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Abstract

The effective field theory of the minimal low scale orientifold models is developed. It describes universal
features of related orientifold vacua in string theory. It contains, beyond the Standard Model fields, an
MSSM-like Higgs sector and three anomalous (massive) U(1) gauge bosons. All renormalizable couplings
are included as well as some dimension-five couplings that are important for anomaly cancellation. The
Higgs symmetry breaking induces mixing between the anomalous U(1) gauge bosons, the photon and
Z0. This mixing as well as the anomaly related cubic vector boson couplings is potentially important for
discriminating such models from other theories containing Zs. Some interesting tree-level processes are
also evaluated.
© 2006 Published by Elsevier B.V.

1. Introduction

String theory owes its popularity and promise to the fact that it includes consistently gravity
along with other gauge interactions. The most explored set of vacua in string theory have a string
scale that is close to the four-dimensional Planck scale. All successful heterotic vacua, whether
perturbative, or M-theoretic have this property. This is appealing due to indications from running
coupling unification. On the other hand, no simple reliable predictions are possible without a
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detailed vacuum, that is sufficiently close to the Standard Model (SM) at low energy. Although
there are some heterotic vacua that come close [1,2], it is fair to say that none so far has passed
all tests in a controllable fashion. Moreover, to put it simply, it is hard to see string effects at
E ∼ 1 TeV when Ms ∼ 1013 TeV.

In the past decade, other perturbative vacua of string theory have been explored. A particularly
interesting class are orientifold vacua [3–5], that in their broad sense are compactifications of the
type I string. Their generic structures involves a compact six-dimensional manifold or orbifold
thereof, times a Minkowski space. The more general option, relevant in the presence of fluxes
may warp Minkowski space. The internal space is threaded with Dp!3 branes and orientifold
planes that stretch along Minkowski space and have their potential extra dimensions wrapped
around cycles of the internal manifold.

Because of this, there is no direct link between the string scale and the four-dimensional
Planck scale. By adjusting (if possible) the internal volumes any possible number for Ms < MP

can be obtained [6–9]. Of course, especially in the absence of supersymmetry, volumes along
with other moduli acquire potentials, and their values are determined dynamically. It has been
argued that there may be vacua where the string scale could be as low as 1 TeV although to the
present day, no reliable such vacuum exists.

There has been quite a bit of success though in model building so far with a high string scale
(see [10–12] and references therein), although, as in the heterotic case, there is no perfect vacuum
yet.

Low scale string vacua, have the undeniable charm that there may be amenable to experi-
mental tests. Even though, as already stated, there may be no such model at present solving the
tadpoles conditions, their general structure has characteristic features, and experimental signals
that are essentially generic. The purpose of the present work is to formulate and parameterize
the generic low energy action of the most interesting class of such vacua, that we call minimal
low scale orientifold models or mLSOM for short. Such an effective action can help both the
string theory search for such vacua, currently under way [14], as well as the parametrization and
computation of experimental observables.

Orientifold vacua have a conceptual simplification build in: there is a clear separation typically
between the open string spectrum, coming from the D-branes, and the “bulk” spectrum coming
from the unoriented closed strings. The graviton is part of the bulk spectrum, whereas the branes
give rise to particles at the massless sector with spin at most one.

The standard model gauge group and other particles is naturally realized on the D-branes
rather than the bulk. There are several reason for this. A simple and powerful one is that it is
not possible to realize the non-Abelian structure of the SM including its reps in type II string
theory [15].

The gauge group coming from the D-branes is a product of classical but not exceptional
groups, each factor coming from a stack of branes at the same point in transverse space. The
minimal gauge groups that can accommodate the standard model particles are U(3) × U(2) ×
U(1), and U(3) × U(2) × U(1) × U(1) [16,18,19]. There are variants where U(2) → Sp(2) ∼
SU(2), and U(1) → O(2). There will be in general a hidden group, that for the whole paper we
will neglect, although it may be important (depending on the model) for issues of supersymmetry
breaking. Of course, one may consider more complicated groups. The Pati–Salam like group
U(4)×U(2)2 is the simplest example. However unlike field theory, here the minimal groups are
more advantageous, since the larger ones must be eventually broken and we should be able to
describe them directly in their broken phase.
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There is an obvious observation: all such embeddings involve U(1) factors that are more
numerous than what we know in the SM, namely the hypercharge [16]. It is also known that
many U(1)s can be anomalous in orientifolds [20]. Anomalies cancel, although the appropri-
ate charge traces are non-zero, thanks to variants of the Green–Schwarz mechanism [21]. It is
known that anomalous U(1)s become eventually massive, and the associated gauge symmetry
is broken. Under certain conditions, the global symmetry may remain unbroken in perturbation
theory (see [22] for a review). It is then hoped that all extra U(1)s except the hypercharge become
hopefully massive. In fact, this is generically the case.

The anomalous U(1) masses, can be calculated unambiguously via a one-loop (annulus) com-
putation [23–25]. A rich pattern of masses appears. It turns out that the physical masses are
bounded above by the string scale, but can be arbitrarily low, if some internal dimensions are
large. In the generic case however they turn out to be a few times smaller than Ms , if one in-
cludes, πs and is.

In fact, the anomalous U(1)s gauge bosons have essentially all their renormalizable couplings
fixed by charges and anomalies. Apart from their minimal couplings, they mix with appropriate
bulk axions, that couple to other gauge fields via PQ-type couplings. They also have most of the
time, cubic Chern–Simons-like interactions due to anomalies [27]. The effective cubic couplings
together with the non-zero triangle diagrams, provide an effective cubic vertex to the anomalous
U(1)s gauge bosons. This effect is absent from usual non-anomalous Zs. They may have there-
fore signals that distinguish them from other Zs candidates, [28–30]. Moreover, due to the fact
that the Higgs is always charged under such anomalous U(1)s the Zs mix with the Z0 gauge
boson. Therefore, the photon and the Z0 acquire a (suppressed) cubic vertex.

If the string scale is in the TeV range, such anomalous U(1)s are prime candidates for detec-
tion. At the same time, they provide many contributions to known processes, that could exclude
ranges of the parameters (Z-couplings [31–33], g − 2 [34] and production rates, [26] being three
examples that have been partially studied so far).

Apart from the SM spectrum and the anomalous U(1) gauge bosons, there are other low-
energy particles in the orientifold vacua with low string scale. We will enumerate them below
and describe briefly their characteristics.

• Additional Higgses. Higgses typically come in pairs, even if supersymmetry is broken at the
string scale. The large scale study of [35] based on the hypercharge embedding of [36,37],
shows that there are different vacua with a variable number of doublets. Of course there
should be at least one. And for simplicity we assume that there are no others around.

• Superpartners of the SM particles. Depending on the way supersymmetry is broken, they
may have masses that are well below, to around the string scale. In fact, in low scale ori-
entifold models, the most natural way of breaking supersymmetry is the “explicit breaking”
which gives Ms as the susy breaking scale. In such a case the partners have masses at the
string scale and they are typically heavier than the anomalous U(1) gauge bosons, with the
possible exception of the higgsinos.

• Non-chiral massless states. There are no such states in the SM therefore they must be
somehow lifted in mass. It is possible, combining intersecting branes with Scherk–Schwarz
deformations to actually remove all such states from the massless spectrum [38].

• Possible hidden groups, encompassing all other massless-level open string states that do not
directly interact (by construction) with the SM particles.

• Open string KK-states. Some of the branes may wrap internal dimensions. As explained
in [17], when the string scale is low, the most advantageous configuration has two large
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dimensions. All others have size at most twice the string length. Moreover all SM particles
wrap the small dimensions. Therefore, their KK states have masses at the string scale. There
are two exceptions. The first is when one of the branes wraps the two large dimensions. The
associated anomalous gauge boson, on the other hand is massive, and it should be arranged
that the mass comes from N = 2 sectors so that it is of the order of the string scale [17].
Therefore although its KK states are very tightly spaced, its zero point mass is large. It is
interesting that this type of massive gauge boson, might have a very particular signal at LHC,
because of this very special property.
The second exception concerns the KK states of the right-handed neutrinos that come from
the above described brane. These mix with the zero modes and provide an interesting pattern
of masses. This was analyzed in [17].

• Stringy states of open strings. All the states above have stringy excitations (vibration modes)
of the associated open strings with masses at the string scale and above.

• Massless bulk modes, including the graviton, having gravitational strength couplings to the
open sector. After the breaking of susy, all but the graviton should acquire masses.

• Bulk KK states. Since there are two compactification scales, the one that dominates at low
energy is associated to the two larger dimensions. The physics of such KK states has been
analyzed in the past [39].

• Bulk stringy states, with masses at the string scale or more.

Typically, apart from the SM particles, the particles that are lightest from the brane particles,
are firstly the anomalous U(1) gauge bosons and then superpartners. The distribution of masses
depends on the vacuum. In this paper, we will neglect superpartners, since this is a well studied
sector. We will focus on the anomalous U(1) gauge bosons, the Higgses and the SM particles.
The bulk axions that are crucial for anomaly cancellation will also be included. Most importantly,
the particles we leave out, are not expected to affect qualitatively our results.

In successful low scale orientifold vacua, baryon and lepton number are gauge symmetries.
They are in fact some of the anomalous U(1)s. Their gauge bosons will become massive but
the associated global symmetries will remain intact in perturbation theory. This is a crucial fact,
since at low Ms baryon and lepton number violating operators will be hardly suppressed, [40].
There will be breaking due to instantons but this is known to be small.

This general class of models has important open problems that need to be eventually addressed
at the string level, in order to have concrete successful string vacua that realize this setup.

• The setup needs radii much larger than the string scale. This hierarchy, leading to a low string
scale must be explained/accomodated.

• It must be arranged that the PQ symmetry is explicitly broken, in order to avoid a massless
axion.

• The problem of one-loop tadpoles needs to be accommodated somehow.

There are several important effects, in the effective theory we are describing. A crucial ingre-
dient is that in all cases, the Higgs gauge bosons are charged under one linear combination of
the anomalous U(1)s. In fact we can go to a basis (a non-orthogonal one) where the four generic
U(1) symmetries of the low scale orientifold vacua are hypercharge, Y , baryon number B , lep-
ton number, L, and a Peccei–Quinn-like symmetry PQ. The Higgs then has B = L = 0, and its
vacuum expectation value breaks Y and PQ.
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The UV mass matrix of the U(1) gauge bosons is characterized by three mass eigenvalues of
order Ms (hypercharge is massless) as well as three mixing angles. The second source of gauge
boson masses is the Higgs symmetry breaking. Due to the (mild) hierarchy of the Higgs vev and
Ms there is interesting pattern in the gauge boson mass-eigenstates.

The photon is the usual mixture of Y and W 3. However, the Z0, apart from its Y and W 3

components, it has a small (∼ O(M2
Z/M2

s )) admixture of the other three anomalous U(1) gauge
bosons. Similarly, the three heavy Zs have a small admixture of Y , W 3. The presence of this
mixing affects in an interesting way several issues:

• Z0 has non-standard couplings to fermions. This also affects the ρ parameter.
• γ and Z0 acquire a trilinear vertex, an avatar of their mixing to the anomalous U(1)s and the

triple anomalous U(1) vertex. This is very interesting for LHC.
• There are non-standard photon and Z0 couplings to the Higgs.

It is these issues that we will analyse to a certain extent in the present paper.
We should also briefly mention the parameters of the effective field theory. We do have, to

start with, all the SM parameters.
The Higgs sector resembles that of the MSSM, in the sense that it has two Higgses.1 How-

ever, if supersymmetry is broken at the string scale, the structure of the potential at the level
of the quadratic terms maybe different. It depends in fact on the way supersymmetry is broken.
However for orbifold and SS breaking the tree level potential is of the supersymmetric type.
However, in this paper, for generality we will keep all possible terms.

We split the terms in the Higgs potential into those that preserve the PQ symmetry and those
who do not. The PQ-preserving part has four real quartic couplings and two quadratic ones.
The PQ-breaking part has one complex quadratic coupling and three complex quartic ones. It is
essential for giving a mass to an otherwise massless scalar, the axi-Higgs, a mixture of one if the
Higgs phases and the bulk axions.

The anomalous U(1) sector has a 4 × 4 UV mass matrix that is generically not diagonal. One
of its eigenvalues is zero corresponding to the hypercharge. The hypercharge linear combination
is fixed by a set of integers. For mLSOM, there are two choices. The rest of the matrix can
be parameterized in terms of three mass eigenvalues and three mixing angles. The axion-gauge
boson mixing, axion-gauge boson CP-odd couplings as well as the CS-like couplings are then
determined in terms of the mass matrix and the charges, that are known.

One of the anomalous U(1) gauge bosons comes from a brane that wraps the two large di-
mensions [16]. This implies that its UV mass term as well as the mixing terms with the other
U(1) gauge bosons should be anywhere between Ms and ∼ 10−3 eV. We will assume in this
paper, for simplicity that its mass comes from an N = 2 sector and therefore its physical mass is
of the order of the string scale. In any case, its mass must be larger than around 50 MeV to avoid
standard supernova cooling constraints [17].

In the neutrino sector that is not discussed in this paper, there are further parameters that
enter. If there is a single bulk right handed neutrino then there are three parameters associated
to its coupling to the three lepton doublets. If there are three bulk neutrinos, then one has the
standard KM-like mixing matrix. On top of this there is neutrino mixing with the right-handed

1 This is the minimal choice. There can be orientifold models with several pairs of Higgses. The general qualitative
features of such extensions are similar for the effects we are studying in this paper.
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neutrino KK modes that are densely spaced. In the simplest uniform case of a T 2 with the same
radius, it is the radius that enters as an new parameter (constrained at the same time by fitting the
gauge couplings and the Planck scale). These issues are discussed in detail in [17]. In the sequel
we choose the innocuous case of three bulk neutrinos and neglect the mixing with the KK states.

The structure of this paper is as follows: In Section 2 we describe the string theory origin of
the effective field theories that we analyze. They should correspond to string theory vacua with a
string scale in the TeV range.

In Section 3 we describe the effective action under study. We describe in detail the UV
(stringy) gauge boson mass terms, and we also describe convenient gauge fixings in the unbroken
phase.

In Section 4 we analyze in detail the issue of electroweak symmetry breaking. This is of im-
portance as the properties of Zs are affected importantly. We discuss in particular, the gauge
boson masses the structure of the Higgs sector, the details of the Green–Schwarz sector respon-
sible for anomaly cancellation and finally a convenient gauge-fixing in the broken phase.

Section 5 contains the computation of various tree level cross sections that are relevant for
constraining the parameter space and analyzing new physics in this class of models.

Finally Section 6 contains our conclusions and further comments.
Appendix B contains a comparison of the Higgs sector here with the MSSM Higgs sector

while Appendix C contains a rewriting of the Lagrangian in the physical basis.

2. String theory origin of the mLSOM

In this section2 we motivate the type of effective theory we will be studying in this paper, by
linking it to a class of interesting vacua of string theory. These are known as orientifold vacua.
Useful reviews introducing this subject and describing recent progress can be found in [10–13].

The generic structure is as follows. The ten dimensions of superstring string theory are split
into four flat non-compact dimensions and six compact dimensions, threaded with other possible
background fields (tensor fluxes). Several groups of Dp!3-branes are inserted in this vacuum,
so that their 3 + 1 dimensions are parallel and fill the four-dimensional Minkowski space. If
they have more dimensions, then these wrap appropriately some cycle of the internal compact
manifold. There will be generically also orientifold planes, non-dynamical hyperplanes, with
typically negative energy density. Their basic property is to change the orientation of open and
closed strings. They are typically required for the consistency of the theory, and they enter cru-
cially both in anomaly cancellation but also in the conditions for IR stability (or absence of UV
divergences).

We shall restrict ourselves to models in which the closed string sector is supersymmetric,
while supersymmetry is generically broken by the open strings at the string scale [41]. We intend
to have a string scale Ms that is in the TeV range. Ms is related to the four-dimensional Planck
scale as

(2.1)M2
P = V6

g2
s

M2
s ,

2 Reading this section is a not a prerequisite in understanding the rest of the paper. It does however give a motivation
for the effective theories, and also some idea on what parameter choices are easy to accommodate and which not.
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where V6 is the volume of the internal six-dimensional manifold in string units, and gs the string
coupling constant, that is smaller but not much smaller than one.3 Therefore a low string scale im-
plies a (very) large volume for the internal manifold. Its linear dimension is V

1/6
6 ∼ (MP /Ms)

1/3.

For Ms = 1 TeV, V
−1/6
6 ∼ 10 MeV. We know however that the internal manifold must not be

uniformly large. It must have small cycles, otherwise some of the standard models fields would
have KK states with masses ∼ 10 MeV and this is obviously experimentally excluded.

A convenient way to describe this is in orientifold model building based on orbifolds of T 6.
There, we can take a number n of radii to be large and the rest 6 − n to be close to the string
scale. There are however cases to be avoided. If only one radius is large, then it is macroscopic
and therefore excluded. Moreover, this is a highly unstable situation [42]. If all of them are
large, there is no space to wrap some of the SM branes since this will produce unacceptable
KK descendants of the SM particles as argued above. In fact we should have as many small
dimensions as possible to allow manoeuvering the SM branes. This gives the case of two large
dimensions (with size in the 1 µm–1 mm range), as the optimal possibility.

There has been a wide search for D-brane configurations that provide the standard model in
the context of orientifolds, and have acceptable gauge coupling properties [16,17,43,44]. It turns
out that the minimal number of stacks necessary to allow for a low string scale is 4. One could
do with three, but there the string scale must be close to the Planck scale. This has been analyzed
in [45].

The existence of the two large dimensions, provides an immediate mechanism for light neu-
trinos [46]: If the right-handed neutrinos emerge from a U(1) brane wrapping the two large
dimensions, then, as shown in detail in [17], the neutrinos will have masses, with the right order
of magnitude.4 We will label this brane as U(1)b to indicate that it is the only brane that wraps
the two large dimensions.

Therefore within our framework, the minimal ensemble of D-branes needed in our construc-
tion contains the following stacks: a stack of three coincident branes to generate the color group,
a second stack of two coincident branes to describe the weak SU(2)L gauge bosons, and one
more brane to generate the U(1)b bulk discussed above. The resulting gauge group so far is
U(3)c × U(2)L × U(1)b , with the three U(1) generators denoted by Qc , QL and Qb , respec-
tively. Since the string scale will be low, to ensure proton stability, we require baryon number
conservation with generator B ≡ Qc . The hypercharge Y cannot have a component along Qb ,
since this would lead to unrealistically small gauge coupling, and as explained in [16] the cor-
rect assignment of SM quantum numbers requires the presence of an extra Abelian factor, named
U(1)1 with generator Q1, living on an additional brane. In the simplest situation this brane should
lie on top of the color or the weak stack of branes, as we argue below. However, one may relax
some of the assumptions, and have more freedom with the U(1)1 coupling constants.

In our framework, supersymmetry is expected to be broken by combinations of (anti)branes
and orientifolds which preserve different subsets of the bulk supersymmetries. The simplest pos-
sibility is that any pair of D-branes Dp and Dp′ should satisfy p −p′ = 0 mod 4. It follows that a

3 This is because it enters into the gauge couplings constants. Once there are D3 branes, or the volumes higher branes
wrap are string-scale sized, then the gauge couplings at the string scale are essentially determined by gs .

4 There are two options with neutrinos. The first is that there is a single bulk neutrino which couples to the SM ones.
The KK modes also play a role here. This is a very constrained situation. In [17] it was shown that this option lies
at the borderline with the current neutrino data. It was pointed out recently in [47] that if one weakens the coupling
between branes and bulk, then this option is viable. The other possibility, involves three bulk neutrinos. This is much less
constrained, but also less predictive.
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system with three stacks of mutually orthogonal branes in the six-dimensional internal (compact)
space consists, up to T-dualities, of D9-branes with two different types of D5-branes, extended
in different directions. Specifically, the U(1)b lives on the D9-brane, while the U(3)c and U(2)L
are confined on two stacks of 5-branes, the first along say the 012345 and the other along the
012367 directions of ten-dimensional space–time.5 Thus, the (sub-millimeter) bulk is necessar-
ily two-dimensional (extended along the 89 directions), and the additional U(1)1 brane has to
coincide with either U(3)c or U(2)L. The parameters of the model are the string scale Ms , the
string coupling gs and the volumes v45, v67 and v89 of the corresponding subspaces, in string
units. Using T-duality, we choose all internal volumes to be bigger than unity, vij > 1. In terms
of those, the four-dimensional Planck mass MP is given by

(2.2)M2
P = 8

g2
s

v45v67v89M
2
s

and the non-Abelian gauge couplings are

(2.3)
1

g2
3

= 1
gs

v45,
1

g2
2

= 1
gs

v67.

It follows that

(2.4)M2
P = 8

g2
3g2

2

v89M
2
s = 2

α3α2
v̂89M

2
s ,

where αi = g2
i /4π and v̂89 ≡ v89/(2π)2 = R8R9 for a rectangular torus of radii R8, R9. The

U(1)1 gauge coupling g1 is equal to g3 (g2), if the U(1)1 brane is on top of the U(3)c (U(2)L).
The gauge coupling gb of the U(1)b gauge boson which lives in the bulk is extremely small

since it is suppressed by the volume of the bulk v89. For instance, in the case where the U(1)b
lives on a D9-brane, its coupling is given by

(2.5)
1

g2
b

= 1
gs

v45v67v89 = gs

8
M2

P

M2
s

,

where in the second equality we used Eq. (2.2). Using now the weak coupling condition gs < 1
and the inequality gs > g2

3,2 following from vij > 1 in Eq. (2.3), one finds

(2.6)
√

8
Ms

MP
< gb <

√
8

g3

Ms

MP
,

which implies that gb ≃ 10−16–10−14 for Ms ∼ 1–10 TeV. The corresponding gauge bosons
must have a mass larger than 50 MeV to avoid supernova constraints that are more stringent than
those for the graviton [17].

5 The picture of branes advocated here has a pictorial interest and does not include several details. One important detail
is the generation of chirality and family replication. We know at least two ways to generate chirality, brane intersections
and orbifold singularities. Families can be generated by multiple intersections or by the symmetry of some orbifold
singularities.
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2.1. The simplest allowed configurations

In this section we will describe the four brane configurations and hypercharge embeddings,
that give models that are compatible with a low string scale and very basic phenomenological
constraints [17].

In all configurations, the baryon number appears as a gauged Abelian symmetry. This symme-
try is broken due to mixed gauge and gravitational anomalies leaving behind a global symmetry.
Baryon number conservation is essential for low string scale models, since one needs to elimi-
nate effective operators to very high accuracy in order to avoid fast proton decay, starting with
dimension six operators of the form QQQL which are not sufficiently suppressed [40].

In addition to baryon number, one should also assure that the lepton number is a good sym-
metry of the low energy theory. Lepton number conservation is also essential for preservation of
acceptable neutrino masses, as it forbids for instance the presence of the dimension 5 operator
LLHH . Such an operator would lead to large Majorana neutrino masses, of the order of a few
GeV, in models where the string scale, typically a few TeV, is too low for the operation of an
effective sea-saw mechanism. Hence, we shall be interested only in models in which the lepton
number is a good symmetry. Being anomalous, this symmetry will be broken, but lepton number
will survive as a global symmetry of the effective theory.

In fact, these four models can be derived in a straightforward way by simple considerations
of the quantum numbers. The quark doublet Q is fixed by non-Abelian gauge symmetries, while
existence of baryon number implies that the anti-quarks uc, dc correspond to strings stretched
between the color branes and one each of the Abelian branes U(1)1 and U(1)b . Thus, one has
two possibilities leading to models that we call A (dc has one end in the bulk) and B (uc sees the
bulk). Existence of lepton number fixes the lepton doublet as a string stretched between the weak
branes and the U(1)b brane, while for each of the models A and B there are two possibilities
for the anti-lepton ec to emerge as a string stretched between the two Abelian branes, or to have
both ends on the weak branes. Thus, we obtain two additional models that we call A′ and B ′. All
these models have tree-level quark and lepton masses and make use of two Higgs doublets. They
also require low energy string scale for some of the brane coupling conditions.

2.1.1. Models mLSOMA and mLSOMA′

They are characterized by the common hypercharge embedding

(2.7)Y = −1
3
Qc − 1

2
QL + Q1

but they differ slightly in their spectra. The spectrum of model A is

Q(3,2,+1,−1,0,0), uc(3̄,1,−1,0,−1,0), dc(3̄,1,−1,0,0,−1),

L(1,2,0,+1,0,−1), ec(1,1,0,0,+1,+1), Hu(1,2,0,+1,+1,0),

Hd(1,2,0,−1,0,−1),

while in model A′ the right-handed electron ec is replaced by an open string with both ends on
the weak brane stack, and thus ec(1,1,0,−2,0,0) (see Fig. 1).

Apart from the hypercharge combination (2.7) all remaining Abelian factors are anomalous.
Indeed, for every Abelian generator QI , I = (c,L,1, b), we can calculate the mixed gauge
anomaly KIJ ≡ TrQIT

2
J with J = SU(3), SU(2), Y , and gravitational anomaly KI4 ≡ TrQI
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Fig. 1. Pictorial representation of models A,A′ .

for both models A and A′:

(2.8)K(A) =

⎛

⎜⎜⎝

0 −1 − 1
2 − 1

2
3
2 −1 0 − 1

2
− 3

2
1
3 − 1

3
1
6

0 −4 −2 −4

⎞

⎟⎟⎠ , K(A′) =

⎛

⎜⎜⎝

0 −1 − 1
2 − 1

2
3
2 −1 0 − 1

2
− 3

2 − 5
3 − 4

3 − 5
6

0 −6 −3 −5

⎞

⎟⎟⎠ .

It is easy to check that the matrices KKT for both models have only one zero eigenvalue corre-
sponding to the hypercharge combination (2.7) and three non-vanishing ones corresponding to
the orthogonal U(1) anomalous combinations. In the context of type I string theory, these anom-
alies are canceled by a generalized Green–Schwarz mechanism which makes use of three axions
that are shifted under the corresponding U(1) anomalous gauge transformations. As a result, the
three extra gauge bosons become massive, leaving behind the corresponding global symmetries
unbroken in perturbation theory [48]. The three extra U(1)s can be expressed in terms of known
SM symmetries:

Baryon number: B = 1
3
Qc,

Lepton number: L = 1
2
(Qc + QL − Q1 − Qb),

(2.9)Peccei–Quinn: QPQ = −1
2
(Qc − QL − 3Q1 − 3Qb).

Thus, our effective SM inherits baryon and lepton number as well as Peccei–Quinn (PQ) global
symmetries from the anomaly cancellation mechanism. Note however that PQ is the original
Peccei–Quinn symmetry only in model A′, such that all fermions have charges +1, while Hu

and Hd have charges −2 and +2, respectively. In model A, the global PQ symmetry defined
in (2.9) is similar but with lepton charge +3. The reason is that in model A the fermion-Higgs
Yukawa couplings are different, and leptons get masses from Hu and not from Hd .

The general one-loop string computation of the masses of anomalous U(1) gauge bosons, as
well as their localization properties in the internal compactified space, was performed recently
for generic orientifold vacua [23]. It was shown that orbifold sectors preserving N = 1 super-
symmetry yield four-dimensional (4d) contributions, localized in the whole six-dimensional (6d)
internal space, while N = 2 supersymmetric sectors give 6d contributions localized only in four
internal dimensions. The latter are related to 6d anomalies. Thus, even U(1)s which are appar-
ently anomaly free may acquire non-zero masses at the one-loop level, as a consequence of 6d
anomalies. These results have the following implications in our case:
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1. The two U(1) combinations, orthogonal to the hypercharge and localized on the strong and
weak D-brane sets, acquire in general masses of the order of the string scale from contri-
butions of N = 1 sectors, in agreement with effective field theory expectations based on 4d
anomalies.

2. Such contributions are not sufficient though to make heavy the third U(1) propagating in the
bulk, since the resulting mass terms are localized and suppressed by the volume of the bulk.
In order to give string scale mass, one needs instead N = 2 contributions associated to 6d
anomalies along the two large bulk directions.

3. Special care is needed to guarantee that the hypercharge remains massless despite the fact
that it is anomaly free.

The presence of massive gauge bosons associated to anomalous Abelian gauge symmetries is
generic. Their mass is given by M2

A ∼ gsM
2
s , up to a numerical model dependent factor and is

typically smaller by a factor or 2–5 than the string scale. When the latter is low, they can affect
low energy measurable data, such as g − 2 for leptons [34] and the ρ-parameter [31], leading to
additional bounds on the string scale.

An extension of the model is the introduction of a right-handed neutrino in the bulk. A natural
candidate state would be an open string ending on the U(1)b brane. Its charge is then fixed
to +2 by the requirement of existence of the single possible neutrino mass term LHdνR . The
suppression of the brane-bulk couplings due to the wave function of νR would thus provide a
natural explanation for the smallness of neutrino masses. Note that if the zero mode of this bulk
neutrino state is chiral, the anomaly structure of the model changes: B − L becomes anomaly
free and as a consequence the associated gauge boson remains in principle massless. However,
as we discussed above, this is not in general true because of 6d anomalies [23]. In any case, this
problem is absent if we introduce a vector-like bulk neutrino pair

νR(1,1,0,0,0,+2) + νc
R(1,1,0,0,0,−2)

that leaves the anomalies (2.8) intact. Note that νc
R does not play any role in the subsequent

discussion of neutrino masses and oscillations.

2.1.2. Models mLSOMB and mLSOMB ′

Another phenomenologically promising pair of models consists of two models, named here-
after B and B ′, which correspond to the hypercharge embedding

(2.10)Y = 2
3
Qc − 1

2
QL + Q1.

The spectrum is

Q(3,2,+1,+1,0,0), uc(3̄,1,−1,0,0,1), dc(3̄,1,−1,0,1,0),

L(1,2,0,+1,0,−1), ec(1,1,0,0,+1,+1), Hu(1,2,0,−1,0,−1),

Hd(1,2,0,+1,+1,0)

for model B , while in B ′ ec is replaced by ec(1,1,0,−2,0,0) (see Fig. 2).
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Fig. 2. Pictorial representation of models B and B ′ .

The four Abelian gauge factors are anomalous. Proceeding as in the analysis (2.8) of models
A and A′, the mixed gauge and gravitational anomalies are

(2.11)K(B) =
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⎜⎜⎝
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It is easy to see that the only anomaly free combination is the hypercharge (2.10) which sur-
vives at low energies. All other Abelian gauge factors are anomalous and will be broken by
the generalized Green–Schwarz anomaly cancelation mechanism, leaving behind global symme-
tries. They can be expressed in terms of the usual SM global symmetries as the following U(1)

combinations:

(2.12)Baryon number: B = 1
3
Qc,

(2.13)Lepton number: L = −1
2
(Qc − QL + Q1 + Qb),

(2.14)Peccei–Quinn: QPQ = 1
2
(−Qc + 3QL + Q1 + Qb).

Similarly to the analysis of models A and A′, the PQ charges defined above are the traditional
ones only for model B . In model B ′, the lepton charge is −3, as a result of the Higgs Yukawa
couplings to the fermions (see below). The right-handed neutrino can also be accommodated as
an open string with both ends on the bulk Abelian brane:

νR(1,1,0,0,0,+2) + νc
R(1,1,0,0,0,−2).

3. The effective action of the mLSOM

We will consider models which can originate from a non-supersymmetric string compactifi-
cation where the Standard Model is localized on D-branes and/or intersections of D-branes in the
presence of orientifold planes. The low energy limit of such models, assuming that they contain
the Standard Model spectrum, is marked by the presence of extra U(1) gauge bosons and of a
certain number of scalar fields with axion and Stückelberg couplings. Consistency of these mod-
els and more specifically the cancellation of anomalies requires also certain Chern–Simons type
of couplings.
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Therefore apart from the Standard Model fields, we have three more U(1)s, three scalars
(axions) that mix with the U(1)s, and two Higgs doublets.

The minimal Lagrangian consistent with these features is

L= −1
2

trGµνG
µν − 1

2
trWµνW

µν − 1
4
F l

µνF
µν,l

−
∣∣∣∣

(
∂µ + i

g2

2
τ aWa

µ + iq
(Hu)
l glA

l
µ

)
Hu

∣∣∣∣
2

−
∣∣∣∣

(
∂µ + i

g2

2
τ aWa

µ + iq
(Hd)
l glA

l
µ

)
Hd

∣∣∣∣
2

+ Q
†
Liσ

µDµQLi + u
†
Ri σ̄

µDµuRi + d
†
Ri σ̄

µDµdRi

+ L
†
Liσ

µDµLLi + e
†
Ri σ̄

µDµeRi + ν
†
Ri σ̄

µDµνRi

+ γ u
ijH

T
u τ 2(Qt

Liσ
2uRj

)
+ γ d

ijH
†
d

(
Qt

Liσ
2dRj

)
+ c.c.

+ γ e
ijH

†
u

(
Lt

Liσ
2eRj

)
+ γ ν

ijH
T
d τ 2(Lt

Liσ
2νRj

)
+ c.c.

− 1
2

∑

I

(
∂µaI + glMI

l A
l
µ

)2 + Elmnϵ
µνρσ Al

µAm
ν Fn

ρσ

+
∑

I

(
DIa

I tr{G ∧ G} + FIa
I tr{W ∧ W } + CImna

IFm ∧ Fn
)

(3.1)+ V
(
Hu,Hd, aI

)
,

where we have introduced two-dimensional notations for the fermion interactions, as specified
below. The gauge symmetry under which this Lagrangian is invariant is

(3.2)SU(3)c × SU(2)W × G1, G1 =
4∏

l=1

U(1)l .

The U(1) factors are all anomalous in general. In the above the indices l,m,n = 1, . . . ,4 count
the U(1)s in the D-brane basis. There is also a sum over SU(2) indices a = 1,2,3 and a sum over
flavor indices i = 1,2,3. Gµν is the field strength for the gluons and the Wµν is the field strength
of the weak gauge bosons Wµ. The fermions in Eq. (3.1) are either left handed Weyl spinors fL,
or right handed Weyl spinors fR and they fall in the usual SU(3) and SU(2) representations of
the Standard Model. The covariant derivatives act on the fermions fL, fR as

DµfL =
(
∂µ + iAµ + iq

(fL)
l glAl,µ

)
fL,

(3.3)DµfR =
(
∂µ + iAµ − iq

(fR)
l glAl,µ

)
fR,

where Aµ is a non-Abelian Lie algebra element. The matrices σµ = (σ 0,σ a) where σ 0 =
diag(1,1), σ a are the Pauli matrices and σ̄µ = (σ 0,−σ a). We have also introduced two Higgs
SU(2) doublets Hu and Hd . The matrices τ j are Pauli matrices acting on SU(2) indices.

In the Yukawa sector, the Pauli matrix τ 2 acts on the SU(2) indices while the Pauli matrix
σ 2 acts on the spinor indices. The symbol T (t) suggests transposition with respect to SU(2)

(spinor) indices. To lighten the notation we do not show explicitly the SU(3) contraction. It
should be understood however that the quarks are, on the top of all contractions explicitly shown,
contracted as q†

LqR in the SU(3) sense. The γ u
ij , etc., are complex three by three matrices. The

standard procedure is to bring them in a form as close as possible to diagonal. The result of this



90 C. Corianò et al. / Nuclear Physics B 746 (2006) 77–135

is

LYuk. =
∑

i,j

HT
u τ 2(Qt

Liσ
2Uq

jiΓ
u
jjuRj

)
+

∑

i

H
†
d

(
Qt

Liσ
2Γ d

ii dRi

)
+ c.c.

(3.4)+
∑

i,j

H †
u

(
Lt

Liσ
2Uν

jiΓ
e
jj eRj

)
+

∑

i

HT
d τ 2(Lt

Liσ
2Γ ν

ii νRi

)
+ c.c.,

where the Γ u,d,e,ν are diagonal matrices and Uq is the CKM matrix which appears in the Yukawa
sector of this model in a similar way as in the Standard Model. The Uν matrix is the MNS
neutrino mixing matrix. In the electroweak vacuum the Higgs couples universally to the Yukawa
sector and the Yukawa couplings turn into mass terms for the fermions. The CKM and MNS
matrices disappear from the Yukawa couplings but they appear explicitly in the gauge boson–
fermion–fermion interactions, as we will see later. Issues of flavor in intersecting D-brane models
are discussed in [49–51] and references therein.

The couplings MI
m, FI , DI , CImn and Elmn are known once a specific string vacuum has

been chosen. One feature of the action, as we are going to describe below, is the presence of both
dimension-4 and dimension-5 operators, which render it an effective non-renormalizable exten-
sion of the Standard Model. The mechanism of cancellation of the anomalies which is enforced
on the model is different from the Standard Model one and for this reason all the couplings the
E, D, and C carry an intrinsic power of h, the Planck constant, in their definition. The index
I = 1, . . . ,Na runs over the scalars with axion couplings whose number is in general different
(and usually much larger) than the number of U(1) fields. In the mLSOM the number of relevant
axions will be taken to be always one less than the number of U(1)s (i.e. the number of D-brane
stacks), in our case Na = 3.

Finally, the Higgs potential is one that is consistent with the symmetries of the theory and
breaks the electroweak symmetry spontaneously down to electromagnetism as in the SM. In
general it can depend on all scalar fields present in the spectrum, namely both on the Higgs fields
and on the axions, provided it is compatible with the gauge invariances. We will split the Higgs
potential in two parts. The one in Eq. (4.1) which does not depend on the axions, and the one in
Eq. (4.73) which mixes the Higgs doublets with the pseudo-scalars.

3.1. Changing basis in gauge symmetry space

A first interesting aspect of such models is that some of the gauge bosons can pick up masses
even in the absence of electroweak (EW) symmetry breaking because of (potential) anomalies.
Indeed, by inspecting Eq. (3.1) one can see that there are couplings that give a tree-level mass to
the anomalous U(1) gauge bosons without a Higgs mechanism. The mass squared matrix of the
4 U(1) gauge bosons is

(3.5)M =MT M,

which in general is a real, symmetric but non-diagonal matrix. The dimension of M is equal to
the number of U(1)s. In order to simplify the expressions as much as possible, we absorb in its
elements the corresponding factors of the gauge couplings. M is real and symmetric thus it can
be diagonalized by an orthogonal transformation

(3.6)M = OT mO,



C. Corianò et al. / Nuclear Physics B 746 (2006) 77–135 91

where O is the appropriate orthogonal matrix. The diagonal matrix m contains the eigenvalues
of M, i.e. the masses squared of the gauge bosons. When Na = Ns − 1, where Ns is the number
of stacks, m contains at least one zero eigenvalue.

To write the other terms in the action in the new basis, we start from the U(1) sector in the
D-brane basis and focus for the moment on the gauge kinetic and the gauge-fermion–fermion
interaction terms

(3.7)
∑

l

1

4g̃2
l

Fl
2 +

∑

l

Alψ̄qlψ,

where the charges are normalized to integers and

(3.8)g̃l = gl√
2N

,

where gl is the standard normalized coupling of the associated SU(N) group.6

We will keep three bulk axions, the number that is relevant to cancel the anomalies of the
three anomalous U(1)s.7

The (normalized) hypercharge generator can be written as

(3.9)qY =
∑

l

klql .

We will rescale the gauge fields as Al → g̃lAa to obtain

(3.10)
∑

l

1
4
F 2

l +
∑

l

g̃lAlψ̄qlψ.

We will now do an orthogonal transformation to go to a basis where one of the gauge fields is
the hypercharge while the rest have a diagonal UV mass matrix

(3.11)Al =
∑

l′
Oll′A

l′ , OOT = 1.

The index l′ in the new basis (referred to as the hypercharge basis from now on) runs through
l′ = Y , I , with I running through the last 3 values. For the above transformation to be consistent,
we must take

(3.12)g̃lOlY ∼ kl ∀l.

Normalizing we obtain

(3.13)OlY = gY
kl

g̃l
,

1

g2
Y

=
∑

l

k2
l

g̃2
l

.

We must now pick the 3 vectors n⃗I = OiI so that they are orthogonal to the hypercharge, they
are normalized, and they diagonalize the mass matrix. They can be parameterized in terms of 3
SO(3) angles. This is detailed in Appendix A.

6 This relation comes from the fact that the full group is U(N), see [16].
7 In general the number of bulk axions is larger, but only the linear combinations that enter into anomaly cancellation

is relevant.
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Since there is no natural quantization for the three other rotated U(1) charges (apart from the
hypercharge Y ) we will keep all the coupling dependence inside the rotated charges

(3.14)qI =
4∑

i=1

qiOiI .

Next, we must rotate the Green–Schwarz couplings. As we will show, in this basis the Stückel-
berg couplings take the simple form

(3.15)
1
2

∑

I

(
∂a′

I + MIA
I
)2

with a′
I the hypercharge basis axions and MI the (square root of the) non-zero eigenvalues con-

tained in m.
Therefore, in the gauge sector we have the following parameters: the four gauge couplings

g3, g2, g1, gb , the three UV mass eigenvalues MI of the gauge boson mass matrix, and the
three mixing angles in the mixing matrix O , described in detail in Appendix A. Moreover, the
hypercharge coefficients ki take values (− 1

3 ,− 1
2 ,1,0) for models A, A′ and ( 2

3 ,− 1
2 ,1,0) for

models B , B ′. However, the three gauge couplings g3, g2, g1 are fixed by the Standard model
values. Indeed, g3 is the strong coupling constant, g2 is the weak SU(2) coupling constant and
g1 is indirectly fixed from the hypercharge coupling

(3.16)
1

g2
Y

= 6k2
3

g2
3

+ 4k2
2

g2
2

+ 2k2
1

g2
1

.

Therefore, the new physics parameters that are not directly determined are, gb , MI , I = 1,2,3
and the three angles of the mixing matrix O .

3.2. Anomalous couplings

This section is devoted to the discussion of the terms in Eq. (3.1) referred to as Green–Schwarz
couplings. It should be clear by now that the low energy effective action that corresponds to low
scale orientifold vacua has certain distinctive features. To begin, most of the extensions of the
Standard Model that are widely believed to be experimentally testable, such as the MSSM or the
NMSSM, are essentially usual gauge theories coupled in a conventional way to a larger set of
matter fields than the one encountered in the SM. By this we mean that all the couplings that
one finds in these extensions are of the same type as the couplings of the SM. The reason for
qualitatively new types of couplings not being necessary in these conventional models is the way
gauge anomalies cancel. In the MSSM for example, anomalies cancel in the same way as in the
SM: The anomaly of each gauge factor vanishes separately. In string theory, however, there is
room for an alternative way to cancel anomalies, via the Green–Schwarz mechanism.

The net effect of the Green–Schwarz mechanism on the four-dimensional effective action is
a number of scalar fields with Stückelberg and axion-like couplings and certain Chern–Simons
couplings. It is also interesting to point out that these unusual couplings are remnants of the
interplay between closed and open strings from the string theory point of view or the gravitational
and gauge sectors in the language of the low energy effective action. The pseudoscalar axions
originate from (closed string sector) RR fields coupled to the (open string sector) gauge fields of
the D-brane world volume through the Wess–Zumino effective action. Besides their theoretical
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interest, the presence of these terms may provide us with a unique opportunity to test string
theory experimentally.

The D-brane basis Stückelberg couplings in Eq. (3.1) can be then written in matrix form as

(3.17)LStuck = 1
2

∑

I

(
∂µaI +MI

l A
l
µ

)(
∂µaI +MI

l A
l
µ

)

and as we have seen in detail, ensure that some of the U(1)s pick up masses of the order of the
string scale.

The other Green–Schwarz couplings in Eq. (3.1) consist of the axion-like terms

(3.18)Laxion = DIa
I tr{G ∧ G} + FIa

I tr{W ∧ W } + CImna
IFm ∧ Fn,

where we have introduced the dimensionfull couplings DI , FI and CImn and the Chern–Simons
terms [27],

(3.19)LC−S = Elmnϵ
µνρσ Al

µAm
ν Fn

ρσ .

In the above the sum over l,m,n is implied. Under the U(1) gauge transformation

(3.20)Al
µ → Al

µ + ∂µϵl

with ϵ the gauge transformation parameters, the anomalous variation of the Lagrangian is8

(3.21)L1-loop = ϵl
[
glg

2
3Λ3t

(3)
l G ∧ G + glg

2
2Λ2t

(2)
l W ∧ W + Λ1glgmgnt

(1)
lmnF

m ∧ Fn
]
,

where

(3.22)t
(1)
lmn = tr(qlqmqn), t

(1)
llm = 1

2! tr
(
q2
l qm

)
, t

(1)
lll = 1

3! tr
(
q3
l

)

and

(3.23)t
(3)
l = tr

(
qlT

AT A
)
, t

(2)
l = tr

(
qlT

jT j
)
.

Here the index A (a) labels the generators of SU(3) (SU(2)). The nature and meaning of the
quantities Λ1, Λ2 and Λ3 is clear once the anomaly diagrams are explicitly computed in mo-
mentum space. They can be seen to be the shift necessary to be performed in the momentum
integration of the triangle anomaly diagram so that the Green–Schwarz anomaly cancellation
mechanism is reflected by the Ward identities.

The axions transform under the U(1) transformations as

(3.24)aI → aI −MI
l ϵ

l .

The Stückelberg and the axion-gauge–gauge couplings are gauge invariant separately but the
Chern–Simons term is not. The gauge variation of the latter is cancelled by the anomaly. By
comparing the different gauge variations, we can easily read off the four-dimensional version of
the Green–Schwarz anomaly cancellation conditions

(3.25)DIMI
l = Λ3glg

2
3 t

(3)
l ,

(3.26)FIMI
l = Λ2glg

2
2 t

(2)
l ,

8 We use a symmetric regularization scheme.
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(3.27)CImnMI
l + (Elmn − Emln) = Λ1glgmgnt

(1)
lmn.

The first two of the above, Eqs. (3.25) and (3.26) represent the cancellation of the anomalous
triangle graph with a U(1)l gauge boson and two gluons and SU(2) gauge bosons for external
legs respectively. The third, Eq. (3.27) represents the mixed U(1) anomaly cancellation.

We can put some restrictions on the couplings Elmn. Define

(3.28)Slmn ≡
∫

ϵµνρσ Al
µAm

ν Fn
ρσ ,

which transforms as

(3.29)δSlmn =
∫ (

−ϵlFm ∧ Fn + ϵmF l ∧ Fn
)
.

It is easy to see that Slmn satisfy

(3.30)Smln = −Slmn

and that the transformation property of the Chern–Simons couplings is

(3.31)δ
(
ElmnS

lmn
)
=

∫
(Emln − Elmn)ϵ

lFm ∧ Fn,

which was used to derive Eq. (3.27). An immediate consequence of Eq. (3.30) is that ElmnS
lmn

vanishes identically unless Elmn is antisymmetric in the first two indices. Now, if Elmn is totally
antisymmetric, then ElmnS

lmn can be seen to be again identically zero by using the identity

(3.32)Slmn + Snlm + Smnl = 0,

which can be derived by integrating by parts. Therefore the only choice left is the one where
Elmn is antisymmetric in lm. Then, Eq. (3.27) reduces to

(3.33)CImnMI
l + Elmn + Elnm = Λ1glgmgnt

(1)
lmn

and the gauge transformation to

(3.34)δ
(
ElmnS

lmn
)
= −2

∫
Elmnϵ

lFm ∧ Fn.

The rotation to the hypercharge basis can be done by means of Eq. (3.6). The transformation
of the vectors and axions consistent with Eq. (3.6) is

(3.35)Al = Ol′lAl′ , aI =
∑

J

MI
l OJ l

a′
J

MJ
,

respectively, with MJ the mass of the J th gauge boson in the hypercharge basis. The sum over
l and l′ is implicit but we show the sum over the indices I explicitly when present. The proper
gauge transformation rules become

(3.36)Al′ → Al′ + ∂ϵ′
l′,

(3.37)a′
I → a′

I − MI ϵ
′
I ,

where ϵ′ = Oϵ and the Stückelberg coupling transforms into

(3.38)LStuck = 1
2

∑

I

(
∂µa′

I + MIA
I
µ

)2
.
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Indeed, Eq. (3.38) is precisely Eq. (3.15), as claimed.
The Green–Schwarz couplings Eqs. (3.18) and (3.19) can be written in the hypercharge basis

as

LGS =
∑

I

(
D′

I a
′
I tr{G ∧ G} + F ′

I a
′
I tr{W ∧ W } + C′

Im′n′a′
IF

m′ ∧ Fn′)

(3.39)+ El′m′n′ϵµνρσ Al′
µAm′

ν Fn′
ρσ

with

D′
I =

∑

J

1
MI

DJMJ
l OIl, F ′

I =
∑

J

1
MI

FJMJ
l OIl,

(3.40)C′
Im′n′ =

∑

J

1
MI

CJmnMJ
l OIlOm′nOn′n

and

(3.41)El′m′n′ = ElmnOl′lOm′mOn′n.

It is now straightforward to show that the Green–Schwarz anomaly cancellation conditions in the
hypercharge basis are

(3.42)D′
IMI = Λ3g

2
I g3t

′ (3)
I ,

(3.43)F ′
IMI = Λ2g

2
I g2t

′ (2)
I ,

(3.44)C′
Im′n′MI + 2EIm′n′ = Λ1gI gm′gn′ t

′ (1)
Im′n′

with the anomaly coefficients t ′ (1,2,3) computed in the hypercharge basis.

3.3. Gauge fixing in the unbroken phase

We work in the (Y, I ) basis, with Y the hypercharge and I the index denoting the anomalous
U(1) gauge bosons in the hypercharge basis.

A useful gauge is the one where the axions become longitudinal components of the mas-
sive anomalous gauge fields. Clearly, in this gauge there should be no direct axion-gauge boson
interactions. It is not hard to come up with a gauge where the unphysical couplings of the type

(3.45)MI(∂ · AI )a
′
I

are absent. The necessary gauge fixing functions for SU(3), SU(2), U(1)Y and the U(1)I are

(3.46)GA = ∂ · GA,

(3.47)Ga = ∂ · Wa,

(3.48)GY = ∂ · AY ,

(3.49)GI = ∂ · AI + αIMIa
′
I ,

respectively, where we have introduced gauge fixing functions with real parameters αI for the
anomalous U(1)s. The gauge fixing terms are

(3.50)Lgf = 1
2α3

GAGA + 1
2α2

GaGa + 1
2αY

GYGY +
∑

I

LI
gf, LI

gf = 1
2αI

GIGI
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and the ghost terms are

(3.51)Lgh = η∗A δGA

δwB
ηB + η∗a δGa

δwb
ηb +

(
∂η∗Y

)
·
(
∂ηY

)
+

∑

I

LI
gh,

where in the SU(3) part

(3.52)
δGA

δwB
= −(∂ · ∂)δAB − f ABC

(
∂ · GC

)

is the change of the gauge function under a gauge transformation parameterized by ωB and η∗A

and ηA are the anticommuting ghost fields. Analogous is the notation for the other gauge groups.
We will now derive LI

gh.
Under the gauge fixing conditions, the Stückelberg Lagrangian describing the dynamics of

each anomalous gauge boson is given by

(3.53)LI
Stueck = −1

4
F 2

Iµν − 1
2

(
∂µa′

I + MIA
I
µ

)2 + 1
2αI

(
∂µA

µ
I + αIMIa

′
I

)2
.

The action is not gauge invariant under the full U(1)I gauge transformation parameterized by
ϵ′
I , it is however invariant under gauge transformations that satisfy

(3.54)
(
∂2 − αIM

2
I

)
ϵ′
I = 0.

One should now observe that these are just the equations of motion of the a′
I and therefore

that gauge transformations performed by the axions playing the role of the gauge functions are a
symmetry of the gauge fixed action. In fact, the model could be extended to include an anomalous
fermion interaction of the form

(3.55)LI
f = ψ̄

[(
gV γ µ − gAγ µγ5

)(
i∂µ + gIA

I
µ

)]
ψ.

The total Lagrangian (barring ghosts) is then invariant under the transformations

δAI
µ = ∂µa′

I , δa′
I = −MIa

′
I ,

(3.56)ψ → eigI a′
I ψ, ψ̄ → e−igI a′

I ψ̄ .

Let us now derive the remnant symmetry when we include ghosts. If we denote by ηI (x) and
η∗

I (x) independent anticommuting scalar fields, the Lagrangian is by construction invariant under
the transformation s:

sAI
µ = ∂µηI , sa′

I = −MIηI , sψ = igIηIψ,

(3.57)sψ̄ = −igIηI ψ̄, sηI = 0,

which can be read off Eq. (3.56). The above BRST transformation is nilpotent even off shell
(s2 = 0) and ηI are free, i.e. not constrained by the Klein–Gordon like equation Eq. (3.54). In
terms of the new fields the gauge fixing plus ghost Lagrangian in the quantum action is of the
form

(3.58)LI
gh +LI

gf = −η∗
I (sGI ) + 1

2αI
G2

I

for a given gauge fixing function GI . We of course choose Eq. (3.49) for the gauge fixing func-
tions and for the ghost part we finally obtain the expression

(3.59)LI
gh = −η∗

I

(
∂2 − αIM

2
I

)
ηI .
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4. Electroweak symmetry breaking

The electroweak symmetry breaking in mLSOM is a very interesting effect, because the Hig-
gses are charged under the anomalous U(1) gauge symmetries.

In order to discuss EW symmetry breaking we have to be more specific about the Higgs
potential. Before EW breaking the Abelian gauge symmetry in the D-brane basis is G1 and the
Higgs potential VPQ is the most general SU(2)L × G1 invariant constructed from the two Higgs
SU(2) doublets Hu and Hd :

VPQ(Hu,Hd) =
∑

a=u,d

(
µ2

aH
†
a Ha + λaa

(
H †

a Ha

)2)

(4.1)− 2λud

(
H †

uHu

)(
H †

d Hd

)
+ 2λ′

ud

∣∣HT
u τ2Hd

∣∣2
.

We can parameterize the Higgs fields in terms of 8 real degrees of freedom as

(4.2)Hu =
(

H+
u

H 0
u

)
, Hd =

(
H+

d

H 0
d

)
,

where H+
u , H+

d and H 0
u , H 0

d are complex fields. Specifically

(4.3)H+
u = H+

uR + iH+
uI√

2
, H−

d = H−
dR + iH−

dI√
2

, H−
u = H+∗

u , H+
d = H−∗

d .

Expanding around the vacuum we get for the uncharged components

(4.4)H 0
u = vu + H 0

uR + iH 0
uI√

2
, H 0

d = vd + H 0
dR + iH 0

dI√
2

.

The Weinberg angle is defined via cos θW = g2/g, sin θW = gY /g, with g2 = g2
Y + g2

2 . We also
define cosβ = vd/v, sinβ = vu/v and v2 = v2

d + v2
u.

As in the MSSM one can set H+
u = 0 at the minimum by an SU(2) transformation. Then a

minimum with ∂V/∂H+
u = 0 must also have H+

d = 0. A necessary condition for the potential
VPQ to be bounded from below can be obtained by requiring that the potential is non-negative
definite around the electroweak breaking vacuum:

(4.5)µ2
uv

2
u + µ2

dv2
d + λuuv

4
u + λddv4

d − 2λudv2
uv

2
d ! 0.

The above constraint should be satisfied simultaneously with the constraint coming from the
requirement that the vacuum ⟨H 0

u ⟩ = 0, ⟨H 0
d ⟩ = 0 (which does not trigger electroweak symmetry

breaking) is an unstable minimum of the potential. This is the case when

(4.6)µ2
uµ

2
d " 0.

Minimizing the potential with respect to H 0
u and H 0

d one can see that the Higgs vevs

(4.7)Hu = vu

(
0
1

)
, Hd = vd

(
0
1

)

do not break electric charge and minimize VPQ (at tree level) if

(4.8)
(

µ2
u

µ2
d

)
= 4

(
−λuu λud

λud −λdd

)(
v2
u

v2
d

)
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with λuu, λdd and λud all real. Using the above conditions, the constraint Eq. (4.5) becomes

(4.9)µ2
uv

2
u + µ2

dv2
d ! 0.

Furthermore, the couplings λuu, λdd and λud should be such that Eqs. (4.6) and (4.9) are also
consistent.

4.1. The gauge boson masses

The vevs Eq. (4.7), in addition to breaking SU(2)L × G′
1 down to U(1)γ , should not be in

contradiction with the low energy EW data. The previous discussion for the gauge boson masses
still applies with appropriate adjustments that take into account the effects of EW breaking. Tech-
nically speaking, the neutral U(1) mass matrix MEW should have precisely one zero eigenvalue
consistent with an unbroken U(1)γ .

MEW is the 5 by 5 matrix that can be read off the quadratic form

(4.10)|DµHu|2 + |DµHd |2 + 1
2

∑

I

(
∂a′

I + MIA
I
)2

and whose eigenvalues and eigenvectors we will now compute. Notice that as before, we have
absorbed in MI a factor of gI in the Stückelberg part of the above formula. One can easily
put it back in the following analysis by doing the rescaling MI → gIMI . We will reinstate the
couplings explicitly when we discuss NG bosons. The covariant derivatives are9

DµHu =
(

∂µ + i√
2
g2

(
T +W+ + T −W−)

+ i

2
g2τ3W3µ + i

2
gY AY

µ + i

2

∑

I

qI
uAI

µ

)
Hu,

DµHd =
(

∂µ + i√
2
g2

(
T +W+ + T −W−)

+ i
g2

2
τ3W3µ + i

2
gY AY

µ + i

2

∑

I

qI
dAI

µ

)
Hd,

where qI
u,d are the U(1) charges of the two Higgses in the rotated basis. They are related to the

Higgs charges qi
u,d in the D-brane basis by (3.14) namely

(4.11)qI
u ≡

4∑

i=1

qi
ug̃iOiI , qI

d ≡
4∑

i=1

qi
d g̃iOiI

where g̃i are defined in (3.8). In Section 2.1.1 we found

(4.12)qi
u = (0,1,1,0), qi

d = (0,−1,0,−1) Models A,A′

and in 2.1.2

(4.13)qi
u = (0,−1,0,−1), qi

d = (0,1,1,0) Models B,B ′.

The matrix O is given in Appendix A. We also have

(4.14)qY
u = qY

d = 1
2
.

9 We use normalized kinetic terms for all gauge bosons.
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The SU(2) generators and gauge bosons are defined as

(4.15)T j = τ j

2
, T ± = T 1 ± iT 2, W± = 1√

2

(
W 1 ∓ iW 2),

we obtain explicitly

(4.16)DµHu =
(

∂µ + i
2 g2W3µ + i

2 gY AY
µ + i

2
∑

I qI
uAI

µ
i√
2
g2W+

i√
2
g2W− ∂µ − i

2 g2W3µ + i
2 gY AY

µ + i
2

∑
I qI

uAI
µ

)

Hu

and a similar expression for the covariant derivative of Hd . The mass matrix in the mixing of the
neutral gauge bosons can be then computed from

1
2

∑

I

M2
I

(
AI

µ

)2 + 1
4

(
−g2W3µ + gY AY

µ +
∑

I

qI
uAI

µ

)2

v2
u

(4.17)+ 1
4

(
−g2W3µ + gY AY

µ +
∑

I

qI
dAI

µ

)2

v2
d,

and it reads

(4.18)M2 = 1
4

(
g2

2v2 −g2gY v2 −g2xI

−g2gY v2 gY
2v2 gY xI

−g2xI gY xI 2M2
I δIJ + NIJ

)

,

where

(4.19)v2 = v2
u + v2

d, NIJ = qI
uqJ

u v2
u + qI

d qJ
d v2

d, xI = qI
uv2

u + qI
d v2

d .

The zero eigenvalue corresponds to the photon

(4.20)Aγ = gY

g
W3 + g2

g
AY , g =

√
g2

Y + g2
2 .

We will now assume that the UV masses MI are much larger than other mass scales as expected
in realistic orientifold vacua. Then we can treat all other parameters of the mass matrix as of
order one.

Parameterize the eigenvectors as

(4.21)ξ1W
3 + ξ2A

Y + ξIA
I

and the mas eigenvalue as m2 to obtain

(4.22)ξ1 = −g2
x · ξ

4m2 − g2v2 , ξ2 = gY
x · ξ

4m2 − g2v2 , x · ξ ≡
3∑

I=1

xI ξI ,

(4.23)g2 x · ξ
4m2 − g2v2 xI + 4

(
1
2
M2

I − m2
)

ξI + NIJ ξJ = 0.

There is an extra non-zero eigenvalue which is of order one, corresponding to the Z gauge boson:

(4.24)Z = ξ1W
3 + ξ2A

Y + ξIA
I

with

(4.25)ξ1 = g2

g
+O

(
M−2

I

)
, ξ2 = −gY

g
+O

(
M−2

I

)
,
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(4.26)ξI = g

2
ϵI +O

(
M−4

I

)

and a mass

(4.27)m2
Z = m2

Z0 − g2

8

∑

I

ϵI xI +O
(
M−4

I

)
, m2

Z0 = 1
4
g2v2

with m2
Z0 the SM value of the neutral gauge boson mass and

(4.28)ϵI = xI

M2
I

small parameters.
The other eigenvalues are of order MI

(4.29)
(
mI

Z′
)2 = 1

2
M2

I + 1
4
NII

and correspond to the eigenstates

(4.30)Z′
I = AI − ϵI

1
2

(
g2W

3 − gY AY
)
+

∑

J ̸=I

NIJ

2(M2
I − M2

J )
AJ +O

(
M−4

I

)
,

where we have assumed that |M2
J − M2

I | ≫ v2 so that the perturbation theory is non-degenerate.
Here and in the following analysis we will assume that the smallness of the corrections originat-
ing from new physics is exclusively due to the large value of MI , in other words we will avoid
the “accidental” xI = 0 and NIJ = 0 regions of the parameter space. Notice that then NIJ are
expected to be of the same order of magnitude as xI . We can now read off the rotation matrix:

(4.31)

(
Aγ

Z

Z′
I

)

= OA

(
W3
AY

AI

)

,

where

(4.32)OA =

⎛

⎝
gY
g

g2
g 0I

g2
g − gY

g
g
2 ϵI

− g2
2 ϵI

gY
2 ϵI XIJ

⎞

⎠ ,

(4.33)XIJ = δIJ +
∑

I ̸=J

NIJ

2(M2
I − M2

J )
.

The decoupling limit can be studied in terms of the parameters ϵI . In order to identify the
modifications introduced by the new model on the masses of the W and Z bosons and to the
Standard Model ρ parameter we recall that in any 2-Higgs doublet extensions of the Standard
Model the kinetic terms for the W± and Z gauge bosons are given by

(4.34)Lkin = g2
2

4 cos2 θW
v2Z0

µZ0µ + g2
2

4
v2W+µW−

µ + g2
2

4
v2W−µW+

µ

which bring in the identifications

(4.35)m2
W = g2

2

4
v2, m2

Z0 = g2
2

4 cos2 θW
v2.
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We can now compute the tree-level corrections to the ρ parameter, which are given by

(4.36)ρ = m2
Wg2

m2
Zg2

2

= 1 + 1
2

∑

I

ϵI
xI

v2 + O
(
M−4

I

)
.

Using the experimental fact that the deviation of the ρ parameter from unity should be # 2 ×
10−4, we can obtain constraints on the UV parameters of the theory which should be understood
as an approximate lower bound on the Z′

I gauge boson’s mass and consequently on the string
scale Mstr [31].

The small ϵI limit can be also studied directly in the mixing matrix which however yields
typically similar, but weaker constraints than the ones derived from the ρ parameter.

4.2. The Higgs masses

The physical Higgs and axion masses can be found by inserting Eq. (4.4) into the scalar
potential Eq. (4.1), collecting the quadratic terms and then diagonalizing.

We extract the quadratic part Vq(H) of VPQ, which is given by

Vq(H) =
(
H−

u ,H−
d

)
M1

(
H+

u

H+
d

)
+

(
ReHu

0,ReHd
0)M2

(
ReHu

0

ReHd
0

)

(4.37)+
(
ImHu

0, ImHd
0)M3

(
ImHu

0

ImHd
0

)
.

A direct computation shows that M3 ≡ 0. One of the linear combinations of ImHu
0 and ImHd

0

is a massless physical Higgs field called A0, and the orthogonal linear combination, G0, is a NG
boson. In the other sectors we obtain

(4.38)M1 = 4λ′
udv2

(
cos2 β − sinβ cosβ

− sinβ cosβ sin2 β

)
,

and

(4.39)M2 = 8v2
(

λuu sin2 β −λud sinβ cosβ

−λud sinβ cosβ λdd cos2 β

)
.

The rotation matrix in the charged sector is

(4.40)
(

H+
u

H+
d

)
=

(
sinβ − cosβ

cosβ sinβ

)(
G+

H+

)

and the mass of the physical charged Higgs H+ is given by

(4.41)m2
H+ = 4λ′

udv2.

The other state in the mass eigenstate basis G+ is a NG-boson. In the CP-even neutral sector, the
rotation to the mass-diagonal basis is given by

(4.42)
(

ReHu
0

ReHd
0

)
=

(
sinα − cosα

cosα sinα

)(
h0

H0

)
,

where the rotation angle is

(4.43)cosα = 1√
a2 + 1

,
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and

(4.44)a = 1
8λud sin 2β

(
m2

H 0

v2 − 16λuu sin2 β

)
= −8λud sin 2β

(
m2

h0

v2 − 16λuu sin2 β

)−1

.

We have expressed a in terms of the two mass eigenvalues mh0 < mH 0 of the two neutral physical
Higgs fields h0 (lighter) and H0 (heavier)

m2
h0 = 8v2 cos2 β

[(
λuu −K(β)

)
tan2 β + λuu

]
,

(4.45)m2
H 0 = 8v2 cos2 β

[(
λuu +K(β)

)
tan2 β + λuu

]
,

with

(4.46)K(β) =
[
λ2

uu tan4 β + (4λud − 2λuuλdd) tan2 β + λ2
dd

]1/2
.

We do not get any NG-bosons from this sector.
In summary, in the Higgs sector there are four massive physical Higgs fields, one massless

physical Higgs field and 3 NG-bosons, two from the charged sector and one from the CP-odd
sector. The axion sector leaves an additional 3 Goldstone modes. Since a state with the properties
of A0 is phenomenologically unacceptable, we postpone a thorough discussion of the scalar
spectrum and NG-bosons until Sections 4.3 and 4.4 where we will modify the model in such a
way so that the presently massless physical Higgs field gets a mass from a more general potential.

4.3. Higgs-axion mixing and NG-bosons

From the third and fourth lines of Eq. (3.1) and more specifically from the parts linear in
the partial derivatives, we can extract the linear combinations of fields that are physical and the
linear combinations that are NG-bosons. A new feature with respect to conventional extensions
of the SM is the mixing of the axions with the fields appearing in the Higgs sector. It is important
therefore to describe the unitary gauge of this model in detail. The results from this analysis will
be useful also in the gauge fixing process.

We do a naive counting to see what we can expect: There are 8 real Higgs scalar degrees of
freedom and 3 axions, for a total of 11 degrees of freedom. There are two different symmetry
breaking mechanisms taking place in these models. One is the UV Stückelberg mechanism which
breaks 3 local symmetries down to their global subgroups. Recall that in the class of models under
consideration where MI

l = 0 for I ! 4 the Stückelberg mechanism does not affect hypercharge
and therefore it can break only up to 3 symmetries. Thus we expect to find at least an equal
number of NG bosons associated with the broken generators. In fact, in the absence of a mixing
of the axions with the Higgs fields the identification of these NG bosons would be very simple.
To see why, recall that in order to identify NG bosons one looks for unphysical couplings in the
action that, after expanding the fields away from their vacuum values and keeping terms linear
in the fluctuations, trigger a tree level transformation of a gauge field into a scalar field. Then a
generic such term linear in the derivative can be always written as

(4.47)CAµ(∂µG),

where Aµ is some gauge boson, C is a constant with dimension of mass and G is the NG boson.
On the other hand, the cross term from the Stückelberg coupling in the mass diagonal basis has
the form

(4.48)mAµ(∂µa),
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where m is a mass and a is one of the axions. Comparing these two expressions immediately
identifies a as a NG-boson. In some sense this is not unexpected in view of the fact that, as
we have seen, the axions transform under a gauge transformation by a shift, a signature of NG-
bosons.

In the presence of an Higgs-axion mixing the identification is more involved. This happens
when there are axion corrections to the Higgs potential. The Higgs potential will break as many
generators as in the SM, one linear combination of hypercharge and W3 and W± for a total of
3 generators. In addition, when the Higgs fields are charged also under some of the other U(1)s
they can break them spontaneously too which means that there will be additional contributions
to Eq. (4.48) from the Higgs kinetic terms. Then there is Higgs-axion mixing and some linear
combinations will be NG-bosons and some others physical fields.

In any case, the vacuum should break 3 + 3 = 6 generators, corresponding to the symmetry
breaking pattern

(4.49)SU(2)L × G′
1 → U(1)γ .

Thus, we expect 5 real physical fields to appear and corresponding to the 6 broken generators
we expect to find in total 6 NG-bosons. Even though we did our counting for the case of 3
extra U(1)s, it would be straightforward to generalize it for arbitrary Ns (as for any of the other
formulas shown here for Ns = 4).

We now apply these general arguments to our model. Defining

(4.50)Ca
1µ = −H+∗

a

(
∂µH+

a

)
+ H+

a

(
∂µH+∗

a

)
+ H 0∗

a

(
∂µH 0

a

)
− H 0

a

(
∂µH 0∗

a

)
, a = u,d,

(4.51)Ca
2µ = −H+∗

a

(
∂µH+

a

)
+ H+

a

(
∂µH+∗

a

)
− H 0

a
∗(

∂µH 0
a

)
+ H 0

a

(
∂µH 0∗

a

)
, a = u,d,

(4.52)Ca
−µ = H 0

a

(
∂µH+∗

a

)
− H+∗

a

(
∂µH 0

a

)
, Ca

+µ = Ca
−µ

∗, a = u,d

the terms contained in the Higgs kinetic terms linear in the derivatives can be written as

− i

2

(
g2W

+ ·
(
Cu

− + Cd
−
)
− g2W

− ·
(
Cu

+ + Cd
+
)
+ g2W

3 ·
(
Cu

1 + Cd
1
)

(4.53)+ gY AY ·
(
Cu

2 + Cd
2
)
+

∑

I

[
gIA

I
(
qI
uCu

2 + qI
d Cd

2
)
− 2igIMIAI · (∂a′

I )
])

,

where in the terms proportional to MI we have put back the factor of gI .
Let us first look at the charged terms. They can be written as

(4.54)− i

2

(
g2W

+µv∂µG− − g2W
−µv∂µG+)

,

where

(4.55)G− = sinβH+
u

∗ + cosβH+
d

∗
, G+ = (G−)∗.

The above definition is consistent with the rotation Eq. (4.40) that transforms to the basis where
the G± are massless. Two NG bosons gave been accounted for (G+ and G−) and therefore we
expect to find the other 4 NG bosons in the neutral sector.
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Using Eq. (4.31) we can bring Eq. (4.53) into the form

− i

2
Aγ ·

{
g2O

A
γW3

(
Cu

1 + Cd
1
)
+ gY OA

γY

(
Cu

2 + Cd
2
)}

− i

2
Z ·

{
g2O

A
ZW3

(
Cu

1 + Cd
1
)
+ gY OA

ZY

(
Cu

2 + Cd
2
)

+
∑

I

[
gIO

A
ZI

(
qI
uCu

2 + qI
dCd

2
)
− 2igIMIO

A
ZIA

µ
I (∂µa′

I )
]}

− i

2

∑

J

Z′
J ·

{
g2O

A
Z′

J W3

(
Cu

1 + Cd
1
)
+ gY OA

Z′
I Y

(
Cu

2 + Cd
2
)

(4.56)+
∑

I

[
gIO

A
Z′

J I

(
qI
uCu

2 + qI
dCd

2
)
− 2igIMIO

A
Z′

J I
A

µ
I (∂µa′

I )
]}

.

Notice now that when we expand the Higgs away from its vacuum value and keep terms linear
in the fluctuations we find that the coefficient of Aγ vanishes identically and

(4.57)Ca
2µ = −Ca

1µ = 2i Im
[
va

(
∂µH 0∗

a

)]
≡ 2i∂µCa, Ca = va ImH 0

a , a = u,d.

We can then rewrite Eq. (4.56) as

Zµ∂µ

{
fuC

u + fdCd +
∑

I

gIMIO
A
ZI a

′
I

}

(4.58)+
∑

J

Z′
J

µ
∂µ

{
fu,J Cu + fd,J Cd +

∑

I

gIMIO
A
Z′

J I
a′
I

}
,

where

fu = g2O
A
ZW3

− gY OA
ZY −

∑

I

qI
ugIO

A
ZI ,

fd = g2O
A
ZW3

− gY OA
ZY −

∑

I

qI
d gIO

A
ZI ,

fu,J = g2O
A
Z′

J W3
− gY OA

Z′
J Y

−
∑

I

qI
ugIO

A
Z′

J I
,

(4.59)fd,J = g2O
A
Z′

J W3
− gY OA

Z′
J Y

−
∑

I

qI
d gIO

A
Z′

J I
.

By means of the orthogonal rotation

(4.60)

⎛

⎜⎜⎜⎜⎝

ImH 0
u

ImH 0
d

·
a′
I
·

⎞

⎟⎟⎟⎟⎠
= Oχ

⎛

⎜⎜⎜⎝

χ

G0
1

G0
2
·
·

⎞

⎟⎟⎟⎠

with Oχ an 5-dimensional orthogonal matrix, we can transform to the mass eigenstate basis. We
have denoted the physical field by χ and the 4 NG-bosons by G0

1,...,4. Then, Eq. (4.58) becomes
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Zµ∂µ

{
χ

[
fuvuO

χ
11 + fdvdO

χ
21 +

∑

I

gIMIO
A
ZIO

χ
I+2,1

]
+ mZ0GZ

}

(4.61)

+
∑

J

Z′
J

µ∂µ

{
χ

[
fu,J vuO

χ
11 + fd,J vdO

χ
21 +

∑

I

gIMIO
A
Z′

J I
O

χ
I+2,1

]
+ mZ′

J
GZ′

J

}
,

where

(4.62)

GZ = G0
1

[
fu

vu

mZ0
O

χ
12 + fd

vd

mZ0
O

χ
22 +

∑

I

gI
MI

mZ0
OA

ZIO
χ
I+2,2

]

+ · · ·

+ G0
4

[
fu

vu

mZ0
O

χ
1,5 + fd

vd

mZ0
O

χ
2,5 +

∑

I

gI
MI

mZ0
OA

ZIO
χ
I+2,Ns+1

]
,

(4.63)

GZ′
J = G0

1

[
fu,J

vu

mZ′
J

O
χ
12 + fd,J

vd

mZ′
J

O
χ
22 +

∑

I

gI
MI

mZ′
J

OA
Z′

J I
O

χ
I+2,2

]

+ · · ·

+ G0
4

[
fu,J

vu

mZ′
J

O
χ
1,Ns+1 + fd,J

vd

mZ′
J

O
χ
2,5 +

∑

I

gI
MI

mZ′
J

OA
Z′

J I
O

χ
I+2,5

]
.

Let us try to elucidate a bit these apparently complicated expressions. The simplest example is
the case of the potential VPQ of Eq. (4.1) where the axions do not couple to the Higgs fields,
which translates into applying Eq. (4.60) with all but the upper left two by two sub-matrix of Oχ

set to zero:

(4.64)
(

ImH 0
u

ImH 0
d

)
= O

χ
2

(
A0

G0

)
.

In the above we have added a subscript to the rotation matrix in order to emphasize its dimension
and called the physical mass eigenstate A0 (as in the MSSM) instead of χ , a term reserved for
fields with axion-like couplings. From Eq. (4.64) it is clear that since in VPQ the Higgs fields do
not mix with axions the physical state in the CP-odd sector does not acquire an axion coupling.
Furthermore, since the mass matrix in the CP-odd sector M3 is identically zero not only the NG-
boson G0 but also A0 remains massless. On the other hand, according to our general discussion,
from the axion sector all a′

I = G0
I are (3) massless Goldstone modes. The total number of fields

is then 5 physical Higgs fields (four massive and one massless) and 6 NG-bosons taking into
account also the 2 NG modes from the charged sector.

For the potential VPQ + V/P/Q in Eq. (4.73) of the next section the situation is quite different.
The fields G0

1, . . . ,G
0
4 will turn out to be massless accounting for that many NG bosons and the

field χ will turn out to be a massive physical field with an axion coupling because of the mixing
of the D-brane basis axions with the CP-odd Higgs sector. Again, the counting is 5 physical
fields, four Higgs and one axion (all five massive) and 6 NG-bosons.

The expression Eq. (4.61) contains unphysical couplings. Requiring that the gauge fields mix
only with NG-bosons, introduces the constraints

fuvuO
χ
11 + fdvdO

χ
21 +

∑

I

gIMIO
A
ZIO

χ
I+2,1 = 0,
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(4.65)fu,J vuO
χ
11 + fd,J vdO

χ
21 +

∑

I

gIMIO
A
Z′

J I
O

χ
I+2,1 = 0.

These have the simple solution

(4.66)O
χ
11 = −N cosβ, O

χ
21 = N sinβ,

(4.67)O
χ
I+2,1 = −qI

u − qI
d

2
v

MI
N sin 2β ≡ ΘI

normalized as

(4.68)N = 1
√

1 + v2 sin2 2β
4

∑
I

( qI
u−qI

d
MI

)2
.

Eqs. (4.66) and (4.67) represent the first column of Oχ which is an SO(5) matrix with 10 in-
dependent rotation angles. Having fixed its first column (which is essentially a consequence of
the fact that there is one physical linear combination) leaves a freedom of SO(4) rotations on the
vacuum manifold. The number of NG bosons is therefore

(4.69)dim
SO(5)

SO(4)
= 4,

corresponding to the 4 rotation angles parameterizing the vacuum manifold S4, as expected.
We will present the rotation matrix in its full form when we encounter it again while we are
discussing the Higgs and axion masses in the next section where we will extract the rotation
matrix Oχ from the full Higgs potential. Of course, the two methods give the same result which
means in particular that if we had computed the rotation matrix first and then the mixings between
χ and the Z-bosons, we would have found them to be all identically zero.

Evidently, the charged and CP-odd parts of the original Higgs kinetic terms together with the
gauge boson mass terms contained in Eq. (4.10) can be written in this new basis as

(
∂G+ − imWW+)(

∂G− + imWW−)

(4.70)+ (∂χ)2 +
(
∂GZ + mZ0Z

)2 +
∑

I

(
∂GZ′

I + mZ′
I
Z′

I

)2
,

a form that clearly suggests that indeed the G±, GZ and GZ′
I are the 6 NG bosons we are after.

4.4. Higgs-axion mixing in the potential

The potential VPQ does not give a mass to one of the scalars. In order to avoid this, one must
take into account new types of contributions to the scalar potential, where not only the Higgs
fields enter but also the axion fields aI which transform under U(1) transformations as (see
Eq. (3.37))

(4.71)a′
I → a′

I − MI ϵ
′
I .

The gauge invariant Higgs potential is then

(4.72)

VPQ =
∑

a=u,d

(
µ2

aH
†
a Ha + λaa

(
H †

a Ha

)2) − 2λud

(
H †

uHu

)(
H

†
d Hd

)
+ 2λ′

ud

∣∣HT
u τ2Hd

∣∣2
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as before, plus the new terms

V/P/Q = b
(
H †

uHde
−i

∑
I (qI

u−qI
d )

a′
I

MI
)
+ λ1

(
H †

uHde
−i

∑
I (qI

u−qI
d )

a′
I

MI
)2

+ λ2
(
H †

uHu

)(
H †

uHde
−i

∑
I (qI

u−qI
d )

a′
I

MI
)

(4.73)+ λ3
(
H

†
d Hd

)(
H †

uHde
−i

∑
I (qI

u−qI
d )

a′
I

MI
)
+ c.c.

In the above, b has dimension of mass squared and λ1,2,3 are dimensionless. As before, we can set
H+

u = 0 at the minimum by an SU(2) rotation and then consistency requires that also H+
d = 0 at

the minimum. To avoid a stable vacum with unbroken electroweak symmetry, the (MSSM-like)
condition

(4.74)µ2
uµ

2
d " b2

must hold. Contribution of terms proportional to λ1,2,3 do not appear in this condition since
they all correspond to terms that mix neutral and charged components of the Higgs fields. The
potential, around the correct vacum, is non-negative definite when

µ2
uv

2
u + µ2

dv2
d + λuuv

4
u + λddv4

d − 2λudv2
uv

2
d + 2bvuvd

(4.75)+ 2v2
uv

2
d(λ1 + λ2 tanβ + λ3 cotβ) ! 0.

This is a necessary condition so that the potential is bounded from below. The vevs Eq. (4.7) still
minimize VPQ + V/P/Q if

µ2
u = −b

vd

vu
− 2λuuv

2
u + 2λudv2

d − 2λ1v
2
d − 3λ2vuvd − λ3

v3
d

vu
,

(4.76)µ2
d = −b

vu

vd
− 2λddv2

d + 2λudv2
u − 2λ1v

2
u − λ2

v3
u

vd
− 3λ3vuvd

and consistency of the minimum of the potential requires that the couplings bµ,λ1,2,3 are all
real. Furthermore, Eqs. (4.75) and (4.76) are compatible when

(4.77)µ2
uv

2
u + µ2

dv2
d ! −2bvuvd .

Finally, the parameter range of the couplings should be such that Eq. (4.77) is consistent also
with Eq. (4.74).

One should not forget that these statements about the minimum of the potential are tree level
statements. At 1-loop the potential will change and in general one has to do the minimization
from the beginning and make sure that the chosen Higgs vacuum expectation values still cor-
respond to a stable minimum that can break the electroweak symmetry in the desired way. It is
possible that there exists an energy regime where the 1-loop correction to the effective potential
is negligible (as it is the case in the MSSM) and then the tree level results can be still trusted. In
this paper however we restrict ourselves to the tree level analysis.

In order to find the masses of the physical Higgs fields we have to expand VPQ + V/P/Q away
from Eq. (4.7) and collect the terms quadratic in the fields. Our discussion here is similar to that
of Section 4 with the obvious modifications.
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The quadratic sector is given by

Vq(H) + V ′
q(H,a′

I ) =
(
H−

u ,H−
d

)
N1

(
H+

u

H+
d

)
+

(
ReHu

0,ReHd
0)N2

(
ReHu

0

ReHd
0

)

(4.78)+
(
ImHu

0, ImHd
0, a′

I

)
N3

( ImHu
0

ImHd
0

a′
I

)

.

In the charged sector, the mass matrix elements are

N1(1,1) = −2 cotβ
(
λ3 cos2 β + (λ1 − λ′

ud) sin 2β + λ2 sin2 β
)
v2 − 2b cotβ,

N1(1,2) = 2
(
λ3 cos2 β + (λ1 − λ′

ud) sin 2β + λ2 sin2 β
)
v2 + 2b,

(4.79)N1(2,2) = −2
(
λ3 cos2 β + (λ1 − λ′

ud) sin 2β + λ2 sin2 β
)
v2 tanβ − 2b tanβ,

and we find a zero eigenvalue, corresponding to the goldstone mode G+ and the non-zero eigen-
value

(4.80)m2
H+ = 4λ′

udv2 − 2
(

2b

v2 sin 2β
+ 2λ1 + tanβλ2 + cotβλ3

)
v2

corresponding to the charged Higgs mass. The rotation matrix into the physical eigenstates is

(4.81)
(

H+
u

H+
d

)
=

(
sinβ − cosβ

cosβ sinβ

)(
G+

H+

)
,

consistent with Eq. (4.55).
In the neutral sector both a CP-even and a CP-odd sector are present. The CP-even sector is

described by N2. The mass matrix in the CP-even sector is given by

N2(1,1) = −2
(

−4v2λuu sin2 β + v2λ3 cos2 β cotβ − 3
2
v2λ2 sin 2β + b cotβ

)
,

N2(1,2) = 2
(
3v2λ3 cos2 β + 3v2λ2 sin2 β + 2v2λ1 sin 2β − 2v2λud sin 2β + b

)
,

(4.82)N2(2,2) = −2 secβ
(
−4λddv2 cos3 β − 3λ3v

2 sinβ cos2 β + λ2v
2 sin3 β + b sinβ

)

and can be diagonalized by an appropriate rotation matrix in terms of CP-even mass eigenstates
(h0,H 0) as

(4.83)
(

ReHu
0

ReHd
0

)
=

(
sinα − cosα

cosα sinα

)(
h0

H 0

)
,

with

(4.84)tanα = N2(1,1) −N2(2,2) −
√

∆

2N2(1,2)

and

(4.85)∆ =
(
N2(1,1)

)2 − 2N2(2,2)N2(1,1) + 4
(
N2(1,2)

)2 +
(
N2(2,2)

)2
.

The eigenvalues corresponding to the physical neutral Higgs fields are given by
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m2
h0 = 1

2

(
N2(1,1) +N2(2,2) −

√
∆

)
,

(4.86)m2
H 0 = 1

2

(
N2(1,1) +N2(2,2) +

√
∆

)
.

The lighter of the two, h0, is the state which is expected to be the one that corresponds to the
Standard Model Higgs field.

Finally, the symmetric matrix describing the mixing of the CP-odd Higgs sector with the axion
fields a′

I reads

N3 = −1
2
vuvdcχ ′

(4.87)

×

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cotβ −1 vd
q1
u−q1

d
M1

vd
q2
u−q2

d
M2

vd
q3
u−q3

d
M3

−1 tanβ −vu
q1
u−q1

d
M1

−vu
q2
u−q2

d
M2

−vu
q3
u−q3

d
M3

vd
q1
u−q1

d
M1

−vu
q1
u−q1

d
M1

vd
q2
u−q2

d
M2

−vu
q2
u−q2

d
M2

vuvd
(qI

u−qI
d )(qJ

u −qJ
d )

MI MJ

vd
q3
u−q3

d
M3

−vu
q3
u−q3

d
M3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with

(4.88)cχ ′ = 4b

v2 sin 2β
+ 4λ1 + λ2 tanβ + λ3 cotβ.

The rotation from the interaction to the mass eigenstates in the CP-odd sector is given by
Eq. (4.60). To construct the rotation matrix we start from the matrix whose columns are the
normalized eigenvectors of M3:

(4.89)Eχ =

⎛

⎜⎜⎜⎝

−N cosβ sinβ N1Q1 N2Q2 N3Q3
N sinβ cosβ 0 0 0

NQ1 cosβ 0 N1 0 0
NQ2 cosβ 0 0 N2 0
NQ3 cosβ 0 0 0 N3

⎞

⎟⎟⎟⎠
,

where we have defined

(4.90)QI = −
(
qI
u − qI

d

) v

MI
sinβ,

N is given by Eq. (4.68) and

(4.91)NI = 1
√

1 + Q2
I

.

This is not an orthogonal matrix yet since it corresponds to 3 degenerate eigenvalues. One can
construct the orthogonal matrix Oχ by starting from the first two columns which are already
orthonormal and apply the Gram–Schmidt orthogonalization method to the rest. Doing this one
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obtains the matrix

(4.92)

Oχ =

⎛

⎜⎜⎜⎝

−N cosβ sinβ N̄1Q̄1 cosβ N̄1N̄2Q̄2 cosβ N̄1N̄2N̄3Q̄3 cosβ

N sinβ cosβ −N̄1Q̄1 sinβ −N̄1N̄2Q̄2 sinβ −N̄1N̄2N̄3Q̄3 sinβ

NQ1 cosβ 0 N̄1 −N̄1N̄2Q̄1Q̄2 −N̄1N̄2N̄3Q̄1Q̄3
NQ2 cosβ 0 0 N̄2 −N̄2N̄3Q̄2Q̄3
NQ3 cosβ 0 0 0 N̄3

⎞

⎟⎟⎟⎠
,

where we defined

(4.93)Q̄1 = Q1 cosβ, Q̄2 = Q2N̄1 cosβ, Q̄3 = Q3N̄1N̄2 cosβ

and

(4.94)N̄1 = 1
√

1 + Q̄2
1

, N̄2 = 1
√

1 + Q̄2
2

, N̄3 = 1
√

1 + Q̄2
3

.

The fact that this is indeed the same as the matrix Oχ of Eq. (4.60) of the previous section is
an important self consistency check of the model. The mass matrix M3 has 4 zero eigenvalues
representing the NG-bosons that parameterize the corresponding 4-dimensional branch of the
vacuum manifold and one non-zero eigenvalue that corresponds to a physical axion field χ with
mass

(4.95)m2
χ = −1

2

[
1 +

∑

I

(
qI
u − qI

d

2
v

MI
sin 2β

)2]
cχ ′v2.

The mass of this state is positive if cχ ′ < 0.

4.5. The Green–Schwarz sector in the broken phase

The anomalous couplings computed in Section 3.2 imply in the broken phase a number of
interesting processes. After electroweak symmetry breaking some of the U(1)s get rotated to
the basis where electromagnetism is the good quantum number. In particular, the W3, Y and AI

gauge bosons become linear combinations of the physical states Aγ , Z, Z′
I , as we have seen in

detail. The rotation to the physical mass eigenstate basis is done by the 5 by 5 orthogonal matrix
OA of Eq. (4.32):

(4.96)A = OAB,

where in components

(4.97)Ap̄ =
{
Aγ ,Z,Z′

I

}
, Bp =

{
W3,A

l′}.

The rotation of the lth and W3 components then reads

(4.98)Al′ = OA
p̄l′A

p̄, W3 = OA
p̄W3

Ap̄,

with the sum over p̄ implied. In order to analyze the theory in the broken phase it is also con-
venient to separate the quadratic from the cubic and quartic terms in the product of the field
strengths of the gauge fields. We define

W±
µν ≡ 1√

2

(
W 1

µν ∓ iW 2
µν

)
= W̄±

µν ± Q̄±
µν,
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(4.99)W 3
µν = W̄ 3

µν + Q̄3
µν,

where

W̄±
µν ≡ ∂µW±

ν − ∂νW
±
µ ,

Q̄±
µν ≡ ig2

(
W 3

µW±
ν − W 3

ν W±
µ

)
,

W̄ 3
µν = ∂µW 3

ν − ∂νW
3
µ,

(4.100)Q̄3
µν = ig2

(
W+

µ W−
ν − W−

µ W+
ν

)
.

Also, as we have showed, the hypercharge basis axions must be rotated as

(4.101)a′
I = ΘIχ +

4∑

i=1

c
(I)
i G0

i ,

where ΘI and c
(I)
i are dimensionless, computable but model dependent coefficients. Putting

Eqs. (4.98) and (4.101) into Eq. (3.39), we obtain the Green–Schwarz terms in the photon eigen-
state basis

LGS = gχggχ tr{G ∧ G} +
∑

I

D′
I

4∑

i=1

c
(I)
i G0

i tr{G ∧ G}

+ gχ+−χ tr
{
W+ ∧ W−}

+
∑

I

F ′
I

4∑

i=1

c
(I)
i G0

i tr
{
W+ ∧ W−}

+ g
χ
p̄q̄χF p̄ ∧ F q̄ +

∑

I

(
F ′

IO
A
p̄W3

OA
q̄W3

+ C′
Im′n′O

A
p̄m′O

A
q̄n′

) 4∑

i=1

c
(I)
i G0

i F
p̄ ∧ F q̄

(4.102)+ gp̄q̄r̄ϵ
µνρσ Ap̄

µAq̄
νF r̄

ρσ ,

where we have separated the physical couplings

gχgg =
∑

I

D′
IΘI ,

gχ+− =
∑

I

F ′
IΘI ,

g
χ
p̄q̄ =

∑

I

(
F ′

IO
A
p̄W3

OA
q̄W3

+ C′
Im′n′O

A
p̄m′O

A
q̄n′

)
ΘI ,

(4.103)gp̄q̄r̄ = El′m′n′OA
p̄l′O

A
q̄m′O

A
r̄n′ ,

from the interactions of the NG-bosons with the gauge bosons.

4.6. Gauge fixing in the broken phase

The gauge fixing functions can be straightforwardly obtained, as in the SM. The SU(3) part
of the gauge fixing terms is without any modification since the symmetry is not broken. For the
rest, we now have in the charged sector the gauge fixing functions

G+ = ∂ · W+ + i

2
g2vα+G+,
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(4.104)G− = ∂ · W− − i

2
g2vα−G−

where G± are as in (4.55) and α− = (α+)∗. In the neutral sector we have the gauge fixing
functions

Gγ = ∂ · Aγ ,

GZ = ∂ · Z + αZGZ,

(4.105)GZ′
I = ∂ · Z′

I + αZ′
I GZ′

I ,

with GZ and GZ′
I given in (4.62) and (4.63), respectively. The gauge fixing terms are then

(4.106)Lgf = 1
2αγ

GγGγ + 1√
α+α−G+G− + 1

2αZ
GZGZ +

∑

I

1

2αZ′
I

GZ′
I GZ′

I .

The SU(3) ghosts remain the same as before and for the broken part we have

Lgh =
{(

∂η∗
γ

)
· (∂ηγ ) +

(
∂η∗

+
)
· (∂η−) +

(
∂η∗

−
)
· (∂η+)

+
(
∂η∗

Z

)
· (∂ηZ) +

∑

I

(
∂η∗

Z′
I

)
·
(
∂ηZ′

I

)

(4.107)+ m2
W

(
α+η∗

+η− + α−η∗
−η+

)
+ αZm2

Zη∗
ZηZ +

∑

I

αZ′
I

(
mI

Z′
I

)2
η∗

Z′
I
ηZ′

I

}
.

In the limit α+,α−,αZ,αZ′
I → ∞ the gauge fixing conditions reduce to the unitary gauge con-

ditions

(4.108)G+,G−,GZ,GZ′
I → 0.

Indeed, one should be able to exploit the original SU(2)W ×U(1)4 gauge symmetry to transform
into a gauge where the NG-bosons vanish. Denoting by ξ+−3, ξZ and ξZ′

I the corresponding
gauge transformation parameters, we can choose them in such a way so that they act on the
gauge fields as

δW− = ∂ξ− + ξ+W 3 − ξ3W− = i

mW
∂G+,

δW+ = ∂ξ+ + ξ−W 3 − ξ3W+ = − i

mW
∂G−,

δW 3 = ∂ξ3 + 2
(
ξ+W− + ξ−W+)

= 0,

δZ = ∂ξZ = 1
mZ

∂GZ,

(4.109)δZ′
I = ∂ξZ′

I = 1
mZ′

I

∂GZ′
I .

These transformations act on the NG-bosons in such a way so that in the new basis they vanish.
It is expected that in this gauge the ghosts decouple, as in the SM. For certain computations

this is a useful gauge but in general computations are done in more practical gauges. In this work
the processes we will be interested in are simple enough so that we can perform all calculations
in the unitary gauge without any problems.
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5. Tree level decay rates and cross sections

In this section we are going to present selected tree-level decays rates that are useful on two
counts.

• They are important in order top constraint the parameters of mLSOM using current data.
• They are crucial for uncovering new physics in forthcoming colliders.

5.1. Minimal gauge interactions

The interaction of two fermions with a gauge boson can be found in the fermion kinetic terms
and more precisely in the part linear in the gauge fields.

Let us first look at the interaction terms contained in the interaction Lagrangian Lint. We will
use the hypercharge values

f Q uR dR L eR νR

qY 1/6 −2/3 1/3 −1/2 1 0

Writing the lepton doublet as

(5.1)L =
(

νLi

eLi

)

we have the terms

Lint = iL
†
i σ

µDµLi + ie
†
Ri σ̄

µDµeRi + iν
†
Ri σ̄

µDµνRi

= − (ν
†
Li e

†
Li )σµ

[
g2τ

aWa
µ + q

(L)
Y gY AY

µ +
∑

I

q
(L)
I gIA

I
µ

](
νLi

eLi

)

+ e
†
Ri σ̄

µ

[
q

(eR)
Y gY AY

µ +
∑

I

q
(eR)
I gIA

I
µ

]
eRi

(5.2)+ ν†
Ri σ̄

µ

[
q

(νR)
Y gY AY

µ +
∑

I

q
(νR)
I gIA

I
µ

]
νRi.

The interaction terms in terms of the currents are given by

Ll = −gY g2

g
Aγ

µJµ(SM)
γ − 1√

2
g2W

+
µ J

µ(SM)
− − 1√

2
g2W

−
µ J

µ(SM)
+

(5.3)− gZµJ
µ
Z −

∑

I

Z′
I µJ

µ

Z′
I
,

where the electromagnetic and charged currents are

(5.4)Jµ(SM)
γ = −

(
e

†
Liσ

µeLi + e
†
Ri σ̄

µeRi

)
,

(5.5)J
µ(SM)
+ = e

†
LjU

ν
jiσ

µνLi,

(5.6)J
µ(SM)
− = ν

†
LjU

ν†
ji σµeLi.

The latter are the same as in the Standard Model modulo the presence of the MNS matrix due to
the presence of the right handed neutrinos. In particular, Eq. (5.3) implies that the electric charge
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can be defined as

(5.7)e = gY g2

g
.

The neutral currents have, in addition to the usual Standard Model values, corrections due to the
additional U(1) structure. They can be expressed as

(5.8)J
µ
Z = CZ

νLi
ν

†
Liσ

µνLi + CZ
ϵLi

e
†
Liσ

µeLi + CZ
νRi

ν
†
Ri σ̄

µνRi + CZ
ϵRi

e
†
Ri σ̄

µeRi,

where

CZ
νLi

= 1
2

+ 1
2

∑

I

ϵI q
(L)
I gI + · · · ,

CZ
ϵLi

= g2
Y − g2

2

2g2 + 1
2

∑

I

ϵI q
(L)
I gI + · · · ,

CZ
ϵRi

= −g2
Y

g2 + 1
2

∑

I

ϵI q
(eR)
I gI + · · · ,

(5.9)CZ
νRi

= +1
2

∑

I

ϵI q
(νR)
I gI + · · · .

It is convenient to organize to lowest order the currents as follows

(5.10)J
µ
Z = J

µ(SM)
Z + 1

2

∑

I

ϵI gI J
µ(D)
Z,I ,

where we have introduced a standard model contribution (SM) and a D-brane correction (D).
The SM contribution is obtained in the MI → ∞ limit:

(5.11)J
µ(SM)
Z = J

µ

Z0 = 1
2
ν

†
Liσ

µνLi + 1
2

g2
Y − g2

2

g2 e
†
Liσ

µeLi − g2
Y

g2 e
†
Ri σ̄

µeRi

and the corrections induced by the extra gauge bosons are given by

(5.12)J
µ(D)
Z,I = q

(L)
I ν

†
Liσ

µνLi + q
(L)
I e

†
Liσ

µeLi + q
(eR)
I e

†
Ri σ̄

µeRi + q
(νR)
I ν

†
Ri σ̄

µνRi.

The currents J
µ(D)
Z,I are new interactions not predicted in the Standard Model and therefore should

put constraints on the model.
A similar computation for the JZ′

I
current gives

(5.13)J
µ

Z′
I
= C

Z′
I

νLi ν
†
Liσ

µνLi + C
Z′

I
ϵLi e

†
Liσ

µeLi + C
Z′

I
νRi ν

†
Ri σ̄

µνRi + C
Z′

I
ϵRi e

†
Ri σ̄

µeRi,

where

C
Z′

I
νLi = −1

4
g2ϵI +

∑

J

q
(L)
J gJ XJI + · · · ,

C
Z′

I
ϵLi = −1

4

(
g2

Y − g2
2
)
ϵI +

∑

J

q
(L)
J gJ XJI + · · · ,

C
Z′

I
ϵRi = g2

Y

2
ϵI +

∑

J

q
(eR)
J gJ XJI + · · · ,
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(5.14)C
Z′

I
νRi =

∑

J

q
(νR)
J gJ XJI + · · · ,

which we can express as

(5.15)J
µ

Z′
I
= gI J

µ(0)

Z′
I

+ J
µ(1)

Z′
I

+ . . . ,

where

(5.16)J
µ(0)

Z′
I

= q
(L)
I ν

†
Liσ

µνLi + q
(L)
I e

†
Liσ

µeLi + q
(eR)
I e

†
Ri σ̄

µeRi + q
(νR)
I ν

†
Ri σ̄

µνRi

and

J
µ(1)

Z′
I

=
(

−1
4
g2ϵI +

∑

J ̸=I

q
(L)
J gJ

NJI

4(M2
J − M2

I )

)
ν

†
Liσ

µνLi

+
(

−1
4

(
g2

Y − g2
2
)
ϵI +

∑

J ̸=I

q
(eR)
J gJ

NJI

4(M2
J − M2

I )

)
e

†
Liσ

µeLi

+
(

g2
Y

2
ϵI +

∑

J ̸=I

q
(eR)
J gJ

NJI

4(M2
J − M2

I )

)
e

†
Ri σ̄

µeRi

(5.17)+
(∑

J ̸=I

q
(νR)
J gJ

NJI

4(M2
J − M2

I )

)
ν

†
Ri σ̄

µνRi.

As we can see from these results, in the limit ϵI → 0, the Z′
I gauge boson interacts with a

strength which is of order of the coupling gI and can be identified with the original AI gauge
boson, modulo corrections of order v/MI . The Z couplings to the leptons tend to the usual
Standard Model coupling of the Z0.

We now turn to the Higgs-quark–quark interactions contained in the quark kinetic terms
iQ

†
Liσ

µDµQLi + iu
†
Ri σ̄

µDµuRi + id
†
Ri σ̄

µDµdRj . Writing the quark doublet as

(5.18)QLi =
(

uLi

dLi

)
,

after some algebra we find the interactions

(5.19)Lq = −gY g2

g
Aγ

µIµ(SM)
γ − 1√

2
g2W

+
µ I

µ(SM)
− − 1√

2
g2W

−
µ I

µ(SM)
+

(5.20)− gZµI
µ
Z −

∑

I

gIZ
′
I µI

µ

Z′
I
,

where the SM hadronic electromagnetic and charged currents given by

(5.21)Iµ(SM)
γ = 2

3

(
u

†
Liσ

µuLi + u
†
Ri σ̄

µuRi

)
− 1

3

(
d

†
Liσ

µdLi + d
†
Ri σ̄

µdRi

)
,

(5.22)I
µ(SM)
− = u

†
LjU

q
jiσ

µdLi,

(5.23)I
µ(SM)
+ = d

†
LjU

q†
ji σµuLi.

In Eqs. (5.22) and (5.23) we introduced in the quark mass eigenstate basis the CKM matrix which
again enters in an analogous way as in the Standard Model.
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The quarks couple to the Z-boson by the current

(5.24)I
µ
Z = CZ

uLiu
†
Liσ

µuLi + CZ
dLi

d
†
Liσ

µdLi + CZ
uRi

u
†
Ri σ̄

µuRi + CZ
dRi

d
†
Ri σ̄

µdRi,

where

CZ
uLi

= g2
2

2g2 − g2
Y

6g2 + 1
2

∑

I

ϵI q
(Q)
I gI + · · · ,

CZ
dLi

= − g2
2

2g2 − g2
Y

6g2 + 1
2

∑

I

ϵI q
(Q)
I gI + · · · ,

CZ
uRi

= −2
3

g2
Y

g2 + 1
2

∑

I

ϵI q
(uR)
I gI + · · · ,

(5.25)CZ
dRi

= g2
Y

3g2 + 1
2

∑

I

ϵI q
(dR)
I gI + · · · .

We decompose the Z current also in this case in terms of an ordinary Standard Model contribu-
tion and a second term coming from the extra contributions

(5.26)I
µ
Z = I

µ(SM)
Z + 1

2

∑

I

ϵI gI I
µ(D)
Z,I .

The SM contribution is obtained in the ϵI → 0 limit

I
µ(SM)
Z = I

µ

Z0

(5.27)=
(

g2
2

2g2 − g2
Y

6g2

)
u

†
Liσ

µuLi −
(

g2
2

2g2 + g2
Y

6g2

)
d

†
Liσ

µdLi

(5.28)− 2
3

g2
Y

g2 u
†
Ri σ̄

µuRi + 1
3

g2
Y

g2 d
†
Ri σ̄

µdRi

while the corrections induced by the extra gauge bosons at lowest order are given by

(5.29)I
µ(D)
Z,I = q

(Q)
I u

†
Liσ

µuLi + q
(Q)
I d

†
Liσ

µdLi + q
(uR)
I u

†
Ri σ̄

µuRi + q
(dR)
I d

†
Ri σ̄

µdRi.

Again, as for the lepton currents, the corrections to the SM neutral currents I
µ(D)
Z are suppressed

in the limit of large MI .
Finally, the coupling of the Z′

I gauge boson to the quarks is given by

(5.30)I
µ

Z′
I
= C

Z′
I

uLiu
†
Liσ

µuLi + C
Z′

I
dLi

d
†
Liσ

µdLi + C
Z′

I
uRi u

†
Ri σ̄

µuRi + C
Z′

I
dRi

d
†
Ri σ̄

µdRi,

where

C
Z′

I
uLi = −1

4

(
g2

2 − 1
3
g2

Y

)
ϵI +

∑

J

q
(Q)
J gJ XJI + · · · ,

C
Z′

I
dLi

= 1
4

(
g2

2 + 1
3
g2

Y

)
ϵI +

∑

J

q
(Q)
J gJ XJI + · · · ,

C
Z′

I
uRi = −1

3
g2

Y ϵI +
∑

J

q
(uR)
J gJ XJI + . . . ,
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(5.31)C
Z′

I
dRi

= 1
6
g2

Y ϵI +
∑

J

q
(dR)
J gJ XJI + · · · .

As in the leptonic coupling of the Z′
I also in this case we split the quark current writing

(5.32)I
µ

Z′
I
= gI I

µ(0)

Z′
I

+ I
µ(1)

Z′
I

with

(5.33)I
µ(0)

Z′
I

= q
(Q)
I u

†
Liσ

µuLi + q
(Q)
I d

†
Liσ

µdLi + q
(uR)
I u

†
Ri σ̄

µuRi + q
(dR)
I d

†
Ri σ̄

µdRi

and

I
µ(1)

Z′
I

=
(

−1
4

(
g2

2 − 1
3
g2

Y

)
ϵI +

∑

J ̸=I

q
(Q)
J gJ

NJI

4(M2
J − M2

I )

)
u

†
Liσ

µuLi

+
(

1
4

(
g2

2 + 1
3
g2

Y

)
ϵI +

∑

J ̸=I

q
(Q)
J gJ

NJI

4(M2
J − M2

I )

)
d

†
Liσ

µdLi

+
(

−1
3
g2

Y ϵI +
∑

J ̸=I

q
(uR)
J gJ

NJI

4(M2
J − M2

I )

)
u

†
Ri σ̄

µuRi

(5.34)+
(

1
6
g2

Y ϵI +
∑

J ̸=I

q
(dR)
J gJ

NJI

4(M2
J − M2

I )

)
d†
Ri σ̄

µdRi.

Having the explicit form for the currents and the couplings, one can derive easily certain tree
level decay rates and cross sections. Since the charge currents are the same as in the Standard
Model, the tree level decay rates of the W s do not get any new contributions. On the other hand
the neutral currents associated with the remaining gauge bosons receive (small) corrections with
respect to their Standard Model values, so we expect to have comparable corrections to the tree
level Standard Model decay rates of the Z0. Here we will provide a rather general analysis of
the main decays of the Z and Z′

I gauge bosons into leptons and quarks and then we will present
predictions for the Drell–Yan cross sections. We will also compare at a quantitative level the pre-
dictions coming from the D-brane model with other models containing, for instance, sequential
U(1)s, with charge assignments different from the ones we discuss here.

We present a few examples of some possible phenomenological interest. For future conve-
nience and for a direct comparison with the literature on the Standard Model, we rewrite here
the interaction Lagrangian of quarks and leptons with the neutral gauge bosons Z and Z′

I in
4-component form. We obtain for the leptons

Ll = eēiγ
µei − g2

2
√

2
W+ējγ

µ(1 − γ5)νiUν
ji − g2

2
√

2
W−ν̄jγ

µ(1 − γ5)eiUν†
ji

− g2

2 cos θW
Zµν̄i

(
gν−Z

V γ µ − gν−Z
A γ µγ 5)νi

− g2

2 cos θW
Zµēi

(
ge−Z

V γ µ − ge−Z
A γ µγ 5)ei

(5.35)
− gIZ

′
I
µ
ν̄i

(
g

ν−Z′
I

V γ µ − g
ν−Z′

I
A γ µγ 5)νi − gIZ

′
I
µ
ēi

(
g

e−Z′
I

V γ µ − g
e−Z′

I
A γ µγ 5)ei
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and

Lq = −e

(
2
3
ūiγ

µui − 1
3
d̄iγ

µdi

)
Aµ

− g2

2
√

2
W+ūjγ

µ(1 − γ5)diUq
ji − g2

2
√

2
W−d̄jγ

µ(1 − γ5)uiUq†
ji

− g2

2 cos θW
Zµūi

(
gu−Z

V γ µ − gu−Z
A γ µγ 5)ui

− g2

2 cos θW
Zµd̄i

(
gd−Z

V γ µ − gd−Z
A γ µγ 5)di

− gIZ
′
I
µ
ūi

(
g

u−Z′
I

V γ µ − g
u−Z′

I
A γ µγ 5)ui

(5.36)− gIZ
′
I
µ
d̄i

(
g

d−Z′
I

V γ µ − g
d−Z′

i
A γ µγ 5)di,

for the quark interaction. We recall that the Standard Model result for the neutral currents

(5.37)LZ0 = − g2

2 cos θW
Z0

µψ̄f

(
g

f −Z0

V γ µ − gA
f −Z0

γµγ5
)
ψf

where

(5.38)g
f −Z0

V = T
(f )
w3 − 2 sin2 θWQ

(f )
EM, g

f −Z0

A = T
(f )
w3

and g2/ cos θW = g, is now generalized to include corrections of first order in v/MI . We obtain
for the coupling of the Z gauge boson to the leptons

gν−Z
V = 1

2

(
CZ

νLi
+ CZ

νRi

)
, gν−Z

A = 1
2

(
CZ

νLi
− CZ

νRi

)
,

(5.39)ge−Z
V = 1

2

(
CZ

eLi
+ CZ

eRi

)
, ge−Z

A = 1
2

(
CZ

eLi
− CZ

eRi

)
,

while the Z′
I couple as

g
ν−Z′

I
V = 1

2

(
C

Z′
I

νLi + C
Z′

I
νRi

)
, g

ν−Z′
I

A = 1
2

(
C

Z′
I

νLi − C
Z′

I
νRi

)
,

(5.40)g
e−Z′

I
V = 1

2

(
C

Z′
I

eLi + C
Z′

I
eRi

)
, g

e−Z′
I

A = 1
2

(
C

Z′
I

eLi − C
Z′

I
eRi

)
.

For the coupling of the quarks to the Z boson we obtain

gu−Z
V = 1

2

(
CZ

uLi
+ CZ

uRi

)
, gu−Z

A = 1
2

(
CZ

uLi
− CZ

uRi

)
,

(5.41)gd−Z
V = 1

2

(
CZ

dLi
+ CZ

dRi

)
, gd−Z

A = 1
2

(
CZ

dLi
− CZ

dRi

)

and the corresponding coupling of the Z′
I are

g
u−Z′

I
V = 1

2

(
CZ

uLi
+ CZ

uRi

)
, g

u−Z′
I

A = 1
2

(
C

Z′
I

uLi + C
Z′

I
uRi

)
,

(5.42)g
d−Z′

I
V = 1

2

(
C

Z′
I

dLi
+ C

Z′
I

dRi

)
, g

d−Z′
I

A = 1
2

(
C

Z′
I

dLi
+ C

Z′
I

dRi

)
.
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5.2. Z and Z′
I decays into fermions

In the case of the decay of the neutral gauge boson Z into leptons we obtain in the massless
limit

(5.43)Γ (Z → ll̄) = g2
2mZ

48π cos2 θW

((
gl−Z

A

)2 +
(
gl−Z

V

)2)

and for its decay into massive (mq) quarks

Γ (Z → qq̄) = g2
2mZ

48π cos2 θW

((
g

q−Z
A

)2 +
(
g

q−Z
V

)2 + 2
m2

q

m2
Z

((
g

q−Z′
I

A

)2 − 2
(
g

q−Z′
I

V

)2)
)

(5.44)×
(

1 − 4
m2

q

m2
Z

)1/2

.

Similar results hold for the Z′
I gauge boson

(5.45)Γ (Z′
I → ll̄) =

g2
PQmZ′

I

12π

((
g

l−Z′
I

A

)2 +
(
g

l−Z′
I

V

)2)

and for its decay into massive (mq) quarks

Γ (Z′
I → qq̄) =

g2
PQmZ′

I

12π

((
g

q−Z′
I

A

)2 +
(
g

q−Z′
I

V

)2 + 2
m2

q

m2
Z′

I

((
g

q−Z′
I

A

)2 − 2
(
g

q−Z′
I

V

)2)
)

(5.46)×
(

1 − 4
m2

q

m2
Z′

I

)1/2

.

5.3. The Drell–Yan cross section

In e+e− annihilations and in pp collisions there are some standard signatures for the new
gauge interactions which can be tested against the Standard Model background, as we are going
to discuss below. For simplicity we consider the case where only one of the Z′

I gauge bosons is
relevant in the spectrum, being the heavier contributions suppressed.

The contribution of the 3 diagrams in the computation of the Drell–Yan cross section near
the resonances is summarized here. There are three diagrams containing an s-channel gauge bo-
son, respectively the photon γ , the gauge boson Z and the gauge boson Z′—the corresponding
squared amplitudes are denoted by Aγ , AZ and AZ′ respectively—plus there are their interfer-
ences (Aγ−Z,Aγ−Z′ ,AZ−Z′). At amplitude level we have

(5.47)M = J
q
γ J

f
γ

s
+ J

q
ZJ

f
Z

s + m2
Z − i ImΠ

1-loop
ZZ (s)

+ J
q
Z′J

f
Z′

s + m2
Z′ − i ImΠ

1-loop
Z′Z′ (s)

where f here denotes a generation of leptons and we approximate the width with the imaginary
part of the 1 loop self-energies Π(s) defined by

mZΓZ = ImΠ
1-loop
ZZ

(
s = m2

Z

)

(5.48)=
∑

q

ΓZ(Z → qq̄) × 3
(

1 + αs(m
2
Z)

π

)
+

∑

l

ΓZ

(
Z → l+l−

)



120 C. Corianò et al. / Nuclear Physics B 746 (2006) 77–135

and with a similar expression for the Z′. The decay rates appearing in (5.48) are those computed
in (5.44) and (5.43) or (5.46) and (5.45) for the Z′ case. We have included a correction factor
3(1 + αs/π) in the contribution of the quarks.

The position of the two massive resonances is sensitive to the ratio v/M and to the other
parameters of the theory, most notably gPQ. To simplify the notation here we denote by e, gZ

and g′
Z the three coupling constants of the photon, the Z and the Z′ gauge bosons. We let p1

and p2 be the momenta of the qq̄ pair, while k1 and k2 are those of the final state fermions
(leptons). P1 and P2 are the momenta of the two incoming protons which in the collinear limit
are expressed in terms of the two Björken variables x1 and x2: p1 = x1P1 and p2 = x2P2. We
also define s = x1x2S to be the total energy of the initial partons. At parton level we define
t1 = (p1 − k1)

2 and u1 = (p2 − k1)
2, with s + t1 + u1 = 0. The partonic contributions to the

cross section are given by

σ̂ = 1
8Ncsπ2

∫
d4k δ+

(
k2)δ+(s + t1 + u1)|M|2

= 1
32πsNc

∫
d cos θ |M|2

(5.49)= 1
16πs2Nc

∫
dt1 |M|2.

A factor 1/Nc has been introduced for color average and with |M|2 being the partonic matrix
element given by

(5.50)|M|2 = Aγ + AZ + AZ′a + Aγ−Z + Aγ−Z′ + AZ−Z′ .

The diagram with the photon exchange gives

(5.51)|Aγ |2 = 8
e4

s

(
t2
1 + u2

1
)

while the Z gives

|AZ|2 = 8g4
Z

(
D0(s)

2 + D1(s)
2)(((gq−Z

A

)2 +
(
g

q−Z
V

)2)(
s2 + 2t1s + 2t2

1
)(

g
f −Z
A

)2

× 4g
q−Z
A g

f −Z
V g

q−Z
V s(s + 2t1)g

f −Z
A +

(
g

f −Z
V

)2((
g

q−Z
A

)2 +
(
g

q−Z
V

)2)

(5.52)×
(
s2 + 2t1s + 2t2

1
))

,

where we have introduced the Breit–Wigner propagator (D0(s) + iD1(s))D
µν
Z with

D0(s) = s − m2
Z

(s − m2
Z)2 + m2

ZΓ 2
Z

, D1(s) = mZΓZ

(s − m2
Z)2 + m2

ZΓ 2
Z

,

(5.53)D
µν
Z = −gµν + qµqν

m2
Z

.

The expansion of the propagator for the Z′ gauge boson is similar. We use the notation D′
0 and

D′
1 with mZ → m′

Z and ΓZ → ΓZ′ in (5.53). We obtain the interferences

(5.54)Aγ−Z = 16e2g2
Z

D0

s

[
g

f −Z
A g

q−Z
A s(s + 2t1) + g

f −Z
V g

q−Z
V

(
s2 + 2t1s + 2t2

1
)]

,

(5.55)Aγ−Z′ = 16e2g2
Z

D′
0

s

[
g

f −Z′
A g

q−Z′
A s(s + 2t1) + g

f −Z′
V g

q−Z′
V

(
s2 + 2t1s + 2t2

1
)]

,
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while the Z–Z′ interference is

(5.56)AZ−Z′ = 16g2
Zg2

Z′(D0D
′
0 + D1D

′
1)

(
v1s

2 + v2t
2
1 + v3st1

)
,

where

v1 = g
q−Z
A g

q−Z′
A g

f −Z
V g

f −Z′
V + g

f −Z
V g

q−Z
V g

q−Z′
V g

f −Z′
V

+ g
f −Z
A

(
g

q−Z′
A g

q−Z
V + g

q−Z
A g

q−Z′
V

)
g

f −Z′
V

+ g
f −Z′
A g

q−Z′
A g

f −Z
V g

q−Z
V + g

f −Z′
A g

q−Z
A g

f −Z
V g

q−Z′
V

+ g
f −Z
A g

f −Z′
A

(
g

q−Z
A g

q−Z′
A + g

q−Z
V g

q−Z′
V

)
,

v2 = 2
(
g

f −Z
A g

f −Z′
A + g

f −Z
V g

f −Z′
V

)(
g

q−Z
A g

q−Z′
A + g

q−Z
V g

q−Z′
V

)
,

v3 = 2
[
g

f −Z
A

(
g

f −Z′
A g

q−Z
A g

q−Z′
A + g

f −Z′
V g

q−Z
V g

q−Z′
A + g

q−Z
A g

f −Z′
V g

q−Z′
V

+ g
f −Z′
A + g

q−Z
V g

q−Z′
V

)

+ g
f −Z
V

(
g

q−Z
A g

q−Z′
A g

f −Z′
V + g

q−Z
V g

q−Z′
V g

f −Z′
V + g

f −Z′
A g

q−Z′
A g

q−Z
V

(5.57)+ g
f −Z′
A g

q−Z
A g

q−Z′
V

)]
.

Given the generality of the charges of the model and the presence of additional parameters such
as the masses of the heavy resonances it is not possible, at this stage, to provide a specific estimate
of the leading order process.

5.4. Properties of the axi-Higgs

Let us now discuss the properties of the physical field that appears in the CP-odd scalar sector.
We call this field χ the axi-Higgs since it is a gauge invariant mixture of the bulk axions and the
Higgs phase. In a unitary gauge it is proportional to aI which have axionic couplings. As its D-
brane basis cousins aI , it appears in the Lagrangian through a dimension five operator. We have
already computed its coupling in the broken phase to the gauge bosons. We can also compute the
coupling of χ to the fermions.

The Yukawa couplings provide mass terms for the fermions as well as cubic Higgs-fermion–
fermion interactions and axion-fermion–fermion interactions. All these can be extracted from

Lunit.
Yuk = −H 0

u

(
ut

Li

)†
σ 2Γ u

ii uRi + H+
u

(
dt

Li

)†
σ 2Γ u

ii uRi + H+∗
d

(
ut

Li

)†
σ 2Γ d

ii dRi

+ H 0∗
d

(
dt

Li

)†
σ 2Γ d

ii dRi + H+∗
u νt

Liσ
2Γ e

iieRi + H 0∗
u et

Liσ
2Γ e

iieRi − H 0
d νt

Liσ
2Γ ν

ii νRi

(5.58)+ H+
d et

Liσ
2Γ ν

iiνRi + c.c.

with

H 0
u = vu + 1√

2

(
h0 sinα − H 0 cosα

)
+ iO

χ
11χ,

H+
u = − 1√

2
H+ cosβ,

H 0
d = vd + 1√

2

(
h0 cosα + H 0 sinα

)
+ iO

χ
21χ,
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(5.59)H+
d = 1√

2
H+ sinβ

the unitary gauge expression for the Higgs fields. In Eq. (5.58) the bold notation and the dagger
on the quarks reflects their non-trivial SU(3) transformation property. The Higgs field expanded
around its vacuum expectation value is to lowest order

H 0
u = (vu + · · ·)ei N cosβ

vu+··· χ ≃ vu + iN cosβχ,

(5.60)H 0
d = (vd + · · ·)ei N sinβ

vd+··· χ ≃ vd + iN sinβχ,

where the dots stand for the contribution of the (small) fluctuations of h0 and H 0 and which are
negligible for this discussion. Defining

mui = −vuΓ
u
ii , mei = −vuΓ

e
ii ,

(5.61)mdi = −vdΓ d
ii , mνi = −vdΓ ν

ii ,

we can write the parts of the effective action that the axion appears (suppressing the spinor
contraction) as

muiu
†
LiuRie

i N cosβ
vu

χ + mdid
†
LidRie

i
N sinβ

vd
χ + meieLieRie

i N cosβ
vu

χ

+ mνiνLiνRie
i
N sinβ

vd
χ + c.c.,

(5.62)∂µχ∂µχ + gχggχ tr{G ∧ G} + gχ+−χ tr
{
W+ ∧ W−}

+ g
χ
p̄q̄χF p̄ ∧ F q̄.

From the above equations one can see that the couplings of the Higgs fields to the fermions in
the Yukawa sector will induce an axion-fermion–fermion coupling

(5.63)−iΓ u,e
ii O

χ
11 = iΓ u,e

ii N cosβ

to the up quark and “electron” sector respectively and

(5.64)iΓ d,ν
ii O

χ
21 = iΓ d,ν

ii N sinβ

to the down quark and right handed neutrino sector respectively. As expected, by doing a chiral
rotation on the quarks one can make the θ -parameter of QCD vanish.

The decay rate of χ into two gauge bosons A1 and A2 of mass m1 and m2 is given by

(5.65)Γ (χ → A1A2) = 1
16πmχ

Φ1/2
[

1,
m2

1

m2
χ

,
m2

2

m2
χ

]〈
|A|2

〉
,

where

(5.66)Φ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz

and the part involving the amplitude can be computed to be

(5.67)|A|2 = −
(
gχA1A2

)2
[
m2

1m
2
2 − 1

2

(
m2

χ − m2
1 − m2

2
)2

]
.

In our case, the gauge bosons A1,2 can be two gluons, a W± pair or any of a photon, a Z and
a Z′

I . Clearly, in the electroweak channel, the decay that dominates is the one into two photons.
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Including a factor of 1/2 when averaging over the final state, we obtain

(5.68)Γ (χ → γ γ ) =
(gχγ γ )2m3

χ

64π

with gχγ γ given in Eq. (4.103). This decay rate is to be compared with the rate of the 1-loop
decay h0 → γ γ (the only channel for a scalar decaying into two photons available in the SM)
which is

(5.69)Γ
(
h0 → γ γ

)
∼

e4 sin2 αm3
h0

1024π5m2
W

,

with mh0 given in Eq. (4.86) and sinα in Eq. (4.84). In low scale models these two rates could
be comparable in magnitude or even the axi-Higgs decay could be dominating. When χ is off
shell, the axi-Higgs-photon–photon vertex gives a tree level contribution to the pp̄ → γ γ cross
section.

The state χ is peculiar since it is neither a typical PQ-type of axion [52] nor a typical Higgs
field. It is something in between. It inherits properties from both precisely because it is a linear
combination of the original Higgs and axion fields (for a similar situation see [53]). We can
summarize then by saying that the mLSOM axion is massive with mass mχ generated by the
V/P/Q part of the scalar potential (given in Eq. (4.95))

(5.70)

m2
χ = −1

2

[
1 +

∑

I

(
qI
u − qI

d

2
v

MI
sin 2β

)2][
4b

v2 sin 2β
+ 4λ1 + λ2 tanβ + λ3 cotβ

]
v2.

Strictly speaking to this one should add the usual mass that is generated non-perturbatively. This
is a small contribution to the mass, proportional to the coupling of the axion to the gauge bosons.
For the PQ axion this is the only mass generating source which implies that if its coupling to
the gauge bosons is suppressed then its mass is automatically tiny. This (strong) correlation
between the (small) mass and the coupling of the PQ axion results in computable cosmological
and astrophysical effects that put severe bounds on models with such axions [54]. Here, as can be
seen from Eq. (5.70) the mLSOM axion acquires from spontaneous symmetry breaking a rather
large mass which is generically expected to be of the order of O(100 GeV) since it is proportional
to v. This property is one inherited by its Higgs nature. On the other hand, its coupling to the
gauge bosons is given by Eqs. (4.103) which show that it is suppressed by the explicit factor
of 1/Mstr contained in D, F and C and further suppressed by the factor v/MI contained in
ΘI defined in Eq. (4.67). This property is a remnant of its axion nature. Evidently the mass is
essentially not related to the gauge boson couplings, i.e. a suppressed coupling does not imply a
tiny mass as in typical axion extensions of the SM.

In the fermion sector the situation is slightly different. The PQ axion has a coupling to the
fermions proportional to its coupling to the gauge bosons and therefore it is equally suppressed.
The mLSOM axion on the other hand from Eqs. (5.63) and (5.64) is seen to have an O(1)
coupling to the fermions. Some relative suppression in the latter due to β (by one or two orders
of magnitude) is perhaps still allowed.

6. Conclusions

We have presented the mLSOM effective field theory describing universal features of orien-
tifold string vacua with a low string scale, in the TeV range. The basic features of such vacua
have been described in [16,17].
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Although, the associated string theory has numerous different types of particles, we have kept
here, for simplicity, the ones that are generically the lightest, namely the two Higgs and three
extra anomalous U(1) gauge bosons.

The theory has a gauge group U(3) × U(2) × U(1) × U(1)′ generated by appropriate stacks
of D-branes in the string theory. The U(1)′ in particular comes from a brane wrapping the two
large dimensions, and it has therefore a tiny gauge coupling of almost gravitational strength.

The hypercharge is a specific linear combination of the U(1)3, U(1)2 and U(1) factors. It
is massless and anomaly free. The other three U(1)s can be identified with a gauge version
of well known symmetries: baryon number, lepton number and a Peccei–Quinn-like symmetry.
The extra U(1)s have triangle anomalies, that as usual in string theory, they are cancelled by
generalizations of the Green–Schwarz mechanism. As a result the three U(1) gauge symmetries
are broken, and the associated gauge bosons have (UV) masses that can be computed in string
theory.

The theory has a Higgs sector that MSSM-like. The Higgses are charged under the anom-
alous U(1). When the Higgses acquire vevs and break the electroweak symmetry:

(a) There are additional sources of mass for the anomalous U(1) gauge bosons
(b) They mix with the Z0 with strength of order M2

Z/M2
s .

Having seen the ingredients of mLSOM we may reappraise the parametric freedom of the
effective field theory. We do not include the SM parameters in our counting.

In the U(1) sector, we have a priori four coupling constants, one for each U(1). However, in
the case of the U(3) and U(2) groups, it is related to the associated non-Abelian SM coupling
α2,3 as [16]

(6.1)αN ≡ g2
N

4π
= g2

8πN
,

where g is the associated U(1) coupling, normalized so that all U(1) brane charges are integers.
The three-coupling constants corresponding to the U(3), U(2) and U(1) branes, are therefore
fixed from the measured SM coupling constants. The coupling constant of the U(1) is a free
parameter. Since the U(1) brane wraps the two large dimensions, g′ ∼ 10−7–10−8.

Further, the UV mass matrix of the U(1) gauge bosons, can be parameterized by three mass
eigenvalues and three mixing angles.

We have kept the Higgs sector of the mLSOM general. There are 4 independent quadratic
couplings

(6.2)µu, µd, b, λ1

and the 6 independent quartic couplings

(6.3)λuu, λdd, λud, λ′
ud, λ2, λ3.

Compared to the MSSM Higgs sector whose quadratic part is parameterized by the 4 parameters
µ, mHu , mHd and B and the quartic part that is parameterized by the 2 gauge couplings gY and
g2 we have 6 additional parameters. However, in a class of vacua that are non-supersymmetric
orbifolds the tree-level potential is that of MSSM.

There are many interesting issues that we have not addressed here and that are left for future
work.

(i) There are important constraints of parameters coming from couplings of the Z0 to fermi-
ons, limits on the Higgs sectors as well as other astrophysical and cosmological bounds.
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(ii) There are important production cross sections that may be relevant in LHC. We should
mention, pp → γ ,Z0 → Z0γ , pp → Z0 → γ γ , pp → Z′ → Z0Z0, γ γ , γZ0, etc.

Another issue is that there are particles that eventually should be included in the effective field
theory as they may relevant for physics.

• Superpartners. They can be straightforwardly included. The theory will be essentially the
MSSM with three extra U(1) anomalous gauge multiplets. It is interesting that unlike the MSSM
no R parity needs to be imposed as baryon and lepton number will remain as global symmetries.

• Right-handed neutrinos in mLSOM originate on the U(1) brane that wraps the two large
dimensions. This is the reason that the associated masses are small and have the right magnitude
[17]. One should also include their KK states. They are important in the case where there is a
single flavor of right-handed neutrino, since their mixing generated the requisite structure of the
neutrino sector, albeit marginally [17]. Even in the case where there are three flavors of bulk
neutrinos, the mixing with KK states may have interesting effects.

• The KK states of the U(1) gauge boson as well as the graviton are both densely populated,
as they are sensitive to the large dimensions. They may be responsible for ADD-like signals.

Such issues and their experimental implications need to be addressed in the future.
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Appendix A. The mixing matrix

In this appendix we will provide an explicit formula for the mixing matrix Oij , required to
diagonalize the UV mass matrix of U(1) gauge bosons. As described in Section 3 the first row is
fixed by the masslessness of the hypercharge

OlY = gY
kl

g̃l
,

(A.1)
1

g2
Y

=
∑

l

k2
l

g̃2
l

.

We label the four U(1)s in the D-brane basis as U(1)i with i = 1 corresponding to color, i = 2
to the weak doublet number, i = 3 to the extra U(1) and i = 4 to the bulk U(1)b . In the rotated
basis we use indices Y corresponding to the hypercharge and I = 1,2,3 corresponding to the
three massive anomalous U(1)s.

As shown in Section 2.1 the hypercharge embedding coefficients, have the property that k4 =
0. We introduce the variables

(A.2)a1 = − g̃3

g̃1

k1

k3
, a2 = − g̃3

g̃2

k2

k3
, 1 + a⃗2 = 1

g2
Y

g̃2
3

k2
3

.
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We may parameterize the remaining three rows of the 4 × 4 orthogonal matrix, in terms of six
angles θI , φI as follows

O1I = a1 cos θI + a2
√

1 + a⃗2 sin θI sinφI√
a⃗2(1 + a⃗2)

,

(A.3)O2I = a2 cos θI − a1
√

1 + a⃗2 sin θI sinφI√
a⃗2(1 + a⃗2)

,

O3I =
√

a⃗2

1 + a⃗2 cos θI ,

(A.4)O4I = sin θI cosφI

so that they are all of length one,
∑4

i=1 OiIOiI = 1 and are orthogonal to the first row,∑4
i=1 OiIOiY = 0.
Mutual orthogonality,

∑4
i=1 OiIOiJ = δIJ implies

(A.5)cos θI cos θJ + sin θI sin θJ cos(φI − φJ ) = δIJ .

This fixes three of the angles, θ2, θ3,φ3 in terms of θ1,φ1,φ2.

tan θ3 = − cot θ1

√
1 + cot2(φ1 − φ2)

(
1 + tan2 θ1

)2
,

(A.6)tan θ2 = − cot θ1

cos(φ1 − φ2)
,

(A.7)tanφ3 = −cosφ2 + cosφ1 cos(φ1 − φ2) tan2 θ1

sinφ2 + sinφ1 cos(φ1 − φ2) tan2 θ1
.

Appendix B. Comparison with the MSSM Higgs sector

In the MSSM there are two Higgs doublets Hu and Hd

(B.1)Hu =
(

H+
u

H 0
u

)
, Hd =

(
H 0

d

H−
d

)

with the same hypercharge, accounting for 8 degrees of freedom. There are 3 broken generators
as in the Standard Model and therefore we expect to find 3 NG-bosons and 5 physical Higgs
states. The potential of the MSSM reads

V MSSM(Hu,Hd) = iB
(
HT

u τ 2Hd

)
+ c.c. + µ2

1H
†
uHu + µ2

2H
†
d Hd

(B.2)+ 1
8
g2

1
(
H †

uHu − H
†
d Hd

)2 + 1
8
g2

2
(
H †

u τ aHu + H
†
d τ aHd

)2
,

where the quadratic terms contain F-term as well as soft supersymmetry breaking term contribu-
tions

(B.3)µ2
1 = |µ|2 + m2

Hu
, µ2

2 = |µ|2 + m2
Hd

,

while the quartic terms represent D-term contributions. The dimensionfull parameter B is real.
The vacuum that does not break electromagnetism and minimizes the potential is

(B.4)Hu =
(

0
vu

)
, Hd =

(
vd

0

)
.
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Expanding around the vacuum we find indeed 3 massless NG-bosons, a neutral CP odd mass
eigenstate A0 with mass

(B.5)m2
A0 = 2B

sin 2β
,

a pair of charged Higgs eigenstates with mass

(B.6)m2
H± = m2

A0 + m2
W

and two neutral CP-even mass eigenstates h0 and H 0 with masses

(B.7)m2
h0 = 1

2

[(
m2

A0 + m2
Z0

)
−

√(
m2

A0 + m2
Z0

)2 − (2mZ0mA0 cos 2β)2
]

and

(B.8)m2
H 0 = 1

2

[(
m2

A0 + m2
Z0

)
+

√(
m2

A0 + m2
Z0

)2 − (2mZ0mA0 cos 2β)2
]
.

Expanding Eq. (B.7) in inverse powers of mA0 one concludes that the h0 Higgs boson mass
is smaller than the mass of Z0 and therefore radiative effects have to be taken into account to
avoid conflict with experiment. This is indeed possible due to the large Yukawa coupling of the
top quark. It is instructive to make a comparison of our potential Eq. (4.1) with the potential
Eq. (B.2) since the structures are quite similar. For the comparison, the following identities are
proven to be useful:

(
H †

a τ jHa

)2 =
(
H †

a Ha

)2
, a = u,d

∣∣H †
uHd

∣∣2 =
(
H †

uHu

)(
H

†
d Hd

)
−

∣∣HT
u τ 2Hd

∣∣2
,

(B.9)
(
H †

u τ jHu

)(
H †

d τ jHd

)
=

(
H †

uHu

)(
H †

d Hd

)
− 2

∣∣HT
u τ 2Hd

∣∣2
.

In order to translate to our convention where the Higgs doublets have the same hypercharge, one
has to make the transformations

(B.10)Hu → Hu, Hd → −iτ 2H ∗
d .

Using the identities Eq. (B.9) and the above transformation, the MSSM potential can be brought
in the form

V MSSM
D (Hu,Hd) = BH †

uHd + c.c. + µ2
1H

†
uHu + µ2

2H
†
d Hd + 1

8

(
g2

1 + g2
2
)(

H †
uHu

)2

+ 1
8

(
g2

1 + g2
2
)(

H †
d Hd

)2 − 1
4

(
g2

1 + g2
2
)(

H †
uHu

)(
H †

d Hd

)

(B.11)+ g2
2

2

∣∣HT
u τ 2Hd

∣∣2
.

The identifications can be then read off the above potential and Eqs. (4.1) and (4.73):

(B.12)µ2
1 → µ2

u, µ2
2 → µ2

d,
1
8

(
g2

1 + g2
2
)
→ λuu,λdd,λud,

1
4
g2

2 → λ′
ud,

(B.13)B → b.

The complex term in Eq. (B.11) breaks PQ and therefore it does not appear in Eq. (4.1). It appears
though in the PQ breaking potential Eq. (4.73) as we have seen. The rest of the terms in Eq. (4.73)
evidently are not present in the MSSM.
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The first thing that one can immediately see is why the potential Eq. (4.1) does not give mass to
the axion. The CP-odd Higgs eigenstate A0 of the MSSM has been traded for the CP-odd axion χ

in our model. The mass of A0 originates exclusively from the term proportional to B in Eq. (B.2)
and since such a term is not part of Eq. (4.1) the axion does not get a mass. It is also now clear
why the mass of the charged Higgs states is given by Eq. (4.41). Inspecting Eq. (B.12) one can see
that it corresponds to the part in the MSSM charged Higgs mass, proportional to the mass of the
W -boson. The only difference is that instead of the SU(2) D-term origin of the coupling g2 in the
MSSM charged Higgs mass, in our model we have an independent coupling λ′

ud and therefore the
mass is not directly related to the W -boson mass. When the potential Eq. (4.73) is added, then the
charged Higgs mass acquires a part proportional to b which corresponds to the part proportional
to B in the MSSM. The axion on the other hand, in the presence of Eq. (4.73) acquires a mass
proportional to b (just as A0 in the MSSM acquires a mass from the term proportional to B) and
additional contributions proportional to λ1,2,3. These latter contributions are new, not present in
the MSSM. Finally, from Eqs. (4.45) we see that for the potential Eq. (4.1), the masses of the
neutral Higgs states are not related to the Z-boson mass as it is the case for the B = 0 limit
of the MSSM because the couplings λuu, λdd and λud are not related in our model to gauge
couplings. In particular, the light neutral Higgs mass vanishes and the heavy neutral Higgs mass
is proportional to that of the Z-boson in the B = 0 limit in the MSSM, contrary to our case. For
the case of the potential Eq. (4.73) the neutral Higgs bosons masses acquire their MSSM-like
contributions plus additional terms proportional to λ1,2,3.

Appendix C. The Lagrangian in the physical basis

In this appendix we provide the Lagrangian expressed in terms of the physical base. The
kinetic Lagrangian of the gauge fields is given by

Lkin gauge

= −1
4
(∂µAγ ν − ∂νAγµ)2 − 1

4
(∂µZν − ∂νZµ)2 − 1

4

∑

I

(∂µZ′
Iν − ∂νZ

′
Iµ)2

− 1
2

(
∂µW+ν − ∂νW+µ

)(
∂µW−

ν − ∂νW
−
µ

)

+ i
e

sin θW

(
sin θWAµ

γ + cos θWZµ − g2

2
ϵIZ

′
I
µ
)[

W ν
(
∂νW

−
µ − ∂µW−

ν

)

− W−
ν

(
∂νW

+
µ − ∂µW+

ν

)]
+ 1

2
e2

sin2 θW

[(
W−

µ W−µ
)(

W−
ν W−ν

)
−

(
W−

µ W−µ
)2]

− e2

sin2 θW

[
sin θWAγµ + cos θWZµ − g2

2
ϵIZ

′
I µ

]

×
[

sin θWAµ
γ + cos θWZµ − g2

2
ϵIZ

′
I µ

]
W+ρW−ρ

− e2

sin2 θW

[
sin θWAγµ + cos θWZµ − g2

2
ϵIZ

′
I µ

]

(C.1)×
[

sin θWAγρ + cos θWZρ − g2

2
ϵIZ

′
I ρ

]
W+µW−ρ,
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(C.2)xI =
(
qI
uv2

u + qI
d v2

d

)
gI , ϵI = xI

M2
I

and

(C.3)Zµ = cos θWW 3 − sin θWAY + ξIAI = Z
µ
0 + ξIAI

and

(C.4)ξI = g

2
ϵI +O

(
M−4

I

)
,

(C.5)Lmass gauge = m2
ZZµZµ + m2

WW+µW−
µ + m2

WW−µWµ
+ +

∑

I

m2
Z′

I
Z′

I µZ′
I
µ
.

We define

α(u)
µ = 1

2

(
g2W3µ + gY AY

µ +
∑

I

qI
ugIA

I
µ

)
,

α(d)
µ = 1

2

(
g2W3µ + gY AY

µ +
∑

I

qI
d gIA

I
µ

)
,

β(u)
µ = 1

2

(
−g2W3µ + gY AY

µ +
∑

I

qI
ugIA

I
µ

)
,

(C.6)β(d)
µ = 1

2

(
−g2W3µ + gY AY

µ +
∑

I

qI
d gIA

I
µ

)

and set g′
2 = g2/2. We have

α(u,d)
µ = 1

2

(
gY OA

AY γ + g2O
A
W3γ

+ gIO
A
AI γ qI

u,d

)
Aγµ(x)

+ 1
2

(
gY OA

AY Z + g2O
A
W3Z

+ gIO
A
AI ZqI

u,d

)
Zµ(x)

(C.7)+ 1
2

(
gY OA

AY Z′
I
+ g2O

A
W3Z

′
I
+ gIO

A
AI Z′

I
qI
u,d

)
Z′

Iµ
(x),

β(u,d)
µ = 1

2

(
gY OA

AY γ − g2O
A
W3γ

+ gIO
A
AI γ qI

u,d

)
Aγµ(x)

+ 1
2

(
gY OA

AY Z − g2O
A
W3Z

+ gIO
A
AI ZqI

u,d

)
Zµ(x)

(C.8)+ 1
2

(
gY OA

AY Z′
I
− g2O

A
W3Z

′
I
+ gIO

A
AI Z′

I
qI
u,d

)
Z′

Iµ
(x).

The contribution from the Higgs sector in the quadratic potential is then summarized in the
expressions

(C.9)

LHiggs 1 = 1
2
∂µH+∂µH− + 1

2
∂µH0∂

µH0 + 1
2
∂µh0∂

µh0

+ 1
2
∂µG+∂µG− + 1

2
∂µGZ∂µGZ + 1

2
∂µχ∂µχ + 1

2

∑

I

∂µGZ′
I ∂µGZ′

I

+ 1
2
m2

h0
+ 1

2
m2

H0
+ 1

2
m2

χ + m2
H±H+H−,
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(C.10)LHiggs 2 = 1
2

∑

i=u,d

(
α(i)

µ Σ
(i)µ
1 + β(i)

µ Σ
(i)µ
2 + α(i)2

Σ
(i)
3 + β(i)2

Σ
(i)
4 + Σ

(i)
5

)
,

(C.11)Lmix = mZ0Z
µ∂µGZ +

∑

I

mZ′
I
Z′

I
µ
∂µGZ′

I ,

Σ
(u)µ
1 = iH+∂µH− cos2 β − iH−∂µH+ cos2 β + ig′

2O
χ
11χH+W−µ cosβ

+ ig′
2O

χ
1iG

0
i H

+W−µ cosβ − g′
2 sinαh0H

+W−µ cosβ

+ cosαg′
2H0H

+W−µ cosβ − ig′
2O

χ
11χH−W+µ cosβ

− ig′
2O

χ
1iG

0
i H

−W+µ cosβ − g′
2 sinαh0H

−W+µ cosβ

+ cosαg′
2H0H

−W+µ cosβ − i sinβH+∂µG− cosβ

+ i sinβH−∂µG+ cosβ − i sinβG+∂µH− cosβ

+ i sinβG−∂µH+ cosβ − ig′
2O

χ
11 sinβχG+W−µ

− ig′
2O

χ
1i sinβG0

i G
+W−µ + g′

2 sinα sinβG+h0W
−µ

− cosαg′
2 sinβG+H0W

−µ + ig′
2O

χ
11 sinβχG−W+µ

+ ig′
2O

χ
1i sinβG0

i G
−W+µ + g′

2 sinα sinβG−h0W
+µ

− cosαg′
2 sinβG−H0W

+µ + i sinβ2G+∂µG−

(C.12)− i sinβ2G−∂µG+,

Σ
(u)µ
2 = −ig′

2O
χ
11 sinβχG+W−µ − ig′

2O
χ
1i sinβG0

i G
+W−µ

+ g′
2 sinα sinβG+h0W

−µ − cosαg′
2 sinβG+H0W

−µ

+ i cosβg′
2O

χ
11χH+W−µ + i cosβg′

2O
χ
1iG

0
i H

+W−µ

− cosβg′
2 sinαH0H

+W−µ + cosα cosβg′
2H0H

+W−µ

+ ig′
2O

χ
11 sinβχG−W+µ + ig′

2O
χ
1i sinβG0

i G
−W+µ

+ g′
2 sinα sinβG−h0W

+µ − cosαg′
2 sinβG−H0W

+µ

− i cosβg′
2O

χ
11χH−W+µ − i cosβg′

2O
χ
1iG

0
i H

−W+µ

− cosβg′
2 sinαh0H

−W+µ + cosα cosβg′
2H0H

−W+µ

+ 2O
χ
11 sinαh0∂

µχ − 2 cosαO
χ
11H0∂

µχ

+ 2O
χ
1i sinαh0∂

µG0
i − 2 cosαO

χ
1iH0∂

µG0
i

− 2O
χ
11 sinαχ∂µh0 − 2O

χ
1i sinαG0

i ∂
µh0

(C.13)+ 2 cosαO
χ
11χ∂µH 0 + 2 cosαO

χ
1iG

0
i ∂

µH 0,

Σ
(u)
3 = H−H+ cosβ2 − sinβG+H− cosβ − sinβG−H+ cosβ

(C.14)+ sinβ2G−G+,

Σ
(u)
4 = O

χ
11

2
χ2 + 2O

χ
11O

χ
1iG

0
i χ + O

χ
1i

2
G0

i

2 + sinα2h2
0

(C.15)+ cosα2H 2
0 − 2 cosα sinαh0H0,

Σ
(u)
5 = g′2

2 H−H+W−µW+
µ cos2 β

− g′2
2 sinβG+H−W−µW+

µ cosβ − g′2
2 sinβG−H+W−µW+

µ cosβ
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− g′
2O

χ
11H

+W−µ∂µχ cosβ − g′
2O

χ
11H

−W+µ∂µχ cosβ

− g′
2O

χ
1iH

+W−µ∂µG0
i cosβ − g′

2O
χ
1iH

−W+µ∂µG0
i cosβ

− ig′
2 sinαH+W−µ∂µh0 cosβ + ig′

2 sinαH−W+µ∂µh0 cosβ

+ i cosαg′
2H

+W−µ∂µh0 cosβ − i cosαg′
2H

−W+µ∂µh0 cosβ

+ g′
2O

χ
11χW+µ∂µH− cosβ + g′

2O
χ
1iG

0
i W

+µ∂µH− cosβ

− ig′
2 sinαH0W

+µ∂µH− cosβ + i cosαg′
2H0W

+µ∂µH− cosβ

− sinβ∂µG+∂µH− cosβ + g′
2O

χ
11χW−µ∂µH+ cosβ

+ g′
2O

χ
1iG

0
i W

−µ∂µH+ cosβ + ig′
2 sinαH0W

−µ∂µH+ cosβ

− i cosαg′
2H0W

−µ∂µH+ cosβ − sinβ∂µG−∂µH+ cosβ

+ g′2
2 O

χ
11

2
χ2W−µW+

µ

+ g′2
2 O

χ
1i

2
G0

i

2
W−µW+

µ + g′2
2 sin2 αH 2

0 W−µW+
µ

+ cos2 αg′2
2 H 2

0 W−µW+
µ + 2g′2

2 O
χ
11O

χ
1iχG0

i W
−µW+

µ

+ g′2
2 sin2 βG−G+W−µW+

µ − 2 cosαg′2
2 sinαH0H0W

−µW+
µ

+ g′
2O

χ
11 sinβG+W−µ∂µχ + g′

2O
χ
11 sinβG−W+µ∂µχ

+ g′
2O

χ
1i sinβG+W−µ∂µG0

i + g′
2O

χ
1i sinβG−W+µ∂µG0

i

− g′
2O

χ
11 sinβχW+µ∂µG− − g′

2O
χ
1i sinβG0

i W
+µ∂µG−(x)

+ ig′
2 sinα sinβH0W

+∂µG− − i cosαg′
2 sinβH0W

+µ∂µG−

− g′
2O

χ
11 sinβχW−µ∂µG+ − g′

2O
χ
1i sinβG0

i W
−µ∂µG+

− ig′
2 sinα sinβH0W

−µ∂µG+ + i cosαg′
2 sinβH0W

−µ∂µG+

+ ig′
2 sinα sinβG+W−µ∂µh0

− ig′
2 sinα sinβG−W+µ∂µh0 − i cosαg′

2 sinβG+W−µ∂µh0

(C.16)+ i cosαg′
2 sinβG−W+µ∂µh0,

Σ
(d)
1µ = iG+∂µG− cosβ2 − iG−∂µG+ cosβ2 − ig2O

χ
21χG+W−

µ cosβ

− ig2O
χ
2iG

0
i G

+W−
µ cosβ + cosαg2G

+h0W
−
µ cosβ + g2 sinαG+h0W

−
µ cosβ

+ ig2O
χ
21χG−W+

µ cosβ + ig2O
χ
2iG

0
i G

−W+
µ cosβ + cosαg2G

−h0W
+
µ cosβ

+ g2 sinαG−h0W
+
µ cosβ + i sinβH+∂µG− cosβ − i sinβH−∂µG+ cosβ

+ i sinβG+∂µH− cosβ − i sinβG−∂µH+ cosβ − ig2O
χ
21 sinβχH+W−

µ

− ig2O
χ
2i sinβG0

i H
+W−

µ + cosαg2 sinβh0H
+W−

µ

+ g2 sinα sinβh0H
+W−

µ + ig2O
χ
21 sinβχH−W+

µ

+ ig2O
χ
2i sinβG0

i H
−W+

µ + cosαg2 sinβh0H
−W+

µ + g2 sinα sinβh0H
−W+

µ

(C.17)+ i sinβ2H+∂µH− − i sinβ2H−∂µH+,

Σ
(d)
2µ = i cosβg2O

χ
21χG+W−

µ − i cosβg2O
χ
2iG

0
i G

+W−
µ + cosα cosβg2G

+h0W
−
µ

+ cosβg2 sinαG+h0W
−
µ − ig2O

χ
21 sinβχH+W−

µ − ig2O
χ
2i sinβG0

i H
+W−
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+ cosαg2 sinβh0H
+W−

µ + g2 sinα sinβh0H
+W−

µ

+ i cosβg2O
χ
21χG−W+

µ + i cosβg2O
χ
2iG

0
i G

−W+
µ

+ cosα cosβg2G
−h0W

+
µ + cosβg2 sinαG−h0W

+
µ + ig2O

χ
21 sinβχH−W+

µ

+ ig2O
χ
2i sinβG0

i H
−W+

µ + cosαg2 sinβh0H
−W+

µ + g2 sinα sinβh0H
−W+

µ

+ 2 cosαO
χ
21h0∂µχ + 2O

χ
21 sinαh0∂µχ + 2 cosαO

χ
2ih0∂µG0

i

+ 2O
χ
2i sinαh0∂µG0

i − 2 cosαO
χ
21χ∂µh0 − 2 cosαO

χ
2iG

0
i ∂µh0

(C.18)− 2O
χ
21 sinαχ∂µh0 − 2O

χ
2i sinαG0

i ∂µh0,

(C.19)Σ
(d)
3 = G−G+ cosβ2 + sinβG+H− cosβ + sinβG−H+ cosβ + sinβ2H−H+,

Σ
(d)
4 = O

χ
21

2
χ2 + 2O

χ
21O

χ
2iG

0
i χ + O

χ
2i

2
G0

i

2 + cosα2h2
0 + sinα2h2

0

(C.20)+ 2 cosα sinαH0h0,
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(d)
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µ W+µ cosβ2 + g2
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+W−
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χ
21G

−W+
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χ
2iG

+W−
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i cosβ
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−W+µ∂µG0
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21χW+
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− g2O
χ
2iG

0
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+
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−
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µ ∂µh0 cosβ
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−W+
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− ig2 sinαG−W+
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2
χ2W−
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χ
2i

2
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i

2
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µ W+
µ
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−
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−
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χ
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χ
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χ
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χ
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χ
2i sinβH−W+
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χ
21 sinβχW+
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χ
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+
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χ
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−
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−
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(C.21)− ig2 sinα sinβh0W
−
µ ∂µH+.
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Other terms

(C.22)Lθ =
∑

i=u,d

vi
(
θ

(i)
1 α(i)2 + θ

(i)
2 β(i)2 + θ

(i)
3µα(i)µ + θ

(i)
4µβ(i)µ + θ

(i)
5

)
,

θ
(u)
1 = 0,

θ
(u)
2 = 2 sinαH0 − 2 cosαH0,

θ
(u)
3µ = g2 sinβG+W−

µ − cosβg2H
+W−

µ + g2 sinβG−W+
µ − cosβg2H

−W+
µ ,

θ
(u)
4µ = g2 sinβG+W−

µ − cosβg2H
+W−

µ + g2 sinβG−W+
µ − cosβg2H

−W+
µ + 2O

χ
11∂µχ

+ 2O
χ
1i∂µG0

i ,

(C.23)

θ
(u)
5 = 2 sinαH0W

−
µ W+µg2

2 − 2 cosαH0W
−
µ W+µg2

2 + i sinβW+
µ ∂µG−g2

− i sinβW−
µ ∂µG+g2,

θ
(d)
1 = 0,

θ
(d)
2 = 2 cosαH0 + 2 sinαH0,

θ
(d)
3µ = cosβg2G

+W−
µ + g2 sinβH+W−

µ + cosβg2G
−W+

µ + g2 sinβH−W+
µ ,

θ
(d)
4µ = cosβg2G

+W−
µ + g2 sinβH+W−

µ + cosβg2G
−W+

µ + g2 sinβH−W+
µ

+ 2O
χ
21∂µχ + 2O

χ
2i∂µGi,

(C.24)

θ
(d)
5 = 2 cosαH0W

−
µ W+µg2

2 + 2 sinαH0W
−
µ W+µg2

2 + i cosβW+
µ ∂µG−g2

− i cosβW−
µ ∂µG+g2.
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