From wonderful models to Coxeter categories (joint work with Andrea Appel)

Valerio Toledano Laredo

Northeastern University

In honor of Corrado De Concini's 70th birthday Palazzo Franchetti, Venice September 16, 2019

Coxeter categories (with Andrea App

Overview

- g symmetrisable Kac–Moody algebra
- *U*_ħ𝔅 quantum group corresponding to 𝔅/ℂ[[ħ]]
- Goal: establish a good equivalence

representations of $U_{\hbar}\mathfrak{g} \longleftrightarrow$ representations of \mathfrak{g} $(/\mathbb{C}[[\hbar]])$

Theorem (Drinfeld–Kohno, Kazhdan–Lusztig) If dim $\mathfrak{g} < \infty$, there is an equivalence of braided tensor categories

(Reps. of $U_{\hbar}\mathfrak{g}$, R) \leftrightarrow (Reps. of \mathfrak{g} , monodromy of the KZ equations)

Remark If dim $\mathfrak{g} = \infty$, \mathfrak{g} and $U_{\hbar}\mathfrak{g}$ have **different** abelian categories of representations \Rightarrow DKKL equivalence cannot hold as stated. However,

Theorem (Etingof–Kazhdan '96–'08) For any symmetrisable Kac–Moody algebra \mathfrak{g} , there is an equivalence of braided tensor categories

 F^{EK} : (Cat. \mathcal{O} for $U_{\hbar}\mathfrak{g}$, R) \leftrightarrow (Cat \mathcal{O} for \mathfrak{g} , monodromy of KZ equations)

Corollary If $V_1, \ldots, V_n \in \mathcal{O}_g$, the action of the braid group B_n by monodromy of the KZ equations on $V_1 \otimes \cdots \otimes V_n$ is equivalent to its *R*-matrix action on $F^{\mathsf{EK}}(V_1) \otimes \cdots \otimes F^{\mathsf{EK}}(V_n)$.

An extended equivalence?

- W Weyl group of g
- *B_W* corresponding generalised braid group, with generators {*S_i*}_{*i*∈1} and relations

$$\underbrace{S_i S_j \cdots}_{m_{ij}} = \underbrace{S_j S_i \cdots}_{m_{ij}}$$

for any $i \neq j$, m_{ij} = order of $s_i s_j$ in W

- B_W acts on any V integrable representation of U_ħg by Lusztig's quantum Weyl group operators
- B_W acts on any V integrable representation of g by monodromy of the Casimir connection
- Goal find an equivalence which is equivariant for these actions
- Remark Neither action of B_W is built out of the braided tensor structure \Rightarrow need to extend rather than modify the DKKL equivalence.

- \mathcal{V} integrable repr. of $U_{\hbar}\mathfrak{g}$
- Thm. (Lusztig) $\exists \{S_i\}_{i \in I} \subset Aut(\mathcal{V})$ satisfying the braid relations

$$\underbrace{S_i S_j \cdots}_{m_{ij}} = \underbrace{S_j S_i \cdots}_{m_{ij}}$$

• The corresponding action $\lambda_{\hbar} : B_W \to \operatorname{Aut}(\mathcal{V})$ is s.t. $\lambda_{\hbar}|_{\hbar=0}$ is the action of (a finite extension \widetilde{W} of) W on the integrable g-module $\mathcal{V}/\hbar\mathcal{V}$.

The Casimir connection $abla_{\mathsf{c}}$

- $\blacksquare \ \dim \mathfrak{g} < \infty \ \text{for now}$
- $\mathfrak{h} \subset \mathfrak{g}$ Cartan subalgebra, $\mathfrak{h}_{reg} = \mathfrak{h} \setminus \bigcup_{\alpha \in \mathsf{R}} \mathsf{Ker}(\alpha)$
- *V* integrable g-module
- ∇_{C} is a meromorphic connection on $V \times \mathfrak{h}_{\mathsf{reg}} \to \mathfrak{h}_{\mathsf{reg}}$,

$$abla_C = d - rac{\mathsf{h}}{2} \sum_{lpha \in \mathsf{R}^+} rac{dlpha}{lpha} \mathcal{K}_{lpha}$$

- $h \in \mathbb{C}$ deformation parameter
- $\mathcal{K}_{\alpha} = x_{\alpha}x_{-\alpha} + x_{-\alpha}x_{\alpha}$ (truncated) Casimir operator of $\mathfrak{sl}_{2}^{\alpha} \subset \mathfrak{g}$

Theorem (De Concini, Millson–TL, Felder–Markov–Tarasov–Varchenko) The connection ∇_C is flat, and \widetilde{W} –equivariant for any $h \in \mathbb{C}$.

$$\mathsf{Monodromy}\;\mu^{\mathsf{h}}_V:B_W=\pi_1(\mathfrak{h}_{\scriptscriptstyle\mathsf{reg}}/W)\longrightarrow {\mathit{GL}}(V)\;\mathsf{deforms}\;\widetilde{W}\circlearrowright V.$$

Why study ∇_C ?

The Casimir connection is related to

- Quantum integrable systems of Gaudin type related to g (Rybnikov, Feigin–Frenkel–TL)
- Wess-Zumino-Witten model corresponding to g (Fedorov, Feigin-Frenkel-TL)
- Isomonodromic deformations of irregular connections on P¹ (Boalch, Xu−TL)
- Wall-crossing & stability conditions (Joyce, Bridgeland-TL)
- Enumerative geometry (q. cohomology) of Nakajima quiver varieties (Maulik–Okounkov)

Northeastern University

Monodromy theorem

$$B_{W} \xrightarrow{\mu_{V}} GL(V[[h]]) \qquad V \in \operatorname{Rep}_{fd}(\mathfrak{g}), \text{ formal Taylor series of } \mu_{V}^{h} \text{ at } h = 0$$

$$B_{W} \xrightarrow{\lambda_{V}} GL(\mathcal{V}) \qquad \mathcal{V} \in \operatorname{Rep}_{fd}(U_{\hbar}\mathfrak{g}), \text{ qWeyl group action}$$

Theorem 1 (TL, Conj. De Concini, TL)

Assume dim $\mathfrak{g} < \infty$. Set $\hbar = 2\pi\iota h$, and assume that $\mathcal{V}/\hbar \mathcal{V} \cong \mathcal{V}$.

1 The representations μ_V and λ_V are equivalent.

2 The monodromy of ∇_C is defined over $\mathbb{Q}[[\hbar]]$.

Theorem 2 (Appel–TL, 2019) A similar result holds for an arbitrary symmetrisable Kac–Moody algebra.

Remark The statement of Thm. 2 is conceptually simpler, and much stronger than Thm. 1, even for dim $\mathfrak{g} < \infty$.

Strategy of proof

- Both μ_V and λ_V deform $\widetilde{W} \circlearrowright V$.
- Look for an appropriate rigidity result (cf. Drinfeld's computation of the monodromy of the KZ equations in terms of the *R*-matrix of U_ħg).
- Problem find an algebraic structure which
 - **1** accomodates both μ_V and λ_V
 - 2 has trivial deformation theory
- 1st attempt Look at actions of B_W on a fixed vector space V/C[[ħ]] which deform a given action of W. This satisfies 1), but not 2) (H¹(B_W, V) is very big).
- Definition/Theorem (Appel-TL)
 - **1** $\mathcal{O}_{U_{\hbar,\mathfrak{q}}}^{\text{int}}$ is a braided **Coxeter** category.
 - **2** $\mathcal{O}_{\mathfrak{g}}^{\text{int}}$ is a braided **Coxeter** category.
 - **3** Braided Coxeter category structures on $\mathcal{O}_{\mathfrak{q}}^{int}$ are rigid.

Remark The definition (to follow) of Coxeter category is inspired by the De Concini–Procesi wonderful model of a hyperplane complement.

- What is a braided tensor category C good for?
 - For any $V \in Ob(\mathcal{C})$, $n \ge 1$, there is an action

$$\rho_b: B_n \to \operatorname{Aut}(V_b^{\otimes n})$$

which depends on the **choice of a bracketing** $b \in B_n$ on the (non-associative) monomial $x_1 \cdots x_n$.

- Example $b = ((x_1x_2)x_3) \in \mathcal{B}_3, V_b^{\otimes 3} = ((V \otimes V) \otimes V).$
- For any $b, b' \in \mathcal{B}_n$, $V_b^{\otimes n}$ and $V_{b'}^{\otimes n}$ are isomorphic as B_n -modules, via an associativity constraint: $\Phi_{b'b} : V_b^{\otimes n} \to V_{b'}^{\otimes n}$.
- What is a Coxeter category Q good for?
 - For any $V \in Ob(\mathcal{Q})$, there is an action

$$\lambda_{\mathcal{F}}: B_W \to \operatorname{Aut}(V_{\mathcal{F}})$$

which depends on the choice of a 'W-bracketing' \mathcal{F} .

- (A \mathfrak{S}_n -bracketing is the same as an element of \mathcal{B}_n .)
- For any *W*-bracketings $\mathcal{F}, \mathcal{G}, V_{\mathcal{F}}$ and $V_{\mathcal{G}}$ are isomorphic as B_W -modules, via a prescribed isomorphism $\Phi_{\mathcal{GF}} : V_{\mathcal{F}} \to V_{\mathcal{G}}$.

Bracketings revisited: D = Dynkin diagram of type A_{n-1}

- pair of parentheses on $x_1 \cdots x_n \longleftrightarrow$ connected subdiagram of D.
- $p = x_1 \cdots x_{i-1} (x_i \cdots x_j) x_{j+1} \cdots x_n \longleftrightarrow B = [i, j-1] \subset D$
- Example $(((x_1x_2)x_3)x_4) \leftrightarrow [1,1], [1,2], [1,3] \subseteq [1,3].$
- p, p' are consistent parentheses $\iff B, B' \subseteq D$ are *compatible*, *i.e.*,
 - $B \subset B'$ or $B' \subset B$, or
 - $B \perp B'$: $B \cap B' = \emptyset$, and no vertex in B is linked to a vertex in B' by an edge of D.

Examples

- $\begin{array}{c} 1 \quad (x_1x_2)(x_3x_4) \longleftrightarrow [1,1] \perp [3,3] \subseteq [1,3]. \\ 2 \quad (x_1(x_2)x_3x_4) \longleftrightarrow [1,1] \not \perp [2,3] \subseteq [1,3]. \end{array}$
- Definition (De Concini–Procesi)/Proposition
 - A nested set on D = [1, n 1] is a collection of pairwise compatible, connected subdiagrams of D.
 - 2 There is a bijection

 $\{\text{bracketings on } x_1 \cdots x_n\} \longleftrightarrow \{\text{maximal nested sets on } [1, n-1]\}$

D diagram (unoriented graph, no loops, no multiple edges)

Example D=Dynkin diagram of W

Definition (De Concini–Procesi) A nested set on D is a collection $\mathcal{F} = \{B\}$ of pairwise compatible, connected subdiagrams of D.

Nested sets and chains

A chain from $B \subseteq D$ to \emptyset is a sequence of (not necessarily connected) subdiagrams

$$B = B_1 \supsetneq B_2 \supsetneq \cdots \supsetneq B_m = \emptyset$$

Lemma There is a surjection $i : \{ chains B \to \emptyset \} \longrightarrow Ns(B)$ given by

$$i(B_1 \supseteq B_2 \supseteq \cdots \supseteq B_m) = \bigcup_{i=1}^{m-1}$$
 connected components of B_i

Examples

$$\begin{array}{c} 1 & [1,3] \supset [1,2] \supset [1,1] \longrightarrow \{[1,3],[1,2],[1,1]\} \\ 2 & [1,3] \supset ([1,1] \sqcup [3,3]) \supset [1,1] \longrightarrow \{[1,3],[1,1],[3,3]\} \\ 3 & [1,3] \supset ([1,1] \sqcup [3,3]) \supset [3,3] \longrightarrow \{[1,3],[1,1],[3,3]\} \end{array}$$

Nested sets on B/B' ($B' \subseteq B$) correspond similarly to chains

$$B = B_1 \supsetneq B_2 \supsetneq \cdots \supsetneq B_m = B'$$

 $\begin{aligned} \{ \text{bracketings on } x_1 \cdots x_n \} & \longleftrightarrow \text{Stasheff associahedron } \mathcal{A}_n \\ & \longleftrightarrow \text{exceptional divisor in } \overline{\mathcal{M}}_{0,n+3} \end{aligned}$

D=Dynkin diagram of \mathfrak{g}

 $\begin{aligned} & \{\text{maximal nested sets on } D\} \longleftrightarrow \text{De Concini-Procesi associahedron } \mathcal{A}_D \\ & \longleftrightarrow \text{divisor in the DCP wonderful model of } \mathfrak{h}_{reg} \end{aligned}$

Coxeter categories (with Andrea Appel

Coxeter categories: fiber functors

One crucial difference between braided and Coxeter categories

- In a braided tensor category C, B_n acts by morphisms in C.
- In a Coxeter category Q, B_W does **not** act by morphisms in Q.

Toy example

The Weyl group action of \mathfrak{S}_n on a $GL_n(\mathbb{C})$ -module is not through morphisms in $\mathcal{Q} = \operatorname{Rep}(GL_n(\mathbb{C}))$, but through morphisms of the underlying vector space. In other words, there is a forgetful functor

$$F: \mathcal{Q} \to \mathsf{Vec} = \mathcal{Q}_{\emptyset}$$

and a map $\mathfrak{S}_n \to \operatorname{Aut}(F)$.

In general, in a Coxeter category ${\cal Q}$

- I There is a family of forgetful functors F_F : Q → Q_∅ (Q_∅ = Vec in examples), labelled by maximal nested sets F on D.
- **2** B_W acts on each $F_{\mathcal{F}}$. In other words, for any $V \in \mathcal{Q}$, $\mathcal{F} \in \mathsf{Mns}(D)$,

$$V_{\mathcal{F}} := F_{\mathcal{F}}(V) \rightsquigarrow \lambda_{\mathcal{F}} : B_W
ightarrow \operatorname{Aut}_{\mathcal{Q}_{\emptyset}}(V_{\mathcal{F}})$$

Algebra Tensor category \mathcal{C} with one fiber functor $f: \mathcal{C} \to \mathsf{Vec}$

Example C = Rep(A), A a Hopf algebra, f = forgetful functor

Topology Tensor category \mathcal{C} with **many** fiber functors $\mathcal{C} \to \mathsf{Vec}$ Example

- X = topological space
- $X_0 \subseteq X$ given collection of basepoints
- $\pi_1(X; X_0)$ fundamental groupoid based at X_0
- $\mathcal{C} = \operatorname{Rep}(\pi_1(X; X_0)) = \operatorname{Fun}(\pi_1(X; X_0), \operatorname{Vec})$
- $\{f_x\}_{x \in X_0} : \mathcal{C} \to \text{Vec collection of fiber functors, } f_x(\mathbb{V}) = \mathbb{V}_x.$
- $\gamma \in \pi_1(X; X_0) \rightsquigarrow \Phi_{\gamma} \in Hom(f_{\gamma(0)}, f_{\gamma(1)})$, natural transformation.

イロト イヨト イヨト

Northeastern University

Definition (ATL, Selecta 2019)

A braided Coxeter category of type D consists of 5 pieces of data.

1. Diagrammatic categories.

For any subdiagram $\emptyset \subseteq B \subseteq D$, a braided tensor category \mathcal{Q}_B .

Examples

- **2** $Q_B = (\text{Rep } U\mathfrak{g}_B, \text{ monodromy of the KZ equations for } \mathfrak{g}_B).$

2. Restriction functors.

For any $B' \subseteq B$, and $\mathcal{F} \in \mathsf{Mns}(B, B')$, a (not necessarily braided) monoidal functor $F_{\mathcal{F}} : \mathcal{Q}_B \to \mathcal{Q}_{B'}$

Examples

1
$$Q_B = \operatorname{Rep} U_{\hbar} \mathfrak{g}_B, F_{\mathcal{F}} = (\operatorname{naive}) \operatorname{restriction} (\operatorname{independent} \operatorname{of} \mathcal{F}).$$

2 $Q_B = (\operatorname{Rep} U \mathfrak{g}_B, e^{\hbar/2\Omega_{\mathfrak{g}_B}}, \Phi_{\mathsf{KZ}}^{\mathfrak{g}_B})$
 $F_{\mathcal{F}} \operatorname{needs} \operatorname{to} \operatorname{be} \operatorname{constructed} (\Phi_B^{KZ} \neq \Phi_{B'}^{KZ}).$

3. Associators. For any $B' \subseteq B$ and $\mathcal{F}, \mathcal{G} \in Mns(B, B')$, an isomorphism of monoidal functors $\Phi_{\mathcal{GF}} : F_{\mathcal{F}} \Rightarrow F_{\mathcal{G}}$ such that

$$\Phi_{\mathcal{H}\mathcal{G}} \cdot \Phi_{\mathcal{G}\mathcal{F}} = \Phi_{\mathcal{H}\mathcal{F}}$$

4. Joins. For any $B'' \subseteq B' \subseteq B$ an isomorphism $a_{\mathcal{F}'}^{\mathcal{F}} : F_{\mathcal{F}'} \circ F_{\mathcal{F}} \Rightarrow F_{\mathcal{F}'\cup\mathcal{F}}$ of monoidal functors $\mathcal{Q}_B \to \mathcal{Q}_{B''}$ satisfying

1 Vertical factorisation

2 Associativity For any $B'' \stackrel{\mathcal{F}'}{\subseteq} B'' \stackrel{\mathcal{F}}{\subseteq} B' \stackrel{\mathcal{F}}{\subseteq} B$,

$$a_{\mathcal{F}'}^{\mathcal{F}'\cup\mathcal{F}} \circ a_{\mathcal{F}'}^{\mathcal{F}} = a_{\mathcal{F}''\cup\mathcal{F}'}^{\mathcal{F}} \circ a_{\mathcal{F}''}^{\mathcal{F}'}$$

as isomorphisms $F_{\mathcal{F}''} \circ F_{\mathcal{F}'} \circ F_{\mathcal{F}} \Rightarrow F_{\mathcal{F}''\cup\mathcal{F}'\cup\mathcal{F}'\cup\mathcal{F}'} \circ \sigma \to \sigma$

Definition

 A labelling on D is the data of m_{ij} ∈ {2,...,∞}, for any i ≠ j ∈ I = V(D), such that m_{ij} = m_{ji} and m_{ij} = 2 if i ⊥ j.
 2 The Artin braid group corresponding to D and its labelling is

$$B_D = \langle S_i \rangle_{i \in \mathbf{I}} / \underbrace{S_i S_j S_i \cdots}_{m_{ij}} = \underbrace{S_j S_i S_j \cdots}_{m_{ij}}$$

5. Local monodromies.

Elements $S_i^{\mathcal{Q}} \in \operatorname{Aut}(F_{\emptyset i})$, $i \in I$, satisfying **1** Braid relations. For any $i \neq j \in I$,

$$S_i^{\mathcal{Q}}S_j^{\mathcal{Q}} S_i^{\mathcal{Q}}\cdots = S_j^{\mathcal{Q}}S_i^{\mathcal{Q}}S_j^{\mathcal{Q}}\cdots$$

Definition

- **1** A *labelling* on *D* is the data of $m_{ij} \in \{2, ..., \infty\}$, for any $i \neq j \in \mathbf{I} = V(D)$, such that $m_{ij} = m_{ji}$ and $m_{ij} = 2$ if $i \perp j$.
- **2** The Artin braid group corresponding to D and its labelling is

$$B_D = \langle S_i \rangle_{i \in \mathbf{I}} / \underbrace{S_i S_j S_i \cdots}_{m_{ij}} = \underbrace{S_j S_i S_j \cdots}_{m_{ij}}$$

4. Local monodromies.

Elements $S_i^{\mathcal{Q}} \in \operatorname{Aut}(F_{\emptyset i})$, $i \in I$, satisfying **1** Braid relations. For any $i \neq j \in I$,

$$S_i^{\mathcal{Q}} S_j^{\mathcal{Q}} S_i^{\mathcal{Q}} \cdots = S_j^{\mathcal{Q}} S_i^{\mathcal{Q}} S_j^{\mathcal{Q}} \cdots$$

and any $\mathcal{F} \ni \{i\}, \mathcal{G} \ni \{j\}$, the following holds in Aut $(F_{\emptyset D})$

$$\mathsf{Ad}(\Phi_{\mathcal{GF}})(S_i^{\mathcal{Q}}) \cdot S_j^{\mathcal{Q}} \cdot \mathsf{Ad}(\Phi_{\mathcal{GF}})(S_i^{\mathcal{Q}}) \cdots = S_j^{\mathcal{Q}} \cdot \mathsf{Ad}(\Phi_{\mathcal{GF}})(S_i^{\mathcal{Q}}) \cdot S_j^{\mathcal{Q}} \cdots$$

- 4. Local monodromies ctd.
 - **2** Coproduct identity (compatibility of B_W and B_n actions). For any $i \in I$, and $U, V \in Q_i$, the following is commutative

$$\begin{array}{c|c} F_{\emptyset i}(U) \otimes F_{\emptyset i}(V) \xrightarrow{J_{\emptyset i}} F_{\emptyset i}(U \otimes V) \\ s_{i}^{\mathcal{Q}} \otimes s_{i}^{\mathcal{Q}} & & \downarrow S_{i}^{\mathcal{Q}} \\ F_{\emptyset i}(U) \otimes F_{\emptyset i}(V) & F_{\emptyset i}(U \otimes V) \\ c_{\emptyset} & & \downarrow \\ F_{\emptyset i}(V) \otimes F_{\emptyset i}(U) \xrightarrow{J_{\emptyset i}} F_{\emptyset i}(V \otimes U) \end{array}$$

(analogue of $\Delta(S_i) = R_i^{-1} \cdot S_i \otimes S_i$).

Coxeter categories: representations of B_W

Proposition. Let Q be a braided Coxeter category of type D.

1 There is a collection of homomorphisms

$$\lambda_{\mathcal{F}}: B_W \to \operatorname{Aut}(F_{\mathcal{F}})$$

labelled by maximal nested sets on D, such that for any $\mathcal{F}, \mathcal{G} \in \mathsf{Mns}(D), \ \lambda_{\mathcal{G}} = \mathsf{Ad}(\Phi_{\mathcal{GF}}) \circ \lambda_{\mathcal{F}} (\star)$

2 The collection {λ_F} is uniquely determined by (*), and the following normalisation condition: if *F* contains a one vertex diagram {*i*}, then

$$\lambda_{\mathcal{F}}(S_i) = S_i^{\mathcal{Q}}$$

Remark The normalisation condition is analogous to the fact that, in a braided tensor category, the generator T_i of B_n only acts on the *i* and i + 1 tensor copies in $V_b^{\otimes n}$ if *b* contains $\cdots (x_i x_{i+1}) \cdots$

Main results I: (Quantum) reality check

Proposition (Appel–TL, Selecta 2018) There is a braided Coxeter category $\mathbb{O}_{\hbar}^{\text{int}}$ with

- Diagrammatic categories $(\mathcal{O}_{U_{\hbar}\mathfrak{g}_{B}}^{\text{int}}, R_{U_{\hbar}\mathfrak{g}_{B}}), B \subseteq D.$
- (standard) Restriction functors $F_{\mathcal{F}} : \mathcal{O}_{U_{\hbar}\mathfrak{g}_{B}}^{\text{int}} \to \mathcal{O}_{U_{\hbar}\mathfrak{g}_{B'}}^{\text{int}}$
- (trivial) Associators $\Phi_{\mathcal{GF}} = \mathbf{1}_{\mathsf{Res}_{U_{\hbar}\mathfrak{g}_{B'}}, U_{\hbar}\mathfrak{g}_{B}}$
- (trivial) Joins $a_{\mathcal{F}'}^{\mathcal{F}}$: $\operatorname{Res}_{U_{\hbar}\mathfrak{g}_{B''},U_{\hbar}\mathfrak{g}_{B'}} \circ \operatorname{Res}_{U_{\hbar}\mathfrak{g}_{B'},U_{\hbar}\mathfrak{g}_{B}} = \operatorname{Res}_{U_{\hbar}\mathfrak{g}_{B''},U_{\hbar}\mathfrak{g}_{B}}$.
- Local monodromies: $S_i^{\mathbb{O}_{\hbar}^{\text{int}}} = S_i^{\hbar}$, qWeyl group element.

Main results II: Transfer to $\mathcal{O}_{\mathfrak{g}}$

Theorem (Appel–TL, Selecta 2019)

 $\mathbb{O}_{\hbar}^{\mbox{\tiny int}}$ is equivalent to a braided Coxeter category $\mathbb{O}_{\mbox{\tiny trans}}^{\mbox{\tiny int}}$ with

- Diagrammatic categories $(\mathcal{O}_{\mathfrak{g}_B}^{int}, e^{\hbar/2\Omega_{\mathfrak{g}_B}}, \Phi_{\mathsf{KZ}}^{\mathfrak{g}_B}).$
- Restriction functors F_F = (Res_{g_{B'},g_B}, J_F) Res is standard restriction, J_F some ⊗ structure.

Remarks

- **1** The tensor structure $J_{\mathcal{F}}$ is not trivial: $\Phi_{\kappa_Z}^{\mathfrak{g}_B} \neq \Phi_{\kappa_Z}^{\mathfrak{g}_{B'}}$.
- 2 Main ingredients needed (ATL, Selecta 2018)

Theorem (Appel-TL, Advances 2019) Braided Coxeter structures with

- **1** Diagrammatic categories $(\mathcal{O}_{\mathfrak{g}_B}^{int}, e^{\hbar/2\Omega_{\mathfrak{g}_B}}, \Phi_{\mathsf{KZ}}^{\mathfrak{g}_B}).$
- **2** Restriction functors $F_{\mathcal{F}} = (\operatorname{Res}_{\mathfrak{g}_{B'},\mathfrak{g}_B}, J_{\mathcal{F}}).$

are unique (up to a unique equivalence) **provided** they are of PROPic origin.

Theorem (Appel–TL, Selecta 2019) The transferred braided Coxeter structure $\mathbb{Q}_{\text{trans}}^{\text{int}}$ coming from $U_{\hbar}\mathfrak{g}$ is PROPic.

Main results IV: The Casimir connection

Theorem (TL, arXiv:1601.04076 for dim $\mathfrak{g} < \infty$, Appel–TL for general \mathfrak{g}) There is a braided Coxeter category $\mathbb{O}_{\nabla}^{int}$ with

- **1** Diagrammatic categories $(\mathcal{O}_{\mathfrak{g}_B}^{int}, e^{\hbar/2\Omega_{\mathfrak{g}_B}}, \Phi_{\mathsf{KZ}}^{\mathfrak{g}_B}).$
- **2** Restriction functors $F_{\mathcal{F}} = (\operatorname{Res}_{\mathfrak{g}_{B'},\mathfrak{g}_{B}}, J_{\mathcal{F}}).$

which accounts for

- **I** $B_n \circlearrowright V^{\otimes n}[[\hbar]], V \in \operatorname{Rep}(U\mathfrak{g}_B)$, monodromy of KZ equations for \mathfrak{g}_B .
- **2** $B_W \circlearrowright V[[\hbar]]$, monodromy of the Casimir equations for \mathfrak{g} .

Ingredients

- The tensor structure $J_{\mathcal{F}}$ arises from an ODE on \mathbb{P}^1 with irregular singularities (dynamical KZ equations).
- The associators Φ_{GF} are constructed from the Casimir connection by work of De Concini–Procesi.
- *W*-equivariant resummation of the Casimir connection for dim $\mathfrak{g} = \infty$ ($\sum_{\alpha \in \mathsf{R}_+} d\alpha / \alpha \cdot \mathcal{K}_{\alpha}$ is an ∞ sum).

Proposition (Appel–TL) The braided Coxeter structure $\mathbb{Q}_{\nabla}^{int}$ is PROPic.

Summary

Theorem (Appel–TL) For any symmetrisable KM algebra \mathfrak{g} , there is an equivalence between

- **1** the braided Coxeter category $\mathbb{O}_{\hbar}^{\text{int}}$ underlying
 - $B_n
 ightharpoon \mathcal{V}^{\otimes n}$, *R*-matrix action.
 - $B_W \circlearrowright \mathcal{V}$, quantum Weyl group action.
- 2 the braided Coxeter category $\mathbb{O}_{\nabla}^{\mbox{\tiny int}}$ underlying
 - $B_n \circlearrowright V^{\otimes n}[[\hbar]]$, monodromy of KZ equations for \mathfrak{g} .
 - $B_W \circlearrowright V[[\hbar]]$, monodromy of the Casimir equations for \mathfrak{g} .

Corollary The monodromy of the Casimir connection on $V \in \mathcal{O}_{\mathfrak{g}}^{\text{int}}$ is equivalent to the quantum Weyl group action of B_W on $F^{\text{EK}}(V) \in \mathcal{O}_{U_h\mathfrak{g}}^{\text{int}}$.