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We analyze the most salient cosmological features of axions in extensions of the standard model with a

gauged anomalous extra Uð1Þ symmetry. The model is built by imposing the constraint of gauge

invariance in the anomalous effective action, which is extended with Wess-Zumino counterterms.

These generate axionlike interactions of the axions to the gauge fields and a gauged shift symmetry.

The scalar sector is assumed to acquire a nonperturbative potential after inflation, at the electroweak phase

transition, which induces a mixing of the Stückelberg field of the model with the scalars of the

electroweak sector, and at the QCD phase transition. We discuss the possible mechanisms of sequential

misalignments which could affect the axions of these models, and generated, in this case, at both

transitions. We compute the contribution of these particles to dark matter, quantifying their relic densities

as a function of the Stückelberg mass. We also show that models with a single anomalous Uð1Þ in general
do not account for the dark energy, due to the presence of mixed Uð1Þ # SUð3Þ anomalies.

DOI: 10.1103/PhysRevD.82.065013 PACS numbers: 14.80.Va

I. INTRODUCTION

Given its important role as a possible solution of the
strong CP problem [1] as well as a candidate for the dark
matter of the universe, the study of axions [2–8] (see [8] for
an overview) has received momentum both at theoretical
and experimental level along the years. The invisible axion
owes its origin to a global Uð1ÞPQ (Peccei-Quinn, PQ)
symmetry which is spontaneously broken in the early
universe and explicitly broken to a discrete ZN symmetry
by instanton effects at the QCD phase transition [9]. The
breaking occurs at a temperature TPQ below which the
symmetry is nonlinearly realized. Strings and domain
walls relics, which are typical of axion models and are a
problem in ordinary PQ cosmology, can be avoided by
introducing inflation to account for their dilution, or by
embedding the model into more general constructions
based on theories of grand unification [10].

The almost massless nature of the axion and its sup-
pressed coupling to the fields of the standard model are
consequences of the fact that this field is associated with
the phase of a global anomalous symmetry. Both properties
are related to the same scale, the axion decay constant fa $
1010–1012 GeV.

The implications of the PQ axion in cosmology, both in
supersymmetric and in nonsupersymmetric models, have
been explored to a finer level of detail. For instance, the
axion plays an important role in determining the structure

of the primordial perturbations [11–13], where it can act as
a curvaton.
The gauging of an anomalous symmetry has some im-

portant effects on the properties of this pseudoscalar, first
among all the appearance of independent mass and cou-
plings to the gauge fields. This scenario allows a wider
region of parameter space where to look for these particles.
For this reason, axionlike fields, which are at the center of
several investigations, are unlikely to find any significant
and fundamental formulation without an underlying
anomalous Uð1Þ gauge symmetry, as emphasized in pre-
vious works [14–16].
So far only two complete models have been put forward

for a consistent analysis of these types of particles, the
MLSOM [17] and the USSM-A [18]. The first of them is at
the basis of the elaborations that we are going to provide in
this work. Here we will be focusing on the phenomeno-
logical analysis of a scenario which is a direct consequence
of the model introduced in [17], while more details on the
supersymmetric construction will be discussed in a sepa-
rate work.
Although the natural framework that motivates these

constructions is open string theory [19], the effective ac-
tions describing these types of particles can be consistently
defined at lower energy just by the inclusion of the relevant
dimension-5 Wess-Zumino (Peccei-Quinn) interactions.
These are necessary in order to guarantee the gauge invari-
ance of the effective action and can be interpreted as
counterterms. In fact, they balance the anomalous variation
of the 1-loop effective action induced by the extra Uð1Þ
symmetry, restoring the gauge symmetry.
The gauging of an anomalous symmetry is the essential

element in the construction of these effective actions and
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can be justified within intersecting brane models. The
gauging is a variant of the standard Peccei-Quinn construc-
tion and is characterized by a new scale M, which is the
Stückelberg mass. We recall that Stückelberg extensions of
the standard model with a nonanomalous Uð1Þ have been
analyzed in several recent works [20–22].

We are going to provide a physical perspective on the
possible phenomenological implications of the anomalous
case. In particular, we will try to connect the Stückelberg
fields, which are in the spectrum of these models, to the
physical axion which may appear as an extremely weakly
interacting particle of a certain relic density in our current
universe. Our assumption, in the identification of the physi-
cal axion, is that the original Stückelberg fields will mix at
the electroweak phase transition with the Higgs sector. As a
result, an almost massless state will emerge after the
electroweak phase transition.

One of the key mechanisms that we will try to adapt and
extend from the PQ case is that of vacuum misalignment.
This phenomenon occurs whenever a quasi Nambu-
Goldstone mode—generated by the breaking of a certain
symmetry—acquires nonperturbatively a small potential,
lifting one flat direction from the vacuum degeneracy. For
axions characterized both by an SUð2Þ and an SUð3Þ
charge the mechanism of vacuum misalignment becomes
sequential, as we are going to show.

From a more general perspective, we will also try to
characterize the possible role of these types of particles as
quintessence axions. These appear in models where the
axions remain decoupled from the gluonic sector and their
mass is purely of electroweak origin (see for instance [23]).
In this case one tries to exploit the Nambu-Goldstone
nature of these particles. The main idea behind this pro-
posal is that a phase transition around the electroweak scale
can generate a small curvature in the potential, capable of
giving a tiny mass to this particle, smaller than the Hubble
parameter at current time (H0). For this to be possible, as
we are going to show, one has to search for solutions of the
anomaly equations for an anomalous Uð1Þ which has a
vanishing mixed anomaly with the SUð3Þ color group. In
this case the only source of mass for these axions would
come from the electroweak and not from the QCD phase
transition, and as such could be extremely small.

In the general models that we analyze, the anomaly
equations do not allow for such a solution, although this
would not exclude the possibility of finding others, in the
presence of more complicated gauge structures, for in-
stance in models with several Uð1Þ’s. We will not address
this specific point any further, leaving it as an option for
future studies. Instead, we will concentrate on the general
features of an axionlike field coming from a single anoma-
lous Uð1Þ symmetry, characterized by the presence of
mixed anomalies both with the SUð2Þ and SUð3Þ sectors.
The phenomenological details of the model are rather
intricate, and have been worked out before. For this reason

we have summarized in the next section some of their
salient features, which turn out to be necessary in order
to proceed with a realistic estimate of the relic densities.
This is the specific goal of our work.

II. GENERAL FEATURES OF MODELS WITH
GAUGED AXIONS: THE STÜCKELBERG FIELD

In this section we briefly review the main features of the
class of models that we address, discussing specifically the
Stückelberg field b which accompanies their anomalous
Uð1ÞB symmetry. It has been included in order to clarify the
origin of the anomalous gauging and to compare the roles
played by the PQ (a) and the Stückelberg axions, which is
relevant for the analysis that will follow. The structure of
the entire Lagrangian is discussed in [17] and has been
briefly summarized, in part, in the appendix.
Intersecting brane models are one of those constructions

where these types of generalized axions appear [24–26]. In
the case in which several stacks of branes are introduced,
each stack being the domain in which fields with the gauge
symmetry UðNÞ live, several intersecting stacks generate,
at their common intersections, fields with the quantum
numbers of all the unitary gauge groups of the construc-
tion, such as UðN1Þ %UðN2Þ % . . .%UðNkÞ ¼ SUðN1Þ %
Uð1Þ % SUðN2Þ %Uð1Þ % . . .% SUðNkÞ %Uð1Þ. In real-
istic models, the phases of the extra Uð1Þ’s are rearranged
in terms of an anomaly-free generator, with an (anomaly-
free) hypercharge Uð1Þ (or Uð1ÞY) times extra Uð1Þ’s
which are anomalous, carrying both their own anomalies
and the mixed anomalies with all the fields of the standard
model.
For instance, a simple realization of the standard model

is obtained by taking 3 stacks of branes: a first stack of 3
branes, with a symmetry Uð3Þ, a second stack of 2 branes,
with a symmetry Uð2Þ and an extra single brane Uð1Þ,
giving a gauge structure of the form SUð3Þ % SUð2Þ %
Uð1Þ %Uð1Þ %Uð1Þ. Linear combinations of the genera-
tors of the three Uð1Þ’s allow to rewrite the entire Abelian
symmetry in the form Uð1ÞY %Uð1Þ0 %Uð1Þ00. These re-
arrangements of the Uð1Þ phases have been studied in the
previous literature. For instance, the original basis for the
Uð1Þ’s is also called ‘‘the brane basis,’’ while the reorgan-
ization of the generators in the form of ‘‘hypercharge plus
reminder’’ goes under the name of ‘‘the hypercharge ba-
sis.’’ There are explicit assignments in the recent literature
[24,25,27].
The simplest realization of the standard models (SM) is

obtained by 2 stacks and a single brane at their intersec-
tions, giving a symmetryUð3Þ %Uð2Þ %Uð1Þ. In this case,
in the hypercharge basis, the gauge structure of the model
can be rewritten in the form SUð3Þc % SUð2Þw %Uð1ÞY %
Uð1Þ0 %Uð1Þ00. We will be using also the notationUð1ÞB %
Uð1ÞC to refer to the two Uð1Þ factors (Uð1Þ0 %Uð1Þ00) of
the Abelian gauge structure. As often emphasized in pre-
vious works, the two extra Uð1Þ’s are in a ‘‘broken’’ phase.
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For instance, if we denote with B and C, the kinetic terms
of these Abelian anomalous gauge fields are given by

L St ¼ 1
2ð@!b#M1B!Þ2 þ 1

2ð@!c#M2C!Þ2; (1)

which is the well-known Stückelberg form. M1 and M2

are also called Stückelberg masses while b and c are
two pseudoscalars known as Stückelberg fields (or
‘‘Stückelberg axions’’). The Stückelberg symmetry of the
Lagrangian (1) is revealed by acting with gauge trans-
formations of the gauge fields B and C, under which their
corresponding axions b and c vary by a local shift

"BB! ¼ @!#B "b ¼ M1#B

"CC! ¼ @!#C "c ¼ M2#C;

parametrized by the local gauge parameters #B and #C. In
the literature, the Stückelberg symmetry is presented as a
way to give a mass to an Abelian gauge field but still
preserving the gauge symmetry of the theory. However, a
more careful look at this symmetry shows that its realiza-
tion is the same one obtained, for instance, in an Abelian
Higgs model when one decouples the radial excitations of
the Higgs fields from its phase [16]. Therefore, in this
respect, the symmetry does not appear to contain much
novelty. However, in the effective theory which character-
izes these models, the mechanism which generates the
mass of the anomalousUð1Þ’s is unrelated to the traditional
Higgs mechanism, since there is no Higgs potential
involved.

The massive anomalous gauge bosons acquire a mass
through the presence of ‘‘A ^ F’’ couplings in the effective
string theory description (see for instance [28]). The start-
ing Lagrangian of the effective theory involves an anti-
symmetric rank-2 tensor A!$ coupled to the field strength
F!$ of an anomalous gauge boson (here denoted by B)

L ¼ # 1

12
H!$%H!$% #

1

4g2
F!$F!$

þM

4
&!$%'A!$F%'; (2)

where

H!$% ¼ @!A$% þ @%A!$ þ @$A%!;

F!$ ¼ @!B$ # @$B!
(3)

is the kinetic term for the 2-form and g is an arbitrary
constant. Beside the two kinetic terms for A!$ and B!, the
third contribution in Eq. (2) is the A ^ F interaction.

The Lagrangian is dualized by using a ‘‘first order’’
formalism, where H is treated independently from the
antisymmetric field A!$. This is obtained by introducing
a constraint with a Lagrangian multiplier field bðxÞ in order
to enforce the condition H ¼ dA from the equations of
motion of b, in the form

L 0 ¼ # 1

12
H!$%H!$% #

1

4g2
F!$F!$

#M

6
&!$%'H!$%B' þ 1

6
bðxÞ&!$%'@!H$%': (4)

The appearance of a scale M in this Lagrangian is of
paramount importance both in the analysis of the relic
densities of axions generated by the dualization of this
action, and in determining the mass of the extra anomalous
Uð1Þ gauge boson, which has been analyzed in detail in
previous works [29]. It defines the energy region where the
Green-Schwarz mechanism comes into play to cancel the
anomaly in orientifold vacua of string theory [17]. Clearly,
it is part of a far more involved field theory Lagrangian
which, in general, is not included in the field theory analy-
sis of this mechanism, since the expansion stops at opera-
tors of dimension 5. We just remark, at this point, that the
appearance of the Stückelberg description in theories with
gauge anomalies is not limited to effective field theories
derived from strings, but it is also common to simple 2-
dimensional models, such as the bosonized Schwinger
model (see [30]).
The last term in (4) is necessary in order to reobtain (2)

from (4). If, instead, we integrate by parts the last term of
the Lagrangian given in (4) and solve trivially for H we
find

H!$% ¼ #&!$%'ðMB' # @'bÞ: (5)

Inserting this back into (4) we obtain the expression

L A ¼ # 1

4g2
F!$F!$ #

1

2
ðMB' # @'bÞ2 (6)

which is the Stückelberg form for the mass terms of B. This
rearrangement of the degrees of freedom, valid in a clas-
sical sense [31], and the mapping of the possible physical
phases of these two model theories, is an example of the
connection between Lagrangians of antisymmetric tensor
fields and their dual formulations, that in this specific case
is an Abelian massive Yang-Mills theory in a Stückelberg
form (see for instance the discussion in [32]).
The axion field generated by the dualization mechanism

appears to be a Nambu-Goldstone mode, which could be
absorbed by a unitary gauge choice in the (defining)
Stückelberg phase of the model. However, as discussed
in [17], we will allow a mixing between this mode and the
Higgs sector at the electroweak phase transition, by intro-
ducing an extra potential which respects the gauge sym-
metry and whose origin has been left, so far, unspecified.
This mixing potential is here assumed to be of nonpertur-
bative origin and triggered at the electroweak phase tran-
sition. It is parametrized by constants ((i) which are
strongly suppressed by the exponential factor ($ e#Sinst ,
with Sinst the instanton action), determined by the value of
the action on the instanton background (for electroweak
instantons). We will come to discuss these points rather
closely in the next sections.
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For this reason, at low energy, the counting of the
physical degrees of freedom in the pseudoscalar sector of
the model is performed in the combined Higgs-Stückelberg
phase, where a massive physical axion emerges from the
combination of the phases of the Higgses and of the
Stückelberg field. In models with several Uð1Þ’s this con-
struction is slightly more involved, but the result of the
mixing of the complex CP-odd phases leaves as a remnant,
also in this case, a physical axion, denoted by ) [17],
whose mass is controlled by the size of the Higgs-axion
mixing.

The Stückelberg Lagrangian that we have reviewed is
part of the classical action S0 which also includes the
remaining gauge kinetic terms of the theory at classical
level, for a symmetry SUð3Þ % SUð2Þ %Uð1ÞY . The re-
maining interactions can be found in the appendix.

Charge assignments and counterterms

We refer to the appendix for more details concerning this
class of models and for our conventions, together with a
brief outline of the structure of the counterterms in the

effective Lagrangian. Here we briefly comment on the list
of the charge assignments of the single extra Uð1Þ model,
which is given in Table I.
Specifically, qBL, qBQ denote the charges of the left-

handed lepton doublet (L) and of the quark doublet (Q),
while qBur , q

B
dr
, qBeR are the charges of the right-handed

SUð2Þ singlets (quarks and leptons). We denote with
!qB ¼ qBu # qBd the difference between the two charges
of the up and down Higgses ðqBu ; qBd Þ respectively. The
trilinear anomalous gauge interactions induced by the
anomalous Uð1Þ and the relative counterterms, which are
all parts of the 1-loop effective action, are illustrated in
Fig. 1. The numerical values of the counterterms appearing
on the second line of Fig. 1 are fixed by the conditions of
gauge invariance of the Lagrangian and are summarized by
the following relations

CBYY ¼ #1
6q

B
Q þ 4

3q
B
uR þ 1

3q
B
dR

# 1
2q

B
L þ qBeR ;

CYBB ¼ #ðqBQÞ2 þ 2ðqBurÞ2 # ðqBdRÞ
2 þ ðqBLÞ2 # ðqBeRÞ2;

CBBB ¼ #6ðqBQÞ3 þ 3ðqBuRÞ3 þ 3ðqBdRÞ
3 # 2ðqBLÞ3 þ ðqBeRÞ3;

CBgg ¼ 1
2ð#2qBQ þ qBdR þ qBuR Þ;

CBWW ¼ 1
2ð#qBL # 3qBQÞ: (7)

They are, respectively, the counterterms for the cancella-
tion of the mixed anomaly Uð1ÞBUð1Þ2Y and Uð1ÞYUð1Þ2B;
the counterterm for the BBB anomaly vertex or Uð1Þ3B
anomaly, and those of the Uð1ÞBSUð3Þ2 and Uð1ÞBSUð2Þ2
anomalies. They are defined in the appendix. From the
Yukawa couplings we get the following constraints on
the Uð1ÞB charges

qBQ # qBd # qBdR ¼ 0 qBQ þ qBu # qBuR ¼ 0

qBL # qBd # qBeR ¼ 0:
(8)

In Table I we also show the expressions of the free Uð1ÞB
charges appearing on each generation, having taken into

TABLE I. Charges of the fermion and of the scalar fields.

f Q uR dR L eR

qB qBQ qBuR qBdR qBL qBeR

f SUð3ÞC SUð2ÞL Uð1ÞY Uð1ÞB
Q 3 2 1=6 qBQ
uR 3 1 2=3 qBQ þ qBu
dR 3 1 #1=3 qBQ # qBd
L 1 2 #1=2 qBL
eR 1 1 #1 qBL # qBd
Hu 1 2 1=2 qBu
Hd 1 2 1=2 qBd

FIG. 1. Anomalous contributions to the Lagrangian and WZ counterterms.
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account the conditions of gauge invariance of the Yukawa
couplings. Using the equations above, we can eliminate
some of the charges in the expression of the counterterms,
obtaining

CBYY ¼ 1
6ð3qBL þ 9qBQ þ 8!qBÞ;

CYBB ¼ 2½qBd ðqBL þ 3qBQÞ þ 2!qBðqBd þ qBQÞ þ ð!qBÞ2);
CBBB ¼ ðqBL # qBd Þ3 þ 3ðqBd þ qBQ þ !qBÞ3

þ 3ðqBQ # qBd Þ3 # 2ðqBLÞ3 # 6ðqBQÞ3;

CBgg ¼
!qB

2
;

CBWW ¼ 1
2ð#qBL # 3qBQÞ: (9)

The solutions given above are generic, in the sense that
they parametrize, in principle, an infinite class of models
whose charge assignments under Uð1ÞB are arbitrary, with
the charges on the last column of Table I taken as their free
parameters. One can immediately observe that, due to the
presence, in general, of a nonvanishing mixed anomaly of
the Uð1ÞB with both SUð2Þ and SUð3Þ, the Stückelberg
axion of the model has interactions both with the strong
and the weak sectors, which support instanton solutions,
and therefore could acquire a mass nonperturbatively both
at the electroweak and at the QCD phase transitions.
Notice, in particular, that for a model in which !q ¼ 0,
in which both doublets of the Higgs sector, Hu and Hd

carry the same charge under Uð1ÞB, then the axion mass
will not acquire any instanton correction at the QCD phase
transition. At the same time, however, it is easy to show
that in this case the potential responsible for Higgs-axion
mixing disappears. Therefore the axion remains a Nambu-
Goldstone mode which is completely absorbed at the elec-
troweak phase transition. In this case, obviously, there is no
mechanism of vacuum misalignment for the axion field
(b). This will contribute to the mass of the two neutral
gauge bosons Z and Z0, just like all the neutral components
of the two Higgses of the model.

The solution of the same equations with a vanishing
electroweak interactions of the Stückelberg appears instead
possible by choosing qBL ¼ #3qBQ. In the presence of both

a weak (CBWW) and a strong (CBgg) counterterm, we will
assume that the massless Stückelberg field b will mix with
the scalar CP-odd sector and a physical axion ()) will
emerge from this mixing with a tiny mass (m)) generated
by electroweak instantons. The corresponding potential
will be rather shallow, and for this reason this new degrees
of freedom will be essentially misaligned but frozen. Its
contribution to the relic density will be indeed negligible
and for this reason at this stage ) is extremely light, and
massless for all practical purposes. However, due to the
presence of a coupling of this field with the strong sector,
its mass will be significantly modified at the QCD phase
transition, as in the Peccei-Quinn case, with a value which
will depend on the size of the Stückelberg mass M.

III. THE ELECTROWEAK POTENTIAL FOR
MASSLESS FIELDS

As in previous works [15], in the construction of the
effective action we follow a bottom-up approach with
general charge assignments parametrized just by the set
of free charges of Uð1ÞB. These are shown in Fig. I, to-
gether with the fundamental gauge structure of the stan-
dard model. The scalar sector of the anomalous Abelian
models that we are interested in is characterized by a rather
standard electroweak potential involving, in the simplest
formulation, two Higgs doublets VPQðHu;HdÞ plus one
extra contribution, denoted as VP6 Q6 ðHu;Hd; bÞ or V0, [17]
which mixes the Higgs sector with the Stückelberg axion b,
needed for the restoration of the gauge invariance of the
effective Lagrangian

V ¼ VPQðHu;HdÞ þ VP6 Q6 ðHu;Hd; bÞ: (10)

The appearance of the physical axion in the spectrum of the
model takes place after that the phase-dependent terms,
here assumed to be of nonperturbative origin and generated
at the electroweak phase transition, find their way in the
dynamics of the model and induce a curvature on the scalar
potential. The mixing induced in the CP-odd sector deter-
mines the presence of a linear combination of the
Stückelberg field b and of the Goldstones of the CP-odd
sector, called ), which is characterized by an almost flat
direction. To better illustrate this point, we begin our
analysis by turning to the ordinary potential of 2 Higgs
doublets,

VPQ ¼ !2
uH

y
uHu þ!2

dH
y
dHd þ (uuðHy

uHuÞ2

þ (ddðHy
dHdÞ2 # 2(udðHy

uHuÞðHy
dHdÞ

þ 2(0
udjHT

u*2Hdj2 (11)

to which we add a second term

VP6 Q6 ¼ (0ðHy
uHde

#igBðqBu#qBd Þðb=2MÞÞ
þ (1ðHy

uHde
#igBðqBu#qBd Þðb=2MÞÞ2

þ (2ðHy
uHuÞðHy

uHde
#igBðqBu#qBd Þðb=2MÞÞ

þ (3ðHy
dHdÞðHy

uHde
#igBðqBu#qBd Þðb=2MÞÞ þ H:c: (12)

These terms are allowed by the symmetry of the model and
are parametrized by one dimensionful ((0) and three di-
mensionless constants ð(1;(2;(3Þ. They are assumed to be
generated at the electroweak phase transition nonperturba-
tively, and as such their values are related to an exponential
factor containing as a suppression the instanton action. In
the equations below we will rescale (0 by the electroweak

scale v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
u þ v2

d

q
((0 * "(0v) so to obtain a homoge-

neous expression of the mass of ) as a function of the
relevant scales of the model which are, beside the electro-
weak vev v, the Stückelberg mass M and the anomalous
gauge coupling of the Uð1ÞB, gB.
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The physical axion ) emerges as a linear combination of
the phases of the various terms, which are either due to the
components of the Higgs sector or to the Stückelberg field
b. To illustrate the appearance of a physical direction in the
phase of the extra potential, we focus our attention just on
the CP-odd sector of the total potential, which is the only
one that is relevant for our discussion. The expansion of
this potential around the electroweak vacuum is given by
the parametrization

Hu ¼ Hþ
u

vu þH0
u

" #
Hd ¼

Hþ
d

vd þH0
d

" #
: (13)

This potential is characterized by two null eigenvalues
corresponding to two neutral Goldstone modes ðG1

0; G
2
0Þ

and an eigenvalue corresponding to a massive state with an
axion component ()). In the ðImH0

d; ImH0
u; bÞ CP-odd

basis we get the following normalized eigenstates

G1
0 ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
u þ v2

d

q ðvd; vu; 0Þ

G2
0 ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2BðqBd # qBu Þ2v2

dv
2
u þ 2M2ðv2

d þ v2
uÞ

q
"
# gBðqBd # qBu Þvdv

2
uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
u þ v2

d

q ;
gBðqBd # qBu Þv2

dvuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
d þ v2

u

q ;
ffiffiffi
2

p
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
u þ v2

d

q #

) ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2BðqBd # qBu Þ2v2

uv
2
d þ 2M2ðv2

d þ v2
uÞ

q ð
ffiffiffi
2

p
Mvu;#

ffiffiffi
2

p
Mvd; gBðqBd # qBu ÞvdvuÞ (14)

and we indicate with O) the orthogonal matrix which allows to rotate them on the physical basis

G1
0

G2
0

)

0
B@

1
CA ¼ O)

ImH0
d

ImH0
u

b

0
B@

1
CA; (15)

which is given by

O) ¼

vd

v
vu

v 0

# gBðqBd#qBu Þvdv
2
u

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2BðqBd#qBu Þ2v2

dv
2
uþ2M2v2

p gBðqBd#qBu Þv2
dvu

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2BðqBd#qBu Þ2v2

dv
2
uþ2M2v2

p
ffiffi
2

p
Mvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2BðqBd#qBu Þ2v2
dv

2
uþ2M2v2

p
ffiffi
2

p
Mvuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2BðqBd#qBu Þ2v2
uv

2
dþ2M2v2

p #
ffiffi
2

p
Mvdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2BðqBd#qBu Þ2v2
uv

2
dþ2M2v2

p gBðqBd#qBu Þvdvuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2BðqBd#qBu Þ2v2

uv
2
dþ2M2v2

p

0
BBBB@

1
CCCCA (16)

where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
u þ v2

d

q
.

) inherits WZ interaction since b can be related to the
physical axion ) and to the Goldstone modes via this
matrix

b ¼ O)
13G

1
0 þO)

23G
2
0 þO)

33); (17)

or, conversely,

) ¼ O)
31 ImHd þO)

32 ImHu þO)
33b: (18)

Notice that the rotation of b into the physical axion )
involves a factor O)

33 which is of order v=M. This carries
as a consequence that ) inherits from b an interaction with
the gauge fields which is suppressed by a scaleM2=v. This
scale is the product of two contributions: a 1=M suppres-
sion coming from the original Wess-Zumino counterterm
of the Lagrangian (b=MF ~F) and a factor v=M obtained by
the projection of b into ) due to O).

More details on the structure of the various operators
appearing in this model have been included in an appendix
in order to make our treatment self-contained. We have
included also a brief discussion of the construction of g)++,
which is the factor in front of one of the most important

counterterms needed in our numerical analysis and which
controls the decay of the axion into photons. We briefly
comment on its structure.
The final coupling appears as a coefficient in the inter-

action of the physical axion with two photons

g)++)F+
~F+ (19)

and is given by

g)++ ¼ ðFOA
W3+

OA
W3+

þ CYYO
A
Y+O

A
Y+ÞO)

33: (20)

It is defined by a combination of matrix elements of the
rotation matrices OA and O), together with some counter-
terms F and CYY . O

A is the matrix that rotates the neutral
gauge bosons from the interaction to the mass eigenstates
after electroweak symmetry breaking and has elements
which are Oð1Þ, being expressed in terms of ratios of
coupling constants. They correspond to mixing angles.
The coefficients F and CYY are the WZ counterterms for
canceling the anomalies emerging from the SUð2ÞUð1Þ2B
and Uð1ÞBUð1Þ2Y sectors and can be found in the appendix.
They are both suppressed by 1=M, while the matrix ele-
ment O)

33, as we have mentioned, is of order v=M.
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Defining g2 ¼ g22 þ g2Y , the expression of this coefficient
can be given in the form

g)++ ¼ gBg
2
Yg

2
2

32,2Mg2
O)

33

X

f

ð#qBfL þ qBfRðqYfRÞ2 # qBfLðqYfLÞ2Þ:

(21)

Notice that this expression is cubic in the gauge coupling
constants, since factors such as g2=g and gY=g are mixing
angles while the factor 1=,2 originates from the anomaly.
Therefore one obtains a general behavior for g)++ of
Oðg3v=M2Þ, with charges which are, in general, of order
unity.

Periodicity of the V0 potential

The phase-dependent potential has a well-defined peri-
odicity. To identify the corresponding phase in the Higgs-
neutral CP-odd sector we introduce a polar parametriza-
tion of the neutral components in the broken electroweak
phase

H0
u ¼ 1ffiffiffi

2
p ð

ffiffiffi
2

p
vu þ %0

uðxÞÞeiðF
0
uðxÞ=

ffiffi
2

p
vuÞ

H0
d ¼

1ffiffiffi
2

p ð
ffiffiffi
2

p
vd þ %0

dðxÞÞeiðF
0
d
ðxÞ=

ffiffi
2

p
vdÞ;

(22)

where we have introduced the two phases Fu and Fd of the
two neutral Higgs fields. The potential is periodic with
respect to the linear combination of fields

#ðxÞ * gBðqBd # qBu Þ
2M

bðxÞ # 1ffiffiffi
2

p
vu

F0
uðxÞ þ

1ffiffiffi
2

p
vd

F0
dðxÞ;

(23)

and using the matrix O) to rotate on the physical basis, the
phase describing the periodicity of the potential turns out to
be proportional to the physical axion, modulo a dimen-
sionful constant ('))

#ðxÞ * )ðxÞ
')

; (24)

where we have defined

') * 2vuvdMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2BðqBd # qBu Þ2v2

dv
2
u þ 2M2ðv2

d þ v2
uÞ

q : (25)

Notice that '), in our case, takes the role of fa of the PQ
case, where the angle of misalignment is identified by the
ratio a=fa, with a the PQ axion. In our case'), however, is
of the order of the electroweak scale. This, as we are going
to show, has drastic implications on the relic densities of
axions generated at this transition.

Notice that ) (or, equivalently, #) is gauge invariant as
one can check quite directly. In fact a Uð1ÞB infinitesimal
gauge transformation with gauge parameter -BðxÞ gives

"Hu ¼ # i

2
qBugB-BHu

"Hd ¼ # i

2
qBdgB-BHd

"Fu
0 ¼ # vuffiffiffi

2
p qBugB-B

"Fd
0 ¼ # vdffiffiffi

2
p qBdgB-B

"b ¼ #M-B

(26)

giving "# ¼ 0. The gauge invariance under Uð1ÞY can be
easily proven by using the invariance of the Stückelberg
field b and the fact that the hypercharges of the two
Higgses are equal. Finally, the invariance under SUð2Þ is
obvious since the linear combination of the phases that
define #ðxÞ are not touched by the transformation. From the
Peccei-Quinn breaking potential we can extract the follow-
ing periodic potential

V 0 ¼ 4vuvdð(2v
2
d þ (3v

2
u þ (0Þ cos

"
)

')

#

þ 2(1v
2
uv

2
d cos

"
2
)

')

#
; (27)

with a mass for the physical axion ) given by

m2
) ¼ 2vuvd

'2
)

ð "(0v
2 þ (2v

2
d þ (3v

2
u þ 4(1vuvdÞ + (v2:

(28)

Notice that, according to our assumption about the origin
of the extra potential, this is driven by the combined
product of nonperturbative effects, due to the exponentially
small parameters ð "(0;(1;(2;(3Þ, with the electroweak
vevs of the two Higgses. Notice also the irrelevance of
the Stückelberg scale M in determining the value of ') $
OðvÞ and of m) near the transition region, due to the large
suppression factor ( in Eq. (28). One point that needs to be
stressed is the fact that at the electroweak epoch the angle
of misalignment generated by the extra potential is pa-
rametrized by )=') while the interaction of the physical
axion with the gauge fields is suppressed by M2=v. This
feature is obviously unusual, since in the PQ case both
scales are a single scale, the axion decay constant fa.
We will consider in the next sections two possible sce-

narios, the first is the low gravity scenario, where M2=v is
in the TeV region or above, but essentially disconnected
from the typical scale appearing in typical PQ axion mod-
els (fa $ 1012 GeV). In the second scenario we will allow
a very large value forM2=v, of the same order of fa. In this
second case we will reobtain the PQ axion model, with
relic densities for ) which are comparable with those
typical of a PQ axion. The appearance of a misalignment
angle of the form )='), respect to the PQ case (a=fa), is
going to have drastic consequences on the relic densities of
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this particle generated at the electroweak scale, densities
which will be found to be negligible.

At the QCD phase transition a new—much more size-
able—misalignment occurs and the axion mass gets en-
hanced by the QCD instantons respect to m) given in (28),
which in this case is typically of Oð#2

QCDv=M
2Þ. Notice

that at the QCD phase transitionM2=v takes the same role
of fa in PQ [in the PQ case ma $#2

QCD=faÞ].
There are also some crucial points of difference between

a gauged axion and the PQ case that require some com-
ment, since they are not so obvious. Notice, in fact, that in
the PQ case, if vPQ is larger than the scale of inflation, then
the value of the # field can be considered essentially
homogeneous. We have already mentioned that in the PQ
case # is a physical field at every physical scale, since it is a
Nambu-Goldstone mode of a global Uð1Þ symmetry and as
such cannot be gauged away. In that case the role of the
mechanism of vacuum misalignment at the QCD transition
is just to provide a mass for this Goldstone mode.

In our case, instead, b has no potential and is charged
under an anomalous gauge symmetry. As such it appears as
a longitudinal component of the anomalous gauge bosonB,
above the electroweak scale. This also implies that there is
no effect on b due to inflation, being the Stückelberg not a
physical field at the scale of inflation. Thus, the reappear-
ance in the CP-odd sector of a component of b as a
physical axion, ), at the electroweak phase transition,
implies that this physical component is not a homogeneous
field at the electroweak time. Similar types of inhomoge-
neities are found also in the PQ case, in models charac-
terized by late inflation. In fact, in that case the
homogeneity of the axion field beyond the QCD horizon
is not guaranteed either.

For this reason, it is conceivable that ) is homogeneous
within the electroweak horizon for the same argument, and
one can neglect fluctuations of ) that enter the horizon at
later times. Anyhow, even if these fluctuations were in-
cluded, they are likely to play a minor role respect to other,
more significant effects, such as those determined by the
size of the Stückelberg mass M (M2=v), which has a
dominant impact on the value of the relic densities for
these types of axions. For this reason we will be leaving
aside possible further corrections due to a nonhomogeneity
of the b field beyond the electroweak horizon, knowing
that variants of this approach could be worked out follow-
ing the discussion given in [33].

IV. DECAYS OFAXIONLIKE PARTICLES

The physical axion acquires a nonvanishing coupling
with the massive fermions that is proportional to the rota-
tion matrix O) and to the mass of the fermion. This
coupling increases the number of its decay modes and, in
particular, induces new channels in its decay rate into
gauge bosons, mediated both by fermion loops and by
direct Wess-Zumino interactions. In this section we per-

form a complete study of the decay rate under the assump-
tion that the mass of ) is in the meV region and below. In
particular, in the case of a very light axi-Higgs, the decays
into massless vector bosons are all dominated by the Wess-
Zumino contributions, which are far larger than those
coming from the fermion loops. These results will be
used in the study of the relic densities of this particle which
will be presented in the next sections. Here we compare the
results of the decay rates for the new axions with those of
the PQ axion that we are going to compute from scratch.
The interaction of the PQ axion with photons is given by

L int ¼
e2

32,2

ca++
fa

aF ~Fþ . . . ; (29)

where we denote with a the axion, which is bounded (from
astrophysical and cosmological constraints) to be between
108 GeV , fa , 1012 GeV. The dots in the previous for-
mula indicate terms that are irrelevant for the current
analysis. From a general point of view, the coefficient
ca++ depends upon the Peccei-Quinn charge assignment
and also on the quark-mass ratios induced by its fermion
interactions. The coupling to the fermions is given by

L f ¼ igf
mf

vPQ

"c f+
5c f; (30)

where mf is the mass of the fermion, whose flavor is
denoted by f, and the coupling gf ¼ QfR #QfL is given

in terms of the chiral PQ charges (QPQ
fL;R) of each fermion

(f). We denote with vPQ the PQ breaking scale, which can
be taken approximately around 1015 GeV. We recall that in
the PQ case the corresponding Wess-Zumino interaction is
given by

L a++ ¼ Ga++

4
aF!$ ~F!$ ¼ #Ga++a ~E - ~B; (31)

where ~E and ~B are the electric and magnetic fields, respec-
tively, and the coupling Ga++ is the sum of a model
dependent term and of a second term which depends on
the ratio of the quark masses

Ga++ ¼ -em

2,fa

"X

f

QPQ
f ðQem

f Þ2 # 2

3

4þ z

1þ z

#
; (32)

where the quark-mass ratio is z ¼ mu=md, while theQ
em
f ’s

are the electromagnetic couplings of the photons to the
quarks. Since the coefficient Ga++ is model dependent, we
can have several possibilities. We compute below the
decay rate into two photons in one specific case in which
we assume

ca++ ¼
X

f

QPQ
f ðQem

f Þ2 ¼ 0 (33)

and z ¼ 0:56. This choice gives as a decay rate into two
photons
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$a++ ¼ G2
a++

64,
m3

a ¼ 1:1% 10#24s#1

"
ma

eV

#
5
; (34)

which is a function of the axion mass ma. More generally,
we want to write the decay rate separating the contribution
from the Wess-Zumino interactions from those which are
obtained from the loop corrections. We obtain

$PQða ! ++Þ ¼
P

spin jMPQj2
2ma

d ~k1
ð2,Þ3k01

d ~k2
ð2,Þ3k02

% ð2,Þ4"ð4Þðk# k1 # k2Þ; (35)

where the squared amplitude is given by
X

spin

jMPQj2 ¼
X

spin

jMpointlike þMloopj2

¼ 8
"
ca++
Fa

#
2
"

e2

32,2

#
2
m4

a

þ 1

2

$$$$$$$$
X

f

NcðfÞi
*ffð*fÞ
4,2mf

e2Q2
f

"
gf

mf

vPQ

#$$$$$$$$
2

þ interf; (36)

where, in the second term,NcðfÞ is the color factor, and the
function *ffð*fÞ is a function of the mass of the fermions
circulating in the loop. We have introduced the function
fð*Þ, defined in any kinematic domain, whose real part is
given by

Re ½fð*Þ) ¼
(
ðarcsin1= ffiffiffi

*
p Þ2 if * . 1

# 1
4 ½log2ð1þ

ffiffiffiffiffiffiffi
1#*

p

1#
ffiffiffiffiffiffiffi
1#*

p Þ # ,2) if *< 1
(37)

while its imaginary part is

Im ½fð*Þ) ¼
(
0 if * . 1
,
2 ½logð1þ

ffiffiffiffiffiffiffi
1#*

p

1#
ffiffiffiffiffiffiffi
1#*

p Þ) if *< 1 (38)

where * ¼ 4m2
f=m

2
). In our case we take the branch *> 1.

As we move to compute the decay of ) and assume a
free varying mass for this particle, the WZ interaction
[Fig. 2(a)] is given by

M !$
WZð) ! ++Þ ¼ 4g)++"½!;$; k1; k2): (39)

In Fig. 2(a) we have isolated the massless contribution to
the decay rate coming from the WZ counterterm )F+

~F+

whose expression is

$WZð) ! ++Þ ¼ m3
)

4,
ðg)++Þ2: (40)

Combining also in this case the tree-level decay with the
1-loop amplitude, we obtain for ) ! ++ the amplitude

M !$ð) ! ++Þ ¼ M!$
WZ þM!$

f ; (41)

shown in Fig. 2. In this case the rates are derived from the
expression

$) * $ð) ! ++Þ

¼ m3
)

32,

%
8ðg)++Þ2 þ

1

2

$$$$$$$$
X

f

NcðfÞi
*ffð*fÞ
4,2mf

e2Q2
fc

);f

$$$$$$$$
2

þ 4g)++
X

f

NcðfÞi
*ffð*fÞ
4,2mf

e2Q2
fc

);f

&
(42)

and are shown in Fig. 3. In the equation above, both the
direct [$ ðg)++Þ2] and the interference ($ g)++) contribu-
tions are suppressed as inverse powers of the Stückelberg
mass. We show the results of this comparative study in
Fig. 3, where in the left panel we present results for the
decay rates of ) ! ++ for several values of the axion mass
as a function of tan. ¼ vu=vd. The plots indicate a very
mild dependence of the rates on this parameter, even for
rather large variations. In the same plot the rates for the PQ
case are shown as constant lines, just for comparison.
Notice that we have chosen a rather low Stückelberg
mass, with M ¼ 1 TeV. The charge assignment of the
anomalous model have been denoted as fð#1; 1; 4Þ, where
we have used the convention

fðqBQL
; qBL;!q

BÞ * ðqBQL
; qBuR ; q

B
dR
; qBL; q

B
eR ; q

B
u ; q

B
d Þ: (43)

These depend only upon the three free parameters qBQL
, qBL,

!qB. The parametric solution of the anomaly equations of
the model fðqBQL

; qBL;!q
BÞ, for the particular choice qBQL

¼
#1, qBL ¼ #1, reproduces the entire charge assignment of
a special class of intersecting brane models (see [24,28]
and the discussion in [16])

fð#1;#1; 4Þ ¼ ð#1; 0; 0;#1; 0;þ2;#2Þ: (44)

In Fig. 3 (right panel) we show the decay rates as a
function of the axion mass in both cases, having chosen a
nominal mass range for this particle varying between
10#5 # 1 eV. One can immediately observe that the rates
for the PQ case are smaller than those for the Stückelberg
by a factor of 1020–1012, nevertheless the axi-Higgs ) has a
lifetime which is much bigger than the current age of the
universe.
Concerning the possibility to detect the axion through its

two-photon decay channel, its tiny mass and the smaller
value of its lifetime unfortunately do not allow to set
significant constraints on its possible parameter space.
The situation, in this case, if rather different from that of

FIG. 2. Contributions to the ) ! ++ decay.
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other dark matter candidates, such as, for instance, the
gravitinos, which have been widely investigated recently
[34–36]. In fact, the allowed parameter space where the
constraints derived from those previous studies apply, con-
cern a region in the plane ð*DM; mDMÞ—with *DM being the
lifetime of a generic dark matter particle and mDM its
mass—which is bounded by the intervals 1026 s< *DM <
1035 s and 10#5 GeV<mDM < 102 GeV. While the value
of *) for the axion can reasonably reach the lower edge of
the scanned region in *DM, by an adjustment of its coupling
gB and charge assignments of the anomalousUð1Þ, its mass
is definitely too small to be excluded by these types of
analysis. These studies are, obviously, very interesting for
candidates of heavier mass, such as gravitinos. Similar
considerations apply in the case of LHC studies, given
the small production rates for a very light axion. For
much heavier axions, instead, these types of studies have
been performed quite recently [16], but the behavior of this
particle, in this case, is akin a light Higgs rather than a
long-lived light pseudoscalar.

V. RELIC DENSITYAT THE ELECTROWEAK AND
AT THE QCD PHASE TRANSITIONS

In this section we proceed with the derivation of the relic
densities for ) both at the electroweak and at the QCD
phase transitions.

At the electroweak scale, we will assume that the flat
direction parametrized by the Stückelberg axion b is lifted
by electroweak instanton corrections. A similar phenome-
non, but much more sizeable, clearly will take place at the
QCD phase transition. As we have discussed previously, at
the electroweak scale, a mixing between the various phases
of the nonperturbative potential allows to identify the
linear combination ) as the physical axion. In general,
this is misaligned with respect to the minimum of the
potential generated at this transition, with a misalignment

that, as we have pointed out, is parametrized by the value
# ¼ )=').
The analysis of the relic density around the electroweak

scale is then performed rather straightforwardly, following
a standard approach borrowed from the PQ case. For this
goal, we define the abundance variable of )

Y)ðTiÞ *
n)
s

$$$$$$$$Ti

; (45)

where Ti is the oscillation temperature, which is close to
the electroweak scale. The universe must be (at least) as
old as the required period of oscillation in order for the
axion field to start oscillating and to appear as dark matter,
otherwise # is misaligned but frozen. This is the content of
the condition

m)ðTiÞ ¼ 3HðTiÞ; (46)

between the mass of axion at the oscillation temperature Ti

[m)ðTiÞ], and the Hubble parameter at the same tempera-
ture HðTiÞ. The condition for oscillation Eq. (46) allows us
to express the axion mass at T ¼ Ti in terms of the effec-
tive massless degrees of freedom evaluated at the same
temperature, that is

m)ðTiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

5
,3g/;Ti

s
T2
i

MP
: (47)

Expressed in terms of the initial angle of misalignment #i,
Eq. (45) becomes

Y)ðTiÞ ¼
45'2

)#
2
i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5,g/;Ti

p
TiMP

; (48)

where g/;T ¼ 110:75 is the number of massless degrees of
freedom of the model at the electroweak scale. Using the
conservation of the abundance Ya0 ¼ YaðTiÞ, the expres-
sion of the contribution to the relic density is given by

 1e-65

 1e-60

 1e-55

 1e-50

 1e-45

 1e-40

 1e-35

 1e-30

 1e-25

 1e-20

 5  10  15  20  25  30  35  40

Γ χ 
  [

G
eV

]

tanβ

gB   = 0.1,  M1  = 1 TeV,  MLSOM charge assignment = f(-1,-1,4)

mχ   = 0.001 eV
mχ   = 0.01 eV
mχ   = 0.1 eV

ma     =  0.001 eV
ma     =  0.01 eV
ma     =  0.1 eV

 1e-70

 1e-60

 1e-50

 1e-40

 1e-30

 1e-05  0.0001  0.001  0.01  0.1  1

Γ χ 
  [

G
eV

]

mχ   [eV]

gB   = 0.1,  M1  = 1 TeV,  MLSOM charge assignment = f(-1,-1,4)

gauged axion
PQ axion

FIG. 3 (color online). Total decay rate of the axi-Higgs for several mass values. Here, for the PQ axion, we have chosen fa ¼
1010 GeV.
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%mis
) ¼ n)

s

$$$$$$$$Ti

m)
s0
%c

: (49)

The values of the critical energy density (%c) and the
entropy density today are estimated as

%c ¼ 5:2% 10#6 GeV=cm3 s0 ¼ 2970 cm#3; (50)

with # ’ 1. Given these values, the relic density as a
function of tan. is given in Fig. 4. We have varied the
oscillation mass and plotted the relic densities as a function
of tan.. The variation of vu has been constrained to give
the values of the masses of the electroweak gauge bosons,
via an appropriate choice of tan..

For instance, if we assume a temperature of oscillation
of Ti ¼ 100 GeV, an upper bound for the axi-Higgs mass,
which allows the oscillations to take place, is m)ðTiÞ +
10#5 eV, with g/;T + 100.

In order to specify') we have assumed a value of 1 TeV
for the Stückelberg mass M, with gB + 1, and we have
taken ðqBu ; qBd Þ of order unity, obtaining ') ’ 102 GeV. As
we lower the oscillation temperature (and hence the mass),
the corresponding curves for %) are downshifted.

The values of these relic densities at current time are
basically vanishing and these small results are to be attrib-
uted to the value of '), which is bound to vary around the
electroweak scale.

Just to compare with the PQ case, there ') is replaced
by the large scale fa at the QCD phase transition, and this
is the reason of such a strong suppression for %) (or of an
enhancement, in the PQ case). Instanton effects at the
electroweak scale are expected, in our case, to provide a
mass of the type m2

) $#4
ew=v

2, with #4
ew $

Expð#2,=-wðvÞÞv4—-WðvÞ being the weak charge at
the scale v—which is indeed a rather small value since
Expð#2,=-wðvÞÞ $ e#198. For this reason, ) remains es-
sentially a physical but frozen degree of freedom which
may undergo a significant (second) misalignment only at
the QCD phase transition. If not for the presence of a

coupling of the axion to the gluons, via the color/Uð1ÞB
mixed anomaly, ) could be classified as a quintessence
axion, contributing to the dark energy content.

The QCD phase transition

We have seen that the electroweak phase transition has
redefined the phase of ) via the mixing with the CP-odd
Higgs sector, but below the electroweak scale the field
remains essentially a pseudo Nambu-Goldstone mode
which undergoes the second misalignment induced by
the QCD phase transition, quite similarly to an ordinary
PQ axion. Neglecting the small mass of m) induced at the
electroweak scale, the new mass induced at the QCD scale
is controlled by the ratiom) $#2

QCDv=M
2, where now the

angle of misalignment is essentially related to the
Stückelberg mass M, via M2=v (which replaces ')), and
is now given by #0 * )v=M2.
In order to further clarify this point, it is convenient to

follow the analogy with the PQ case and observe thatM2=v
replaces fa in characterizing the coupling of the physical
axion ) to the gluons. At the same timeM, just like fa, can
be interpreted as a symmetry breaking scale, given the
presence of a derivative coupling (M@b - B) of the anoma-
lous gauge boson B to the Stückelberg field b in the
Stückelberg mass term. Thus it can be naturally inter-
preted, in this phase, as originating from a vev of an extra
scalar singlet to which B couples in the UV. These two
elements clearly indicate that the new misalignment is
basically given by #0.
Given the similarity between this situation and the PQ

case, then we can follow standard arguments to estimate
the mass of ) after the QCD transition. Thus, we just recall
that for PQ axions [3,37] the zero temperature mass is
given by

ma ¼ N

ffiffiffi
z

p

1þ z

f,m,

fa
¼ 6:2

N

fa;12
! eV (51)

where z ’ 0:56 is the ratio of the up and down quark
masses, f, and m, are the pion decay constant and
mass, fa is the axion decay constant, fa;12 is the same
constant expressed in units of 1012 GeV and N is the
Uð1ÞPQ color anomaly index. The dependence of the
Peccei-Quinn axion on the temperature can be expressed as

maðTÞ ¼
(
madð#TÞ4 T >#
ma T <#;

(52)

where d is a model-dependent numerical factor and
#QCD + 0:2 GeV is the scale of the QCD phase transition.
We have also set d ¼ 0:018 [38].
We can borrow this formula to determine the mass of )

at zero temperature (m)ðT ¼ 0Þ $ma) and extend it to
finite T ðm)ðTÞ $maðTÞÞ, using the same expression (52)
valid in the case of the PQ axion. Coming to the value of
the abundances, with the replacement of ' ! M2=v,

FIG. 4 (color online). Relic density of the axi-Higgs as a
function of tan..
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Eq. (48) assumes the form

Y)ðTiÞ ¼
45ðM2=vÞ2ð#0ðTiÞÞ2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5,g/;T

p
TiMP

; (53)

being the exact analogue of the PQ expression for the
abundances of the invisible axion, with fa ! M2=v.
Concerning g/;T , the effective massless degrees of freedom
at T ’ 1 GeV are those of the gluons, the photon, 2
charged leptons, 3 neutrinos, and 3 quark flavors; thus we
have g/;1 GeV ¼ 61:75. At the QCD phase transition, that is
at T ’ 200 MeV, the effective massless degrees of free-
dom are given by the photon, 1 charged leptons and 3
neutrinos, giving g/;# ¼ 10:75. The oscillation tempera-
ture can be obtained from Eq. (47)

T6
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

4,3g/;Ti

s
m)ð0ÞMPb#

4
QCD; (54)

from which we get Ti + 0:6 GeV and a typical oscillation
mass which is given by m)ðTiÞ + 1:4 neV. Values of m)

larger than this typical value will allow oscillations of the
field ) and the appearance of relic densities whose size is
essentially controlled by the value of M, the Stückelberg
mass, via the scale M2=v.

Given the analogy between M2=v and fa and the de-
pendence of the axion field amplitudes on these two scales,
it is natural to expect that only for large values of M one
should expect a significant contribution to the relic density
of these new axions.

We show in Fig. 5 results of a numerical study of%mish
2

as a function of M, expressed in units of 109 GeV. We
show as a darkened area the bound coming from WMAP
data [39], given as the average value plus an error band,
while the monotonic curve denotes the values of%mish

2 as
a function of M.
It is clear that the relic density of ) can contribute

significantly to the dark matter content only if the
Stückelberg scale is rather large ($ 107 GeV) and negli-
gible otherwise. A final comment concerns the role of the
isocurvature perturbations, which are generated by infla-
tion, in these types of models, since in the case of the PQ
axion they provide significant constraints on the possible
values of fa. The fact that the b field does not correspond to
a physical degree of freedom during inflation allows to
bypass completely these constraints. They do not apply to
these types of axions and this represents a very interesting
feature and a significant variant of these models with
respect to the PQ case.

VI. CONCLUSIONS

We have discussed the most salient cosmological fea-
tures of models containing gauged axions, obtained from
the gauging of an anomalous symmetry. The gauging
allows us to define a consistent theory for axionlike parti-
cles, which generalize many of the properties of PQ axions.
They have appeared for the first time in the study of
intersecting branes, but their features are quite generic.
They are constructed as effective theories containing mini-
mal gauge interactions which restore gauge invariance of
the effective action in the presence of an anomalous Uð1Þ
symmetry, and no further requirements. As opposed to the
PQ case, here there is no concept of an original PQ sym-
metry, broken at a very large scale, with the axion taking
the role of a Goldstone mode that acquires a mass at the
QCD phase transition. Rather, the physical axion emerges
directly at the electroweak phase transition, when Higgs-
axion mixing occurs. Being charged under SUð3Þ and
SUð2Þ, we have a sequential misalignment of this field,
and we have quantified its relic density as a function of the
Stückelberg mass. We have shown that only very large
values of the Stückelberg mass cause a significant contri-
bution of this type of axions to the current dark matter
content of the Universe, which otherwise remains negli-
gible. The absence of an original PQ-like potential has
some implications at cosmological level, such as the ab-
sence of isocurvature perturbations, since the Stückelberg
is not a physical mode before the electroweak phase tran-
sition, in particular, at the time of inflation. This feature is
due to the presence of a local gauge symmetry, realized in
the Stückelberg form, which allows us to absorb b into the
longitudinal component of the anomalous gauge boson.
Our analysis represents, more generally, a description of

the fate of the Stückelberg field in cosmology, from the
defining Stückelberg phase of the theory at a large scale

FIG. 5 (color online). Relic density of the axi-Higgs as a
function of M. The grey bar represents the measured value of
%DMh

2 ¼ 0:11230 0:0035.
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(defined by the value of the Stückelberg mass), down to the
electroweak and QCD phase transitions, when this field
develops a physical component. Our analysis could be
extended in several directions, for instance with the inclu-
sion of the modifications induced on the computation of the
relics due to the presence of nonhomogeneities in ) be-
yond the QCD horizon, a feature which is also present in
PQ models when the PQ scale lays below the scale of
inflation. However, even at this level of refinement, the
only significant scale in the determination of the relic
densities remains the value of the Stückelberg mass.
Small values of this mass parameter in the TeV range leave
the contribution of these particles to the relic densities of
dark matter negligible, and sizeable for M around an
intermediate scale of 107 GeV. In this case all the con-
straints coming from the neutral current sector are satisfied,
being the extra Z0 of the theory completely decoupled from
the low energy spectrum of the standard model. The ap-
pearance of this intermediate scale is a novel feature of this
type of axions which could be used to set limits on their
parameter space.
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APPENDIX: THE MODEL, DEFINITIONS, AND
CONVENTIONS

We summarize in this section some results concerning
the model with a single anomalous Uð1Þ discussed in the
main sections.

The effective action has the structure given by

S ¼ S0 þ SYuk þ San þ SWZ þ SCS; (A1)

where S0 is the classical action. It contains the usual gauge
degrees of freedom of the standard model plus the extra
anomalous gauge bosonBwhich is already massive, before
electroweak symmetry breaking, via a Stückelberg mass
term, reviewed in Sec. II. Its complete expression is given
in [17]. Here we briefly describe the structure of the
anomalous contributions and of the induced counterterms
for the restoration of gauge invariance in the 1-loop effec-
tive action.

In Eq. (A1) the anomalous contributions coming from
the 1-loop triangle diagrams involving Abelian and non-
Abelian gauge interactions are summarized by the expres-
sion

San ¼
1

2!
hTBWWBWWiþ 1

2!
hTBGGBGGi

þ 1

3!
hTBBBBBBiþ

1

2!
hTBYYBYYiþ

1

2!
hTYBBYBBi;

(A2)

where the symbols hi denote integration. For instance, the
contributions in configuration space are given explicitly by

hTBWWBWWi *
Z

dxdydzT(!$;ij
BWW ðz; x; yÞB(ðzÞW!

i ðxÞ

%W$
j ðyÞ (A3)

and so on, where TBWW denotes the anomalous triangle
diagram with one B field and twoW’s external gauge lines.
The gluons are denoted by G. The Wess-Zumino (WZ)
counterterms are given by

SWZ ¼ CBBhbFB ^ FBiþ CYYhbFY ^ FYi
þ CYBhbFY ^ FBiþ FhbTr½FW ^ FW)i
þDhbTr½FG ^ FG)i; (A4)

while the gauge dependent Chern-Simons (CS) Abelian
and non-Abelian counterterms [40] needed to cancel the
mixed anomalies involving a B line with any other gauge
interaction of the SM take the form

S CS ¼ þd1hBY ^ FYiþ d2hYB ^ FBi

þ c1h&!$%'B!C
SUð2Þ
$%' iþ c2h&!$%'B!C

SUð3Þ
$%' i:

(A5)

The non-Abelian CS forms given by

CSUð2Þ
!$% ¼ 1

6½Wi
!ðFW

i;$% þ 1
3g2"

ijkWj
$Wk

%Þ þ cyclic); (A6)

CSUð3Þ
!$% ¼ 1

6½Ga
!ðFG

a;$% þ 1
3g3f

abcGb
$G

c
%Þ þ cyclic): (A7)

(i) The structure of g)++
The coefficients in front of the WZ counterterms are
determined by requiring gauge invariance of the
effective action. We outline the case of g)++ and its
relation to the fundamental parameters/scales of the
theory. Among these are the Stückelberg massM, the
hypercharge and weak couplings gY and g2 and the
charges of the fermion running inside the anomaly
loops. These fix the coefficient of the anomalies
CBYY and CBWW [for the Uð1ÞBUð1Þ2Y and
SUð2Þ2Uð1ÞB anomalies] and the rotation matrices
of the neutral gauge bosons OA and of the CP-odd
sector O), defined in Eq. (16). This is defined as in
Eq. (20) in terms of the counterterms

F ¼ gB
M

ig22
an
2
CBWW; (A8)

with
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CBWW ¼ # 1

8

X

f

qBfL; (A9)

with an ¼ # i
2,2 being the AVV anomaly, and

CYY ¼ gB
M

ig2Y
an
2
CBYY; (A10)

which is defined by the charges

CBYY ¼ 1

8

X

f

½qBfRðqYfRÞ2 # qBfLðqYfLÞ
2): (A11)

Explicit expressions for CBYY and CBWW are given in
Eq. (9).

(ii) Fermion interactions
The covariant derivatives are defined as

D! ¼ @! þ igsT
aGa

! þ ig2*
aWa

! þ i

2
gYq

YY!

þ i

2
gBq

BB!; (A12)

with Ta and *a given by

Ta ¼ (a

2
*a ¼ 'a

2
; (A13)

where (a and 'a are the Gell-Mann and Pauli
matrices. This choice of the covariant derivative
defines the gauge variations of the fields; in particu-
lar, under the Abelian group transformations we
have

B0
! ¼ B! þ @!# b0 ¼ bþM#

/0 ¼ e#ið1=2ÞgBqB/#/:
(A14)

We write the lepton doublet as

Li ¼
$Li

eLi

" #
: (A15)

The interaction Lagrangian for the leptons becomes

Llep
int ¼ "$Li "eLi

' (
+!

)
#g2*

aWa
! þ 1

4
gYY!

# 1

2
gBq

B
LB!

* $Li

eLi

 !

þ "eRi+
!

)
1

2
gYY! # 1

2
gBq

B
eRB!

*
eRi: (A16)

As usual we define the left-handed and right-handed
currents

JL! ¼ 1
2ðJ! # J5!Þ; JR! ¼ 1

2ðJ! þ J5!Þ;
J! ¼ JR! þ JL!; J5! ¼ JR! # JL!:

(A17)

Writing the quark doublet as

Qi ¼
uLi
dLi

" #
; (A18)

we obtain the interaction Lagrangian

Lquarks
int ¼ "uLi "dLi

' (
+!

)
#gsT

aGa
! # g2*

aWa
!

# 1

12
gYY! # 1

2
gBq

B
QB!

* uLi

dLi

 !

þ "uRi+
!

)
#gsT

aGa
! # g2*

aWa
!

# 1

3
gYY! # 1

2
gBq

B
uRB!

*
uRi

þ "dRi+
!

)
#gsT

aGa
! # g2*

aWa
!

þ 1

6
gYY! # 1

2
gBq

B
dR
B!

*
dRi: (A19)

We work with a 2-Higgs doublet model, and there-
fore we parametrize the Higgs fields in terms of 8
real degrees of freedom as

Hu ¼
Hþ

u

H0
u

" #
Hd ¼

Hþ
d

H0
d

" #
; (A20)

where Hþ
u , H

þ
d and H0

u, H
0
d are complex fields.

Specifically

Hþ
u ¼ ReHþ

u þ i ImHþ
uffiffiffi

2
p ;

H#
d ¼ ReH#

d þ i ImH#
dffiffiffi

2
p ;

H#
u ¼ Hþ/

u ; Hþ
d ¼ H#/

d :

(A21)

Expanding around the vacuum we get for the un-
charged components

H0
u ¼ vu þ

ReH0
u þ i ImH0

uffiffiffi
2

p ;

H0
d ¼ vd þ

ReH0
d þ i ImH0

dffiffiffi
2

p :

(A22)

The Weinberg angle is defined via cos#W ¼ g2=g,
sin#W ¼ gY=g, with g2 ¼ g2Y þ g22. We also define
cos. ¼ vd=v, sin. ¼ vu=v, with v2 ¼ v2

d þ v2
u.

The Yukawa couplings and the axi-Higgs

The couplings of the two Higgs and of the axi-Higgs to
the fermion sector are entirely described by the Yukawa
Lagrangian. The Yukawa couplings of the model are given
by

CORIANÒ et al. PHYSICAL REVIEW D 82, 065013 (2010)

065013-14



L unit:
Yuk ¼ #$d "QHddR # $d "dRH

y
dQ# $u "QLði'2H

/
uÞuR

# $u "uRði'2H
/
uÞyQL # $e "LHdeR # $e "eRH

y
dL

¼ #$d "dH0
dPRd# $d "dH0/

d PLd# $u "uH0/
u PRu

# $u "uH0
uPLu# $e "eH0

dPRe# $e "eH0/
d PLe;

(A23)

where the Yukawa coupling constants $d, $u, and $e run
over the three generations, i.e. u ¼ fu; c; tg, d ¼ fd; s; bg,
and e ¼ fe;!; *g. Rotating the CP-odd and CP-even neu-
tral sectors into the mass eigenstates and expanding around
the vacuum we obtain

H0
u ¼ vu þ

ReH0
u þ i ImH0

uffiffiffi
2

p ¼ vu þ
ðh0 sin-#H0 cos-Þ þ iðO)

11G
1
0 þO)

21G
2
0 þO)

31)Þffiffiffi
2

p (A24)

H0
d ¼ vd þ

ReH0
d þ i ImH0

dffiffiffi
2

p ¼ vd þ
ðh0 cos-þH0 sin-Þ þ iðO)

12G
1
0 þO)

22G
1
0 þO)

32)Þffiffiffi
2

p (A25)

so that in the unitary gauge we obtain

H0
u ¼ vu þ

1ffiffiffi
2

p ½ðh0 sin-#H0 cos-Þ þ iO)
31))

H0
d ¼ vd þ

1ffiffiffi
2

p ½ðh0 cos-þH0 sin-Þ þ iO)
32));

(A26)

where the vevs of the two neutral Higgs bosons vu ¼
v sin. and vd ¼ v cos. satisfy

tan. ¼ vu

vd
; v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
u þ v2

d

q
: (A27)

The fermion masses are given by

mu ¼ vu$
u; m ¼ vu$

$;

md ¼ vd$
d; me ¼ vd$

e;
(A28)

where the generation index has been suppressed for brev-
ity. The fermion masses, defined in terms of the two
expectation values vu, vd of the model, show an enhance-
ment of the down-type Yukawa couplings for large values
of tan. while at the same time the up-type Yukawa cou-
plings get a suppression. The couplings of the h0 boson to
fermions are given by

LYukðh0Þ ¼ #$d "dLdR

"
cos-ffiffiffi

2
p h0

#
# $u "uLuR

"
sin-ffiffiffi

2
p h0

#

# $e "eLeR

"
cos-ffiffiffi

2
p h0

#
þ c:c: (A29)

The couplings of the H0 boson to the fermions are

L YukðH0Þ ¼ #$d "dLdR

"
sin-ffiffiffi

2
p H0

#

# $u "uLuR

"
# cos-ffiffiffi

2
p H0

#

# $e "eLeR

"
sin-ffiffiffi

2
p H0

#
þ c:c: (A30)

The physical gauge fields can be obtained from the rotation
matrix OA

A+

Z
Z0

0
@

1
A ¼ OA

W3

AY

B

0
@

1
A; (A31)

which can be approximated at the first order as

OA ’
gY
g

g2
g 0

g2
g þOð&21Þ # gY

g þOð&21Þ g
2 &1

# g2
2 &1

gY
2 &1 1þOð&21Þ

0
B@

1
CA;

(A32)

where

&1 ¼
xB
M2 ; xB ¼ ðqBuv2

u þ qBdv
2
dÞ: (A33)

More details can be found in [15].
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