From wonderful models to Coxeter categories

(joint work with Andrea Appel)

Valerio Toledano Laredo

Northeastern University
In honor of Corrado De Concini's 70th birthday
Palazzo Franchetti, Venice
September 16, 2019

Overview

- \mathfrak{g} symmetrisable Kac-Moody algebra
- $U_{\hbar} \mathfrak{g}$ quantum group corresponding to $\mathfrak{g} / \mathbb{C}[[\hbar]]$
- Goal: establish a good equivalence

$$
\text { representations of } U_{\hbar} \mathfrak{g} \longleftrightarrow \text { representations of } \mathfrak{g}(/ \mathbb{C}[[\hbar]])
$$

Known equivalences

Theorem (Drinfeld-Kohno, Kazhdan-Lusztig) If $\operatorname{dim} \mathfrak{g}<\infty$, there is an equivalence of braided tensor categories
(Reps. of $\left.U_{\hbar} \mathfrak{g}, \mathrm{R}\right) \leftrightarrow$ (Reps. of \mathfrak{g}, monodromy of the KZ equations)

Remark If $\operatorname{dim} \mathfrak{g}=\infty, \mathfrak{g}$ and $U_{\hbar} \mathfrak{g}$ have different abelian categories of representations \Rightarrow DKKL equivalence cannot hold as stated. However,

Theorem (Etingof-Kazhdan '96-'08) For any symmetrisable Kac-Moody algebra \mathfrak{g}, there is an equivalence of braided tensor categories
$F^{\mathrm{EK}}:\left(\right.$ Cat. \mathcal{O} for $\left.U_{\hbar} \mathfrak{g}, \mathrm{R}\right) \leftrightarrow($ Cat \mathcal{O} for \mathfrak{g}, monodromy of KZ equations)

Corollary If $V_{1}, \ldots, V_{n} \in \mathcal{O}_{\mathfrak{g}}$, the action of the braid group B_{n} by monodromy of the KZ equations on $V_{1} \otimes \cdots \otimes V_{n}$ is equivalent to its R-matrix action on $F^{\mathrm{EK}}\left(V_{1}\right) \otimes \cdots \otimes F^{\mathrm{EK}}\left(V_{n}\right)$.

An extended equivalence?

- W Weyl group of \mathfrak{g}
- B_{W} corresponding generalised braid group, with generators $\left\{S_{i}\right\}_{i \in \mathbf{I}}$ and relations

$$
\underbrace{S_{i} S_{j} \cdots}_{m_{i j}}=\underbrace{S_{j} S_{i} \cdots}_{m_{i j}}
$$

for any $i \neq j, m_{i j}=$ order of $s_{i} s_{j}$ in W

- B_{W} acts on any \mathcal{V} integrable representation of $U_{\hbar} \mathfrak{g}$ by Lusztig's quantum Weyl group operators
■ B_{W} acts on any V integrable representation of \mathfrak{g} by monodromy of the Casimir connection
■ Goal find an equivalence which is equivariant for these actions
- Remark Neither action of B_{W} is built out of the braided tensor structure \Rightarrow need to extend rather than modify the DKKL equivalence.

The quantum Weyl group action

- \mathcal{V} integrable repr. of $U_{\hbar} \mathfrak{g}$

■ Thm. (Lusztig) $\exists\left\{S_{i}\right\}_{i \in \mathbf{I}} \subset \operatorname{Aut}(\mathcal{V})$ satisfying the braid relations

$$
\underbrace{S_{i} S_{j} \cdots}_{m_{i j}}=\underbrace{S_{j} S_{i} \cdots}_{m_{i j}}
$$

- The corresponding action $\lambda_{\hbar}: B_{W} \rightarrow \operatorname{Aut}(\mathcal{V})$ is s.t. $\left.\lambda_{\hbar}\right|_{\hbar=0}$ is the action of (a finite extension W of) W on the integrable \mathfrak{g}-module $\mathcal{V} / \hbar \mathcal{V}$.

The Casimir connection ∇_{c}

■ $\operatorname{dim} \mathfrak{g}<\infty$ for now
$■ \mathfrak{h} \subset \mathfrak{g}$ Cartan subalgebra, $\mathfrak{h}_{\text {reg }}=\mathfrak{h} \backslash \bigcup_{\alpha \in \mathrm{R}} \operatorname{Ker}(\alpha)$

- V integrable \mathfrak{g}-module

■ ∇_{C} is a meromorphic connection on $V \times \mathfrak{h}_{\mathrm{reg}} \rightarrow \mathfrak{h}_{\mathrm{reg}}$,

$$
\nabla_{C}=d-\frac{\mathrm{h}}{2} \sum_{\alpha \in \mathrm{R}^{+}} \frac{d \alpha}{\alpha} \mathcal{K}_{\alpha}
$$

■ $\mathrm{h} \in \mathbb{C}$ deformation parameter
■ $\mathcal{K}_{\alpha}=x_{\alpha} x_{-\alpha}+x_{-\alpha} x_{\alpha}$ (truncated) Casimir operator of $\mathfrak{s l}_{2}^{\alpha} \subset \mathfrak{g}$
Theorem (De Concini, Millson-TL, Felder-Markov-Tarasov-Varchenko) The connection ∇_{C} is flat, and W-equivariant for any $h \in \mathbb{C}$.

Monodromy $\mu_{V}^{\mathrm{h}}: B_{W}=\pi_{1}\left(\mathfrak{h}_{\text {reg }} / W\right) \longrightarrow G L(V)$ deforms $\widetilde{W} \circlearrowright V$.

Why study ∇_{C} ?

The Casimir connection is related to
1 Quantum integrable systems of Gaudin type related to \mathfrak{g} (Rybnikov, Feigin-Frenkel-TL)
2 Wess-Zumino-Witten model corresponding to \mathfrak{g} (Fedorov, Feigin-Frenkel-TL)
3 Isomonodromic deformations of irregular connections on \mathbb{P}^{1} (Boalch, Xu-TL)
4 Wall-crossing \& stability conditions (Joyce, Bridgeland-TL)
5 Enumerative geometry (q. cohomology) of Nakajima quiver varieties (Maulik-Okounkov)

Monodromy theorem

Theorem 1 (TL, Conj. De Concini, TL)
Assume $\operatorname{dim} \mathfrak{g}<\infty$. Set $\hbar=2 \pi \iota \mathrm{~h}$, and assume that $\mathcal{V} / \hbar \mathcal{V} \cong V$.
1 The representations μ_{V} and $\lambda_{\mathcal{V}}$ are equivalent.
2 The monodromy of ∇_{C} is defined over $\mathbb{Q}[[\hbar]]$.
Theorem 2 (Appel-TL, 2019) A similar result holds for an arbitrary symmetrisable Kac-Moody algebra.
Remark The statement of Thm. 2 is conceptually simpler, and much stronger than Thm. 1, even for $\operatorname{dim} \mathfrak{g}<\infty$.

Strategy of proof

- Both μ_{V} and λ_{V} deform $\widetilde{W} \circlearrowright V$.
- Look for an appropriate rigidity result (cf. Drinfeld's computation of the monodromy of the KZ equations in terms of the R-matrix of $U_{\hbar} \mathfrak{g}$).
- Problem find an algebraic structure which

11 accomodates both μ_{v} and λ_{v}
2 has trivial deformation theory

- 1st attempt Look at actions of B_{W} on a fixed vector space $\mathcal{V} / \mathbb{C}[[\hbar]]$ which deform a given action of \widetilde{W}. This satisfies $1)$, but not 2) $\left(H^{1}\left(B_{W}, V\right)\right.$ is very big).
Definition/Theorem (Appel-TL)
(1) $\mathcal{O}_{U_{n} \mathfrak{g}}^{\text {int }}$ is a braided Coxeter category.

2 $\mathcal{O}_{\mathfrak{g}}^{\text {int }}$ is a braided Coxeter category.
3 Braided Coxeter category structures on $\mathcal{O}_{\mathfrak{g}}^{\text {int }}$ are rigid.
Remark The definition (to follow) of Coxeter category is inspired by the De Concini-Procesi wonderful model of a hyperplane complement.

Coxeter categories

- What is a braided tensor category \mathcal{C} good for?
- For any $V \in \operatorname{Ob}(\mathcal{C}), n \geq 1$, there is an action

$$
\rho_{b}: B_{n} \rightarrow \operatorname{Aut}\left(V_{b}^{\otimes n}\right)
$$

which depends on the choice of a bracketing $b \in \mathcal{B}_{n}$ on the (non-associative) monomial $x_{1} \cdots x_{n}$.

- Example $b=\left(\left(x_{1} x_{2}\right) x_{3}\right) \in \mathcal{B}_{3}, V_{b}^{\otimes 3}=((V \otimes V) \otimes V)$.
- For any $b, b^{\prime} \in \mathcal{B}_{n}, V_{b}^{\otimes n}$ and $V_{b^{\prime}}^{\otimes n}$ are isomorphic as B_{n}-modules, via an associativity constraint: $\Phi_{b^{\prime} b}: V_{b}^{\otimes n} \rightarrow V_{b^{\prime}}^{\otimes n}$.
- What is a Coxeter category \mathcal{Q} good for?
- For any $V \in \mathrm{Ob}(\mathcal{Q})$, there is an action

$$
\lambda_{\mathcal{F}}: B_{W} \rightarrow \operatorname{Aut}\left(V_{\mathcal{F}}\right)
$$

which depends on the choice of a 'W-bracketing' \mathcal{F}.

- (A \mathfrak{S}_{n}-bracketing is the same as an element of \mathcal{B}_{n}.)
- For any W-bracketings $\mathcal{F}, \mathcal{G}, V_{\mathcal{F}}$ and $V_{\mathcal{G}}$ are isomorphic as B_{W}-modules, via a prescribed isomorphism $\Phi_{\mathcal{G F}}: V_{\mathcal{F}} \rightarrow V_{\mathcal{G}}$.

Bracketings revisited: $D=$ Dynkin diagram of type A_{n-1}

■ pair of parentheses on $x_{1} \cdots x_{n} \longleftrightarrow$ connected subdiagram of D.
■ $p=x_{1} \cdots x_{i-1}\left(x_{i} \cdots x_{j}\right) x_{j+1} \cdots x_{n} \longleftrightarrow B=[i, j-1] \subset D$
■ Example $\left(\left(\left(x_{1} x_{2}\right) x_{3}\right) x_{4}\right) \longleftrightarrow[1,1],[1,2],[1,3] \subseteq[1,3]$.
■ p, p^{\prime} are consistent parentheses $\Longleftrightarrow B, B^{\prime} \subseteq D$ are compatible, i.e.,
■ $B \subset B^{\prime}$ or $B^{\prime} \subset B$, or

- $B \perp B^{\prime}: B \cap B^{\prime}=\emptyset$, and no vertex in B is linked to a vertex in B^{\prime} by an edge of D.
- Examples
$1\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right) \longleftrightarrow[1,1] \perp[3,3] \subseteq[1,3]$.
$2\left(x_{1}\left(x_{2}\right) x_{3} x_{4}\right) \longleftrightarrow[1,1] \nleftarrow[2,3] \subseteq[1,3]$.
Definition (De Concini-Procesi)/Proposition
1 A nested set on $D=[1, n-1]$ is a collection of pairwise compatible, connected subdiagrams of D.
2 There is a bijection
$\left\{\right.$ bracketings on $\left.x_{1} \cdots x_{n}\right\} \longleftrightarrow\{$ maximal nested sets on $[1, n-1]\}$

W-bracketings (=nested sets)

D diagram (unoriented graph, no loops, no multiple edges)
Example $D=$ Dynkin diagram of W
Definition (De Concini-Procesi) A nested set on D is a collection $\mathcal{F}=\{B\}$ of pairwise compatible, connected subdiagrams of D.

Nested sets and chains

A chain from $B \subseteq D$ to \emptyset is a sequence of (not necessarily connected) subdiagrams

$$
B=B_{1} \supsetneq B_{2} \supsetneq \cdots \supsetneq B_{m}=\emptyset
$$

Lemma There is a surjection $\imath:\{$ chains $B \rightarrow \emptyset\} \longrightarrow \operatorname{Ns}(B)$ given by

$$
\imath\left(B_{1} \supsetneq B_{2} \supsetneq \cdots \supsetneq B_{m}\right)=\bigcup_{i=1}^{m-1} \text { connected components of } B_{i}
$$

Examples
$\boldsymbol{1}[1,3] \supset[1,2] \supset[1,1] \longrightarrow\{[1,3],[1,2],[1,1]\}$
■ $[1,3] \supset([1,1] \sqcup[3,3]) \supset[1,1] \longrightarrow\{[1,3],[1,1],[3,3]\}$
B $[1,3] \supset([1,1] \sqcup[3,3]) \supset[3,3] \longrightarrow\{[1,3],[1,1],[3,3]\}$
Nested sets on $B / B^{\prime}\left(B^{\prime} \subseteq B\right)$ correspond similarly to chains

$$
B=B_{1} \supsetneq B_{2} \supsetneq \cdots \supsetneq B_{m}=B^{\prime}
$$

Topological \& Geometric interlude

$\left\{\right.$ bracketings on $\left.x_{1} \cdots x_{n}\right\} \longleftrightarrow$ Stasheff associahedron \mathcal{A}_{n} \longleftrightarrow exceptional divisor in $\overline{\mathcal{M}}_{0, n+3}$
$D=$ Dynkin diagram of \mathfrak{g}
$\{$ maximal nested sets on $D\} \longleftrightarrow$ De Concini-Procesi associahedron \mathcal{A}_{D} \longleftrightarrow divisor in the DCP wonderful model of $\mathfrak{h}_{\text {reg }}$

Coxeter categories: fiber functors

One crucial difference between braided and Coxeter categories

- In a braided tensor category \mathcal{C}, B_{n} acts by morphisms in \mathcal{C}.
- In a Coxeter category \mathcal{Q}, B_{W} does not act by morphisms in \mathcal{Q}.

Toy example

- The Weyl group action of \mathfrak{S}_{n} on a $G L_{n}(\mathbb{C})$-module is not through morphisms in $\mathcal{Q}=\operatorname{Rep}\left(G L_{n}(\mathbb{C})\right)$, but through morphisms of the underlying vector space. In other words, there is a forgetful functor

$$
F: \mathcal{Q} \rightarrow \mathrm{Vec}=\mathcal{Q}_{\emptyset}
$$

and a map $\mathfrak{S}_{n} \rightarrow \operatorname{Aut}(F)$.
In general, in a Coxeter category \mathcal{Q}
1 There is a family of forgetful functors $F_{\mathcal{F}}: \mathcal{Q} \rightarrow \mathcal{Q}_{\emptyset}\left(\mathcal{Q}_{\emptyset}=\mathrm{Vec}\right.$ in examples), labelled by maximal nested sets \mathcal{F} on D.
$2 B_{W}$ acts on each $F_{\mathcal{F}}$. In other words, for any $V \in \mathcal{Q}, \mathcal{F} \in \operatorname{Mns}(D)$,

$$
V_{\mathcal{F}}:=F_{\mathcal{F}}(V) \rightsquigarrow \lambda_{\mathcal{F}}: B_{W} \rightarrow \operatorname{Aut}_{\mathcal{Q}_{\emptyset}}\left(V_{\mathcal{F}}\right)
$$

Tensor categories with many fiber functors

Algebra Tensor category \mathcal{C} with one fiber functor $\mathrm{f}: \mathcal{C} \rightarrow$ Vec
Example $\mathcal{C}=\operatorname{Rep}(A)$, A a Hopf algebra, $\mathrm{f}=$ forgetful functor
Topology Tensor category \mathcal{C} with many fiber functors $\mathcal{C} \rightarrow$ Vec

Example

- $X=$ topological space
- $X_{0} \subseteq X$ given collection of basepoints
- $\pi_{1}\left(X ; X_{0}\right)$ fundamental groupoid based at X_{0}
- $\mathcal{C}=\operatorname{Rep}\left(\pi_{1}\left(X ; X_{0}\right)\right)=\operatorname{Fun}\left(\pi_{1}\left(X ; X_{0}\right), \operatorname{Vec}\right)$
- $\left\{\mathrm{f}_{x}\right\}_{x \in X_{0}}: \mathcal{C} \rightarrow$ Vec collection of fiber functors, $\mathrm{f}_{x}(\mathbb{V})=\mathbb{V}_{x}$.
- $\gamma \in \pi_{1}\left(X ; X_{0}\right) \rightsquigarrow \Phi_{\gamma} \in \operatorname{Hom}\left(f_{\gamma(0)}, f_{\gamma(1)}\right)$, natural transformation.

Coxeter categories

Definition (ATL, Selecta 2019)
A braided Coxeter category of type D consists of 5 pieces of data.

1. Diagrammatic categories.

For any subdiagram $\emptyset \subseteq B \subseteq D$, a braided tensor category \mathcal{Q}_{B}.
Examples
$1 \mathcal{Q}_{B}=\left(\operatorname{Rep} U_{\hbar} \mathfrak{g}_{B}, R_{B}\right), \mathfrak{g}_{B}=\left\langle e_{i}, f_{i}, h_{i}\right\rangle_{i \in B}$.
2 $\mathcal{Q}_{B}=\left(\operatorname{Rep} U_{\mathfrak{g}_{B}}\right.$, monodromy of the KZ equations for $\left.\mathfrak{g}_{B}\right)$.
2. Restriction functors.

For any $B^{\prime} \subseteq B$, and $\mathcal{F} \in \operatorname{Mns}\left(B, B^{\prime}\right)$, a (not necessarily braided) monoidal functor $F_{\mathcal{F}}: \mathcal{Q}_{B} \rightarrow \mathcal{Q}_{B^{\prime}}$

Examples
■ $\mathcal{Q}_{B}=\operatorname{Rep} U_{\hbar} \mathfrak{g}_{B}, F_{\mathcal{F}}=$ (naive) restriction (independent of \mathcal{F}).
2 $\mathcal{Q}_{B}=\left(\operatorname{Rep} U_{\mathfrak{g}_{B}}, e^{\hbar / 2 \Omega_{\mathfrak{g}_{B}}}, \Phi_{\mathrm{Kz}}^{\mathfrak{g}_{B}}\right)$
$F_{\mathcal{F}}$ needs to be constructed $\left(\Phi_{B}^{K Z} \neq \Phi_{B^{\prime}}^{K Z}\right)$.

Coxeter categories

3. Associators. For any $B^{\prime} \subseteq B$ and $\mathcal{F}, \mathcal{G} \in \operatorname{Mns}\left(B, B^{\prime}\right)$, an isomorphism of monoidal functors $\Phi_{\mathcal{G} F}: F_{\mathcal{F}} \Rightarrow F_{\mathcal{G}}$ such that

$$
\Phi_{\mathcal{H G}} \cdot \Phi_{\mathcal{G F}}=\Phi_{\mathcal{H} \mathcal{F}}
$$

4. Joins. For any $B^{\prime \prime} \stackrel{\mathcal{F}^{\prime}}{\subseteq} B^{\prime} \stackrel{\mathcal{F}}{\subseteq} B$ an isomorphism $a_{\mathcal{F}^{\prime}}^{\mathcal{F}}: F_{\mathcal{F}^{\prime}} \circ F_{\mathcal{F}} \Rightarrow F_{\mathcal{F}^{\prime} \cup \mathcal{F}}$ of monoidal functors $\mathcal{Q}_{B} \rightarrow \mathcal{Q}_{B^{\prime \prime}}$ satisfying
1 Vertical factorisation

2 Associativity For any $B^{\prime \prime \prime} \stackrel{\mathcal{F}^{\prime \prime}}{\subseteq} B^{\prime \prime} \subseteq B^{\mathcal{F}^{\prime}} \subseteq \stackrel{\mathcal{F}}{\subseteq} B$,

$$
a_{\mathcal{F}^{\prime \prime \prime}, \mathcal{F}}^{\mathcal{F}^{\prime}} a_{\mathcal{F}^{\prime}}^{\mathcal{F}}=a_{\mathcal{F}^{\prime \prime} \cup \mathcal{F}^{\prime}}^{\mathcal{F}} \circ a_{\mathcal{F}^{\prime \prime}}^{\mathcal{F}^{\prime \prime}}
$$

as isomorphisms $F_{\mathcal{F}^{\prime \prime}} \circ F_{\mathcal{F}^{\prime}} \circ F_{\mathcal{F}} \Rightarrow F_{\mathcal{F} \prime \prime \cup \mathcal{F} \cup \cup \mathcal{F}}$.

Coxeter categories

Definition

1 A labelling on D is the data of $m_{i j} \in\{2, \ldots, \infty\}$, for any $i \neq j \in \mathbf{I}=V(D)$, such that $m_{i j}=m_{j i}$ and $m_{i j}=2$ if $i \perp j$.
2. The Artin braid group corresponding to D and its labelling is

$$
B_{D}=\left\langle S_{i}\right\rangle_{i \in \mathbf{I}} / \underbrace{S_{i} S_{j} S_{i} \cdots}_{m_{i j}}=\underbrace{S_{j} S_{i} S_{j} \cdots}_{m_{i j}}
$$

5. Local monodromies.

Elements $S_{i}^{\mathcal{Q}} \in \operatorname{Aut}\left(F_{\not{ }_{b i}}\right), i \in \mathbf{I}$, satisfying
1 Braid relations. For any $i \neq j \in \mathbf{I}$,

$$
S_{i}^{\mathcal{Q}} S_{j}^{\mathcal{Q}} S_{i}^{\mathcal{Q}} \cdots=S_{j}^{\mathcal{Q}} S_{i}^{\mathcal{Q}} S_{j}^{\mathcal{Q}} \cdots
$$

Coxeter categories

Definition

1 A labelling on D is the data of $m_{i j} \in\{2, \ldots, \infty\}$, for any $i \neq j \in \mathbf{I}=V(D)$, such that $m_{i j}=m_{j i}$ and $m_{i j}=2$ if $i \perp j$.
2 The Artin braid group corresponding to D and its labelling is

$$
B_{D}=\left\langle S_{i}\right\rangle_{i \in \mathbf{l}} / \underbrace{S_{i} S_{j} S_{i} \cdots}_{m_{i j}}=\underbrace{S_{j} S_{i} S_{j} \cdots}_{m_{i j}}
$$

4. Local monodromies.

Elements $S_{i}^{\mathcal{Q}} \in \operatorname{Aut}\left(F_{\emptyset i}\right), i \in \mathbf{I}$, satisfying
1 Braid relations. For any $i \neq j \in \mathbf{I}$,

$$
S_{i}^{\mathcal{Q}} S_{j}^{\mathcal{Q}} S_{i}^{\mathcal{Q}} \ldots=S_{j}^{\mathcal{Q}} S_{i}^{\mathcal{Q}} S_{j}^{\mathcal{Q}} \ldots
$$

and any $\mathcal{F} \ni\{i\}, \mathcal{G} \ni\{j\}$, the following holds in $\operatorname{Aut}\left(F_{\emptyset D}\right)$

$$
\operatorname{Ad}\left(\Phi_{\mathcal{G F}}\right)\left(S_{i}^{\mathcal{Q}}\right) \cdot S_{j}^{\mathcal{Q}} \cdot \operatorname{Ad}\left(\Phi_{\mathcal{G F}}\right)\left(S_{i}^{\mathcal{Q}}\right) \cdots=S_{j}^{\mathcal{Q}} \cdot \operatorname{Ad}\left(\Phi_{\mathcal{G F}}\right)\left(S_{i}^{\mathcal{Q}}\right) \cdot S_{j}^{\mathcal{Q}} \ldots
$$

Coxeter categories

4. Local monodromies ctd.
$\boxed{2}$ Coproduct identity (compatibility of B_{W} and B_{n} actions). For any $i \in \mathbf{I}$, and $U, V \in \mathcal{Q}_{i}$, the following is commutative

(analogue of $\Delta\left(S_{i}\right)=R_{i}^{-1} \cdot S_{i} \otimes S_{i}$).

Coxeter categories: representations of B_{W}

Proposition. Let \mathcal{Q} be a braided Coxeter category of type D.
1 There is a collection of homomorphisms

$$
\lambda_{\mathcal{F}}: B_{W} \rightarrow \operatorname{Aut}\left(F_{\mathcal{F}}\right)
$$

labelled by maximal nested sets on D, such that for any

$$
\mathcal{F}, \mathcal{G} \in \operatorname{Mns}(D), \lambda_{\mathcal{G}}=\operatorname{Ad}\left(\Phi_{\mathcal{G} \mathcal{F}}\right) \circ \lambda_{\mathcal{F}}(\star)
$$

2 The collection $\left\{\lambda_{\mathcal{F}}\right\}$ is uniquely determined by (\star), and the following normalisation condition: if \mathcal{F} contains a one vertex diagram $\{i\}$, then

$$
\lambda_{\mathcal{F}}\left(S_{i}\right)=S_{i}^{\mathcal{Q}}
$$

Remark The normalisation condition is analogous to the fact that, in a braided tensor category, the generator T_{i} of B_{n} only acts on the i and $i+1$ tensor copies in $V_{b}^{\otimes n}$ if b contains $\cdots\left(x_{i} x_{i+1}\right) \cdots$

Main results I: (Quantum) reality check

Proposition (Appel-TL, Selecta 2018) There is a braided Coxeter category $\mathbb{O}_{\hbar}^{\text {int }}$ with

- Diagrammatic categories $\left(\mathcal{O}_{U_{\hbar} \text { ig }_{B}}^{\text {in }}, R_{U_{n} \mathfrak{g}_{B}}\right), B \subseteq D$.
- (standard) Restriction functors $F_{\mathcal{F}}: \mathcal{O}_{U_{\hbar} \mathfrak{g}_{B}}^{\text {int }} \rightarrow \mathcal{O}_{U_{\hbar} \mathfrak{g}_{B^{\prime}}}^{\text {int }}$
- (trivial) Associators $\Phi_{\mathcal{G} \mathcal{F}}=\mathbf{1}_{\text {Res }_{U_{\hbar} \mathfrak{g}_{B^{\prime}}, U_{\hbar} \boldsymbol{G}_{B}}}$
- (trivial) Joins $a_{\mathcal{F}^{\prime}}^{\mathcal{F}}: \operatorname{Res}_{u_{\hbar} \mathfrak{g}_{B^{\prime \prime}}, U_{\hbar} \mathfrak{g}_{B^{\prime}}} \circ \operatorname{Res}_{U_{\hbar} \mathfrak{g}_{\mathfrak{B}^{\prime}}, U_{\hbar \mathfrak{g}_{B}}}=\operatorname{Res}_{U_{\hbar \mathfrak{g}_{B^{\prime \prime}}}, U_{\hbar} \mathfrak{g}_{B}}$.
- Local monodromies: $S_{i}^{\text {®int }_{\text {int }}}=S_{i}^{\hbar}$, qWeyl group element.

Main results II: Transfer to $\mathcal{O}_{\mathfrak{g}}$

Theorem (Appel-TL, Selecta 2019)
$\mathbb{O}_{\hbar}^{\text {int }}$ is equivalent to a braided Coxeter category $\mathbb{O}_{\text {trans }}^{\text {int }}$ with

- Diagrammatic categories $\left(\mathcal{O}_{\mathfrak{g}_{B}}^{\text {int }}, e^{\hbar / 2 \Omega_{\mathfrak{g}_{B}}}, \Phi_{\mathrm{KZ}}^{\mathfrak{q}_{B}}\right)$.
- Restriction functors $F_{\mathcal{F}}=\left(\operatorname{Res}_{\mathfrak{g}_{B^{\prime}}, \mathfrak{g}_{\mathcal{B}}}, J_{\mathcal{F}}\right)$

Res is standard restriction, $J_{\mathcal{F}}$ some \otimes structure.
Remarks
1 The tensor structure $J_{\mathcal{F}}$ is not trivial: $\Phi_{\mathrm{KZ}}^{\mathfrak{g}_{B}} \neq \Phi_{\mathrm{K} z}^{\mathfrak{g}_{B^{\prime}}}$.
$\sqrt{2}$ Main ingredients needed (ATL, Selecta 2018)

Main results III: Rigidity

Theorem (Appel-TL, Advances 2019) Braided Coxeter structures with
1 Diagrammatic categories $\left(\mathcal{O}_{\mathfrak{g}_{B}}^{\text {int }}, e^{\hbar / 2 \Omega_{\mathfrak{g}_{B}}}, \phi_{\mathrm{KZ}}^{\mathfrak{g}_{B}}\right)$.
$\sqrt{2}$ Restriction functors $F_{\mathcal{F}}=\left(\operatorname{Res}_{\mathfrak{g}_{B^{\prime}}, \mathfrak{g}_{\mathcal{B}}}, J_{\mathcal{F}}\right)$.
are unique (up to a unique equivalence) provided they are of PROPic origin.
Theorem (Appel-TL, Selecta 2019) The transferred braided Coxeter structure $\mathbb{D}_{\text {trans }}^{\text {int }}$ coming from $U_{\hbar} \mathfrak{g}$ is PROPic.

Main results IV: The Casimir connection

Theorem (TL, arXiv:1601.04076 for $\operatorname{dim} \mathfrak{g}<\infty$, Appel-TL for general \mathfrak{g})
There is a braided Coxeter category $\mathbb{O}_{\nabla}^{\text {int }}$ with
1 Diagrammatic categories $\left(\mathcal{O}_{\mathfrak{g}_{B}}^{\text {int }}, e^{\hbar / 2 \Omega_{\mathfrak{g}_{B}}}, \Phi_{\mathrm{KZ}}^{\mathfrak{g}_{B}}\right)$.
\simeq Restriction functors $F_{\mathcal{F}}=\left(\operatorname{Res}_{\mathfrak{g}_{B^{\prime}}, \mathfrak{g}_{B}}, J_{\mathcal{F}}\right)$. which accounts for
■ $B_{n} \circlearrowright V^{\otimes n}[[\hbar]], V \in \operatorname{Rep}\left(U_{\mathfrak{g}}^{B}\right)$, monodromy of $K Z$ equations for \mathfrak{g}_{B}.
2 $B_{W} \circlearrowright V[[\hbar]]$, monodromy of the Casimir equations for \mathfrak{g}.
Ingredients

- The tensor structure $J_{\mathcal{F}}$ arises from an ODE on \mathbb{P}^{1} with irregular singularities (dynamical KZ equations).
- The associators $\Phi_{\mathcal{G} \mathcal{F}}$ are constructed from the Casimir connection by work of De Concini-Procesi.
- W-equivariant resummation of the Casimir connection for $\operatorname{dim} \mathfrak{g}=\infty\left(\sum_{\alpha \in \mathrm{R}_{+}} d \alpha / \alpha \cdot \mathcal{K}_{\alpha}\right.$ is an ∞ sum $)$.
Proposition (Appel-TL) The braided Coxeter structure $\mathbb{Q}_{\nabla}^{\text {int }}$ is PROPic.

Summary

Theorem (Appel-TL) For any symmetrisable KM algebra \mathfrak{g}, there is an equivalence between
$\mathbb{1}$ the braided Coxeter category $\mathbb{D}_{\hbar}^{\text {int }}$ underlying

- $B_{n} \circlearrowright \mathcal{V}^{\otimes n}, R$-matrix action.
- $B_{W} \circlearrowright \mathcal{V}$, quantum Weyl group action.
[2 the braided Coxeter category $\mathbb{Q}_{\underset{\nabla}{\text { int }} \text { underlying }}$
- $B_{n} \circlearrowright V^{\otimes n}[[\hbar]]$, monodromy of $K Z$ equations for \mathfrak{g}.
- $B_{W} \circlearrowright V[[\hbar]]$, monodromy of the Casimir equations for \mathfrak{g}.

Corollary The monodromy of the Casimir connection on $V \in \mathcal{O}_{\mathfrak{g}}^{\text {int }}$ is equivalent to the quantum Weyl group action of B_{W} on $F^{\mathrm{EK}}(V) \in \mathcal{O}_{U_{\hbar \mathfrak{g}}}^{\text {int }}$.

