Splines, Representation theory and Geometry : September 2019

Series of articles on splines

- I.J. Schoenberg (1973) : Cardinal Space Interpolation I,II,III,...
- Dahmen-Micchelli (1985) :

On the solution of certain systems of partial difference equations and linear dependance of translates of Box Splines.

- Many articles (C. De Concini+C.Procesi+MV) around 2008 Vector partition functions and generalized Dahmen-Micchelli spaces, Vector partition functions and index of transversally elliptic operators,
- Loizides-Paradan-Vergne (2019)

Semi-classical analysis of piecewise quasi-polynomial functions

Functions on a lattice and difference equations

V real vector space of dimension d, with lattice $\Lambda \subset V$ $\mathcal{F}(\Lambda)$: the space of \mathbb{Z}-valued functions on Λ.

Difference operator

$\nabla_{\alpha}(f)(\lambda)=f(\lambda)-f(\lambda-\alpha)$
Periodic functions on Λ : functions on $\Lambda / D \wedge$, for some $D>0$.

Quasi polynomial functions

$\mathcal{Q P}(\Lambda)$ the algebra generated by polynomials functions on Λ and periodic functions on Λ.

Example $\Lambda=\mathbb{Z}$:

$$
f(n)=\frac{n}{2}+\frac{3}{4}+(-1)^{n} \frac{1}{4}
$$

Dahmen-Micchelli space

$\Phi=\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right]$ list of vectors in Λ spanning V
$A \subset \Phi$ is called short if A does not generate V.
$B \subseteq \Phi$ is called long if $\Phi-B$ does not generate V.
$\nabla_{B}=\prod_{\alpha \in B} \nabla_{\alpha}$

Definition

$D M(\Phi)$ is the space of \mathbb{Z}-valued functions f on Λ which are solutions of the system of difference equations :

$$
\nabla_{B}(f)=0
$$

for all long subsets of Φ.

Theorem : Dahmen-Micchelli (1985)

The space $D M(\Phi)$ is free over \mathbb{Z} of finite rank, and consists of quasi-polynomials.

Examples

$\Phi=[\omega, \omega]$ in $\Lambda=\mathbb{Z} \omega$.
One equation $\nabla_{\omega}^{2} \cdot f=0$ Basis of $D M(\Phi)$ over \mathbb{Z} :

$$
\left\{f_{1}(n)=n+1, \quad f_{2}(n)=1\right\} .
$$

$\Phi=[\omega, 2 \omega]$

One equation $\nabla_{\omega} \nabla_{2 \omega} \cdot f=0$ Basis of $D M(\Phi)$ over \mathbb{Z} :

$$
\left\{g_{1}(n)=\frac{1}{2} n+\frac{3}{4}+\frac{1}{4}(-1)^{n}, g_{2}(n)=\frac{1}{2}-\frac{1}{2}(-1)^{n}, g_{3}(n)=1\right\}
$$

Geometry : $M(\Phi)=\oplus_{\alpha \in \Phi} \mathbb{C}_{\alpha}$

T torus with lattice of characters $\wedge \subset V: \operatorname{Lie}(T)=V^{*}$; $M(\Phi)=\left\{m=\sum_{\alpha \in \Phi} z_{\alpha} e_{\alpha}, z_{\alpha} \in \mathbb{C}\right\}:$ a complex vector space ;

$$
\text { Taction : } X \in V^{*}: \exp (X) \cdot m=\sum_{\alpha \in \Phi} z_{\alpha} e^{i \alpha(X)} e_{\alpha} ;
$$

Moment map $J: M(\Phi) \rightarrow V$

$$
J(m)=\sum_{\alpha \in \Phi}\left|z_{\alpha}\right|^{2} \alpha
$$

Image of J :

$$
\operatorname{Cone}(\Phi)=\left\{\sum_{\alpha \in \Phi} t_{\alpha} \alpha, t_{\alpha} \geq 0\right\}
$$

Equivariant topological K-theory of $M_{f}(\Phi)$

Open subset $M_{f}(\Phi)$ of $M(\Phi)$ where T acts almost freely.

$$
M_{f}(\Phi)=M(\Phi) \backslash \cup_{A \text { short subsets }} M(A)
$$

complement of an arrangement of vector spaces.
Theorem (DPV 2008)
$s=\operatorname{dim} V$. The space $K_{T}^{s}\left(M_{f}(\Phi)\right)$ is isomorphic to $D M(\Phi)$.
The isomorphism is via equivariant index theory. More later :
Example $\phi=[\omega, \omega], M(\Phi)=\mathbb{C}^{2}$, and $f_{1}(n)=(n+1)$

$$
\left\{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\} .
$$

The tangential Cauchy-Riemann $\bar{\partial}$ operator has index

$$
\operatorname{index}\left(E_{\alpha}\right)\left(e^{i \theta}\right)=\sum_{n=\pi}(n+1) e^{i n \theta} .
$$

Vector partition functions

Consider the case where Φ generates an acute cone and $\lambda \in \Lambda$.

The Vector Partition function

$$
\mathcal{K}(\Phi)(\lambda)=\operatorname{Cardinal}\left(\left\{\sum_{\alpha \in \Phi} x_{\alpha} \alpha=\lambda\right\}\right) ; x_{\alpha} \text { non negative integers }
$$

Kostant Partition function when $\Phi=\Delta_{\geq 0}(\mathfrak{k}, \mathfrak{t})$ positive root system.

Examples $\wedge=\mathbb{Z} \omega$.

$$
\begin{gathered}
\mathcal{K}[\omega](n)=1, n \geq 0, \\
\mathcal{K}([2 \omega])(n)=\frac{1}{2}-\frac{1}{2}(-1)^{n}, n \geq 0, \\
\mathcal{K}[\omega, \omega](n)=n+1, n \geq 0, \\
\mathcal{K}([\omega, 2 \omega])(n)=\frac{1}{2} n+\frac{3}{4}+\frac{1}{4}(-1)^{n}, n \geq 0
\end{gathered}
$$

Representation theory

Action of T on $\operatorname{Sym}(M(\Phi))$: polynomials functions on the complex space $M(\Phi)^{*}$:

$$
\operatorname{Tr}_{\operatorname{Sym}(M(\Phi))}(t)=\sum_{\lambda} \mathcal{K}(\Phi)(\lambda) t^{\lambda}
$$

So $\mathcal{K}(\Phi)(\lambda)$ is the multiplicity of the character t^{λ} in $\operatorname{Sym}(M(\Phi))$. Morally :

$$
\operatorname{Tr}_{\mathrm{Sym}(M(\Phi))}(t)=\frac{1}{\prod_{\alpha \in \Phi}\left(1-t^{\alpha}\right)}
$$

The Partition function is a locally quasi-polynomial function

$V_{\text {reg }}$:the set of regular values of the moment map $J: M \rightarrow V$. Each connected component τ is the interior of a convex polyhedral cone $\bar{\tau}$.

$$
V_{\text {reg }}=\cup_{\tau} \tau
$$

union over its connected components τ.

Theorem (Dahmen-Micchelli, Brion-V, Szenes-V, ...)

$\mathcal{K}(\Phi)(\lambda)$ coincide on $\bar{\tau} \cap \wedge$ with a Dahmen-Micchelli polynomial belonging to $D M(\Phi)$.

So $\mathcal{K}(\Phi)(\lambda)$ is a piecewise quasi polynomial function and is "continuous" on Cone $(\Phi) \cap \wedge$.

Example : $\Lambda=\mathbb{Z} \omega_{1} \oplus \mathbb{Z} \omega_{2}$

$$
\Phi=\left[\omega_{1}, \omega_{2}, \omega_{1}+\omega_{2}\right]
$$

Zeroes of the moment map

Consider now ANY set $\Delta \subset \wedge$ without assuming that Δ spans an acute cone.
For example $\Delta=\Phi \cup-\Phi$, so $M(\Delta)=T^{*} M(\Phi)$.
$Z=J^{-1}(0)$ the set of zeroes of the moment map is a convex cone, and Z / T has the structure of a "stratified" symplectic space.

Example $\Delta=[\omega,-\omega]$

$$
\begin{gathered}
Z=\left\{\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}=0\right\} \\
Z / T=\{0\} \cup T^{*} S^{1} .
\end{gathered}
$$

A remarkable space of \mathbb{Z}-valued functions on \wedge

Consider the space $\mathcal{S}(\Delta)$ of functions on \wedge generated by all functions $\mathcal{K}(A)$ for $A \subset \Delta$ generating an acute cone, and all their translates.

Conjecture of Boutet de Monvel

The equivariant theory of $K_{T}^{0}(Z)$ is isomorphic to $\mathcal{S}(\Delta)$
Evident if Δ generates an acute cone.

Theorem DPV

Assume that $\Delta=\Phi \cup-\Phi$. Then this is true.
Proof via transversally elliptic equivariant index theory.

$$
\sum_{n \in \mathbb{Z}}(n+1) z^{n}=" \frac{1}{(1-z)^{2}} "-" \frac{1}{(1-z)^{2}} "
$$

Piecewise quasi polynomial functions and asymptotics

Many multiplicity functions in representation theory lead to piecewise quasi-polynomials. Geometry leads to locally polynomial functions such as Duistermaat-Heckman measures. Relation via asymptotics.

A space of quasi-polynomial functions on cones and depending of a parameter $k \geq 1$

We now consider $E=V \oplus \mathbb{R}$, with $\Lambda \oplus \mathbb{Z}$. P : a rational closed polyhedron in $V, \sigma \in V$ rational.

$$
C(P, \sigma):=\{[t v+\sigma, t], v \in P ; t \geq 0\} .
$$

[$C(P, \sigma)$] : the characteristic function of $C(P, \sigma) \cap(\Lambda \oplus \mathbb{Z})$.

Definition

The space $\mathcal{L}(\Lambda)$ consists of functions m on $\Lambda \oplus \mathbb{Z}_{>0}$ of the form

$$
m(\lambda, k)=\sum_{P, \sigma} q_{P, \sigma}(\lambda, k)[C(P, \sigma)](\lambda, k)
$$

where $q_{P, \sigma}$ are quasi polynomial functions on $\Lambda \oplus \mathbb{Z}$
We allow locally finite sums, but in this talk I restrict myself to finite sums.

$\Lambda=\mathbb{Z} \omega, P=[0,1], \sigma=0,4$

Two cones : we can take any quasi polynomial function, each on one of these cones.

$\Lambda=\mathbb{Z} \omega, P=[0], \sigma=1,2,3,4,5,6$

A constant function $c_{1}, c_{2}, c_{3}, c_{4}, c_{6}$ on each of the 6 vertical lines.

Examples motivated by geometry

K compact group acting on M is compact complex, $\mathcal{E} K$-equivariant holomorphic vector bundle and $\mathcal{L} \rightarrow M$ a holomorphic line bundle. ν_{λ}^{K} irreducible representation of K with highest weight λ. $m(\lambda, k)$ the multiplicity of V_{λ}^{K} in

$$
\sum_{j=0}^{\operatorname{dim} M}(-1)^{j} H^{j}\left(M, \mathcal{E} \otimes \mathcal{L}^{k}\right)
$$

is in our space $\mathcal{L}(\Lambda)$.
More generally quantization of M spin manifold with line bundle and proper moment map $J: M \rightarrow \mathfrak{k}^{*}$.
Example $M=M(\Phi)$ and $m(\lambda, k)=\mathcal{K}(\Phi)(\lambda)$.

Asymptotics

$m(\lambda, k)$ a function on $\Lambda \oplus \mathbb{Z}_{>0}$
φ : a C^{∞} function of compact support on V :

$$
\langle\Theta(m ; k), \varphi\rangle=\sum_{\lambda \in \Lambda} m(\lambda, k) \varphi(\lambda / k)
$$

A not surprising result

If $m \in \mathcal{L}(\Lambda)$, when $k \rightarrow \infty$, the family of distributions $\Theta(m ; k), k \geq 1$ admits an asymptotic expansion

$$
\mathcal{A}(m)(k)=\sum_{j \geq i 0} k^{-j} \theta_{j}(k)
$$

in powers of k^{-1} where the distributions θ_{j} may be periodic in k (different formulae for k modulo some integer)

The beaded curtain

$$
\begin{gathered}
m(2 k, 1,3,5)=\left[c_{1}, c_{3}, c_{5}\right] \\
m(2 k+1,2,4,6)=\left[c_{2}, c_{4}, c_{6}\right]
\end{gathered}
$$

When $k \rightarrow \infty, k$ even :

$$
\begin{gathered}
\langle\Theta(m)(k), \varphi\rangle=c_{1} \varphi(1 / k)+c_{3} \varphi(3 / k)+c_{5} \varphi(5 / k) \\
\equiv\left(c_{1}+c_{3}+c_{5}\right) \varphi(0)+\frac{1}{k}\left(c_{1}+3 c_{3}+5 c_{5}\right) \varphi^{(1)}(0) \\
+\frac{1}{2 k^{2}}\left(c_{1}+3^{2} c_{3}+5^{2} c_{5}\right) \varphi^{(2)}(0)+\cdots
\end{gathered}
$$

Series of distributions supported at 0 .
Similar formula for k odd.

A more surprising result

Theorem (Loizides-Paradan-V)

If $m \in \mathcal{L}(\Lambda)$, the function m is determined by its asymptotic $A(m)$
Example : the beaded curtain. When $k \rightarrow \infty, k$ even :

$$
\begin{aligned}
\langle A(m)(k), \varphi\rangle & =\left(c_{1}+c_{3}+c_{5}\right) \varphi(0)+\frac{1}{k}\left(c_{1}+3 c_{3}+5 c_{5}\right) \varphi^{(1)}(0) \\
& +\frac{1}{2 k^{2}}\left(c_{1}+3^{2} c_{3}+5^{2} c_{5}\right) \varphi^{(2)}(0)+\cdots
\end{aligned}
$$

With 3 terms of the asymptotic expansion, and the Vandermonde determinant, we can determine c_{1}, c_{3}, c_{5}.

Applications to geometric quantization

G torus (or a compact connected group) acting in an Hamiltonian way on a symplectic manifold (M, Ω);
$J: M \rightarrow \operatorname{Lie}(G)^{*}$ the moment map. G torus (or more generally a compact connected group) acting in an Hamiltonian way on M symplectic, and $\mathcal{L} \rightarrow M$ Kostant line bundle.
Then if M is compact, one can define a finite dimensional representation of $G: Q^{G}(M, \mathcal{L})$. If M is Kahler :

$$
Q^{G}(M, \mathcal{L})=\sum_{j=0}^{\operatorname{dim} M}(-1)^{j} H^{j}(M, \mathcal{O}(L)) .
$$

Our aim : define $Q^{G}(M, \mathcal{L})$ when M is not necessarily compact, and give character formulae. Example $M=M(\Phi), Q^{G}(M, \mathcal{L})=\operatorname{Sym}(M)$.

Equivariant cohomology and Duistermaat-Heckman measure

$X \in \operatorname{Lie}(G): \Omega(X)=\langle J, X\rangle+\Omega$ the equivariant symplectic form φ test function on $\operatorname{Lie}(G)^{*}, \hat{\varphi}$ its Fourier transform. Then

$$
\iint_{M \times \operatorname{Lie}(G)} e^{i \Omega(X)} \hat{\varphi}(X) d X=\langle D H, \varphi\rangle
$$

where $D H$ is the Duistermaat-Heckman measure, and is piecewise locally polynomial.

Twisted Duistermaat-Heckman distributions

$H_{G}^{*}(M)$, the equivariant cohomology ring.
More generally, if $\eta \in H_{G}^{*}(M)$, then

$$
\iint_{M \times L i e(G)} e^{i \Omega(X)} \wedge \eta(X) \hat{\varphi}(X) d X=\langle D H(\eta), \varphi
$$

where $D H(\eta)$ is a distribution on $\operatorname{Lie}(G)^{*}$ obtained as a derivatives of piecewise locally polynomial measures.

Quantizing a symplectic manifold with proper moment map

G torus (or more generally a compact connected group) acting in an Hamiltonian way on M symplectic, and $\mathcal{L} \rightarrow M$ Kostant line bundle. Then if the moment map is proper one can associate to it (Formal quantization) a representation of G :

$$
Q^{G}\left(M, \mathcal{L}^{k}\right)=\sum_{\lambda \in \hat{G}} m(\lambda, k) t^{\lambda} .
$$

with the following formula when M is Kahler : consider $M_{\lambda}=J^{-1}(\lambda) / G_{\lambda}$. This is a Kahler manifold (orbifold), when λ is a regular value of J. Then define

$$
m(\lambda, k)=\sum_{j}(-1)^{j} H^{j}\left(M_{\lambda}, \mathcal{O}\left(L_{\lambda}\right)\right) .
$$

If the set of critical point of the norm square of the moment map is compact, the function m belongs to $\mathcal{L}(\Lambda)$

The infinitesimal equivariant Riemann-Roch formula

Consider the equivariant Todd class $\operatorname{Todd}(X, M)$. If M is compact, one has the equivariant Riemann-Roch formula (for X small)

$$
\operatorname{Tr}_{Q^{G}\left(M, \mathcal{L}^{k}\right)}(\exp (X))=\int_{M} e^{i k \Omega(X)} \operatorname{Todd}(X, M)
$$

Now M not necessarily compact, but with proper moment map $J: M \rightarrow \operatorname{Lie}(G)^{*}$: Write the equivariant Todd class Todd as Todd $=\sum_{j=0}^{\infty} T_{j}$ in the graded equivariant cohomology ring $H_{G}^{*}(M)$

Theorem (V)

$$
\sum m(\lambda, k) \varphi(\lambda / k) \sim \sum_{j=0}^{\infty} k^{-\infty}\left\langle D H\left(T_{j}\right), \varphi\right\rangle
$$

Morally this is the Riemann-Roch formula for X / k

$$
\operatorname{Tr}_{Q^{G}\left(M, \mathcal{L}^{k}\right)}(\exp (X / k))=\int_{M} e^{i k \Omega(X / k)} \operatorname{Todd}(X / k, M)
$$

Formal quantization is determined by its asymptotics

Theorem : The above infinitesimal formula (interpreted as asymptotic series) :

$$
\int_{M \times L i e(G)} e^{i k \Omega(X / k)} \operatorname{Todd}(X / k, M) \hat{\varphi}(X) d X
$$

determines $Q^{G}(M, \mathcal{L})$.
The right hand side is a series of twisted Duistermaat distributions on $\operatorname{Lie}(G)^{*}$. It is possible to recover $m(\lambda, k)$ from this formula. Application (Loizides) : functoriality of formal quantization.

EXAMPLE : recovering multiplicities from asymptotics

F : Flag manifold for $S U(3)$: The Duistermaat Heckman measure for $O(k \rho) \times O(k \rho)$ and the diagonal action of the torus T of $S U(3)$ on $F \times F$:

EXAMPLE : recovering multiplicities from asymptotics

F : Flag manifold for $S U(3)$ We quantize $O(k \rho)$ as the representation with highest weight $(k-1) \rho$.. For $k=1$, multiplicity should be 0 every where except at $\lambda=0 . .$.

