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Abstract

We quantify the impact of gauge anomalies at the Large Hadron Collider by studying the invariant
mass distributions in Drell–Yan and in double prompt photon, using an extension of the Standard Model
characterized by an additional anomalous U(1) derived from intersecting branes. The approach is rather
general and applies to any anomalous Abelian gauge current. Anomalies are cancelled using either the
Wess–Zumino mechanism with suitable Peccei–Quinn-like interactions and a Stückelberg axion, or by the
Green–Schwarz mechanism. We compare predictions for the corresponding extra Z prime to anomaly-free
realizations such as those involving U(1)B−L. We identify the leading anomalous corrections to both chan-
nels, which contribute at higher orders, and compare them against the next-to-next-to-leading order (NNLO)
QCD background. Anomalous effects in these inclusive observables are found to be small, below the size of
the typical QCD corrections quantified by NNLO K-factors. Measurements at the LHC on the Z resonance
in leptoproduction will be able to exclude a class of these models for variations of the cross section at the
level of 4%, which is obtained at larger values of the anomalous coupling (gB > 1). However, If they are
not excluded, their anomalous nature is unlikely to be resolved with an inclusive NNLO analysis performed
in these key processes.
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1. Introduction

The study of anomalous gauge interactions at the LHC and at future linear colliders is for
sure a difficult topic, but also an open possibility that deserves close theoretical and experimental
attention. Hopefully, these studies will be able to establish if an additional anomalous extra Z′ is
present in the spectrum, introduced by an Abelian extension of the gauge structure of the Stan-
dard Model (SM), assuming that extra neutral currents will be found in the next several years of
running of the LHC [1]. The interactions that we discuss are characterized by genuine anomalous
vertices in which gauge anomalies cancel in some non-trivial way, not by a suitable (anomaly-
free) charge assignment of the chiral fermion spectrum for each generation. The presence of an
anomalous U(1) in effective models derived from string theory is quite common, although in all
the previous literature before [2] and [3–5] the phenomenological relevance of the anomalous
U(1) had not been worked out in any detail. In particular, the dynamics of the anomalous extra
gauge interaction had been neglected, by invoking a decoupling of the anomalous sector on the
assumption of a large mass of the extra gauge boson. Recent developments in the study of these
models include their supersymmetric extensions [6] and their derivations as symplectic forms
of supergravity [7,8]. Other interesting variants include the Stückelberg extensions considered
in [9–11] which depart significantly from the Minimal Low Scale Orientifold Model (MLSOM)
introduced in [2] and discussed below. Specifically these models are also characterized by the
presence of two mechanisms of symmetry breaking (Higgs and Stückelberg) but do not share
the anomalous structure. While a phenomenological study of Stückelberg axions is underway
in a related work, here we focus our attention on the gauge sector, quantifying the rates for the
detection of anomalous neutral currents at the LHC in some specific and very important chan-
nels. Related discussions of the GS mechanism based on the study of 4 fermion decay of the
anomalous vertex can be found in [12].

Being leptoproduction the best way to search for extra neutral interactions, it is then obvious
that the study of the anomalous vertices and of possible anomalous extra Z′ should seriously
consider the investigation of this process. We describe the modifications induced on Drell–Yan
computed in the Standard Model (SM) starting from the description of some of the properties of
the new anomalous vertices and of the corresponding 1-loop counterterms, before moving to the
analysis of the corrections. These appear – both in the WZ and GS cases – in the relevant partonic
channels at NNLO in the strong coupling constant (O(α2

s )). We perform several comparisons
between anomalous and non-anomalous extra Z′ models and quantify the differences with high
accuracy.

Double prompt (direct) photons offer an interesting signal which is deprived of the fragmen-
tation contributions especially at large values of their invariant mass Q, due to the steep falling
of the photon fragmentation functions. In addition, photon isolation may provide an additional
help in selecting those events coming from channels in which the contribution of the anomaly
is more sizeable, such as gluon fusion. Also in this case we perform a detailed investigation of
this sector. For direct photons, the anomaly appears in gluon fusion – at parton level – in a class
of amplitudes which are characterized by two-triangles graphs – or BIM amplitudes – using the
definitions of [13].

In both cases the quantification of the background needs extreme care, due to the small signal,
and the investigation of the renormalization/factorization scale dependence of the predictions is
of outmost importance. In particular, we consider all the sources of scale-dependence in the anal-
ysis, including those coming from the evolution of the parton densities (PDF’s) which are just
by themselves enough to overshadow the anomalous corrections. For this reason we have used
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the program CANDIA in the evolution of the PDF’s, which has been documented in [14]. The
implementations of DY and DP are part of two programs CANDIADY and CANDIAAxion for the
study of the QCD background with the modifications induced by the anomalous signal. The QCD
background in DP is computed using DIPHOX [15] and GAMMA2MC based on Ref. [16]. The
NLO corrections to DP before the implementation of DIPHOX have been computed by Gordon
and one of the authors back in 1995 [17] and implemented in a Monte Carlo based on the phase
space slicing method. We present high precision estimates of the QCD background at NNLO,
which is the order where, in these processes, the anomalous corrections start to appear. In princi-
ple, the size of these corrections, although small, cannot be classified as impossible to resolve at
a collider, since both the size of the anomalous coupling and the mass of the extra gauge boson
are unknown. In particular, the Z gauge boson has an anomalous component which is related to
the specific charge assignment of a given model. While these charge assignments alone are not
easily identifiable as being anomalous or not, they can however be excluded (or allowed) under
some special conditions. For instance, in the brane model that we analyze, for a sizeable value
of the anomalous coupling (gB ≈ 1) the variation induced on the Z resonance has a reduced
overlap with the corresponding SM prediction, which points towards an exclusion of the same
model for gB > 1. However, since the PDF’s need to be re-calibrated at higher evolution scales in
the next few years, we prefer, on more conservative basis, to consider such models at such large
couplings to be only marginally allowed and to wait for the experimental response. Coming to
the anomalous corrections, although in DY these are found to be small, we find that they are
comparable in size with the mass corrections due to heavy quarks in the hard scatterings, which
have been computed before for the same process.

1.1. An anomalous extra Z′

The analysis of anomaly-free Abelian extensions of the SM that we will use in order to com-
pare our results with the anomalous case, with our conventions, has been discussed in [38]. The
numerical analysis presented here follows closely the choice of parameters presented in this pre-
vious work. In the presence of anomalous interactions we can use the same formalism with some
appropriate changes. Since the effective Lagrangean of the class of the anomalous models that
we are investigating includes both a Stückelberg and a two-Higgs doublet sector, the masses of
the neutral gauge bosons are provided by a combination of these two mechanisms [18]. In this
case we take as free parameters the Stückelberg mass M1 and the anomalous coupling constant
gB , with tanβ as in the remaining anomaly-free models. In the numerical study we have chosen
vH1 (vev of one of the two Higgs fields) of the order of the electroweak scale (≈ 246 GeV),
allowing a small variability of MZ within the experimental errors. In this case there is an allowed
range of variability of tanβ , in the interval 10–40, which has been used to perform the analysis.
The dependence of all the results on this parameter is rather weak, and for this reason we have
fixed its value to tanβ = 40.

The value of M1 is loosely constrained by the D-brane model in terms of suitable wrap-
pings (n) of the 4-branes which define the charge embedding [19,20]. The charges are given
in Table 3. Coming to the specific gauge structure of the model, we consider a complete
SU(3) × SU(2) × U(1)Y × U(1)B symmetry, with U(1)B denoting the anomalous Abelian
factor, in which anomaly cancellation is achieved via additional Wess–Zumino countert-
erms [5].
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The mass-matrix in the neutral gauge sector is given by

Lmass = (W3, Y,B)M2

(
W3
Y

B

)
,

where B is the Stückelberg field and the mass matrix is defined as

(1)M2 = 1

4

⎛
⎝ g2

2v2 −g2gY v2 −g2xB

−g2gY v2 g2
Y v2 gY xB

−g2xB gY xB 2M2
1 + NBB

⎞
⎠

with

(2)NBB = (
qB2
u v2

u + qB2
d v2

d

)
g2

B, xB = (
qB
u v2

u + qB
d v2

d

)
gB.

Here vu and vd denote the vevs of the two Higgs fields Hu,Hd while qB
u and qB

d are the

Higgs charges under the extra anomalous U(1)B . We have also defined v =
√

v2
u + v2

d and

g =
√

g2
2 + g2

Y . The massless eigenvalue of the mass matrix is associated to the photon Aγ , while

the two non-zero mass eigenvalues denote the masses of the Z and of the Z′ vector bosons. These
are given by

M2
Z = 1

4

(
2M2

1 + g2v2 + NBB −
√(

2M2
1 − g2v2 + NBB

)2 + 4g2x2
B

)
(3)� g2v2

2
− 1

M2
1

g2x2
B

4
+ 1

M4
1

g2x2
B

8

(
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M2
Z′ = 1

4

(
2M2

1 + g2v2 + NBB +
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2M2
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B

)
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2
.

The mass of the Z gauge boson gets corrected by terms of the order v2/M1, converging to the SM
value as M1 → ∞, while the mass of the Z′ gauge boson can grow large with M1. It is important
to notice that the Stückelberg mechanism can be thought of as the low energy remnant of an extra
Higgs whose radial fluctuations have been frozen and with the imaginary phase surviving at low
energy as a CP-odd scalar [3,22]. The physical gauge fields can be obtained from the rotation
matrix OA

(5)

(
Aγ

Z

Z′

)
= OA

(
W3
AY

B

)

which can be approximated at the first order in the mixing parameter ε1 as

(6)OA �
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g
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1) − gY
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where ε1 is defined by the expression

(7)ε1 = xB

M2
.

1
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Table 1
Higgs charges in the Madrid model.

Y XA XB

Hu 1/2 0 2
Hd 1/2 0 −2

Table 2
SM spectrum charges in the D-brane basis for the Madrid model.

qa qb qc qd

QL 1 −1 0 0
uR −1 0 1 0
dR −1 0 −1 0
L 0 −1 0 −1
eR 0 0 −1 1
NR 0 0 1 1

Table 3
Fermion spectrum charges in the Y -basis for the Madrid model [19].

QL uR dR L eR NR

qY 1/6 −2/3 1/3 −1/2 1 0
qB −1 0 0 −1 0 0

Concerning the charge assignments, the corresponding model is obtained form the intersection of
4 branes (a, b, c, d) with generators (qa, qb, qc, qd) which are rotated to the hypercharge basis,
with an anomaly free hypercharge. The U(1)a and U(1)d symmetries are proportional to the
baryon number and the lepton number respectively. The U(1)c symmetry can be considered
as the third component of the right-handed weak isospin; the U(1)b is a PQ-like symmetry.
A discussion of the construction can be found in [20] and [19]. One of the choice for these
parameters is reported in Tables 1–3.

2. The GS and WZ vertices and gluon fusion

As we have mentioned above in the previous sections, the two available mechanisms that
enforce at the level of the effective Lagrangean the cancellation of the anomalies involve either
PQ-like (axion-like) interactions – in the WZ case – or the subtraction of the anomaly pole (for
the GS case). In a related analysis [21] we have presented some of the main features of the
two mechanisms taking as an example an axial (anomalous) version of QED to illustrate the
cancellation of the anomaly in the two cases. In the GS case, the anomaly of a given diagram
is removed by subtracting the longitudinal pole of the triangle amplitude in the chiral limit. We
have stressed in [23] that the counterterm (the pole subtraction) amounts to the removal of one
of the invariant amplitudes of the anomaly vertex (the longitudinal component) and corresponds
to a vertex re-definition.

The procedure is exemplified in Fig. 1 where we show the triangle anomaly and the pole coun-
terterm which is subtracted from the first amplitude. The combination of the two contributions
defines the GS vertex, which is made of purely transverse components in the chiral limit [21]
and satisfies an ordinary Ward identity. Notice that the vertex does not require an axion as an
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Fig. 1. A gauge invariant GS vertex of the AVV type, composed of an AVV triangle and a single counterterm of the
Dolgov–Zakharov form.

asymptotic state in the related S-matrix; for a non-zero fermion mass in the triangle diagram, the
vertex satisfies a broken Ward identity. We now proceed and summarize some of these properties,
working in the mf = 0 limit (i.e. the chiral limit).

Processes such as gg → γ γ , mediated by an anomalous gauge boson Z′, can be expressed in
a simplified form in which only the longitudinal component of the anomaly appears. We therefore
set k2

1 = k2
2 = 0 and mf = 0, which are the correct kinematical conditions to obtain the anomaly

pole, necessary for a parton model (factorized) description of the cross section in a pp collision
at the LHC, where the initial state of the partonic hard-scatterings are on-shell.

We start from the Rosenberg form of the AVV amplitude, which is given by

T λμν = A1ε[k1, λ,μ, ν] + A2ε[k2, λ,μ, ν] + A3k
μ
1 ε[k1, k2, ν, λ]

(8)+ A4k
μ
2 ε[k1, k2, ν, λ] + A5k

ν
1ε[k1, k2,μ,λ] + A6k

ν
2ε[k1, k2,μ,λ],

where the two external outgoing momenta are k
μ
1 and kν

2 , while the incoming momentum is
kλ = (k1 +k2)

λ. Imposing the Ward identities to bring all the anomaly on the axial-vector vertex,
we obtain the usual conditions

A1 = k2
2A6 + k1 · k2A5,

A2 = k2
1A3 + k1 · k2A4,

A3(k1, k2) = −A6(k1, k2),

(9)A4(k1, k2) = −A5(k1, k2),

where the invariant amplitudes A3, . . . ,A6 are free from kinematical singularities for off-shell
external lines. We set k2 = (k1 + k2)

2 = s. As we have mentioned, in the parton model we take
the initial gluons to be on-shell, while the hadronic cross section is obtained by convoluting the
hard scattering given above (corrected by a color factor) with the PDF’s. The amplitude simplifies
drastically in this case using repeatedly the Schouten relation, and takes the form (see [24])

(10)T λμν = A6k
λε[k1, k2, ν,μ] + (A4 + A6)

(
kν

2ε[k1, k2,μ,λ] − k
μ
1 ε[k1, k2, ν, λ]),

in which the second piece drops off for physical on-shell photon/gluon lines, leaving only a single
invariant amplitude to contribute to the final result

(11)T λμν = A
f

6 (s)(k1 + k2)
λε[k1, k2, ν,μ]

where

(12)A
f

6 (s) = 1

2π2s

(
1 + m2

f

s
log2 ρf + 1

ρf − 1

)
, ρf =

√
1 − 4

m2
f

s
, s < 0.
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The anomaly pole is given by the first term of Eq. (10)

(13)T λμν
c ≡ 1

2π2s
(k1 + k2)

λε[k1, k2, ν,μ].
The logarithmic functions in the expression above are continued in the following way in the
various region

0 < s < 4m2
f :

ρf → i

√
−ρ2

f ; 1

2
log

(
ρf + 1

ρf − 1

)
→ −i arctan

√
s√

4m2
f − s

,

s > 4m2
f > 0:

(14)
√

−ρ2
f → −iρf ; arctan

1√
−ρ2

f

→ π

2
+ i

2
log

(√
s − 4m2

f + √
s

√
s −

√
s − 4m2

f

)
.

Notice that the surviving amplitude A6 multiplies a longitudinal momentum exchange and, as
discussed in the literature on the chiral anomaly in QCD [24,25], is characterized by a massless
pole in s, which is the anomaly pole, as one can clearly conclude from Eq. (12). This equa-
tion shows also how chiral symmetry breaking effects appear in this amplitude at this special
kinematical point by the mf terms.

The subtraction of the anomaly pole is shown in Fig. 1 and is represented by diagram (c). The
combination of diagrams (b) and (c) defines the GS vertex of the theory [21], with diagram (c)
described by Eq. (13) (−Tc). Therefore, in the AVV case, it is explicitly given by

(15)Δ
λμνGS
AVV (k, k1, k2) = Δ

λμν
AVV(k, k1, k2) + C

λμν
AVV(k, k1, k2)

where we have denoted with ΔAVV the anomaly diagram and the GS counterterm that corre-
sponds to the exchange of the massless pole takes the following form in momentum space in the
AVV case

(16)C
λμν
AVV(k, k1, k2) = −an

k2
kλε[μ,ν, k1, k2],

where an is the anomaly. We will refer to this expression as to the Dolgov–Zakharov (or DZ)
counterterm [25].

It is easily verified that in the massless fermion limit and for on-shell gluon lines, the GS vertex
is trivially vanishing by construction. In general, for any asymmetric configuration of the external
lines in the vertex, even in the massless limit, the vertex has non-zero transverse components [26,
27]. The expression is well known [27,28] in the chiral limit and has been shown to satisfy the
Adler–Bardeen theorem [27].

2.1. BIM amplitudes

In our analysis we encounter a class of amplitudes (BIM) [13] which are characterized by
two anomaly vertices connected by an s-channel exchange of the anomalous gauge boson. These
amplitudes grow quadratically with the energy and are not eliminated by the exchange of a
Stückelberg pseudoscalar. The amplitude appears in the gluon fusion sector in the WZ case.
In the SM a similar graph contributes only if heavy fermions run in the loop. Obviously, this
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contribution would be identically vanishing if all the fermions of a given generation would be
mass-degenerate.

Notice that a BIM amplitude is non-resonant and can grow beyond the unitarity limit. In the
massless fermion case, its expression is given by the Dolgov–Zakharov limit of the anomaly
amplitude (Eqs. (11) and (12), with mf = 0), which appears both in the production mechanism
of the extra Z′ (gg → Z′), where the Z′ in the s-channel is virtual, and in its decay into two
photons. The disappearance of the s-channel resonance, in this amplitude, is a consequence of
the anomaly, as one can show rather simply [13]. The explicit expression of the BIM amplitude
is given by

ABIM = an

k2
kλε[μ,ν, k1, k2] −i

k2 − M2

(
gλλ′ − kλkλ′

M2

)
an

k2

(−kλ′)
ε[μ′, ν′, k′

1, k
′
2]

= an

k2
ε[μ,ν, k1, k2] −i

k2 − M2

kλ′
(M2 − k2)

M2

an

k2

(−kλ′)
ε[μ′, ν′, k′

1, k
′
2]

= an

k2
ε[μ,ν, k1, k2]

(−ik2

M2

)
an

k2
ε[μ′, ν′, k′

1, k
′
2]

(17)= −an

M
ε[μ,ν, k1, k2] i

k2

an

M
ε[μ′, ν′, k′

1, k
′
2]

where M denotes, generically, the mass of the anomalous gauge boson in the s-channel. If we
multiply this amplitude by the external polarizators of the photons, square it and perform the
usual averages, one finds that it grows quadratically with energy. Therefore, in general one en-
counters, for models of these types, a unitarity bound, as discussed in [13]. The impact of these
amplitudes on the selected cross sections, at the LHC energy, will be quantified below.

3. Invariant mass distributions in Drell–Yan

Our NNLO analysis of the invariant mass distributions for lepton pair production, for the com-
putation of the QCD sectors, is based on the hard scatterings of [29], and the NNLO evolution
of the parton distributions (PDF’s) has been obtained with CANDIA [14]. The anomalous cor-
rections to the invariant mass distributions have been evaluated separately, since at NNLO they
appear in DY in the interference with the lowest order graph, and have been added to the standard
QCD background. It is important to recall that lepton pair production at low Q via Drell–Yan is
sensitive to the PDF’s at small-x values, while in the high mass region this process is essential in
the search of additional neutral currents. In our analysis we have selected a mass of 1 TeV for the
extra gauge boson and analyzed the signal and the background both on the peaks of the Z and of
the new resonance.

At hadron level the colour-averaged inclusive differential cross section for the reaction H1 +
H2 → l1 + l2 + X, is given by the expression [29]

(18)
dσ

dQ2
= τσZ

(
Q2,M2

Z
)
WZ

(
τ,Q2), τ = Q2

S
,

where Z ≡ Z,Z′ is the point-like cross section and all the information from the hadronic initial
state is contained in the PDF’s. The hadronic structure function WZ (τ,Q2) is given by a con-
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Fig. 2. qq̄ → Z,Z′ → l+l− at LO and NLO (virtual corrections).

Fig. 3. qq̄ → Z,Z′ → l+l− at NNLO (virtual corrections).

volution product between the parton luminosities Φij (x,μ2
R,μ2

F ) and the Wilson coefficients
Δij (x,Q2,μ2

R,μ2
F )

(19)WZ
(
τ,Q2,μ2

R,μ2
F

) =
∑
i,j

1∫
τ

dx

x
Φij

(
x,μ2

R,μ2
F

)
Δij

(
τ

x
,Q2,μ2

F

)
,

where i and j denote the various partons and where the luminosities are given by

(20)Φij

(
x,μ2

R,μ2
F

) =
1∫

x

dy

y
fi

(
y,μ2

R,μ2
F

)
fj

(
x

y
,μ2

R,μ2
F

)
≡ [fi ⊗ fj ]

(
x,μ2

R,μ2
F

)
.

The Wilson coefficients (hard scatterings) depend on both the factorization (μF ) and renormal-
ization scales (μR), formally expanded in the strong coupling αs as

(21)Δij

(
x,Q2,μ2

F

) =
∞∑

n=0

αn
s

(
μ2

R

)
Δ

(n)
ij

(
x,Q2,μ2

F ,μ2
R

)
.

We will vary μF and μR independently in order to determine the sensitivity of the result on
their variations and their optimal choice. Coming to illustrate the contributions included in our
analysis, these are shown in some representative graphs. The complete NNLO expressions of
the hard scatterings and the corresponding Feynman diagrams can be found in [29]. We briefly
discuss the various contributions in order to identify the new anomaly graphs.

• SM QCD contributions

We show in Fig. 2 the leading O(αw) and some typical next-to-leading order O(αwαs) (LO,
NLO) contributions to the process in the annihilation channel (virtual corrections). Examples of
higher order virtual corrections included in the hard scatterings are shown in Fig. 3, which are
of O(α2

s αw), while the corresponding real emissions, integrated over the final state gluons, are
shown in Fig. 4 at NLO (graph (g)) and NNLO (graphs (h) and (i)).
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Fig. 4. qq̄ → Z,Z′ → l+l− with real corrections at NLO (g) and at NNLO (h), (i).

Fig. 5. Anomalous contributions to leptoproduction mediated by a Z′ in the gg, qq̄ and qg sectors.

Fig. 6. Anomalous contributions to leptoproduction in the gg sector mediated by an anomalous Z′ at higher perturbative
orders.

• Anomalous corrections

We have shown in Figs. 5, 6 the leading anomalous corrections to leptoproduction. At O(α2
s α

2
w)

there is a first contribution coming from the square of graph (j) a second contribution coming
from the interference between graph (k) of this figure and graph (g) of Fig. 4; a third contribution
coming from the interference between graph (l) of this figure and graph (i) of Fig. 4, which
involve the qg sector, and the interference between graph (m) of this figure and graph (a) of
Fig. 2 in the qq̄ sector. The analogous contributions in the WZ and GS cases are obtained by
replacing the triangle graph with the GS vertex, as in Fig. 1. Notice that in the WZ case the
anomaly pole is automatically cancelled by the Ward identity on the lepton pair of the final state,
if the two leptons are taken to be massless at high energy, as is the case. Then, the only new
contributions from the anomaly vertex that survive are those related to the transverse component
of this vertex. This is an example, as we have discussed in [21], of a “harmless” anomaly vertex.
A similar situation occurs whenever there is no coupling of the longitudinal component of the
anomaly to the (transverse) external leptonic current.
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3.1. Precision studies on the Z resonance

The quantification of the corrections due to anomalous Abelian gauge structures in DY re-
quires very high precision, being these of a rather high order. For this reason we have to identify
all the sources of indeterminations in QCD which come from the factorization/renormalization
scale dependence of the cross section, keeping into account the dependence on μF and μR both
in the DGLAP evolution and in the hard scatterings. The set-up of our analysis is similar to that
used for a study of the NNLO DGLAP evolution in previous works [30,31], where the study
has covered every source of theoretical error, including the one related to the various possible
resummations of the DGLAP solution, which is about 2–3% in DY and would be sufficient to
swamp away any measurable deviation due to new physics at the LHC.

We will now briefly summarize the results for the new contributions in DY, starting from the
non-anomalous ones.

In the qq̄ sector we have two contributions involving triangle fermion loops see Fig. 5(k), (m).
The one depicted in Fig. 5(m) is a two-loop virtual correction with a Z or a Z′ boson in the final
state, while in Fig. 5(k) we have a real emission of a gluon in the final state which is integrated
out. The first contribution has been calculated in [32–35],

ΔV
qq̄

(
x,Q2,μ2

F ,m2)
= δ(1 − x)aZ′

q aZ′
Q CF Tf

1

2

(
αs

π

)2[
θ
(
Q2 − 4m2)G1

(
m2/Q2)

(22)+ θ
(
4m2 − Q2)G2

(
m2/Q2)]

where CF and Tf are the color factors, q = u,d, c, s, Q = t, b and m the mass of the heavy
flavors, while in the massless limit the functions G1 and G2 are given by

G1(m = 0) = 3 log

(
Q2

μ2
R

)
− 9 + 2ζ(2),

(23)G2(m = 0) = 0

and Q represents the invariant mass of the system. The contribution of Fig. 5(k) in the massless
limit is given by

ΔR
qq̄

(
x,Q2,μ2

F ,m = 0
)

(24)= aZ′
q aZ′

Q CF Tf

1

2

(
αs

π

)2

×
{

(1 + x)

(1 − x)+
[−2 + 2x

(
1 − log(x)

)]}
,

while in the qg sector we have the contribution shown in Fig. 5(l) which is given by

Δqg

(
x,Q2,μ2

F ,m2)
= aZ′

q aZ′
Q T 2

f

1

2

(
αs

π

)2

× [
θ
(
Q2 − 4m2)H1

(
x,Q2,m2)

(25)+ θ
(
4m2 − Q2)H2

(
x,Q2,m2)]

with the massless limit of H1(x,Q2,m2) given by
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Fig. 7. GS mechanism: anomalous contribution and counterterm for the qq̄ scattering sector.

H1
(
x,Q2,m = 0

) = 2x

[
log

(
1

x

)
log

(
1

x
− 1

)
+ Li2

(
1 − 1

x

)]

(26)+ 2

(
1 − 1

x

)[
1 − 2x log

(
1

x

)]
.

Separating the anomaly-free from the anomalous contributions, the factorization formula for the
invariant mass distribution in DY is given by

dσ

dQ2
= τσZ

(
Q2,M2

Z
){

WZ
(
τ,Q2) + W anom

Z
(
τ,Q2)},

W anom
Z

(
τ,Q2) =

∑
i,j

1∫
τ

dx

x
Φij

(
x,μ2

R,μ2
F

)
Δanom

ij

(
τ

x
,Q2,μ2

F

)
,

Δanom
ij

(
x,Q2,μ2

F

) = ΔV
qq̄

(
x,Q2,μ2

F ,m = 0
) + ΔR

qq̄

(
x,Q2,μ2

F ,m = 0
)

(27)+ Δqg

(
x,Q2,μ2

F ,m = 0
)

where Z stays for Z,Z′ and that we will be using in our numerical analysis below. In Fig. 7 we
have illustrated one of the anomalous contributions and its counterterm in the qq̄ sector for the
GS case.

3.2. Di-lepton production: Numerical results

We have used the MRST-2001 set of PDF’s given in [36] and [37]. We start by showing in
Fig. 8 various zooms of the differential cross section on the peak of the Z – for all the models –
both at NLO and at NNLO. We have kept the factorization and renormalization scales coincident
and equal to Q, while the mass of the extra Z′ has been chosen around 1 TeV. The anomaly-free
models, from the SM to the three Abelian extensions that we have considered (free fermionic [38]
and U(1)B−L [39] in Fig. 8, while U(1)q+u appears in Table 5) show that the cross section is
more enhanced for the MLSOM, illustrated in Fig. 8(c). The plots show a sizeable difference (at
a 3.5% level) between the anomalous and all the remaining anomaly-free models. From Fig. 8(c)
it is clear that the variation of the SM cross section from NLO to NNLO has an overlap with
the corresponding variation for the MLSOM. Notice that given this intersection between the
two bands of variations, it is clear that it is not possible to exclude this model at such value of
the coupling, although future analysis, based on new sets of PDF’s calibrated at larger energy
at the LHC, may be able to do so. It is important to stress that these variations are due to the
specific charge assignments of the model and not to the presence of anomalous contributions on
the Z resonance. The reason for this is that even at NLO, where the anomalous corrections are
absent, these discrepancies with the SM are already present. It is also important to stress that
gB = 1 is probably a large value for an extra Abelian coupling. For these reasons the model is
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(a) SM vs anomaly-free models at NNLO

(b) Overlaps at NLO/NNLO

Fig. 8. Zoom on the Z resonance for anomalous Drell–Yan in the μF = μR = Q at NLO/NNLO for all the models.

not (currently) completely excluded by precision LEP data, but might be excluded in the future
at least for such larger value of the coupling, since the dependence of the shape of the peak on
this parameter is significant.

Moving from NLO to NNLO the cross section is reduced in correspondence of the Z0 peak.
Defining the K-factor

(28)
σNNLO − σNLO

σNLO
≡ KNLO



R. Armillis et al. / Nuclear Physics B 814 (2009) 156–179 169
Table 4
Invariant mass distributions at NNLO for the MLSOM and the SM around the peak of the Z. The mass of the anomalous
extra Z′ is taken to be 1 TeV with μF = μR = Q.

dσ nnlo/dQ [pb/GeV] for the MLSOM with M1 = 1 TeV, tanβ = 40, CANDIA evol.

Q [GeV] gB = 0.1 gB = 0.36 gB = 0.65 gB = 1 σSM
nnlo(Q)

90.50 3.684 × 10+2 3.6997 × 10+2 3.7374 × 10+2 3.8132 × 10+2 3.6835 × 10+2

90.54 3.7956 × 10+2 3.8112 × 10+2 3.8500 × 10+2 3.9282 × 10+2 3.7945 × 10+2

90.59 3.9054 × 10+2 3.9215 × 10+2 3.9615 × 10+2 4.0419 × 10+2 3.9043 × 10+2

90.63 4.0132 × 10+2 4.0298 × 10+2 4.0708 × 10+2 4.1535 × 10+2 4.0121 × 10+2

90.68 4.1180 × 10+2 4.1351 × 10+2 4.1772 × 10+2 4.2621 × 10+2 4.1169 × 10+2

90.99 4.6879 × 10+2 4.7073 × 10+2 4.7554 × 10+2 4.8523 × 10+2 4.6866 × 10+2

91.187 4.8040 × 10+2 4.8239 × 10+2 4.8733 × 10+2 4.9727 × 10+2 4.8027 × 10+2

91.25 4.7935 × 10+2 4.8134 × 10+2 4.8627 × 10+2 4.9619 × 10+2 4.7922 × 10+2

91.56 4.4076 × 10+2 4.4259 × 10+2 4.4713 × 10+2 4.5628 × 10+2 4.4064 × 10+2

91.77 3.9371 × 10+2 3.9535 × 10+2 3.9941 × 10+2 4.0759 × 10+2 3.9360 × 10+2

92.0 3.3750 × 10+2 3.3891 × 10+2 3.4239 × 10+2 3.4942 × 10+2 3.3741 × 10+2

in the case of the MLSOM this factor indicates a reduction of about 4% on the peak and can be
attributed to the NNLO terms in the DGLAP evolution, rather than to the NNLO corrections to
the hard scatterings. This point can be explored numerically by the (order) variation [30,40]

�σ ∼ �σ̂ ⊗ φ + σ̂ ⊗ �φ,

(29)�σ ≡ |σNNLO − σNLO|
which measures the “error” change in the hadronic cross section σ going from NLO to NNLO
(�σ ) in terms of the analogous changes in the hard scatterings (�σ̂ ) and parton luminosities
(�φ). The dominance of the first or the second term on the rhs of Eq. (29) is an indication of
the dominance of the hard scatterings or of the evolution in moving from lower to higher order.
We show in Table 4 numerical results for the NNLO cross section. Differences in the resonance
region of this size can be considered marginally relevant for the identification of anomalous
components in this observables. In fact, in [30] a high precision study of this distributions on the
same peak (in the SM case) shows that the total theoretical error is reasonably below the 4% level
and can decrease at 1.5–2% level when enough statistics will allow to reduce the experimental
errors on the PDF’s. It is then obvious that the isolation/identification of a specific model –
whether anomalous or not – appears to be rather difficult from the measurement of a single
observable even with very high statistics, such as the Z resonance.

The evolution of the PDF’s has been performed with CANDIA [14] which allows independent
variations of μF and μR in the initial state. This analysis is shown in Fig. 9, where we vary
μF up to 2Q, while we have taken 1/2μF � μR � 2μF . We observe that by increasing both
scales there is an enhancement in the result and this is due to the logarithms lnμ2

R/μ2
F and

lnQ2/μ2
F , contained in the hard scatterings. The scale variations induce changes of about 4%

in the SM case at NNLO and about 3.5% in the MLSOM on the peak of the Z. Notice that
the variations are not symmetric as we vary the scales and the percentual changes refer to the
maximum variability. This typical scale dependence is universal for all the studies presented so
far on the peak of the Z and is a limitation of the parton model prediction. After a large data
taking, optimal choices for the PDF’s and for μR and μF will allow a considerable reduction
of this indetermination. In Fig. 9(b) we repeat the same analysis, for the same center of mass
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(a)

(b)

Fig. 9. Zoom on the Z resonance for anomalous Drell–Yan obtained by varying the factorization and the renormalization
scales at NNLO for the SM and the MLSOM. Results are shown for Q ∼ MZ0 GeV (a) and 1 TeV (b) both for

√
S =

14 TeV.

energy, this time for Q ∼ 1 TeV, on the Z′ resonance in the MLSOM, for a sizeable coupling
of the anomalous gauge boson, gB = 1. Compared to the value on the Z peak, the reduction of
the cross section is by a factor of 2 × 104. Also in this interval the variation of the differential
cross section with the two scales is around 3%. We have added a table (Table 5) in which we
show results for the total cross sections for the various models at the Z peak. In the first line
of each column we show the results for the total cross section in [fb], in the 2nd line the total
width ΓZ′ , expressed in GeV and in the 3rd line the observable σtot × BR(Z′ → ll̄), where
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Table 5
Total cross sections, widths and σtot × BR(Z′ → ll̄), where BR(Z′ → ll̄) = ΓZ′→ll̄ /ΓZ′ , for the MLSOM and three
anomaly-free extensions of the SM; they are all shown as functions of the coupling constant.

σ nnlo
tot [fb],

√
S = 14 TeV, M1 = 1 TeV, tanβ = 40

gB MLSOM U(1)B−L U(1)q+u Free Ferm.

0.1 5.982 3.575 2.701 1.274
0.173 0.133 0.177 0.122
0.277 0.445 0.252 0.017

0.36 106.674 105.567 53.410 42.872
2.248 1.733 2.308 1.583
4.937 13.138 4.991 0.586

0.65 240.484 143.455 108.344 51.155
7.396 5.700 7.592 5.205

11.127 17.853 10.124 0.699

1 532.719 317.328 239.401 113.453
17.810 13.720 18.274 12.530
24.639 39.491 22.370 1.550

Fig. 10. qq̄ sector for the process qq̄ → γ γ including virtual corrections at LO (a) and NLO (b), (c).

BR(Z′ → ll̄) = ΓZ′→ll̄/ΓZ′ . These quantities refer to the value of the coupling constant gB

listed in the first column.

4. Direct photons with GS and WZ interactions

The analysis of pp → γ γ proceeds similarly to the DY case, with a numerical investigation of
the background and of the anomalous signal at parton level. We start classifying the strong/weak
interference effects that control the various sectors of the process and then identify the leading
contributions due to the presence of anomaly diagrams.

We show in Fig. 10 a partial list of the various background contributions to the DP channel in
pp collisions. Notice that, due to the anomaly, the 2-photon signal is non-resonant, even in the
presence of an s-channel exchange.

We show the leading order (LO) contribution in diagram (a) with some of the typical virtual
corrections included in (b) and (c). These involve the qq̄ sector giving a cross section of the form

(30)σqq̄ = α2
em(c1 + c2αs).

These corrections are the NLO ones in this channel. The infrared safety of the process is guar-
anteed at the same perturbative order by the real emissions in Fig. 11 with an integrated gluon in
the final state, which are also of O(α2

emαs).
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Fig. 11. Real emissions for qq̄ → γ γ at NLO.

Fig. 12. qg sector for the process qg → γ γ .

Fig. 13. gg sector for the process gg → γ γ with virtual and real radiative corrections.

A second sector is the qg one, which is shown in Fig. 12, also of the same order (O(αsαem)).
These corrections are diagrammatically the NLO ones. In general, the NLO prediction for this
process are improved by adding a part of the NNLO (or O(α2

emα2
s )) contributions, such as the

box contribution (j) of the gg sector which is of higher order (O(α2
emα2

s )) in αs , the reason being
that these contributions have been shown to be sizeable and comparable with the genuine NLO
ones. All these corrections have been computed long ago [17] and implemented independently
in a complete Monte Carlo in [15,41] with a more general inclusion of the fragmentation. More
recently, other NNLO contributions have been added to the process, such as those involving the
gg sector through O(α2

emα3
s ),

(31)σgg = α2
em

(
d1α

2
s + d2α

3
s

)
,

shown in graphs (k), (l), (m). The other sectors have not yet been computed with the same accu-
racy, for instance in the qq and qq̄ channels they involve 2 to 4 emission amplitudes which need
to be integrated over 2 gluons. For instance, graph (m) is a real emission in σgg which is needed
to cancel the infrared/collinear singularities of the virtual ones at the same order.

The anomalous contributions are shown in Figs. 14–17 and 18.1 The additional contributions
in the s-channel that accompany this amplitude are shown in Fig. 19. The exchange of a mas-
sive axion (Fig. 19(b)), due to a mismatch between the coupling and the parametric dependence

1 As stated in the previous sections, the diagram in Fig. 17 vanishes because of a Ward identity.
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Fig. 14. Anomalous contributions for gg → γ γ involving the BIM amplitude and its interference with the box graphs.

Fig. 15. Total amplitude for qg → γ γ q .

Fig. 16. Another configuration for the total amplitude of the qg → γ γ q process.

Fig. 17. Single diagram with an exchanged Z′ boson in the s-channel.

between Fig. 19(a) and (b), does not erase the growth of the BIM amplitude, as discussed by us
in a previous work. This mismatch is at the origin of the unitarity bound for this theory [13].
The identification of this scale in the context of QCD is quite subtle, since the lack of unitar-
ity in a partonic process implies a violation of unitarity also at hadron level, but at a different
scale compared to the partonic one, which needs to be determined numerically directly from the
total hadronic cross section σpp . Overall, the convolution of a BIM amplitude with the parton
distributions will cause a suppression of the rising partonic contributions, due to the small gluon
density at large Bjorken x. Therefore, the graphs do not generate a large anomalous signal in this
channel. However, the problem of unitarizing the theory by the inclusion of higher dimensional
operators beyond the minimal dimension-5 operator bF ∧ F remains.

The anomalous terms, beside the (n)(n)∗ contribution with the exchange of an extra Z/Z′
which carry an anomalous component, which is O(α2

emαsα
2
w), include the interference between
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Fig. 18. Generic representation of the qg → γ γ process in the presence of a GS vertex of the AVV type.

Fig. 19. Complete list of amplitudes included in the type of graphs shown in Fig. 14. They also have the exchange of a
physical axion and contributions proportional to the mass of the internal fermion.

the s/t/u box diagrams of gg → γ γ with the same BIM amplitude (n). In the gg sector the
anomalous terms give, generically, an expression of the form

(32)σan
gg = α2

em

(
a1α

2
s αw + a2α

2
s α

2
w

)
,

with the first contribution coming from (n)(o)∗ and from the interference with the (gg → γ γ )
box diagram, while the second from (n)(n)∗. Other contributions which appears at O(α2

emα3
s α

2
w)

(in the amplitude squared), are those shown in Fig. 15 which involve 2 anomaly diagrams (r)
and their interference with the NLO real emission diagram of type (m). These contributions are
phase-space suppressed. If we impose isolation cuts on the amplitude we can limit our analysis,
for the anomalous signal, only to 2-to-2 processes near the photon.

4.1. Numerical analysis for direct photons

In our numerical implementation of double prompt photon production we compare the size
of the anomalous corrections respect to the SM background evaluated by a Monte Carlo [15,
16]. Since the anomalous signal is small compared to that of the SM, we have extracted both
for the SM case and the anomalous case the gg sector and compared them at hadron level by
convoluting the partonic contributions with the PDF’s. In this comparison, the SM sector is given
by the graphs shown in Fig. 13 plus the interference graphs shown in Fig. 14. In the SM case this
second set of graphs contributes proportionally to the mass of the heavy quarks in the anomaly
loop. At high energy the hard scatterings coming from this interference are essentially due to
the mass of the top quark running inside a BIM amplitude and are, therefore, related to heavy
quark effects. In the anomalous case the same set of graphs is considered, but now the anomaly
contributions are explicitly included. The hadronic differential cross section due to the anomalous



R. Armillis et al. / Nuclear Physics B 814 (2009) 156–179 175
interactions for massless quarks is given by

dσ

dQ
=

2π∫
0

dφ

1∫
−1

d cos θ
τ

4Q

1∫
τ

dx

x
Φgg

(
τ

x

)
Δ(x, θ),

Φgg(y) =
1∫

y

dz

z
g(y/z)g(z),

Δ(x) = δ(1 − x)

[
dσZ

d cos θ
+ dσZ′

d cos θ
+ dσχ

d cos θ
+ dσint

d cos θ

]
,

(33)
dσint

d cos θ
= dσZ,box

d cos θ
+ dσZ′,box

d cos θ
+ dσχ,box

d cos θ
.

The contributions which are part of this sector due to exchange of a Z or a Z′ and a χ (see (a), (b)
and (f) of the BIM set in Fig. 19) are those labelled above, while σint refers to the interferences
shown in Fig. 14, with the inclusion of a Z′ and a physical axion (such as Fig. 19(b)).

Defining

(34)σgg→γ γ ≡
2π∫

0

dφ

∫
d cos θ Δ(x, θ)

the hadronic cross section takes the form of a product of the gluon luminosity and the partonic
gg → γ γ cross section

(35)
dσ

dQ
= Q

4S
σgg→γ γ Φ(τ).

4.2. The gg sector

Coming to the analysis of the gluon fusion sector, the result of this study is shown in Fig. 20
where we plot the gluon contribution to the hadronic cross section for both the SM and the
MLSOM, having chosen M1 = 1 TeV. We have used the MRST99 set of parton distributions
to generate the NNLO gluon luminosity with αs(MZ) = 0.1175, Q = 1

2μR and
√

S = 14 TeV.
We have chosen tanβ = 40 and different values of gB . The size of the cross section is around
10−6 [pb/GeV] – right on the mass of the resonance – for both models, with a difference that
grows as we rise the coupling constant for the anomalous U(1) (gB ). We have chosen four possi-
ble values for gB : a small parametric value (gB = 0.1); equal to the coupling of the hypercharge
gY at the same scale (gB = gY ) or to the SU(2)w coupling g2 (gB = g2) or, finally, parametrically
sizeable, with gB = 1. In the interference graphs used for this comparison between the anoma-
lous signal of the MLSOM and the SM (in this second case the BIM amplitudes contribute via
the heavy quark mass in the loops) we have included, beside the BIM amplitude, the entire set
of contributions shown in Fig. 19, with the exchange of a Z, a Z′ and the axi-Higgs χ . We have
chosen a light Stückelberg axion with mχ = 30 GeV. We show a more detailed investigation of
the results for the various contributions in the gg sector in Fig. 21(a), (b). The dotted lines are the
results obtained by the Monte Carlo and include both 2-to-2 and 2-to-3 contributions (pure QCD)
with and without cuts, computed at LO and at NLO. The size of these contributions is around
2 × 10−6 pb/GeV in the SM case. We show in the same subfigure the anomalous corrections in
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Fig. 20. Comparison plots for the gluon sector in the SM and in the anomalous model for a resonance of 1 TeV. The
box-like contributions are not included, while they appear in the interference with the BIM amplitudes.

the MLSOM, which vary between 10−9 and 10−7 pb/GeV. Therefore, for gB ∼ 1, the anoma-
lous sector of the MLSOM (the square of the box terms here are not included for the MSLOM)
is suppressed by a factor of 10 respect to the signal from the same sector coming from the SM.
In (b) we show the same contributions but we include in the SM also the quark channel (shown
separately from the gluon channel), which is around 10−4 pb/GeV. Therefore, the quark sector
overshadows the anomalous corrections by a factor of approximately 103, which are difficult to
extract at this value of the invariant mass.

5. Summary and conclusions

Both DY and DP have some special features, being characterized by a clean final state. In DY
the identification of a new resonance in the neutral current sector would bring to the immediate
conclusion that an extra Z′ is present in the spectrum, but would give not specific indication
concerning its true nature. Current experimental bounds constrain the mixing of a possible extra
neutral component with the Z gauge boson, with a mass which should be larger than 900 GeV,
rendering the future search of extra neutral interactions, at least for DY, quite delicate, being the
allowed mass range at the tail of the invariant mass distribution of this process. This limit can be
much lower in a certain class of models (see Ref. [11]).

Under these conditions, deciding over the true nature of the extra Z′, whether anomalous or
not, would then be far more challenging and would require a parallel study of several independent
channels. For this reason we have analyzed two processes which are both affected by anomalous
contributions and could be used for correlated studies of the same interaction.

We have seen that changes in the factorization/renormalization scales both in the hard scatter-
ings and in the evolution of the PDF’s can easily overshadow the anomalous corrections, making
a NLO/NNLO analysis truly necessary. We have concentrated our investigation on an extra Z′
of 1 TeV in mass and searched for anomalous effects in the invariant mass distributions on the
Z peak, at 1 TeV and for large Q values (up to 2 TeV’s). We have shown that precision studies



R. Armillis et al. / Nuclear Physics B 814 (2009) 156–179 177
(a)

(b)

Fig. 21. (a): SM contributions for the gluon–gluon channel obtained with the Monte Carlo GAMMA2MC. These are
indicated by dotted lines and include all the interferences and the box graphs. Shown are also the anomalous contributions
of the MLSOM (no box). (b): as in (a) but we have included the Monte Carlo results for the SM qq channel at NLO.

on the Z resonance can be used to exclude some of the extra Z prime models due to the specific
charge assignments, for a sizeable value of the coupling constant. We have presented results in
which it is evident that the overlap region between the SM and the new extra Z prime model
analyzed in this study tends to shrink when the anomalous coupling increases (gB ≈ 1). It is then
clear that it will be possible at the LHC, using these types of studies, to exclude a class of these
models characterized by variations of the cross section of the Z resonance around the level of 4%.
This is an indetermination allowed both by the NNLO QCD K-factors and by the dependence
of the result on the factorization and renormalization scales. The study that we have performed
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can be easily specialized to the case of a typical linear collider, where, instead, anomaly effects,
using our approach, are likely to be seen or discarded. More details on our analysis can be found
in the ArXive version of this work [42].

Acknowledgements

We thank Nikos Irges for discussions. We thank Carl Schmidt for help on the use of the
GAMMA2MC code for the NNLO study of the QCD background in di-photon and J.P. Guillet
for exchanges concerning DIPHOX. The work of C.C. was supported in part by the European
Union through the Marie Curie Research and Training Network “Universenet” (MRTN-CT-2006-
035863) and by The Interreg II Crete-Cyprus Program.

References

[1] P. Langacker, arXiv: 0801.1345.
[2] C. Corianò, N. Irges, E. Kiritsis, Nucl. Phys. B 746 (2006) 77, hep-ph/0510332.
[3] C. Corianò, N. Irges, Phys. Lett. B 651 (2007) 298, hep-ph/0612140.
[4] C. Corianò, N. Irges, S. Morelli, JHEP 0707 (2007) 008, hep-ph/0701010.
[5] C. Corianò, N. Irges, S. Morelli, Nucl. Phys. B 789 (2008) 133, hep-ph/0703127.
[6] P. Anastasopoulos, F. Fucito, A. Lionetto, G. Pradisi, A. Racioppi, Y.S. Stanev, arXiv: 0804.1156.
[7] J. De Rydt, J. Rosseel, T.T. Schmidt, A. Van Proeyen, M. Zagermann, Class. Quantum Grav. 24 (2007) 5201, arXiv:

0705.4216.
[8] J. De Rydt, T.T. Schmidt, M. Trigiante, A. Van Proeyen, M. Zagermann, arXiv: 0808.2130.
[9] D. Feldman, Z. Liu, P. Nath, JHEP 0611 (2006) 007, hep-ph/0606294.

[10] D. Feldman, Z. Liu, P. Nath, Phys. Rev. Lett. 97 (2006) 021801, hep-ph/0603039.
[11] D. Feldman, Z. Liu, P. Nath, Phys. Rev. D 75 (2007) 115001, hep-ph/0702123.
[12] J. Kumar, A. Rajaraman, J.D. Wells, Phys. Rev. D 77 (2008) 066011, arXiv: 0707.3488.
[13] C. Corianò, M. Guzzi, S. Morelli, Eur. Phys. J. C 55 (2008) 629, arXiv: 0801.2949 [hep-ph].
[14] A. Cafarella, C. Corianò, M. Guzzi, Comput. Phys. Commun. 179 (2008) 665, arXiv: 0803.0462 [hep-ph].
[15] T. Binoth, J.P. Guillet, E. Pilon, M. Werlen, Eur. Phys. J. C 16 (2000) 311, hep-ph/9911340.
[16] Z. Bern, L.J. Dixon, C. Schmidt, Phys. Rev. D 66 (2002) 074018, hep-ph/0206194.
[17] C. Corianò, L.E. Gordon, Nucl. Phys. B 469 (1996) 202, hep-ph/9601350.
[18] B. Kors, P. Nath, Phys. Lett. B 586 (2004) 366, hep-ph/0402047.
[19] D.M. Ghilencea, L.E. Ibanez, N. Irges, F. Quevedo, JHEP 0208 (2002) 016, hep-ph/0205083.
[20] L.E. Ibanez, F. Marchesano, R. Rabadan, JHEP 0111 (2001) 002, hep-th/0105155.
[21] R. Armillis, C. Corianò, M. Guzzi, S. Morelli, JHEP 0810 (2008) 034, arXiv: 0808.1882 [hep-ph].
[22] T.J. Allen, M.J. Bowick, A. Lahiri, Mod. Phys. Lett. A 6 (1991) 559.
[23] R. Armillis, C. Corianò, M. Guzzi, JHEP 0805 (2008) 015, arXiv: 0711.3424 [hep-ph].
[24] N.N. Achasov, Phys. Lett. B 287 (1992) 213.
[25] A.D. Dolgov, V.I. Zakharov, Nucl. Phys. B 27 (1971) 525.
[26] M. Knecht, S. Peris, M. Perrottet, E. de Rafael, JHEP 0403 (2004) 035, hep-ph/0311100.
[27] F. Jegerlehner, O.V. Tarasov, Phys. Lett. B 639 (2006) 299, hep-ph/0510308.
[28] M. Knecht, S. Peris, M. Perrottet, E. de Rafael, JHEP 0211 (2002) 003, hep-ph/0205102.
[29] R. Hamberg, W.L. van Neerven, T. Matsuura, Nucl. Phys. B 359 (1991) 343.
[30] A. Cafarella, C. Corianò, M. Guzzi, JHEP 0708 (2007) 030, hep-ph/0702244.
[31] A. Cafarella, C. Corianò, M. Guzzi, Nucl. Phys. B 748 (2006) 253, hep-ph/0512358.
[32] W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber, E. Remiddi, Nucl. Phys. B 723 (2005) 91,

hep-ph/0504190.
[33] S.A. Larin, Phys. Lett. B 303 (1993) 113, hep-ph/9302240.
[34] R.J. Gonsalves, C.M. Hung, J. Pawlowski, Phys. Rev. D 46 (1992) 4930.
[35] P.J. Rijken, W.L. van Neerven, Phys. Rev. D 52 (1995) 149, hep-ph/9501373.
[36] A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Eur. Phys. J. C 23 (2002) 73, hep-ph/0110215.
[37] A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Phys. Lett. B 531 (2002) 216, hep-ph/0201127.



R. Armillis et al. / Nuclear Physics B 814 (2009) 156–179 179
[38] C. Corianò, A.E. Faraggi, M. Guzzi, Phys. Rev. D 78 (2008) 015012, arXiv: 0802.1792 [hep-ph].
[39] M.S. Carena, A. Daleo, B.A. Dobrescu, T.M.P. Tait, Phys. Rev. D 70 (2004) 093009, hep-ph/0408098.
[40] A. Cafarella, C. Corianò, M. Guzzi, AIP Conf. Proc. 964 (2007) 206, arXiv: 0709.2115.
[41] T. Binoth, J.P. Guillet, E. Pilon, M. Werlen, hep-ph/0111043.
[42] R. Armillis, C. Corianò, M. Guzzi, S. Morelli, arXiv: 0811.0117 [hep-ph].


	An anomalous extra Z prime from intersecting branes with Drell-Yan and direct photons at the LHC
	Introduction
	An anomalous extra Z'

	 The GS and WZ vertices and gluon fusion
	BIM amplitudes

	 Invariant mass distributions in Drell-Yan 
	Precision studies on the Z resonance
	Di-lepton production: Numerical results

	Direct photons with GS and WZ interactions
	Numerical analysis for direct photons
	The gg sector

	Summary and conclusions
	Acknowledgements
	References


