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The correspondence between quantum theories of
gauge fields and string theories opens a new per-
spective in our understanding of fundamental inter-
actions. The first and best understood example of the
gauge/gravity duality is between the maximally su-
persymmetricN = 4 super Yang-Mills (SYM) the-
ory and free Type IIB superstrings on theAdS5 × S5

background.
A fundamental new insight of the last years is that

these theories might be described by an integrable
model. Complex but exhaustive tools (Thermody-
namic Bethe Ansatz, or equivalently Y-system) have
been proposed to solve the full planar spectrum of
both theories. In the limit of strong/weak coupling,
substantial simplifications occur to the TBA/Y-system
equations and the spectrum of particular sectors of
the theories can be analytically solved. In the same
regimes, other smart (and technically easier) approxi-
mations (semi-classical Lagrangian approaches or al-
gebraic curve methods) have been proposed and pro-
vide useful crosschecks to TBA-inspired computa-
tions.

In 2011, our activity focused on two main points.
1) In the weak coupling regime, extend the case
record over which we can apply the Y-system tech-
nique. In so doing, we produced new analytic results
for the wrapping part of the spectrum of a large class
of operators previously not yet studied inN = 4
SYM theory [1], [2] as well as in less supersymmetric
deformations ofN = 4 for which the associated inte-
grable model is known [3]. 2) In the strong coupling
regime, apply the algebraic curve method to get infor-
mations on the leading energy corrections of relevant
string solutions [4]. Other papers discussing related
issues can be found in [5].

In this note, we will give an insight of how the Y-
system works at weak coupling by applying it to com-
pute the spectrum of a special class ofN = 4 SYM
operators, namely the 3-gluon operators.

3-gluon operators are twist 3 operators. Their gen-
eral form can be written by inserting covariant and
anti-covariant derivativesD , D̄ into the half-BPS
state TrZ3 (Z being one of the three complex scalars

of N = 4 SYM theory):

O
3−gluons
n = Tr (Dn+2

D̄
2Z3) + · · · . (1)

At strong coupling, these operators are dual to spin-
ning string configurations with two spinsS1 = n +
m− 1

2 andS2 = m− 1
2 in AdS5 and chargeJ = L =

3 in S5. The distribution of the roots on the nodes of
the psu(2, 2|4) algebra is summarized in the Figure
here below:
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These operators are a set of operators out of thesl(2)
sector (note the roots out of the central node).

In general, the wrapping effects are expected to
appear at weak coupling for these operators. The
asymptotic part of their anomalous dimensions is al-
ready known as a closed formula in the spin param-
eter n. Up to this level, reciprocity holds for the
asymptotic contributions. We show now how to de-
rive from the Y-system equations precisely a similar
closed formula for the leading wrapping corrections.
This formula, together with the asymptotic results,
completes the study of the anomalous dimensions for
the 3-gluon operators up four loop. As a byproduct,
we shall be able to test positively reciprocity as well
as discuss the BFKL poles of the full four loop result.
We also show that a very simple and natural modifica-
tion of the twist-2 BFKL equation predicts the correct
pole structure.

The Y-system is the following set of functional
equations for the functionsYa,s(u) defined on the fat-
hook ofpsu(2, 2|4).

Y +
a,s Y

−
a,s

Ya+1,s Ya−1,s
=

(1 + Ya,s+1)(1 + Ya,s−1)

(1 + Ya+1,s)(1 + Ya−1,s)
. (2)

The anomalous dimension of a generic state is given
through theY ’s by the TBA formula

E =

∞∑

ℓ=0

g2ℓγ
ℓ-loop (3)
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=
∑

i

ǫ1(u4,i)

︸ ︷︷ ︸
asymptotic γasy

+
∑

a≥1

∫

R

du

2πi

∂ǫ⋆a
∂u

log(1 + Y ⋆
a,0(u))

︸ ︷︷ ︸
wrapping W

,

ǫa(u) = a+
2 i g

x[a]
−

2 i g

x[−a]
,

where the star means evaluation in the mirror kine-
matics1.

The relevant solutions to the Y-system are

Ya,0(u) ≃

(
x[−a]

x[+a]

)L
φ[−a]

φ[+a]
TL
a,1 T

R
a,1, (4)

where φ[−a]

φ[+a] is the fusion form factor andTL,R
a,1 are

the transfer matrices of the antisymmetric rectangular
representations ofsu(2|2)L,R. They can be explicitly
computed by an appropriate generating functional.

At weak coupling, the formula (3) for the leading
wrapping corrections takes the simpler form

W = −
1

π

∞∑

a=1

∫

R

duY ⋆
a,0 = −2i

∞∑

a=1

Resu= ia

2
Y ⋆
a,0. (5)

The formula (4) for the relevantY functions gets sim-
plified too. In particular, theY ’s can be expressed
as functions of the 1-loop Baxter polynomialsQi’s.
Their expressions can be found in [1]. These expres-
sions together with equations (4), (5) are in principle
all what one needs to compute the leading wrapping
corrections for the FRZ operators. The computation
of the wrapping corrections is then straightforward.

In [1] we produced a list of results for the wrapping
up ton = 70. Then we were able to condensate these
data in a closed formula that replicates and general-
izes to any value ofn the numerical results of the list.
The formula is

Wn = (r0,n + r3,n ζ3 + r5,n ζ5) g
8,

r5,n = 80

(
4S1 +

2

N + 1
+ 4

)
×

(
−4(N + 1) +

1

N + 1

)
,

r3,n = 16

(
4S1 +

2

N + 1
+ 4

)
×

[
8 (N + 1)S2 + 8 +

2

N + 1
(2− S2)

−
2

(N + 1)2
−

1

(N + 1)3

]
,

1Shifted quantities are defined asF [±a](u) = F
(

u± i
a

2

)

.

r0,n = 2

(
4S1 +

2

N + 1
+ 4

)
×

[16 (N + 1) (2S2,3 − S5) + 32S3

+
4(S5 − 2S2,3 + 4S3)

N + 1
+

8(−S3 + 2)

(N + 1)2
+

+
4(−S3 + 4)

(N + 1)3
−

4(N + 1) + 1

(N + 1)6

]
. (6)

HereSa,b,... ≡ Sa,b,...(N) andN = n/2 + 12. Note
that each of the rational coefficientri can be written
asri,n = γ1-loop̃ri,n, whereγ1-loop= S1+

2
N+1+4

is the one loop anomalous dimension.
The Ansatz (6) completes the four loop expression

of the energy spectrum for theOFRZ
n,2 operators, the

other relevant contributions up to this order being the
first four asymptotic orders.

Up to four loop, the asymptotic part of the spectrum
shows the generalized Gribov-Lipatov reciprocity
property. Formula (6) allows to check whether this
property extends to the full four loop result. This is in-
deed the case: The largen expansion ofWn/γ1-loop
reads

ζ5 r̃5,n + ζ3 r̃3,n + r̃0,n =
32
3 − 32ζ3

J2
+

232ζ3
5 − 352

15

J4
+

4834
105 − 2344ζ3

35

J6

+
3544ζ3

35 − 83956
945

J8
+

271768
1485 − 9512ζ3

55

J10
+

1872392ζ3
5005 − 20053258

45045

J12
+

87933002
61425 − 524872ζ3

455

J14
(7)

where we introduced the chargeJ2 = N(N +2). All
the odd powers of1/J cancel proving that the reci-
procity property does hold. It is remarkable that this
property is a consequence of non-trivial cancellations
of odd1/J terms which are present in the expansion
of each single coefficient̃ri,n. The presence of reci-
procity is really appreciable, since it allows to predict
a half of the largen expansion terms (expressed as
functions of the samen) as combinations of the other
half.

The Ansatz (6) allows also to study the BFKL poles
of the full four loop result. In general, atℓ-loop the
analytic continuation ofγ

ℓ-loop in the variableN
aroundN = −1 is expected to behave at worst as
ω−ℓ, whereω is a small expansion parameter defined
byN = −1+ω. At four loops the asymptotic anoma-
lous dimensionγasy

4-loop presents instead also poles

in ω−k with k = (7, 6, 5). These poles get indeed
compensated inside the fullγ4-loop= γasy

4-loop+W

2We remind thatn is an even positive integer. This means thatN

is an integer,N ≥ 2.
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where precisely the wrapping contribution (6) is in-
cluded. The final expressions for the expansions of
the first fourγ

ℓ-loop are

γ1-loop= −
4

ω
+ . . . ,

γ2-loop=
8

ω2
+

4π2

3ω
+ . . . ,

γ3-loop=
0

ω3
−

16
(
−3ζ3 + π2 + 12

)

3ω2
+ . . . ,

γ4-loop= −
32 (1 + 2ζ3)

ω4
+

160ζ3
ω3

+ . . . . (8)

Strikingly, the leading poles can be reproduced by a
BFKL-like equation that linksω to the full anomalous
dimensionγ

−
ω

g2
= χ1

(γ
2

)
, χ1 (z) = S1(z) + S1(z + 1).

(9)

In fact, the weak coupling expansion of this equation
reads precisely

γ =

(
−
4

ω
+ . . .

)
g2 +

(
8

ω2
+ . . .

)
g4

+

(
0

ω3
+ . . .

)
g6 +

(
−
32 (1 + 2 ζ3)

ω4
+ . . .

)
g8

+ . . . .

(10)
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