Conservation of Particle Number in the BCS theory

E. Marra ${ }^{1,2}$, M. Anguiano ${ }^{3}$, G. Co ${ }^{1,2}$ and V. De Donno ${ }^{1,2}$
${ }^{1}$ Dipartimento di Fisica, Università del Salento, Italy
${ }^{2}$ Istituto Nazionale di Fisica Nucleare sez. di Lecce, Italy
${ }^{3}$ Departamento de Fìsica Atómica, Molecular y Nuclear, Universidad de Granada, Spain.

One of the drawbacks of the Bardeen Cooper and Schriffer (BCS) theory is that the ground state of the system is not eigenstate of the particle number operator. The conservation of the particle number is forced as constraint in the variational procedure as expectation value on the system ground state. This may be a good approximation for infinite systems, such as superconductor metals, but it is unsatisfactory when the system is composed by a relatively low number of fermions such as medium-light nuclei. A possible solution of the problem can be obtained by using the so-called projection's techniques [1].

The BCS ground state can be written as

$$
\begin{gather*}
|B C S\rangle=\prod_{k>0}^{\infty}\left(u_{k}+v_{k} a_{k}^{+} a_{-k}^{+}\right)|-\rangle \\
= \\
=\prod_{k>0}^{\infty} u_{k}\left\{v_{1} a_{1}^{+} a_{-1}^{+}\right)\left(u_{2}+v_{2} a_{2}^{+} a_{-2}^{+}\right) \ldots|-\rangle \\
\left.\quad+\frac{1}{2} \sum_{k>0} \frac{v_{k}}{u_{k}} a_{k}^{+} \frac{v_{k} a_{-k}^{+}+}{u_{k} u_{k^{\prime}}} a_{k}^{+} a_{-k}^{+} a_{k^{\prime}}^{+} a_{-k^{\prime}}^{+} \ldots\right\}|-\rangle, \tag{1}
\end{gather*}
$$

where the combined action of the creation and annihilation operators $a_{k}^{+} a_{-k}^{+}$creates a pair of particles, characterized by zero angular momentum. In the above equation, we have indicated with u_{k} and v_{k} the variational parameters, normalized as $\left|u_{k}\right|^{2}+\left|v_{k}\right|^{2}=1$.
From this normalization one can attribute the physical interpretation that $\left|u_{\mathrm{k}}\right|^{2}$ represent the probability that the single particle level characterized by k is occupied, and $\left|v_{\mathrm{k}}\right|^{2}$ the probability that it is not occupied.

The idea of the projection is to select from the wave function (1), the components that preserve the correct number of particles. An expression of the projection operator is
$\hat{P}^{A}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \varphi \exp \left[i \varphi \frac{(\hat{N}-A)}{2}\right]$
where we have indicated with \hat{N} number operator and A is the total number of nucleons. When applied to the BCS ground state (1) the components
with correct number of nucleons produce a zero to the exponent of the integrating function in Eq. (3), and in this case the integral has value 1. In case of exponent different from zero the periodicity of the integrated function produces a value of the integral equal to zero.

The expression (3) of the projection operator is difficult to use in actual calculations. For this purpose it is more convenient to express the projection operator in terms of integration in the complex plane [2]:
$\hat{P}^{A}=\frac{1}{2 \pi \imath} \oint d z z^{-\left(n_{0}-1\right)}$,
where $n_{0}=A / 2$ is number of the fermion pairs in the system.

The above integral can be expressed in terms of special integrals of the residues defined as [3]:

$$
\begin{align*}
R_{n}^{m}\left(k_{1}, k_{2}, \ldots, k_{m}\right) & =\frac{1}{2 \pi i} \oint d z z^{-\left(n_{o}-n\right)-1} \\
& \prod_{k \neq k_{1}, k_{2}, \ldots, k_{m}}\left(u_{k}^{2}+z v_{k}^{2}\right) . \tag{5}
\end{align*}
$$

The ground state of the system having the correct number of nucleons can be expressed in terms of the BCS ground state as:

$$
\begin{array}{r}
\hat{P}^{A}|B C S\rangle=\frac{1}{2 \pi \imath} \oint d z z^{-\left(n_{0}-1\right)} \\
\prod_{k}\left(u_{k}+v_{k} a_{k}^{+} a_{-k}^{+}\right) \tag{6}
\end{array}
$$

The energy of the system is obtained as expectation value of the Hamiltonian H

$$
\begin{align*}
H & =\sum_{k_{1} k_{2}} t_{k_{1} k_{2}} a_{k_{1}}^{+} a_{k_{2}} \\
& +\frac{1}{4} \sum_{k_{1} k_{2} k_{3} k_{4}} \bar{v}_{k_{1} k_{2} k_{3} k_{4}} a_{k_{1}}^{+} a_{k_{2}}^{+} a_{k_{4}} a_{k_{3}} \tag{7}
\end{align*}
$$

on the number projected BCS state:

$$
\begin{align*}
& E^{P}=\frac{\langle B C S| \hat{P}^{+} H \hat{P}|B C S\rangle}{\langle B C S| \hat{P}^{+} \hat{P}|B C S\rangle} \\
= & \frac{1}{R_{0}^{0}}\left\{\sum_{k} \varepsilon_{k} v_{k}^{2} R_{1}^{1}(k)\right. \tag{8}
\end{align*}
$$

$$
\begin{align*}
& +\frac{1}{2} \sum_{k k^{\prime}} \bar{v}_{k k^{\prime} k k^{\prime}} v_{k}^{2} v_{k^{\prime}}^{2} R_{2}^{2}\left(k, k^{\prime}\right) \\
& \left.+\sum_{k k^{\prime}>0} \bar{v}_{k-k k^{\prime}-k^{\prime}} u_{k} v_{k} u_{k^{\prime}} v_{k^{\prime}} R_{1}^{2}\left(k, k^{\prime}\right)\right\} \tag{9}
\end{align*}
$$

where we used the R_{n}^{m} integrals defined in Eq. (5).

The values of the u_{k} and v_{k} parameters, linked by the normalization condition (2), are obtained by using the variational principle
$\frac{\partial E^{P}}{\partial v_{k}}=\frac{\partial}{\partial v_{k}} \frac{\langle B C S| \hat{P}^{+} H \hat{P}|B C S\rangle}{\langle B C S| \hat{P}^{+} \hat{P}|B C S\rangle}=0$.
Developing equation (10), we obtain the following expression for the BCS equations:
$\left(\tilde{\varepsilon}_{k}+\Gamma_{k}+\Lambda_{k}\right) u_{k} v_{k}+\Delta_{k}\left(u_{k}^{2}-v_{k}^{2}\right)=0$.
In this expression $\tilde{\varepsilon}_{k}$ represents the energy of the single particle level characterized by the quantum numbers k. The other terms, Γ_{k}, Λ_{k} and Δ_{k} are matrix elements of the interaction part of the hamiltonian (7). All these terms are functions of the R_{n}^{m} integrals.

The Γ_{k} and Δ_{k} are the mean-field and pairing interaction matrix elements that appear also in the expressions of the traditional BCS model. The term Λ_{k} has no counterpart in the traditional BCS theory, where a constant terms appears.

We have obtained the explicit expressions of Eq.(11) for spherically symmetrical systems. We are now writing a computer code to solve numerically the projected BCS equations.

REFERENCES

1. P. Ring and P. Schuck, The nuclear manybody problem, Springer, Berlin (1980).
2. B. F. Bayman Nucl. Phys. 15 (1959) 33
3. K. Dietrich, H. J. Mang and J. H. Pradal Phys. Rev. 135 (1964) 1B
