime} is homotopy equivalent to the complex X_{W} and so to the orbit configuration space $\mathbf{Y}_{\mathbf{W}}$.

As an alternative description of X_{W}^{\prime} we have

Remark

Let W be an irreducible affine Coxeter group, with a set S of simple reflections and a Coxeter element w obtained as a product of the elements of S. Denote by C_{0} the chamber of the Coxeter complex associated with S. A simplex $\left[x_{1}\left|x_{2}\right| \cdots \mid x_{d}\right] \in K_{W}$ belongs to X_{W}^{\prime} if and only if $x_{1} x_{2} \cdots x_{d}$ is an elliptic element that fixes at least one vertex of C_{0}.

Now we come to the last step of our proof: we show that the complex K_{W} contracts to the finite subcomplex X_{W}^{\prime}.

Now we come to the last step of our proof: we show that the complex K_{W} contracts to the finite subcomplex X_{W}^{\prime}.

This is done by using discrete Morse theory: this is a combinatorial version of classical Morse theory, mainly Morse theory for $C W$-complexes K, which consists essentially in assigning a coherent sequence of contractions which reduce the complex to a smaller one.

The retraction of K_{W} onto the finite complex X_{W}^{\prime} is done in two steps.

The retraction of K_{W} onto the finite complex X_{W}^{\prime} is done in two steps.
The first one reduces K_{W} into a finite complex $K^{\prime} \supset X_{W}^{\prime}$.

The retraction of K_{W} onto the finite complex X_{W}^{\prime} is done in two steps.
The first one reduces K_{W} into a finite complex $K^{\prime} \supset X_{W}^{\prime}$.
For this, we need to look carefully at the Hasse graph Γ.

The retraction of K_{W} onto the finite complex X_{W}^{\prime} is done in two steps.
The first one reduces K_{W} into a finite complex $K^{\prime} \supset X_{W}^{\prime}$.
For this, we need to look carefully at the Hasse graph Γ.
For every d-simplex $\sigma=\left[x_{1}|\ldots| x_{d}\right] \subset K_{W}$ such that $x_{1} \ldots x_{d}=w$, we consider the left and right boundary faces
$\left[x_{1}|\ldots| x_{d-1}\right]$ and $\left[x_{2}|\ldots| x_{d}\right]$

Let $\varphi:[1, w]^{C} \rightarrow[1, w]^{C}$ be the conjugation by the Coxeter element $w: ~ \varphi(u)=w^{-1} u w$.

Let $\varphi:[1, w]^{C} \rightarrow[1, w]^{C}$ be the conjugation by the Coxeter element $w: \varphi(u)=w^{-1} u w$.
Then we get factorizations:

$$
w=x_{1} \ldots x_{d}=x_{2} \ldots x_{d} \varphi\left(x_{1}\right)=x_{3} \ldots x_{d} \varphi\left(x_{1}\right) \varphi\left(x_{2}\right)=\ldots
$$

and
$w=x_{1} \ldots x_{d}=\varphi^{-1}\left(x_{d}\right) x_{1} \ldots x_{d-1}=\varphi^{-1}\left(x_{d-1}\right) \varphi^{-1}\left(x_{d}\right) x_{1} \ldots x_{d-2}=$.

Let $\varphi:[1, w]^{C} \rightarrow[1, w]^{C}$ be the conjugation by the Coxeter element $w: \varphi(u)=w^{-1} u w$.
Then we get factorizations:

$$
w=x_{1} \ldots x_{d}=x_{2} \ldots x_{d} \varphi\left(x_{1}\right)=x_{3} \ldots x_{d} \varphi\left(x_{1}\right) \varphi\left(x_{2}\right)=\ldots
$$

and
$w=x_{1} \ldots x_{d}=\varphi^{-1}\left(x_{d}\right) x_{1} \ldots x_{d-1}=\varphi^{-1}\left(x_{d-1}\right) \varphi^{-1}\left(x_{d}\right) x_{1} \ldots x_{d-2}=$.
so a piece of the Hasse diagram is given by

where $x_{i+d}=\varphi\left(x_{i}\right)$.

where $x_{i+d}=\varphi\left(x_{i}\right)$.
We define this as the component containing $\left[x_{1}|\ldots| x_{d}\right]$.

One can show:
Lemma

- The component \mathcal{C} of $\left[x_{1}|\ldots| x_{d}\right]$ is infinite iff one x_{i} is vertical elliptic (so all x_{j} are elliptic).

One can show:
Lemma

- The component \mathcal{C} of $\left[x_{1}|\ldots| x_{d}\right]$ is infinite iff one x_{i} is vertical elliptic (so all x_{j} are elliptic).
- Every component \mathcal{C} intersects $\mathcal{F}\left(X_{W}^{\prime}\right)$.

One can show:
Lemma

- The component \mathcal{C} of $\left[x_{1}|\ldots| x_{d}\right]$ is infinite iff one x_{i} is vertical elliptic (so all x_{j} are elliptic).
- Every component \mathcal{C} intersects $\mathcal{F}\left(X_{W}^{\prime}\right)$.
- There are a finite number of components.

Now let $K^{\prime} \subset K_{W}$ be the finite subcomplex such that:

- $\mathcal{F}\left(K^{\prime}\right)$ contains all the finite components of K;
- for every infinite component \mathcal{C}, one has that $\mathcal{F}\left(K^{\prime}\right) \cap \mathcal{C}$ is the path going from the leftmost to the rightmost element of $\mathcal{F}\left(X_{W}^{\prime}\right) \cap \mathcal{C}$.

Now let $K^{\prime} \subset K_{W}$ be the finite subcomplex such that:

- $\mathcal{F}\left(K^{\prime}\right)$ contains all the finite components of K;
- for every infinite component \mathcal{C}, one has that $\mathcal{F}\left(K^{\prime}\right) \cap \mathcal{C}$ is the path going from the leftmost to the rightmost element of $\mathcal{F}\left(X_{W}^{\prime}\right) \cap \mathcal{C}$.

So $K^{\prime} \supset X$ is an approximation of X_{W}^{\prime} but it is larger.

Theorem
K_{W} deformation retracts onto K^{\prime}.

Theorem

K_{W} deformation retracts onto K^{\prime}.

It remains to see that K^{\prime} deformation retracts onto X_{W}^{\prime}.

This is also achieved by discrete Morse theory but it requires much more work.

This is also achieved by discrete Morse theory but it requires much more work.
In order to find an acyclic matching in $K^{\prime} \backslash X_{W}^{\prime}$ we prove an intermediate (interesting) result.

Theorem

Let W be an irreducible affine Coxeter group, and w one of its Coxeter elements. There exists a total ordering on $R_{0}=R \cap[1, w]^{W}$ (the axial ordering) which makes the poset $[1, w]^{W}$ EL-shellable.

Theorem

Let W be an irreducible affine Coxeter group, and w one of its Coxeter elements. There exists a total ordering on $R_{0}=R \cap[1, w]^{W}$ (the axial ordering) which makes the poset $[1, w]^{W}$ EL-shellable.

The $E L$-shellability of $[1, w]^{W}$ for finite W was already known.

Recall that a poset \mathcal{P} is $E L$-shellable (edge-lexicographic-shellable) if there exists a weight function $\lambda: \mathcal{E}(\mathcal{P}) \rightarrow \mathcal{Q}$ (\mathcal{Q} a poset) such that:

Recall that a poset \mathcal{P} is $E L$-shellable (edge-lexicographic-shellable) if there exists a weight function $\lambda: \mathcal{E}(\mathcal{P}) \rightarrow \mathcal{Q}(\mathcal{Q}$ a poset) such that:

- each interval $[u, v] \subset \mathcal{P}$ contains a unique weight-increasing maximal chain C;

Recall that a poset \mathcal{P} is $E L$-shellable (edge-lexicographic-shellable) if there exists a weight function $\lambda: \mathcal{E}(\mathcal{P}) \rightarrow \mathcal{Q}(\mathcal{Q}$ a poset) such that:

- each interval $[u, v] \subset \mathcal{P}$ contains a unique weight-increasing maximal chain C;
- C is the minimum maximal chain with respect to lexicographic ordering.

Recall that a poset \mathcal{P} is $E L$-shellable (edge-lexicographic-shellable) if there exists a weight function $\lambda: \mathcal{E}(\mathcal{P}) \rightarrow \mathcal{Q}(\mathcal{Q}$ a poset) such that:

- each interval $[u, v] \subset \mathcal{P}$ contains a unique weight-increasing maximal chain C;
- C is the minimum maximal chain with respect to lexicographic ordering.

Let ℓ be the Coxeter axis, and fix an axial chamber C_{0} of the Coxeter complex.

Let ℓ be the Coxeter axis, and fix an axial chamber C_{0} of the Coxeter complex.

Definition

An axial ordering of the set of reflections $R_{0}=R \cap[1, w]$ is a total ordering of the following form:

Let ℓ be the Coxeter axis, and fix an axial chamber C_{0} of the Coxeter complex.

Definition

An axial ordering of the set of reflections $R_{0}=R \cap[1, w]$ is a total ordering of the following form:

- first, there are the vertical reflections that fix a point of ℓ above C_{0}, and r comes before r^{\prime} if $\operatorname{FIX}(r) \cap \ell$ is below $\operatorname{FIx}\left(r^{\prime}\right) \cap \ell$;

Let ℓ be the Coxeter axis, and fix an axial chamber C_{0} of the Coxeter complex.

Definition

An axial ordering of the set of reflections $R_{0}=R \cap[1, w]$ is a total ordering of the following form:

- first, there are the vertical reflections that fix a point of ℓ above C_{0}, and r comes before r^{\prime} if $\operatorname{FIX}(r) \cap \ell$ is below $\operatorname{Fix}\left(r^{\prime}\right) \cap \ell$;
- then, there are the horizontal reflections in $R_{\text {hor }}$, following any suitable total ordering $\prec_{h o r}$ constructed separately;

Let ℓ be the Coxeter axis, and fix an axial chamber C_{0} of the Coxeter complex.

Definition

An axial ordering of the set of reflections $R_{0}=R \cap[1, w]$ is a total ordering of the following form:

- first, there are the vertical reflections that fix a point of ℓ above C_{0}, and r comes before r^{\prime} if $\operatorname{FIX}(r) \cap \ell$ is below $\operatorname{FIX}\left(r^{\prime}\right) \cap \ell$;
- then, there are the horizontal reflections in $R_{\text {hor }}$, following any suitable total ordering $\prec_{h o r}$ constructed separately;
- finally, there are the vertical reflections that fix a point of ℓ below C_{0}, and again r comes before r^{\prime} if $\operatorname{FIX}(r) \cap \ell$ is below $\operatorname{FIX}\left(r^{\prime}\right) \cap \ell$.

The relative order between vertical reflections that fix the same point of ℓ can be chosen arbitrarily, since one sees that such reflections commute.

The relative order between vertical reflections that fix the same point of ℓ can be chosen arbitrarily, since one sees that such reflections commute.

The ordering of the horizontal reflections is obtained by ordering separately each irreducible component: recall that $\Phi_{\text {hor }}$ decomposes in irreducible root systems of type $\tilde{A}_{n_{i}}, i=1 \ldots, k$. The corresponding reflections are suitably ordered and then one takes a shuffle ordering of them.

We want to find a perfect matching on $\mathcal{F}\left(K^{\prime}\right) \backslash \mathcal{F}\left(X_{W}^{\prime}\right)$, proving that K^{\prime} deformation retracts onto X_{W}^{\prime}.

We want to find a perfect matching on $\mathcal{F}\left(K^{\prime}\right) \backslash \mathcal{F}\left(X_{W}^{\prime}\right)$, proving that K^{\prime} deformation retracts onto X_{W}^{\prime}.

First, given $\sigma=\left[x_{1}|\ldots| x_{d}\right] \in K_{W}$, let $\pi(\sigma)=x_{1} \ldots x_{d}$ and let

$$
\lambda(\sigma) \text { and } \rho(\sigma)
$$

be the simplex which is immediately at the left (resp. right) of σ inside its component.

First, given $\sigma=\left[x_{1}|\ldots| x_{d}\right] \in K_{W}$, let $\pi(\sigma)=x_{1} \ldots x_{d}$ and let

$$
\lambda(\sigma) \text { and } \rho(\sigma)
$$

be the simplex which is immediately at the left (resp. right) of σ inside its component.
Next define

Definition

Let $\sigma=\left[x_{1}\left|x_{2}\right| \cdots \mid x_{d}\right] \in \mathcal{F}\left(K_{W}\right)$, with $\pi(\sigma)=w$. Define the depth $\delta(\sigma)$ of σ as the minimum $i \in\{1,2, \ldots, d\}$ such that one of the following occurs:

First, given $\sigma=\left[x_{1}|\ldots| x_{d}\right] \in K_{W}$, let $\pi(\sigma)=x_{1} \ldots x_{d}$ and let

$$
\lambda(\sigma) \text { and } \rho(\sigma)
$$

be the simplex which is immediately at the left (resp. right) of σ inside its component.
Next define

Definition

Let $\sigma=\left[x_{1}\left|x_{2}\right| \cdots \mid x_{d}\right] \in \mathcal{F}\left(K_{W}\right)$, with $\pi(\sigma)=w$. Define the depth $\delta(\sigma)$ of σ as the minimum $i \in\{1,2, \ldots, d\}$ such that one of the following occurs:
(i) $l\left(x_{i}\right) \geq 2$;

First, given $\sigma=\left[x_{1}|\ldots| x_{d}\right] \in K_{W}$, let $\pi(\sigma)=x_{1} \ldots x_{d}$ and let

$$
\lambda(\sigma) \text { and } \rho(\sigma)
$$

be the simplex which is immediately at the left (resp. right) of σ inside its component.
Next define

Definition

Let $\sigma=\left[x_{1}\left|x_{2}\right| \cdots \mid x_{d}\right] \in \mathcal{F}\left(K_{W}\right)$, with $\pi(\sigma)=w$. Define the depth $\delta(\sigma)$ of σ as the minimum $i \in\{1,2, \ldots, d\}$ such that one of the following occurs:
(i) $l\left(x_{i}\right) \geq 2$;
(困 $l\left(x_{i}\right)=1, i \leq d-1$, and $x_{i} \prec r$ for every reflection $r \leq x_{i+1}$ in $[1, w]$.
If no such i exists, let $\delta(\sigma)=\infty$.

Definition (Matching function)

Given $\sigma \in \mathcal{F}\left(K_{W}^{\prime}\right) \backslash \mathcal{F}\left(X_{W}^{\prime}\right)$, define $\mu(\sigma) \in \mathcal{F}\left(K_{W}\right)$ as follows.
[1 If $\pi(\sigma) \neq w$, let $\mu(\sigma)=\lambda(\sigma)$.

Definition (Matching function)

Given $\sigma \in \mathcal{F}\left(K_{W}^{\prime}\right) \backslash \mathcal{F}\left(X_{W}^{\prime}\right)$, define $\mu(\sigma) \in \mathcal{F}\left(K_{W}\right)$ as follows.
[1 If $\pi(\sigma) \neq w$, let $\mu(\sigma)=\lambda(\sigma)$.
[2 If $\pi(\sigma)=w$, and $\pi(\rho(\sigma))$ does not fix a vertex of C_{0}, let $\mu(\sigma)=\rho(\sigma)$.

Definition (Matching function)

Given $\sigma \in \mathcal{F}\left(K_{W}^{\prime}\right) \backslash \mathcal{F}\left(X_{W}^{\prime}\right)$, define $\mu(\sigma) \in \mathcal{F}\left(K_{W}\right)$ as follows.
[1] If $\pi(\sigma) \neq w$, let $\mu(\sigma)=\lambda(\sigma)$.
[2 If $\pi(\sigma)=w$, and $\pi(\rho(\sigma))$ does not fix a vertex of C_{0}, let $\mu(\sigma)=\rho(\sigma)$.
Suppose now that $\pi(\sigma)=w$, and $\pi(\rho(\sigma))$ fixes a vertex of C_{0}.

Definition (Matching function)

Given $\sigma \in \mathcal{F}\left(K_{W}^{\prime}\right) \backslash \mathcal{F}\left(X_{W}^{\prime}\right)$, define $\mu(\sigma) \in \mathcal{F}\left(K_{W}\right)$ as follows.
[1] If $\pi(\sigma) \neq w$, let $\mu(\sigma)=\lambda(\sigma)$.
[2 If $\pi(\sigma)=w$, and $\pi(\rho(\sigma))$ does not fix a vertex of C_{0}, let $\mu(\sigma)=\rho(\sigma)$.
Suppose now that $\pi(\sigma)=w$, and $\pi(\rho(\sigma))$ fixes a vertex of C_{0}. Let $\delta=\delta(\sigma)$. Notice that $\delta \neq \infty$.

Definition (Matching function)

Given $\sigma \in \mathcal{F}\left(K_{W}^{\prime}\right) \backslash \mathcal{F}\left(X_{W}^{\prime}\right)$, define $\mu(\sigma) \in \mathcal{F}\left(K_{W}\right)$ as follows.
[1] If $\pi(\sigma) \neq w$, let $\mu(\sigma)=\lambda(\sigma)$.
[2 If $\pi(\sigma)=w$, and $\pi(\rho(\sigma))$ does not fix a vertex of C_{0}, let $\mu(\sigma)=\rho(\sigma)$.
Suppose now that $\pi(\sigma)=w$, and $\pi(\rho(\sigma))$ fixes a vertex of C_{0}. Let $\delta=\delta(\sigma)$. Notice that $\delta \neq \infty$.
[3 If $l\left(x_{\delta}\right) \geq 2$, define $\mu(\sigma)=\left[x_{1}|\cdots| x_{\delta-1}|y| z\left|x_{\delta+1}\right| \cdots \mid x_{d}\right]$, where y is the \prec-smallest reflection of $R_{0} \cap\left[1, x_{\delta}\right]$, and $y z=x_{\delta}$.

Definition (Matching function)

Given $\sigma \in \mathcal{F}\left(K_{W}^{\prime}\right) \backslash \mathcal{F}\left(X_{W}^{\prime}\right)$, define $\mu(\sigma) \in \mathcal{F}\left(K_{W}\right)$ as follows.
[1] If $\pi(\sigma) \neq w$, let $\mu(\sigma)=\lambda(\sigma)$.
[2 If $\pi(\sigma)=w$, and $\pi(\rho(\sigma))$ does not fix a vertex of C_{0}, let $\mu(\sigma)=\rho(\sigma)$.
Suppose now that $\pi(\sigma)=w$, and $\pi(\rho(\sigma))$ fixes a vertex of C_{0}. Let $\delta=\delta(\sigma)$. Notice that $\delta \neq \infty$.
[3 If $l\left(x_{\delta}\right) \geq 2$, define $\mu(\sigma)=\left[x_{1}|\cdots| x_{\delta-1}|y| z\left|x_{\delta+1}\right| \cdots \mid x_{d}\right]$, where y is the \prec-smallest reflection of $R_{0} \cap\left[1, x_{\delta}\right]$, and $y z=x_{\delta}$.
[4 If $l\left(x_{\delta}\right)=1$, define $\mu(\sigma)=\left[x_{1}|\cdots| x_{\delta-1}\left|x_{\delta} x_{\delta+1}\right| x_{\delta+2}|\cdots| x_{d}\right]$.

Definition (Matching function)

Given $\sigma \in \mathcal{F}\left(K_{W}^{\prime}\right) \backslash \mathcal{F}\left(X_{W}^{\prime}\right)$, define $\mu(\sigma) \in \mathcal{F}\left(K_{W}\right)$ as follows.
[1] If $\pi(\sigma) \neq w$, let $\mu(\sigma)=\lambda(\sigma)$.
[2 If $\pi(\sigma)=w$, and $\pi(\rho(\sigma))$ does not fix a vertex of C_{0}, let $\mu(\sigma)=\rho(\sigma)$.
Suppose now that $\pi(\sigma)=w$, and $\pi(\rho(\sigma))$ fixes a vertex of C_{0}. Let $\delta=\delta(\sigma)$. Notice that $\delta \neq \infty$.
[3 If $l\left(x_{\delta}\right) \geq 2$, define $\mu(\sigma)=\left[x_{1}|\cdots| x_{\delta-1}|y| z\left|x_{\delta+1}\right| \cdots \mid x_{d}\right]$, where y is the \prec-smallest reflection of $R_{0} \cap\left[1, x_{\delta}\right]$, and $y z=x_{\delta}$.
[4 If $l\left(x_{\delta}\right)=1$, define $\mu(\sigma)=\left[x_{1}|\cdots| x_{\delta-1}\left|x_{\delta} x_{\delta+1}\right| x_{\delta+2}|\cdots| x_{d}\right]$.

Now we show

Now we show

Theorem

The function μ is an involution on the simplices in $\mathcal{F}\left(K^{\prime}\right) \backslash \mathcal{F}\left(X_{W}^{\prime}\right)$

Now we show

Theorem

The function μ is an involution on the simplices in $\mathcal{F}\left(K^{\prime}\right) \backslash \mathcal{F}\left(X_{W}^{\prime}\right)$

Therefor μ gives a perfect matching in $\mathcal{F}\left(K^{\prime}\right) \backslash \mathcal{F}\left(X_{W}^{\prime}\right)$.

Now we show

Theorem

The function μ is an involution on the simplices in $\mathcal{F}\left(K^{\prime}\right) \backslash \mathcal{F}\left(X_{W}^{\prime}\right)$

Therefor μ gives a perfect matching in $\mathcal{F}\left(K^{\prime}\right) \backslash \mathcal{F}\left(X_{W}^{\prime}\right)$.
It remains to show that such matching is acyclic.

Theorem
The matching \mathcal{M} on $\mathcal{F}\left(K_{W}^{\prime}\right)$ is acyclic.

The proof is technical and consists in finding a sort of "invariant" which decreases along an alternating closed path

$$
\sigma_{1} \gtrdot \tau_{1} \triangleleft \sigma_{2} \gtrdot \tau_{2} \triangleleft \cdots \gtrdot \tau_{m} \triangleleft \sigma_{m+1}=\sigma_{1}
$$

giving a contradiction.

The proof is technical and consists in finding a sort of "invariant" which decreases along an alternating closed path

$$
\sigma_{1} \gtrdot \tau_{1} \triangleleft \sigma_{2} \gtrdot \tau_{2} \triangleleft \cdots \gtrdot \tau_{m} \triangleleft \sigma_{m+1}=\sigma_{1}
$$

giving a contradiction.
So

Theorem

Let W be an irreducible affine Coxeter group, with a set of simple reflections $S=\left\{s_{1}, s_{2}, \ldots, s_{n+1}\right\}$ and a Coxeter element $w=s_{1} s_{2} \cdots s_{n+1}$. The interval complex K_{W} deformation retracts onto its subcomplex X_{W}^{\prime}.

Theorem (P.S.)

Let W be an irreducible affine Coxeter group. The $K(\pi, 1)$ conjecture holds for the corresponding Artin group G_{W}.

Thank you

Thank you and

Happy Birthday, Corrado!

