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Continuum Random Phase Approximation
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The description of the energy spectrum above
the nucleon emission threshold requires a proper
treatment of the continuum part of the single par-
ticle configuration space. The correct expression
of the creation operator of an excited state |ν >,
Q†

ν , in the RPA theory is given by:

Q†
ν =

∑

ph

∞∑

εp>εF

∫ (
Xν

ph(εp)a
†
pah − Y ν

ph(εp)a
†
hap

)
(1)

that considers a sum on the discrete energy state
of bound particle and an integration up to infin-
ity on the continuum energy. The infinite limit
of Eq. (1) makes the RPA equations numerically
intractable in their traditional formulation. The
most used approach is to use a truncated, and of-
ten also discrete, configuration space. An alterna-
tive solution is found by rewriting the RPA equa-
tions in coordinate space representation using two
new variables: the channel functions f[p]h(r) and
g[p]h(r) defined as:

f[p]h(r) =

∞∑

εp>εF

∫
Xph(εp)Rp(r, εp) (2)

g[p]h(r) =

∞∑

εp>εF

∫
Yph(εp)Rp(r, εp) (3)

where [p] indicates all the quantum numbers char-
acterizing the single particle state except the
energy εp. With these two variables the RPA
equations are transformed into a set of integro-
differential equations. A possible way of solving
the continuum RPA equations is to discretize the
r space on a given mesh and to use finite dif-
ference numerical methods [2]. This method is
applicable when zero range interactions are used.
Since we want to use finite range interactions and
deal with the exchange matrix elements (differ-
ently from what has been done in Refs. [3–5]),
we use a technique consisting in expanding the
channel functions on a complete basis [6], [7]. We
choose a set of functions which already obey the
correct boundary conditions: the Sturmian func-
tions defined as in expression (4) if εp > 0 and (5)
if εp < 0 [8]:

Φµ
p (r → ∞) → λ

H−
p (εp, r)

r
(4)

Φµ
p (r → ∞) → χ

1

r
exp

[
−r

(
2m|εp|

h̄2

) 1

2

]
(5)

where with H− we indicate the Hankel functions.
As example we show in the upper panel of Fig. 1
the real and imaginary part of a set of Sturmian
functions for protons of positive energy of 30 MeV
in 16O with orbital angular momentum l = 1 and
total angular momentum j = 3/2. In the lower
panel we show the Sturmian functions for pro-
tons of negative energy of −30 MeV with orbital
angular momentum and l = 0 and total angular
momentum j = 1/2 and l = 1 and j = 3/2.

The number of nodes of the Sturmian functions
is linked to the index µ. We observe that when the
index increases by one unity an additional node
appears in the wave function. The Sturmian func-
tions are constructed to have the same asymptotic
behaviour independently of the number of nodes:
Hankel function behaviour for Sturmian with pos-
itive energy and decreasing exponential behaviour
otherwise.

We expand the channel functions f
[p0]h0

[p]h and

g
[p0]h0

[p]h on the basis of the orthogonalized Stur-

mian functions (Φ̃) according to

f
[p0]h0

[p]h (r) = Rp0
(r)δ[p][p0 ]δhh0

+
∑

µ

c+µ
ph Φ̃+µ

p (r)

g
[p0]h0

[p]h (r) =
∑

µ

c−µ
ph Φ̃−µ

p (r) (6)

where the symbols + and − indicate that the stur-
mian functions are evaluated for εp = εh + ω or
εp = εh −ω respectively where ω is the excitation
energy and R is the free radial wave functions. In
this way we obtain a system of linear equations
whose unknowns are the expansion coefficients.

We show some results of this approach obtained
with the interactions defined in [9]. We start our
discussion of the 1− excitation in the 16O nucleus.
We checked that the spurious isoscalar excita-
tion related to the center of mass motion, is not
present in the excitation spectrum. In the upper
panel of Fig. 2 we compare the results obtained
with the data of Ref. [10].

We first remark that the four responses are
rather similar: the number and the position of the
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Figure 1. Sturmian functions relative to an energy of
30 MeV (upper panel) and −30 MeV (lower panel).
These Sturmian functions have been calculated for a
proton with l = 1 and j = 3/2 in 16O in the upper
panel and for a proton with l = 0 and j = 1/2 and
l = 1 and j = 3/2 in the lower panel.

maxima are essentially the same for the four cal-
culations. The comparison with the data shows
that the position of the peak is well reproduced.
We should remember that the parameters of the
interaction have been adjusted to reproduce prop-
erties of the low-lying spectrum, by using a dis-
crete, and limited, single particle configuration
space. The position of the peak of the reso-
nance is a genuine prediction of our calculations.
Clearly the magnitude of the cross section is too
high and the width is narrower than the exper-
imental one. These are well known features of
the Continuum RPA calculations [3,11,2,5]. The
inclusion of excitations more complex than the
1p-1h considered by the RPA is probably curing
these problems [12]. The situation is quite differ-
ent for the 2− excitation (lower panel of Fig. 2):
now the responses show a remarkable sensitivity
to the finite range of the force, and also to the
presence of the tensor channel.

Even if the results we have shown are limited
to the 16O nucleus and to the contribution to the
total photoabsorption cross section, we think that
the potentiality of our approach is demonstrated.
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Figure 2. Photoabsorption cross sections for the 1−

excitation compared with the data of Ref. [10] and
for 2− excitation.
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Salento (Lecce, Italy), unpublished (2008).

2. A. M. Saruis, Phys. Rep. 235 (1993) 57.
3. R. de Haro, S. Krewald and J. Speth, Nucl.

Phys. A 388 (1982) 265.
4. G. Co’, K. F. Quader, R. D. Smith and J.

Wambach, Nucl. Phys. A 485 (1988) 61.
5. A. Botrugno and G. Co’, Nucl. Phys. A 761

(2005) 203.
6. M. Buballa, S. Drożdż, S. Krewald and J.
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