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Abstract: We present a comparative study of the invariant mass and rapidity distribu-

tions in Drell-Yan lepton pair production, with particular emphasis on the role played by

the QCD evolution. We focus our study around the Z resonance (50 < Q < 200 GeV)

and perform a general analysis of the factorization/renormalization scale dependence of

the cross sections, with the two scales included both in the evolution and in the hard scat-

terings. We also present the variations of the cross sections due to the errors on the parton

distributions (pdf’s) and an analysis of the corresponding K-factors. Predictions from

several sets of pdf’s, evolved by MRST and Alekhin are compared with those generated

using Candia, a NNLO evolution program that implements the theory of the logarithmic

expansions, developed in a previous work. These expansions allow to select truncated so-

lutions of varying accuracy using the method of the x-space iterates. The evolved parton

distributions are in good agreement with other approaches. The study can be generalized

for high precision searches of extra neutral gauge interactions at the LHC.
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1. Introduction

Accurate determinations of the QCD background at the LHC, especially for some selected

hadronic cross sections, are going to be very important in order to increase our potential for

new discoveries. For this reason it is necessary to know the size of the radiative corrections

to some selected processes at higher orders. At the same time, the quantification of the

impact of the errors in the determination of these observables is going to be critical in order

to enhance our confidence on the reliability of the perturbative expansion. It is particularly

so in the search for extra Z’, which are ubiquitous in extensions of the Standard Model [1 –

3], for instance in models derived from the string construction [4] or with extra neutral

interactions modified by an anomaly inflow [5], where mass-dependent and anomaly-related

corrections require very high accuracy to be properly identified and separated from the large

QCD background.

With these motivations in mind we have proceeded with an independent analysis of

the next-to-next-to-leading order (NNLO) QCD corrections, starting from an accurate

investigation of the impact of the evolution on the physical observables at the LHC. In this

context, the role played by the Drell Yan cross section is particularly important. In fact,

the possibility of discovering extra neutral currents at the new collider may be related to

the determination of this cross section with very high accuracy far beyond the Z peak, at

values of the invariant mass of the lepton pair up to 5 TeV [1], which is commonly thought

to be the upper limit in searches of this type. For this reason, a precise determination of

the pdf’s at any value of the Bjorken variable x [6] is needed (see [7] and refs. therein).

Issues of resummation of the perturbative expansions become also critical for the correct

determinations of several distributions at the edge of phase space (see for example [8]).

At this time, while our knowledge of the role played by the coefficients of the QCD

hard scatterings in some key partonic processes is quite satisfactory, that of the behavior of

the pdf’s is not of a comparable level, and the model-dependence of the various parameter-

izations is still large. Recent parameterizations of the pdf’s come with the quantification

of their errors, presented to next-to-leading order (NLO) and NNLO, whenever possible,

obtained by the fits used by various groups (we limit our analysis to [9] and [10]) to match

several sets of experimental data in pp collisions, such as Drell-Yan and Deep Inelastic

Scattering (DIS). These errors, which estimate the goodness of a fit, are naturally thought

of being of experimental origin. But there are also other sources of indetermination, mostly

of theoretical origin, which need to be taken into consideration. One of them, apparently

of more trivial nature, is related to the way the evolution is implemented through NNLO.

At a first look this last point might be misinterpreted and the corresponding “error”

coming to be attributed to the “model dependence” of a given parameterization set, while

it amounts to a theoretical indetermination, intrinsic to perturbation theory, since it is

going to be there for any chosen model of pdf’s. The reason is simple and also quite

immediate: there is not a unique approach to solve the DGLAP equation, and, again,

not for a numerical/algorithmic reason, related to the limited numerical precision of a

given algorithm. In fact, a given solution, of a typical accuracy, organizes the logarithmic

corrections in a specific and unique way. These are summed or, eventually, resummed
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if exact or, instead, accurate (truncated) solutions are selected. Therefore, the issue of

determining the best possible way to solve the evolution does not seem to have a unique

answer, being directly related to the possibility of choosing among different theoretical

approaches, all equally acceptable. The goal of this work is threefold: to test the accuracy

of the logarithmic expansions proposed by us in a previous work by comparing with other

methods of solution; to quantify the experimental errors on the DY cross section coming

from the pdf’s and to analyze the differences between accurate and “exact” solutions of the

evolution equations. The method used by us to solve the DGLAP equations is based on

a simple perturbative organization of the logarithmic corrections that we call “the NNLO

logarithmic expansion in x-space”. These expansions work for kernels given to all orders.

Thanks to the availability of the three-loop evolution kernels [11] and of the corre-

sponding hard scattering coefficients, which in the Drell-Yan case have been known for

some time [12], complete NNLO analysis are now possible and allow to perform sophis-

ticated tests that give to us the opportunity to quantify the effects that we have just

mentioned. In the case of Drell-Yan both the total cross section and the rapidity distri-

butions of the lepton pair on the final state are at reach. The latter have been presented

recently [13], together with a dependence of the predictions on the factorization scale, which

is important in order to monitor the overall stability of the perturbative series in αs, the

strong coupling constant. This requires the determination of the cross section for a varying

factorization scale and of the relevant K-factors at various energies. However, in order to

determine in a robust way the size of the NNLO corrections and the role that they play

in some important predictions, we believe that it is mandatory to perform an independent

analysis of the evolution, defining benchmarks for the evolution of the pdf’s from different

perspectives respect to the common ones. These are based either on numerical discretiza-

tions (so called brute force methods), which are affected by contributions of all-orders in

the strong coupling, or on the methods of the Mellin moments, using special expansions.

Accuracy means that we define the perturbative solution so to include only parts of the

corrections, in a certain expansion in the strong coupling [15], given our limited knowledge

of the perturbative expansion of the kernels.

It is well known that the issue of accuracy in the choice of the solution of the equation

has never been fully addressed in the previous literature. While this issue is less important

at NLO, given the size of the K-factors which are about 20% in the region that we explore

and at the energy that we select (
√

S = 14 TeV) for a p-p collider, things become more

subtle at NNLO, where the relative K-factors relating the NLO to the NNLO cross section

are determined to be much smaller. We will show that it is the QCD evolution to drive

the NNLO cross section to an overall reduction in the region that we have analyzed. As a

result of our analysis we are able to quantify the theoretical error implicit in the various

choices of the evolution scheme, which are smaller respect to the errors in the pdf’s, but

not insignificant for the rest. However, if one intends to take into considerations the impact

of possible resummations on the pdf’s in a quantitative way, then the issues that we raise

become crucial for obtaining a correct quantitative answer. In fact, it is also quite likely

that, in the long run, with the large data flow from the LHC, these sources of errors that we

investigate will become more significant in order to obtain more precise parameterizations
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of the pdf’s in the future. Our approach is part of an ongoing effort to develop a complete

numerical program, Candia that will be documented in a forthcoming paper. It will

include not only an analysis of the evolution, with applications to DY and the Higgs sector

through NNLO, with the inclusion of resummation effects, and so on. At this time Candia

contains the DY and Higgs total cross sections beside, of course, the evolution.

1.1 Comparison with the previous literature

Regarding the constraints on our analysis, some comments are in order.

In comparing the various results one possible source of disagreement lays in the treat-

ment of the heavy flavours.

In many of the comparisons that we will show in the following we have used besides our

code Candia, the program Pegasus written by A. Vogt, which implements the Mellin-

transform method.

Candia and Pegasus treat the heavy flavours following the varying flavor number

scheme (VFN) as in [16].1 MRST and Alekhin instead, follow different prescriptions,

respectively described in [17] and [18].

We have also found that other finer issues, in general not discussed in the previous

literature, introduce systematic differences. For instance, MRST give a parameterized form

for the input distributions at µ2
0 = 1 GeV2, while the lowest value of µ2

f in their grid is

1.25 GeV2. In Alekhin’s case, this author gives an analytic parameterization at 9 GeV2

without including the charm quark, even if the initial scale is above the charm threshold.

The charm contribution is instead present in his evolved pdf’s, available on a grid. The

differences induced on the cross sections by the two methods are not negligible. A source

of disagreement between Candia and Pegasus can be attributed to the fact that a given

initial condition has to be fitted to a certain functional form in Mellin space, if one solves

the equations using Mellin moments. These limitations are absent if one works directly in

x-space [15].

1.2 Our approach

As we have already mentioned, we base our analysis entirely on the implementation of

an algorithm that solves the DGLAP equations directly in x-space and uses an ansatz

based on various logarithmic expansions. These expansions have been shown to be related

either to exact or to truncated solutions of the renormalization group equations (RGE’s),

characterized by coefficients which are determined recursively. Notice that these expansions

are also typical of Mellin space [19, 14].

The structure of the recursion relations solved by this method is fixed by the choice of

the original DGLAP equation and by the approximations performed on its right-hand-side

(rhs), justified in a perturbative fashion. Beside the logarithmic expansions, also exact

solutions are available for the nonsinglet sector up to NNLO, as we have shown, [15],

which are useful in order to establish the convergence of the expansion toward the exact

1We will denote with the acronym VFN the varying flavour number scheme that follows the treatment

of [16].
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solution, whenever, of course, this is available. The method allows to bypass the appearance

of commutators in the definition of the iterated solution from Mellin space, which is an

unavoidable step in the singlet sector, as done in all the previous literature [19, 14, 20].

The logarithmic expansions, in both sectors, instead, take exactly the same simple form,

being either scalar or matrix-valued. The relations for the unknown coefficient functions,

introduced by the ansatz, and which are determined recursively, are also the same in both

cases.

In this paper we elaborate on the main features of these expansions by performing a

thorough numerical analysis of the various truncated solutions introduced in our previous

paper [15], discussing their behavior. In the singlet sector we also show the fast numeri-

cal convergence of the expansion and compare our results with those of the Les-Houches

benchmarks which are based on a toy model of initial conditions. Comparisons are done

both for a fixed and for a varying flavor number. The anomalous dimensions involving the

heavy flavors have been implemented as in [16, 14].

We are going to see that variations induced by the choice of the solution induces

variations on the cross section of the order of 1% or so at NNLO, and clearly affect also the

NNLO K-factor for the total cross section. In our determination, the change in the value

of the cross section from NLO to NNLO is around 4% on the Z peak, while the MRST and

the Alekhin determinations are 2.6% and about 1.5% respectively. While these variations

appear to be more modest compared to the analogous ones at a lower order (which are of

the order of 20% or so), they are nevertheless important for the discovery of extra neutral

currents at large invariant mass of the lepton pair in DY, given the fast falling cross section

at those large values. However, as we are going to show, the errors on the pdf’s induce

percentile variations of the cross section as we move from NLO to NNLO of the order

of 4% around the best-fit result, reducing the NNLO cross section compared to the NLO

prediction and rendering these results compatible.

2. Initial sets

Besides Candia and Pegasus that we are using in this paper, there are other NNLO

evolution codes which are available at this time: Hoppet by G.Salam [21], Adens by A.

Chuvakin and J. Smith [22] and qcdnum by M. Botje [23].

Pegasus can be run in different modes and allows to select numerical solutions of a

given accuracy. Our evolution is also compared to the MRST evolution. We clarify in our

results if we have used in our implementations of the hard scatterings the MRST input

evolved by MRST or our evolution of the same input. For the evolution of the MRST

parametric input with Candia we have worked in the same VFN scheme, but we have

used a slightly different prescription, and the comparisons are performed either starting

from their values on the grids or from the parametric input provided by the same authors.

As we will show below, the grid and the parametric inputs (the first at µ2
0 = 1.25 GeV2,

the second at µ2
0 = 1 GeV2) give results which differ at the percent level.

The closeness between our predictions, obtained using the asymptotic solution, whose

nature we clarify below, and their distributions is also quite evident, but the variations are

– 5 –
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such to generate differences at the percent level in the cross sections. Candia generates

numerical outputs of the exact solutions up to NNLO for the nonsinglet sector and trun-

cated solutions with arbitrary order of accuracy in the singlet sector. In our case the term

“arbitrary order of accuracy”, referred to a solution, means that we use logarithmic expan-

sions in log(αs) multiplied by coefficients of a certain power of αs rather than log(χ(αs)),

where χ(αs) is a typical NLO function of the running coupling or some other non-trivial

(composed) function generated at higher orders. We remark that the simple log(αs) ex-

pansion converges after very few iterates (7-8), with a precision of 4 to 5 significant digits.

Clearly, if one is searching for exact solutions, the iterates converge rather slowly to give

the “exact” numerical solution since the leading order solution is not factored out in the

ansatz, as in the case of the U -ansatz of [19, 14], as we will clarify below. The differences

in the cross sections are very small (0.1 %), if an asymptotic truncated solution (with

κ′ = 7 or 8) replaces the “exact” solution, or brute force solution. But the theoretical

indetermination remains: at NNLO even the second truncated solution is a solution and

the differences on the observables, as we are going to show, become more substantial than

the fraction of a percent obtained using the asymptotic solution.

As we are going to show next, the results produced by our implementation are in

excellent agreement up to NNLO with those obtained with Pegasus and the Les Houches

benchmarks (see refs. [24, 25]). Regarding the computation of the errors on the pdf’s,

these are not available for all the most popular sets and through all orders. For instance,

the Alekhin and MRST fits are presented up to NNLO, but only one of them, the set [9]

presents errors through NNLO.

Coming to describe the region that we have studied, our numerical investigation covers

both the resonance region around the peak of the Z - this being useful in order to assess

the impact of the corrections at the various orders - and the remaining regions of faster

fall-off. We remark that these studies can also be extended to the search for extra Z ′ in

extensions of the Standard Model, and as such provide a clear indication of the role played

by these corrections in a precise determination of the QCD/electroweak background, useful

for potential discoveries of additional neutral currents at the LHC using this process.

2.1 A classification of the possible solutions

We start our study by briefly reviewing the nature of the NNLO solutions and the level of

accuracy which is intrinsic to any solution.

As we have already mentioned, there are essentially three types of solutions that one

can extract from the evolution equations. We have decided to classify them as follows: 1)

the accurate solutions with few iterates, 2) the iterated solutions with a large number of

iterates, eventually combined with exact analytical solutions of the nonsinglet sector and

3) the brute force solutions.

Solutions of type-1 are built using a very simple ansatz which can be showed to be ac-

curate through NNLO. The ansatz contains all the terms of the form logn(αs), αs logn(αs)

and α2
s logn(αs). Solutions of type-2 include terms of arbitrary higher order in the logarith-

mic expansion. They are characterized by one or two indices, the first (κ′) which defines

the accuracy and the index κ which defines the order of the truncation of the right-hand-

– 6 –
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side (rhs) of the evolution equation. The two indices κ, κ′ can be taken as label of a given

truncated solution. They are built starting from one of the two forms of the evolution

equations (form-1 and form-2), as we will discuss below. The index κ appears in form-2,

when the DGLAP equations are written directly in terms of the logarithmic derivative of

the running coupling log(αs).

Solutions of type-3 are affected by contributions of all orders and can be obtained using

brute force methods, by discretization of the evolution equations. They exceed the level

of accuracy typical of a perturbative expansions where the kernels are only known up to

NNLO (α2
s).

Truncated solutions, instead, are obtained, as we have just mentioned, by truncating

the rhs of the evolutions equations at a given order and then searching for solutions of

these equations with a certain accuracy. Also in this case the truncated equations can be

solved exactly, giving solutions which exceed the level of accuracy of the expansion. This

happens in the nonsinglet sector. If we use the DGLAP written in terms of a logarithmic

derivative of Q rather than of the coupling (form-1), then the NNLO exact nonsinglet

solution is available. Similar solutions are also available for the form-2 of the equations in

the same sector for κ ≤ 2. In this second case these solutions do not have, however, a well

defined meaning, since they are not accurate nor converge, in the limit κ′ → ∞, to the

exact solution of the exact equation (as for the ansatzë written for form-1, for instance).

Therefore, also in this case an accurate solution is obtained by an additional expansion in

the strong coupling and retaining only terms up to a certain order, which is the order of

the selected accuracy.

2.2 The two forms of the evolution

We proceed by illustrating the two forms that the equations can take.

We recall that the perturbative expansion of the DGLAP splitting functions and of

the β-function take the generic form (to the m-th order)

PNmLO(x,Q2) =
m

∑

i=0

(

αs(Q
2)

2π

)i+1

P (i)(x,Q2),

∂βNmLO(αs(Q
2))

∂ log Q2
= −

m
∑

k=0

(

αs(Q
2)

4π

)k+2

βk, (2.1)

with βk being the corresponding coefficients of the β function which have been summarized

in [15]. Leading, next to leading and NNLO correspond to the cases m = 0, 1, 2 respectively.

The equation can be written either as

∂f(x, αs(Q
2))

∂ log(Q2)
= PNmLO(x,Q2) ⊗ f(x, αs(Q

2)) (2.2)

(form-1) or, equivalently, as

∂f(x, αs)

∂αs
=

PNmLO(x,Q2)

βNmLO
⊗ f(x, αs) (2.3)

– 7 –
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(form-2). While the two forms are equivalent, form-2 needs an expansion of the 1/β factor.

This generates on the rhs of the expanded equation an infinite set of truncated equations

characterized by a parameter of accuracy (κ). This parameter has to be sent to infinity in

order for form-2 to be equivalent to form-1. When we search for solutions of the DGLAP

in the form-1 and we need to compare with the form-2, the recursion relations for the

solution ansatz start to differ after the order κ. Notice that once that we have introduced

an expansion of the rhs, such as in form-2, we may search either for truncated solutions of

this truncated equation or for exact solutions. These are options that increase the type of

possible solutions, all of them of different theoretical accuracy. To illustrate this point we

start from the form-2 of the equations and choose m = 2 (NNLO), obtaining the truncated

equation

∂f(αs, x)

∂αs
=

1

αs

[

R0(x) + αsR1(x) + α2
sR2(x) + · · · + ακ

sRκ(x)
]

⊗ f(αs, x). (2.4)

The explicit form of the operators Rκ can be easily worked out, at any perturbative order.

For instance at NNLO the first few terms are given by

R0 = − 2

β0
P (0)

R1 = − 1

πβ0
P (1) − b1

(4π)
P (0)

R2 = − 1

πβ0
P (2) − b2

(4π)2
R0 −

b1

(4π)
R1

R3 = − b2

(4π)2
R1 −

b1

(4π)
R2

R4 = − b1b2

(4π)3
R1 +

b2
1

(4π)2
R2 −

b2

(4π)2
R2

R5 = − b2
1

(4π)2
R3 +

b2
2

(4π)4
R1 +

b1b2

(4π)2(2π)
R2

... (2.5)

where bi = βi/β0, valid in the nonsinglet case. A similar expansion holds also for the

singlet sector, although in this case the recursion relations involve some commutators of

the matrix-valued kernels. The unknown operators that define the ansatz need to be

identified by solving the related recursion relations.

In Mellin space, the ansatz that solves the eq. (2.4), is chosen to be of the form [19, 14]

f(N,αs) = U(N,αs)fLO(N,αs, α0)U
−1(N,α0)

=

[

1 +

+∞
∑

κ′=1

Uκ′(N)ακ′

s

]

fLO(N,αs, α0)

[

1 +

+∞
∑

κ′=1

Uκ′(N)ακ′

0

]−1

, (2.6)

that we call, for convenience, the U -ansatz, and inserting this expression in eq. (2.4) it

generates a chain of recursion relations which allow us to determine the matrices Uκ′(N)

in terms of the operators Rκ.
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We remark that even if we take a fixed value of κ in the truncated equation, the

running index κ′ in eq. (2.6) is still free. The case κ′ ≥ κ with κ′ → ∞2 allows to find the

exact solution of the κ-truncated equation (2.4).

A third option corresponds to the choice κ′ < κ. This gives an approximate solution

of the κ-truncated NNLO equation accurate at the order ακ′

s . Notice that if we start from

the first form of the evolution (form-1) and use a recursive ansatz to solve this equation

(either in moment space or in x-space) this solution has to agree with the solutions of the

truncated equation considered above, once we perform an expansion of that solution in αs

and α0, as we have showed in [15].

As an example, the most accurate NNLO solution is generated by the choice κ′ = κ =

m = 2. In this case we can write the α2
s-truncated solution of the truncated equation with

κ = 2 as follows

f(N,αs) =

(

αs

α0

)− 2
β0

P (0)
[

1 + (αs − α0)U1(N) + α2
sU2(N)

−αsα0U
2
1 (N) + α2

0

(

U2
1 (N) − U2(N)

)]

f(N,α0). (2.7)

At this retained accuracy (m = 2) of the evolution integral, the truncated solution of

the corresponding (truncated) DGLAP equation can be easily found, in moment space, as

f(N,αs) = f(N,α0)

(

αs

α0

)−2P (0)

β0

{

1 + (αs − α0)

[

−P (1)

πβ0
+

P (0)β1

2πβ2
0

]

+α2
s

[

P (1)2

2π2β2
0

− P (2)

4π2β0
−P (0)P (1)β1

2π2β2
0

+
P (1)β1

8π2β2
0

+
P (0)2β2

1

8π2β4
0

− P (0)β2
1

16π2β3
0

+
P (0)β2

16π2β2
0

]

+α2
0

[

P (1)2

2π2β2
0

+
P (2)

4π2β0
−P (0)P (1)β1

2π2β2
0

−P (1)β1

8π2β2
0

+
P (0)2β2

1

8π2β4
0

+
P (0)β2

1

16π2β3
0

− P (0)β2

16π2β2
0

]

+α0αs

[

−P (1)2

π2β2
0

+
P (0)P (1)β1

π2β3
0

− P (0)2β2
1

4π2β4
0

]}

. (2.8)

These are solutions of type-1. They coincide with the first few terms of the exact NNLO

solution of the DGLAP equation, obtained by a double expansion in the couplings and

retaining only the O(α2
s) terms, as can be explicitly checked in the nonsinglet sector for

the equation given in form-1. Therefore the solution is organized effectively as a double

expansion in αs and α0. This approach remains valid also in the singlet case, when the

equations assume a matrix form, though an exact solution, in the form of an ansatz, similar

to that of the nonsinglet sector (eq. 2.31 below), is not available in this case.

2.3 The logarithmic expansions for the form-1 of the evolution

Our previous analysis has involved form-2 of the equations and we have presented an

ansatz that solves this equation. We intend now to show how to construct an ansatz

directly starting from form-1.

2This corresponds to the option IMODEV = 2 in Pegasus while the case κ′ = κ with κ, κ′ → ∞
corresponds to the option IMODEV = 1.
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The advantage of solving the equations directly in form-1 is that one has a single

ansatz for the entire equation and the accuracy is just determined by the order of the

chosen ansatz, differently from form-2. If we are interested in an accurate solution of order

κ′, for instance, we use the ansatz

fNκ′LO(x, αs)|O(ακ′

s ) =

∞
∑

n=0

(

A0
n(x)+αsA

1
n(x)+α2

sA
2
n(x)+. . .+ακ′

s Aκ′

n (x)
)

[

ln

(

αs(Q
2)

αs(Q2
0)

)]n

,

(2.9)

which can be correctly defined to be a truncated solution of order κ′ of the DGLAP in

form-1. As we are going to show next, we will monitor the numerical behavior of this

expansion and its convergence. Sending the index κ′ in the logarithmic expansion of (2.9)

to infinity, then the ansatz that accompanies this choice becomes

fNmLO(N,αs) =

∞
∑

n=0

( ∞
∑

l=0

αl
sA

l
n(x)

)

[

ln

(

αs(Q
2)

αs(Q2
0)

)]n

, (2.10)

and converges, in principle, to the exact solution of the equation given in form-1. In

practice, however, this convergence is hampered by the factorial suppression. For this

reason is it convenient to use the term “asymptotic solutions” rather than “exact solution”

for these iterates of larger index.

2.3.1 Exact solutions in the nonsinglet case at NNLO

The search for exact NNLO solutions in the nonsinglet sector proceeds similarly. This has

been analyzed in [15]. We define the following functions

L = log
αs

α0
, (2.11)

M = log
16π2β0 + 4παsβ1 + α2

sβ2

16π2β0 + 4πα0β1 + α2
0β2

, (2.12)

Q =
1

√

4β0β2 − β2
1

arctan χ, (2.13)

a(N) = −2P (0)(N)

β0
, (2.14)

b(N) =
P (0)(N)

β0
− 4P (2)(N)

β2
, (2.15)

c(N) =
2β1

β0
P (0)(N) − 8P (1)(N) +

8β1

β2
P (2)(N), (2.16)

where for nf = 6 the solution has a branch point since 4β0β2−β2
1 < 0. If we increase nf as

we step up in the factorization scale, for nf = 6 Q is replaced by its analytic continuation

Q =
1

√

β2
1 − 4β0β2

arctanhχ (2.17)
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where

χ =
2π(αs − α0)

√

4β0β2 − β2
1

2π(8πβ0 + (αs + α0)β1) + αsα0β2

arctanhχ =
1

2
log

(

1 + χ

1 − χ

)

. (2.18)

Clearly all the (nontrivial) dependence on the coupling constants αs is contained in the

3 functions L,M and Q. The general solution can be written in terms of A′
n, B′

n, C ′
n,

coefficients that will be calculated by a chain of recursion relations [15] giving

f(x,Q2) =

( ∞
∑

n=0

A′
n(x)

n!
Ln⊗

)( ∞
∑

m=0

B′
m(x)

m!
Mm⊗

)





∞
∑

p=0

C ′
p(x)

p!
Qp⊗



 f(x,Q2
0)

=

∞
∑

s=0

s
∑

t=0

t
∑

n=0

A′
n(x) ⊗ B′

t−n(x) ⊗ C ′
s−t(x)

n!(t − n)!(s − t)!
⊗ f(x,Q2

0)LnMt−nQs−t

=

∞
∑

s=0

s
∑

t=0

t
∑

n=0

Ds
t,n(x)

n!(t − n)!(s − t)!
LnMt−nQs−t, (2.19)

and where

Ds
t,n(x) = A′

n(x) ⊗ B′
t−n(x) ⊗ C ′

s−t(x) ⊗ f(x,Q2
0). (2.20)

Solving the chain of recursion relations, the above solution in x-space can be simply written

as

f(x, αs(Q
2)) = exp

{[

− 2

β0
P (0)(x) log

(

αs

α0

)]}

⊗

exp

{

log

(

16π2β0 + 4παsβ1 + α2
sβ2

16π2β0 + 4πα0β1 + α2
0β2

)

[

P (0)(x)

β0
− 4P (2)(x)

β2

]

⊗
}

exp

{(

1
√

4β0β2 − β2
1

arctan
2π(αs − α0)

√

4β0β2 − β2
1

2π(8πβ0 + (αs + α0)β1) + αsα0β2

)

[

2β1

β0
P (0)(x) − 8P (1)(x) +

8β1

β2
P (2)(x)

]

⊗
}

D0
0,0(x). (2.21)

where D0
0,0(x) = f(x,Q2

0). The possibility of finding an exact solution has, of course,

phenomenological implications, since the analytic solution performs a resummation of the

log(αs) which are generated to all orders by the various truncations and by the correspond-

ing logarithmic expansions. These are incorporated into the functions M, Q (χ).

We will get back to this point later.

2.4 The singlet case

Before we address the topic of the resummation/re-organization of the logarithmic structure

of the solution due to the choice of the different expansions, we move to analyze the

extension of our previous reasonings to the singlet case. One can start from form-1 or from

form-2, obtaining solutions of overall different accuracies. In the singlet case, if we start

– 11 –



J
H
E
P
0
8
(
2
0
0
7
)
0
3
0

from form-2, then one can consider a truncation of this equation, for instance to second

order, that can be written as

∂ ~f(N,αs)

∂αs
=

1

αs

[

R̂0 + αsR̂1 + α2
sR̂2

]

~f(N,αs),

(2.22)

where

R̂0 = − 2

β0
P̂ (0)

R̂1 = − 1

2πβ2
0

[

2β0P̂
(1) − P̂ (0)β1

]

R̂2 = − 1

π

(

ˆP (2)

2πβ0
+

R̂1β1

4β0
+

R̂0β2

16πβ0

)

, (2.23)

whose (exact) solution in Mellin space is expected to be of the form (the U -ansatz) [19]

~f(N,αs) =
[

1+αsÛ1(N)+α2
sÛ2(N)

]

L̂(αs, α0, N)
[

1+α0Û1(N)+α2
0Û2(N)

]−1
~f(N,α0),

(2.24)

where
[

R̂0, Û1

]

= Û1 − R̂1,
[

R̂0, Û2

]

= −R̂2 − R̂1Û1 + 2Û2. (2.25)

Using two projectors on the subspaces of the corresponding leading order (singlet) eigen-

values, denoted by (e±) (see [15]), one can remove the commutators, obtaining

Û2 = Û++
2 + Û+−

2 + Û−+
2 + Û−−

2 , (2.26)

where

Û++
2 =

1

2

[

R̂++
1 R̂++

1 + R̂++
2 − R̂+−

1 R̂−+
1

r− − r+ − 1

]

,

Û−−
2 =

1

2

[

R̂−−
1 R̂−−

1 + R̂−−
2 − R̂−+

1 R̂+−
1

r+ − r− − 1

]

,

Û+−
2 =

1

r+ − r− − 2

[

−R̂+−
1 R̂−−

1 − R̂+−
2 +

R̂++
1 R̂+−

1

r+ − r− − 1

]

,

Û−+
2 =

1

r− − r+ − 2

[

−R̂−+
1 R̂++

1 − R̂−+
2 +

R̂−−
1 R̂−+

1

r− − r+ − 1

]

, (2.27)

and the formal solution from Mellin space can be simplified to

~f(N,αs) =
[

L̂ + αsÛ1L̂ − α0L̂Û1

+α2
sÛ2L̂ − αsα0Û1L̂Û1 + α2

0L̂
(

Û2
1 − Û2

)]

~f(N,α0) (2.28)
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where the accuracy is kept through O(α2
s).

If we don’t want to truncate the equation, then we work with form-1. We start con-

structing solutions of this equation using the logarithmic expansions introduced in [15]

using few iterates. As we have mentioned, in this case there will be just one parameter

appearing in the expansion, related to the desired accuracy, i.e. the terms retained in the

ansatz, and by increasing the accuracy one expects the result to converge toward the exact

solution.

The first truncated logarithmic ansatz that is expected to reproduce (2.28) includes

also an infinite set of new coefficients ~Cn, similar to the nonsinglet NNLO case

~f(N,αs) =

∞
∑

n=0

Ln

n!

[

An + αsBn + α2
sCn

]

. (2.29)

The ansatz can be generated to an arbitrarily high order. If this order is κ, we introduce

the κ-truncated logarithmic ansatz

~fNκLO(x, αs)|O(ακ
s ) =

∞
∑

n=0

(

O0
n(x)+αsO

1
n(x)+α2

sO
2
n(x)+. . .+ακ

sO
κ
n(x)

)

[

ln

(

αs(Q
2)

αs(Q2
0)

)]n

(2.30)

in the NNLO DGLAP matrix equation and neglect the O(ακ+1
s ) terms. We obtain the

following recursion relations which, in the NLO DGLAP case are

O0
n+1(x) = − 2

β0

[

P(0)(x) ⊗ O0
n(x)

]

,

...

Oκ
n+1(x) = − 2

β0

[

P(0) ⊗ Oκ
n

]

(x) − 1

πβ0

[

P(1)(x) ⊗ Oκ−1
n (x)

]

− β1

4πβ0
Oκ−1

n+1(x) − κOκ
n(x) − (κ − 1)

β1

4πβ0
Oκ−1

n (x) , (2.31)

while in the NNLO case become

O0
n+1(x) = − 2

β0

[

P(0)(x) ⊗ O0
n(x)

]

,

O1
n+1(x) = − 2

β0

[

P(0)(x) ⊗ O1
n(x)

]

− 1

πβ0

[

P(1)(x) ⊗O0
n(x)

]

− β1

4πβ0
O0

n+1(x) − O1
n(x),

...

Oκ
n+1(x) = − 2

β0

[

P(0)(x) ⊗ Oκ
n(x)

]

− 1

πβ0

[

P(1)(x) ⊗Oκ−1
n (x)

]

− 1

2π2β0

[

P(2)(x) ⊗ Oκ−2
n (x)

]

− β1

4πβ0
Oκ−1

n+1(x) − β2

16π2β0
Oκ−2

n+1(x)

−κOκ
n(x) − (κ − 1)

β1

4πβ0
Oκ−1

n (x) − (κ − 2)
β2

16π2β0
Oκ−2

n (x) . (2.32)
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These relations hold both in the nonsinglet and singlet cases and they can be solved

in x-space and N-space in terms of the initial conditions f(N,α0) = O0
0(N). Since in the

singlet sector the recursion relations are in matrix form, we can solve them by the use of

the projectors e+ and e−. A straightforward way to solve the matrix relations is first to

solve the relation for O0
n(N) in terms of e+ , e− and rn

+ , rn
− as follows

O0
n(N) = e+rn

+O0
0(N) + e−rn

−O0
0(N) (2.33)

and use this result to solve the other relations. The Om
n (N) operators can be decomposed

in an R2 orthonormal basis {e1, e2} as

Om
n (N) = e1O

(1),m
n (N) + e2O

(2),m
n (N) = O+,m

n (N) + O−,m
n (N) . (2.34)

Then, using the properties of the projectors we can write

(e+ + e−)Om
n (N) = e+

(

e1O
(1),m
n (N)

)

+ e+

(

e2O
(2),m
n (N)

)

+e−
(

e1O
(1),m
n (N)

)

+ e−
(

e2O
(2),m
n (N)

)

, (2.35)

for the relations with m > 0, and setting

O++,m
n (N) = e+

(

e1O
(1),m
n (N)

)

O+−,m
n (N) = e+

(

e2O
(2),m
n (N)

)

O−+,m
n (N) = e−

(

e1O
(1),m
n (N)

)

O−−,m
n (N) = e−

(

e2O
(2),m
n (N)

)

(2.36)

we can derive some recursion relations. For example, in the NLO case, which corresponds

to the case m = 0, 1, we have two recursion relations and having solved the O0
n(N) as

illustrated above, the m = 1 relation can be decomposed into four recursion relations as

follows

O++,1
n+1 (N) = R++

1 rn
+O0

0(N) + (r+ − 1)O++,1
n (N)

O+−,1
n+1 (N) = R+−

1 rn
+O0

0(N) + (r− − 1)O+−,1
n (N)

O−+,1
n+1 (N) = R−+

1 rn
−O0

0(N) + (r+ − 1)O−+,1
n (N)

O++,1
n+1 (N) = R−−

1 rn
−O0

0(N) + (r− − 1)O−−,1
n (N). (2.37)

This pattern can be extended to NNLO, in fact we have three sets of recursion relations

corresponding to the cases m = 0, 1, 2. Once we have solved all the relations corresponding

to the cases m = 0, 1 we can proceed to solve the following relations

O++,2
n+1 (N) =

[

R++
2 +

β1

β0(4π)
R++

1

]

rn
+O0

0(N) +
[

R++
1 O++,1

n (N) + R+−
1 O−+,1

n (N)
]

− β1

β0(4π)

[

O++,1
n (N) + O++,1

n+1 (N)
]

+
β1

β0(4π)
r+O++,1

n (N) + (r+ − 2)O++,2
n ,

– 14 –



J
H
E
P
0
8
(
2
0
0
7
)
0
3
0

O+−,2
n+1 (N) =

[

R+−
2 +

β1

β0(4π)
R+−

1

]

rn
−O0

0(N) +
[

R+−
1 O−−,1

n (N) + R++
1 O+−,1

n (N)
]

− β1

β0(4π)

[

O+−,1
n (N) + O+−,1

n+1 (N)
]

+
β1

β0(4π)
r+O+−,1

n (N) + (r+ − 2)O+−,2
n ,

O−+,2
n+1 (N) =

[

R−+
2 +

β1

β0(4π)
R−+

1

]

rn
+O0

0(N) +
[

R−+
1 O++,1

n (N) + R−−
1 O−+,1

n (N)
]

− β1

β0(4π)

[

O−+,1
n (N) + O−+,1

n+1 (N)
]

+
β1

β0(4π)
r−O−+,1

n (N) + (r− − 2)O−+,2
n ,

O−−,2
n+1 (N) =

[

R−−
2 +

β1

β0(4π)
R−−

1

]

rn
−O0

0(N) +
[

R−−
1 O−−,1

n (N) + R−+
1 O+−,1

n (N)
]

− β1

β0(4π)

[

O−−,1
n (N) + O−−,1

n+1 (N)
]

+
β1

β0(4π)
r+O−−,1

n (N) + (r− − 2)O−−,2
n

(2.38)

which can be implemented in a computer program, with a standard numerical inversion of

the Mellin transform, being equivalent to (2.31) and (2.32). The x-space approach, as we

are going to show, matches the numerical Mellin method with very high accuracy, since the

asymptotic truncated solutions give the same answer. In the nonsinglet sector the exact

solutions built by iterations as logarithms of composite functions of αs are new and not

present in the previous literature. These have been used in this sector to generate the

corresponding exact solutions.

2.5 Relating the U-ansatz to the logarithmic expansion

It is important to compare the two expansions which are identical globally (that is to all

orders) but that organize, at a certain fixed perturbative order, the logarithmic correc-

tions in different ways. This can be easily shown in the nonsinglet sector, where the two

expansions can be more easily mapped into one another. Let’s see how this happens.

The double Taylor-expansion of the solution of the eq. (2.24) for (αs, α0) around (0, 0)

up to order 4, for example, has the following structure

f(x, αs, α0) =

(

αs

α0

)− 2
β0

P (0)
[

1 + αsa
(1)
1 + α0a

(1)
2 + (2.39)

α2
sa

(2)
1 + αsα0a

(2)
2 + α2

0a
(2)
3 +

α3
sa

(3)
1 + α2

sα0a
(3)
2 + αsα

2
0a

(3)
3 + α3

0a
(3)
4 + α2

sα
2
0a

(4)
1

α4
sa

(4)
2 + αsα

3
0a

(4)
3 + α2

sα
2
0a

(4)
4 + αsα

3
0a

(4)
5 + α4

0a
(4)
6 + . . . + α4

sα
4
0a

(8)
1

]

f0 ,

as we can see, the double expansion gives terms of higher order of the type α4
sα

4
0. On the

other end, for instance, the logarithmic expansion accurate to α4
s is given by

f̃(x, αs, α0) =

∞
∑

n=0

[

An(x) + αsBn(x) + α2
sCn(x) + α3

sDn(x) + α4
sEn(x)

] 1

n!
logn

(

αs

α0

)

,

(2.40)
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that gives recursion relations for the coefficients An, . . . , En which are solved and expo-

nentiated, as we have shown in [15]. Once those coefficients have been determined, we

substitute them into eq. (2.40) and rewrite f̃ as

f̃(x, αs, α0) =

(

αs

α0

)− 2
β0

P (0)
[

1+αsc
(1)
1 +α0c

(1)
2 +α2

sc
(2)
1 +αsα0c

(2)
2 +α2

0c
(2)
3 +α3

sc
(3)
1 + (2.41)

α2
sα0c

(3)
2 +αsα

2
0c

(3)
3 +α3

0c
(3)
4 +α4

sc
(4)
1 +αsα

3
0c

(4)
2 +α2

sα
2
0c

(4)
3 +αsα

3
0c

(4)
4 +α4

0c
(4)
5

]

A0 .

From the direct calculation of the coefficients a
(j)
i and c

(j)
i in the two eqs. (2.41) and (2.40),

we observe that they coincide only for those terms which are of the same order in αsα0, but

in general, the two expansions organize the corrections in different ways. For instance, in

order to generate the terms of the type α4
sα

4
0, we should take the index κ = 8 in (2.30). In

this case we will reproduce all the coefficients up to α4
sα

4
0, but we will also introduce terms

of order α8
s and α8

0 which were not present in the double expansion of (2.24) arrested at

order α4
s. This is due to the fact that the Taylor expansion of (2.24) in (αs, α0) is a double

expansion while the result of the logarithmic expansion corresponds to a single expansion in

αs and the remaining power of α0 are introduced during the exponentiation procedure [15].

As we have mentioned, to establish the equivalence between the two approaches eqs. (2.24)

and (2.30) one needs to expand the leading order solution which appears as first factor

in (2.24), extracting all the logarithms of αs. The structure of the U -ansatz is such that

in it the leading order solution is automatically factored out, while in the logarithmic

expansions of type (2.29) and, in general, (2.30), one needs to exponentiate the solution

of the recursion relations to achieve the same result. Numerically this can’t be done,

but the two ansatzë, interpreted perturbatively both as ways to collect the logarithms of

the solution of the evolution equations, become the same expansion as the order of the

truncation grows.

3. Resummation and the exact solution

It is interesting to compare the logarithmic corrections generated by the truncated solutions

with the exact nonsinglet solutions obtained at the various perturbative orders. As we have

already mentioned, the analytic solution resums the partial contributions coming from the

truncates of various order introduced by the various ansatzë in x-space or in moment space.

To illustrate this point, let’s start the analysis from the NLO nonsinglet case and then we

will generalize the results to the NNLO case.

Solving NLO DGLAP nonsinglet equation in Mellin space

∂f(N,αs)

∂αs
=

PNLO(N,αs)

βNLO(αs)
f(N,αs) (3.1)

we obtain an exact solution which can be written as follows

f(αs, N) = exp

{

− 2

β0
P (0)(N) log

(

αs

α0

)}

× exp

{[

2

β0
P (0)(N) − 4

β1
P (1)(N)

]

log

(

4πβ0 + αsβ1

4πβ0 + α0β1

)}

f(α0, N) (3.2)
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in Mellin space, and as

f(αs, x) = exp

{

− 2

β0
P (0)(x) log

(

αs

α0

)

⊗
}

× exp

{[

2

β0
P (0)(x) − 4

β1
P (1)(x)

]

log

(

4πβ0 + αsβ1

4πβ0 + α0β1

)

⊗
}

f(α0, x) (3.3)

in x-space.

Expanding in terms of log
(

αs
α0

)

this solution we obtain

f(αs, x) = exp

{

− 2

β0
P (0)(x) log

(

αs

α0

)

⊗
}

× (3.4)

exp

{[

2

β0
P (0)(x) − 4

β1
P (1)(x)

] [

α0β1

4πβ0 + α0β1
log

(

αs

α0

)

+ . . .

]

⊗
}

f(α0),

with an analogous expression in moment space. The notations can be simplified by defining

P̃ (0) = − 2

β0
P (0)

P̃ (1) =
2

β0
P (0) − 4

β1
P (1)

g1(α0) =
α0β1

4πβ0 + α0β1

t = log

(

αs

α0

)

(3.5)

and in x-space we can rewrite the solution in terms of t-iterates in the form

f(αs, x) = exp
{

P̃ (0) t⊗
}

exp
{[

P̃ (1) t g1(α0) + P̃ (1) t2 g2(α0) + · · ·
]

⊗
}

f(α0, x)

exp
{

P̃ (0) t⊗
}

exp
{

P̃ (1) t g1(α0)⊗
}

exp
{

P̃ (1) t2 g2(α0)⊗
}

· · ·

exp
{

P̃ (1) tn gn(α0)⊗
}

f(α0, x)

(3.6)

where

g2(α0) =
1

2

(

g1(α0) − g2
1(α0)

)

g3(α0) =

(

1

6
g1(α0) −

1

2
g2
1(α0) +

1

3
g3
1(α0)

)

g4(α0) =

(

1

24
g1(α0) −

7

24
g2
1(α0) +

1

2
g3
1(α0) −

1

4
g4
1(α0)

)

g5(α0) =

(

1

120
g1(α0) −

1

8
g2
1(α0) +

5

12
g3
1(α0) −

1

2
g4
1(α0) +

1

5
g5
1(α0)

)

... (3.7)
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Finally, in the nonsinglet case we can re-arrange our solution in the form

fLO(αs, x) = exp
{

P̃ (0) t ⊗
}

f(α0, x) (3.8)

f(αs, x) = exp
{

P̃ (1) t g1(α0) ⊗
}

exp
{

P̃ (1) t2 g2(α0) ⊗
}

· · ·

⊗ exp
{

P̃ (1) tn gn(α0) ⊗
}

fLO(αs, x).

It is interesting to note that the function g1(α0) is, in a sense, universal since it contains

all the information about the initial conditions. A quick comparison between (3.3) and its

expanded version (3.9) shows the features of the implicit resummation involved in moving

from the second equation to the first. We will point out, in the numerical analysis presented

below, that only a resummation can bring a logarithmic ansatz expressed in terms of log(αs)

(either in Mellin space or in x-space) to reproduce numerically the exact solution. This is

easy to show in the nonsinglet case, where both equations can be implemented as numerical

iterations.

In a similar way we can proceed to re-arrange the exact solution in the nonsinglet

sector at NNLO. This can be rewritten as

f(x, αs) = exp

{

log

(

16π2β0 + 4παsβ1 + α2
sβ2

16π2β0 + 4πα0β1 + α2
0β2

)

[

P (0)(x)

β0
− 4P (2)(x)

β2
⊗

]}

exp

{(

1
√

4β0β2 − β2
1

arctan
2π(αs − α0)

√

4β0β2 − β2
1

2π(8πβ0 + (αs + α0)β1) + αsα0β2

)

[

2β1

β0
P (0)(x) − 8P (1)(x) +

8β1

β2
P (2)(x)

]

⊗
}

fLO(x, α0). (3.9)

Expanding in terms of the logs, it is useful to define the following expressions

P̃
(2)
A =

(

4P (2)β0 − P (0)β2

)

P̃
(2)
B =

(

4P (2)β0β1 − 4P (1)β0β2 + P (0)β1β2

)

G(α0) =
1

β0β2

(

16π2β0 + 4πα0β1 + α2
0β2

) . (3.10)

Then we get

f(x, αs) ≃ exp

{[

t

G(α0)
a1(α0)P̃

(2)
A +

t2

G2(α0)
a2(α0)P̃

(2)
A + · · · + tn

Gn(α0)
an(α0)P̃

(2)
A

]

⊗
}

exp

{[

t

G(α0)
b1(α0)P̃

(2)
B +

t2

G2(α0)
b2(α0)P̃

(2)
B + · · · + tn

Gn(α0)
bn(α0)P̃

(2)
B

]

⊗
}

×fLO(x, α0) (3.11)

where G(α0) and the functions a1(α0), . . . , b1(α0) . . ., are polynomial functions dependent

on α0. We omit to give their explicit expressions since they are not relevant for our

discussion. With these definitions, the solution written in terms of simple logarithms of
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the coupling is summarized in x-space by the formal expression

f(x, αs) ≃ exp

{

t

G(α0)
a1(α0)P̃

(2)
A ⊗

}

exp

{

t2

G2(α0)
a2(α0)P̃

(2)
A ⊗

}

· · ·

⊗ exp

{

tn

Gn(α0)
an(α0)P̃

(2)
A ⊗

}

exp

{

t

G(α0)
b1(α0)P̃

(2)
B ⊗

}

exp

{

t2

G2(α0)
b2(α0)P̃

(2)
B ⊗

}

· · ·

⊗ exp

{

tn

Gn(α0)
bn(α0)P̃

(2)
B ⊗

}

fLO(x, α0).

The relations between exact solutions and logarithmic expansions simplify considerably

when one starts from the form-2 of the evolution equations. In fact, proceeding with the

1st truncated equation (κ = 1) this takes the form

∂f(αs, x)

∂αs
=

1

αs
[R0 + αsR1] ⊗ f(αs, x), (3.12)

where we have set

R0 = − 2

β0
P (0) R1 = −P (1) 1

πβ0
+ P (0) β1

2πβ2
0

. (3.13)

In this specific case the exact solution is given by

f(αs, x) = exp {(αs − α0)R1⊗} exp {tR0⊗} f(α0, x) (3.14)

and using the relation

f(αs, x) = exp {tR0⊗} exp {α0tR1⊗} exp

{

α0
t2

2!
R1⊗

}

· · · f(α0, x) (3.15)

followed by a further expansion of the exponentials, the expression above can be re-

organized in the form

f(αs, x) = exp {tR0} ⊗
{

1 + R1α0t + t2
(

R1
α0

2
+ R1 ⊗ R1

α2
0

2

)

+ · · ·
}

⊗ f(α0, x). (3.16)

If we want to preserve a certain accuracy in our solutions, it is sufficient to do a Taylor

expansion of (3.14). For example, at NLO, the truncated solutions of order αs of the

truncated equation is

f(αs, x) = [1 + (αs − α0) R1] ⊗ fLO(αs, x), (3.17)

which takes the form originally given in [20]. Expanding this expression in terms of

log(αs/α0) = t we obtain the traditional form of the solution

f(αs, x) = fLO(αs, x) + R1

[

α0t +
1

2
α0t

2 + · · ·
]

⊗ fLO(αs, x). (3.18)
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Using this simple approach we can proceed to the determination of finite accuracy O(ακ
s )

solutions in the nonsinglet sector.

Increasing the value of κ, we can write the κ-th truncated NLO or NNLO equation as

∂f(αs, x)

∂αs
=

1

αs

[

R0 + αsR1 + α2
sR2 + . . . + ακ

sRκ

]

⊗ f(αs, x), (3.19)

where all the coefficients R0(x), R1(x), . . . , Rκ(x) are expressed in terms of the P (0) and

P (1) kernels in the NLO case, and in terms of P (0), P (1), P (2) in the NNLO case. In both

cases the solution can be expanded in terms of t-logs as

f(αs, x) = exp {tR0} ⊗ exp
{

t
(

α0R1c
1
1 + α2

0R2c
1
2 + . . . + ακ

0Rκc1
κ

)}

⊗
exp

{

t2
(

α0R1c
2
1 + α2

0R2c
2
2 + . . . + ακ

0Rκc2
κ

)}

⊗ · · ·
⊗ exp

{

tn
(

α0R1c
n
1 + α2

0R2c
n
2 + . . . + ακ

0Rκcn
κ

)}

⊗ f(α0, x), (3.20)

being the coefficients cn
κ real numbers. After a further expansion one can cast the result in

the form

f(αs, x) =
{

1 + t
(

α0R1c
2
1 + α2

0R2c
2
2 + . . . + ακ

0Rκc2
κ

)

+t2
(

α0R1c
2
1 + α2

0R2c
2
2 + . . . + ακ

0Rκc2
κ

)

⊗
(

α0R1c
2
1 + α2

0R2c
2
2 + . . . + ακ

0Rκc2
κ

)

⊗ · · ·
}

⊗ fLO(α0, x),

(3.21)

having factored out the leading order solution.

One of the points that should be briefly taken into considerations concern the definition

of the asymptotic solution. An asymptotic solution, in our terminology, identifies a solution

which is the closest possible to the exact (brute force) solution. This means that while in

the nonsinglet, for this solution, we will be using our exact ansatz, for the singlet we

will let the number of iterates grow until the logarithmic series stabilizes. However, the

absence of exact solutions in the singlet case shows that we will be surely differing from

the brute force solution by some finite amount. Being Candia, or Pegasus based on

analytical approaches rather than on discretizations, we are not able to compare with the

exact solution and estimate the difference between our asymptotic solution and the exact

one. We will quantify these difference rather accurately taking the Drell-Yan cross section

as an example, but before coming to a numerical analysis we discuss the implementation

of the renormalization scale dependence in our formalism.

3.1 The treatment of the renormalization scale dependence and the implemen-

tation

The scale dependence of the pdf’s can be obtained by solving the modified equations

∂

∂ ln µ2
F

fi(x, µ2
F , µ2

R) = Pij(x, µ2
F , µ2

R) ⊗ fj(x, µ2
F , µ2

R) , (3.22)

where µF is now a generic factorization scale. The explicit expression of these modified

kernels are given below [14]. This can be obtained by re-expressing the coupling constant,
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αs(Q
2) for MRST at NNLO. Brute force vs ΛQCD parameterization.

Q [GeV] αbrute
s (Q2) αΛ

s (Q2) δαNNLO
s (Q2)%

50.0000 0.1268 0.1251 1.3702

83.4897 0.1170 0.1156 1.2570

90.7209 0.1156 0.1142 1.2405

91.1876 0.1155 0.1141 1.2395

92.0543 0.1153 0.1139 1.2377

107.0583 0.1128 0.1115 1.2090

125.6466 0.1103 0.1090 1.1801

144.2350 0.1082 0.1069 1.1564

162.8233 0.1064 0.1052 1.1363

181.4117 0.1049 0.1037 1.1191

200.0000 0.1035 0.1024 1.1040

Table 1: NNLO running of the coupling determined using the brute force solution of the renor-

malization group equations versus the asymptotic expansions in terms ΛQCD. The percentage

differences are normalized respect to αbrute.

function of the factorization scale µF , in terms of µR using the RGE for the running coupling

at the corresponding order. Concerning the actual relation between the couplings at the

two scales, this can be obtained by solving numerically the corresponding RGE for the

running coupling at NLO and NNLO. We have also monitored the approximate solutions

obtained by the usual well-known asymptotic expansions in terms of L = ln(µ2
F /µ2

R). In

the NLO case an implicit solution which allows to connect µ2
F and µ2

R is available

1

as(µ2
F )

=
1

as(µ2
R)

+ β0 ln

(

µ2
F

µ2
R

)

− b1 ln

{

as(µ
2
F ) [1 + b1as(µ

2
R)]

as(µ2
R) [1 + b1as(µ2

F )]

}

(3.23)

where as(µ
2) = αs(µ

2)/(4π), which can be solved as

αs(µ
2
F ) = αs(µ

2
R) −

[

α2
s(µ

2
R)

β0L

4π
+

α3
s(µ

2
R)

(4π)2
(−β2

0L2 + β1L)

]

, (3.24)

where the µ2
F dependence is contained in the factor L, and we have used a β-function

expanded up to NLO, involving β0 and β1. At NNLO implicit solutions such as (3.23) are

not available but one can derive the analogous of (3.24). Both options, the exact and the

asymptotic are present in Candia. The differences between the two determinations are

quite small (see table 1).

We have imposed logarithmic expansions on the equations with the kernels written in

the form given below and derived recursion relations for these expressions. These reduce
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to the recursion relations discussed in the previous sections with the actual redefinitions

αs(µ
2
F ) → αs(µ

2
R) = αs(µ

2
F ) −

[

−α2
s(µ

2
F )

β0L

4π
+

α3
s(µ

2
F )

(4π)2
(−β2

0L2 − β1L)

]

,

P
(0)
ij (x) → P

(0)
ij (x)

P
(1)
ij (x) → P

(1)
ij (x) − β0

2
P

(0)
ij (x)L

P
(2)
ij (x) → P

(2)
ij (x) − β0LP

(1)
ij (x) −

(

β1

4
L − β2

0

4
L2

)

P
(0)
ij (x) (3.25)

introduced into the equation expressed in form-1.

Concerning the implementation of the algorithm in Candia, we briefly illustrate the

implementation of the flavor reconstruction. We define

q
(±)
i = qi ± qi, q(±) =

nf
∑

i=1

q
(±)
i , (3.26)

then the general structure of the nonsinglet splitting functions is given by

Pqiqk
= Pqiqk

= δikP
V
qq + PS

qq, (3.27)

Pqiqk
= Pqiqk

= δikP
V
qq̄ + PS

qq̄. (3.28)

This leads to three independently evolving types of nonsinglet distributions: the evo-

lution of the flavor asymmetries

q
(±)
NS,ik = q

(±)
i − q

(±)
k , (3.29)

whose evolution is governed by

P±
NS = P V

qq ± P V
qq̄ , (3.30)

and the sum of the valence distributions of all flavors q(−) which evolves with

P V
NS = P V

qq − P V
qq̄ + nf

(

PS
qq − PS

qq̄

)

≡ P−
NS + PS

NS . (3.31)

Notice that the quark-quark splitting function Pqq can be expressed as

Pqq = P+
NS + nf

(

PS
qq + PS

qq̄

)

≡ P+
NS + Pps. (3.32)

It is important to observe that the nonsinglet contribution is the most relevant one in

eq. (3.32) at large x, where the pure singlet term Pps = PS
qq +PS

qq̄ is very small. At small x,

on the other hand, the latter contribution takes over, as xPps does not vanish for x → 0,

unlike xP+
NS . The gluon-quark and quark-gluon entries are given by

Pqg = nfPqig, (3.33)

Pgq = Pgqi (3.34)

in terms of the flavor-independent splitting functions Pqig = Pq̄ig and Pgqi = Pgq̄i . With

the exception of the first order part of Pqg, neither of the quantities xPqg, xPgq and xPgg

vanish for x → 0.
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In the expansion in powers of αs of the evolution equations, the flavor-diagonal (va-

lence) quantity P V
qq is of order αs, while P V

qq̄ and the flavor-independent (sea) contributions

PS
qq and PS

qq̄ are of order α2
s. A non-vanishing difference PS

qq − PS
qq̄ is present at order α3

s.

The next step is to choose a proper basis of nonsinglet distributions that allows us

to reconstruct, through linear combinations, the distribution of each parton. The singlet

evolution gives us 2 distributions, g and q(+), so we need to evolve 2nf − 1 independent

nonsinglet distributions. We choose

1. q(−), evolving with P V
NS ;

2. q
(−)
NS,1i = q

(−)
1 − q

(−)
i (for 2 ≤ i ≤ nf ), evolving with P−

NS ;

3. q
(+)
NS,1i = q

(+)
1 − q

(+)
i (for 2 ≤ i ≤ nf ), evolving with P+

NS ,

and use simple relations such as

q
(±)
i =

1

nf



q(±) +

nf
∑

k=1,k 6=i

q
(±)
NS,ik



 (3.35)

to perform the reconstructions of the various flavors. Choosing i = 1 in (3.35), we compute

q
(−)
1 from the evolved nonsinglets of type 1 and 2 and q

(+)
1 from the evolved singlet q(+)

and nonsinglet of type 3. Then from the nonsinglets 2 and 3 we compute respectively q
(−)
i

and q
(+)
i for each i such that 2 ≤ i ≤ nf , and finally qi and q̄i.

Moving from NNLO to NLO things simplify, as we have P
S,(1)
qq = P

S,(1)
qq̄ . This implies

(see eq. (3.31)) that P
V,(1)
NS = P

−,(1)
NS , i.e. the nonsinglets q(−) and q

(−)
NS,ik evolve with the

same kernel, and the same does each linear combination thereof, in particular q
(−)
i for each

flavor i. The basis of the 2nf−1 nonsinglet distributions that we choose to evolve at NLO is

1. q
(−)
i (for each i ≤ nf ), evolving with P

−,(1)
NS ,

2. q
(+)
NS,1i = q

(+)
1 − q

(+)
i (for each i such that 2 ≤ i ≤ nf ), evolving with P

+,(1)
NS ,

and the same we do at LO, where we have in addition P
+,(0)
NS = P

−,(0)
NS , being P

V,(0)
qq̄ = 0.

4. The cross section and the parton luminosities

Our NNLO analysis of the total cross section for lepton pair production combines the hard

scatterings of [12], implemented by us in a program called CandiaDY, which combines the

hard scatterings with the evolution performed by Candia. We will present in a section

below some results obtained by interfacing Vrap and Candia that allow to extend some

of the predictions of [13] with the inclusion of the factorization/renormalization scale de-

pendence not only in the hard scatterings but also in the evolution. Here our main analysis

is instead focused on the cross section for the mass distribution dσ/dQ2.

Lepton pair production at low Q via the Drell-Yan is sensitive to the pdf’s at small-x

values while in the high mass region, above the peak, is essential for the search of additional
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Figure 1: Plot of the percentage differences between the asymptotic Drell-Yan cross section and

those obtained using expansions of the pdf’s of a fixed order κ, shown as a function of κ for the

NLO and NNLO cases. We have used the MRST parametric input with µ0 = 1GeV and Q = MZ .

The evolution is based on Candia.

neutral currents. The general structure of the factorization formula for the color averaged

inclusive cross section for lepton pair production is given by [12]

dσ

dQ2
= τσV (Q2,M2

V )WV (τ,Q2) τ = Q2/S, (4.1)

where σV is the point-like cross section in the case of the γ, Z and the interference γ-Z. S

is the center of mass energy of the incoming hadrons and Q2 is the invariant mass of the

di-lepton pair, respectively. We have used the relations

σγ(Q2) =
4πα2

em

3Q4

1

NC

σZ(Q2) =
παem

4MZNC sin2 θW cos2 θW

ΓZ→ll̄

(Q2 − M2
Z)2 + M2

ZΓ2
Z

σγZ(Q2) =
πα2

em

6

(1 − 4 sin2 θW )

sin2 θW cos2 θW

(Q2 − M2
Z)

NCQ2
(

(Q2 − M2
Z)2 + M2

ZΓ2
Z

) ,

(4.2)

where ΓZ→ll̄ = 0.0839136 GeV, ΓZ = 2.4952 GeV, sin2 θW = 0.23143 and αem(MZ) =

1/128. These choices, performed as in [13] are expected to account for the factorizable elec-

troweak corrections, using the effective Born approximation [26, 27]. The non-factorizable

contribution, very relevant in the large invariant mass region (Q = 160 GeV and above)

are estimated to be much larger [26].

In all our studies we have fixed the energy of the collision to be
√

S = 14 TeV.

The hadronic structure function WV (τ,Q2) is represented by a convolution product be-

tween the parton luminosities ΦV
ij(x, µ2

R, µ2
F ) and the Wilson coefficients ∆ij(x,Q2, µ2

R, µ2
F )

WZ(τ,Q2, µ2
R, µ2

F ) =
∑

i,j

∫ 1

τ

dx

x
Φij(x, µ2

R, µ2
F )∆ij

(

τ

x
,Q2, µ2

F

)

, (4.3)
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where the luminosities are given by

Φij(x, µ2
R, µ2

F ) =

∫ 1

x

dy

y
fi(y, µ2

R, µ2
F )fj

(

x

y
, µ2

R, µ2
F

)

≡ [fi ⊗ fj] (x, µ2
R, µ2

F ) (4.4)

and the Wilson coefficients depend from both scales

∆ij(x,Q2, µ2
F ) =

∞
∑

n=0

αn
s (µ2

R)∆
(n)
ij (x,Q2, µ2

F , µ2
R). (4.5)

The explicit expressions of the hard scatterings coefficients have been taken from [12] and

implemented in Candia. Moving to the parton densities, these are decomposed into their

singlet (S) and nonsinglet (NS) contributions starting from the explicit expression

[qi ⊗ q̄j] (x, µ2
F ) =

1

4

(

q
(+)
i + q

(−)
i

)

⊗
(

q
(+)
j − q

(−)
j

)

=

1

4n2
f







q(+) +

nf
∑

k=1,k 6=i

q
(+)
NS,ik



 +



q(−) +

nf
∑

k=1,k 6=i

q
(−)
NS,ik







 ⊗







q(+) +

nf
∑

k=1,k 6=j

q
(+)
NS,jk



 +



q(−) +

nf
∑

k=1,k 6=j

q
(−)
NS,jk







 , (4.6)

and after an expansion, one identifies, as usual, the convolution products S⊗S, NS⊗NS

and S ⊗NS.

As we have already mentioned, in each of these sectors we are entitled to implement

evolved pdf’s of different accuracy, according to the classification presented in the previous

section. Summarizing, we have, for the nonsinglet sector: 1) exact solutions of the NNLO

exact equation; 2) exact solution of the NNLO truncated equation; 3) truncated solution

of the NNLO truncated equation, while for the singlet case we have only the option of the

κ′-truncated solutions.

As we have already explained, we work with the equations written according to form-1,

which has a single expansion parameter (κ′). This implies that the parton luminosities can

be of a varying accuracy depending on the type of the solutions. The numerical analysis

of these choices is very involved for realistic distributions, as we are going to discuss next.

We remark that there are differences between the iterated solutions of type-1 and the

brute force solutions or the exact solutions, which are also available in the nonsinglet case.

We have tried to answer this subtle point by showing in figure 1 the results for the cross

sections determined at NLO and at NNLO using as input the MRST conditions taken

from the grid, evolved by us using different sets of solutions. We recall that the initial

condition µ2
0 = 1GeV2 means that we are using the MRST parametric input [10]. We

have defined the “asymptotic solution” to be σasymp, built using the exact solution in the

nonsinglet sector and a truncated solution in the singlet, with the index of truncation κ

sufficiently large so that an asymptotic value for the logarithmic expansion (κ = 8) is

obtained. We plot the percentage difference, normalized as shown in the figure, between

truncated solutions of a varying κ index and this asymptotic cross section. It is clear, from
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this analysis, that the iterates of fixed accuracy, expanded in powers of log(αs), do not

converge to the asymptotic solution but give cross sections that differ by a small but finite

amount from that. This is quantified to be of the order of 0.1−0.5% at the energy reported

in the plot. This estimate is subject to change as we vary the energy scale and the model

of the initial conditions. On the basis of this result, we may reasonably assume that the

sequence of truncations, respect to the brute force solution, or exact solution, should be of

the order of a percent or so. This could be quantified better using a numerical code that

solves the DGLAP by direct discretization, which is not available to us. From this point

on, all the analysis that follows is going to be based on the implementation of σasymp, as

defined above. More details concerning the difference between truncated and asymptotic

solutions, a critical analysis of these results and of their implications for precision studies

of the parton model at NNLO will be presented below.

5. Numerical analysis: comparison with the Les Houches and the MRST

models

We start presenting in this section our comparisons between the results for the evolution

and the cross sections obtained using Candia against those of other implementations. In

doing this we have made sure that the same conditions are kept in regard both to the

treatment of the heavy flavors and of the initial conditions when running the different

codes. In particular, the parameters of the runs have been selected so to generate either

truncated solutions or asymptotic solutions, as specified above.

5.1 Comparisons with the Les Houches benchmarks

We start our comparison using as initial conditions those presented in the Les Houches

Model [24], which have been used to determine some benchmarks for the evolution. The

implementations that we compare, in this case, are those of Candia and Pegasus, the

latter running with the option IMODEV= 1. This option generates exact solutions of

the evolution equations by using a large sequence of truncates in Mellin space, with both

parameters κ and κ′ large, according to the U -ansatz (2.24). The heavy quarks have been

treated according to the VFN scheme.

In the Les Houches model [24] the input distributions mimic the CTEQ5M [28] pa-

rameterization and are used regardless of the order of the evolution equations. They are

given, at µ2
0 = 2GeV2, by

xuv(x) = 5.107200x0.8(1 − x)3

xdv(x) = 3.064320x0.8(1 − x)4

xg(x) = 1.700000x−0.1(1 − x)5

xd̄(x) = 0.1939875x−0.1(1 − x)6

xū(x) = (1 − x)xd̄(x)

xs(x) = xs̄(x) = 0.2x(ū + d̄)(x) , (5.1)
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Figure 2: Asymptotic and truncated pdf’s for the valence up-quark and for the gluons at NLO

and NNLO with µR = µF = 100GeV. We have selected the Les Houches input and a fixed number

of flavors, Nf = 4. The small range for x has been chosen to resolve among the various predictions.

In the subfigure (a) the κ-truncated solutions (2 ≤ κ ≤ 7) are very close and appear as a tiny band.

In subfigure (b) the same thing happens, and only the κ = 2 is clearly distinguishable from the

others. In subfigure (c) the lower line corresponds to the κ = 1, while the κ = 2 is very close to the

solid line but still distinguishable. The κ-truncated (3 ≤ κ ≤ 7) appear as a tiny band. The higher

dotted line corresponds to the LO and has been plotted just to have a comparison. In subfigure (d)

κ = 2 is the only line clearly distinguishable from the solid line.

and the running coupling has the value αs(µ
2
R,0 = 2GeV2) = 0.35. Our implementation in

Candia of the heavy thresholds, in this case, follows exactly the one described in [14]. To

show the very good agreement between our method of solution and Pegasus we detail the

results for all the sectors. We have included both the numerical values for the pdf’s and

the LO, NLO and NNLO predictions for the cross sections obtained by the two different

implementations of the evolution. Tables 2– 7 show the gluon and u-quark distributions

using the two evolutions at the various orders. In both cases we keep the “asymptotic” mode

(IMODEV=1 for Pegasus) and the asymptotic solutions in Candia, with the nonsinglet
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Candia vs Pegasus PDFs at LO, Les Houches input, VFN scheme, Q = µF = µR = 100 GeV

x xg(x)Candia
asymp xg(x)Pegasus δxg(x) xuv(x)Candia

asymp xuv(x)Pegasus δxuv(x)

1e − 05 2.5282 · 10+2 2.5282 · 10+2 5.0194 · 10−6 1.9006 · 10−3 1.9006 · 10−3 2.2551 · 10−5

0.0001 9.6048 · 10+1 9.6048 · 10+1 9.8076 · 10−7 1.0186 · 10−2 1.0186 · 10−2 1.6788 · 10−5

0.001 3.1333 · 10+1 3.1333 · 10+1 5.5756 · 10−6 5.0893 · 10−2 5.0893 · 10−2 6.7161 · 10−6

0.01 7.7728 · 10+0 7.7728 · 10+0 3.4093 · 10−7 2.2080 · 10−1 2.2080 · 10−1 7.6268 · 10−6

0.1 8.4358 · 10−1 8.4358 · 10−1 4.8152 · 10−6 5.7166 · 10−1 5.7166 · 10−1 5.8339 · 10−6

0.2 2.3925 · 10−1 2.3925 · 10−1 1.0157 · 10−6 5.1570 · 10−1 5.1570 · 10−1 2.5305 · 10−6

0.3 7.8026 · 10−2 7.8026 · 10−2 4.1486 · 10−6 3.7597 · 10−1 3.7597 · 10−1 6.3782 · 10−6

0.4 2.5211 · 10−2 2.5211 · 10−2 1.7143 · 10−5 2.3918 · 10−1 2.3918 · 10−1 6.3425 · 10−6

0.5 7.4719 · 10−3 7.4719 · 10−3 6.1470 · 10−6 1.3284 · 10−1 1.3284 · 10−1 2.7469 · 10−5

0.6 1.8760 · 10−3 1.8760 · 10−3 1.1295 · 10−5 6.2211 · 10−2 6.2211 · 10−2 6.2272 · 10−6

0.7 3.5241 · 10−4 3.5241 · 10−4 1.0386 · 10−6 2.2643 · 10−2 2.2643 · 10−2 1.1717 · 10−5

0.8 3.8055 · 10−5 3.8054 · 10−5 1.9078 · 10−5 5.2773 · 10−3 5.2773 · 10−3 4.5213 · 10−6

0.9 1.0310 · 10−6 1.0306 · 10−6 3.9758 · 10−4 4.2048 · 10−4 4.2047 · 10−4 3.0730 · 10−5

Table 2: Comparison between the pdf’s obtained using Candia versus those obtained using Pega-

sus and the normalized differences, ex.: δxg(x) = |xg(x)Candia−xg(x)Pegasus|/xg(x)Pegasus

at LO.

treated using the exact iterated ansatz. It can be noticed that the differences are very

small for all the densities up to NNLO. They can be read directly from the tables 2, 4, 6

since xδf(x) are the relative differences normalized to the Pegasus determination, i.e.

xδf(x) ≡ (xf(x)Pegasus − xf(x)Candia)/xf(x)Pegasus. The percentage differences

for the gluon densities are 0.2 % or smaller at NLO, 0.4% and smaller at NNLO. In the

kinematical region relevant for the LHC they stay around 0.1% at NNLO. The valence

u-quark distributions, at NNLO, reach at most 1% at x = 10−4, while they are about

0.1 − 0.2% at x = 10−2. Coming to the cross sections, the differences between the two

determinations are pretty small. They essentially coincide at LO, they are about 0.6% at

NLO, while they are about 0.3% and below at NNLO (see tables 3, 5 and 7).

5.2 Truncations and asymptotic solutions

The reader can find in a sequence of 8 tables (see tables 8– 15) detailed numerical results

for the various truncated solutions and for the corresponding asymptotic solution in the

Les Houches model and in a realistic model, MRST [10].

We show in figures 2 four plots of the valence up-quark and of the gluon distributions

for various κ values. The small range of variability in x has been chosen so to render the

differences in the plots visible, since they are quite small. The various κ solutions converge

toward the asymptotic solution as the index of truncation increases. We show the exact

(for the valence up-quark distribution) or the asymptotic solution (for the gluon density)

and the various truncated solutions for several κ values. In the case of the Les Houches

model, table 8 and 9 are particularly significant, since these show for the nonsinglet the

existence of a difference between the exact solutions, that performs a resummation of

the log(αs), and the sequence of truncated solutions, which reach saturation at κ = 6.

The differences for the valence up-quark distribution (xuv(x)) at NLO vary from 1% at
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dσLO/dQ [pb/GeV]. Candia vs Pegasus with Les Houches input.

Q [GeV] σCandia
LO σPegasus

LO δσLO

50.0000 4.8995 · 10+0 4.8995 · 10+0 6.1231 · 10−7

60.0469 3.0209 · 10+0 3.0209 · 10+0 1.3241 · 10−6

70.0938 2.7805 · 10+0 2.7805 · 10+0 4.3157 · 10−6

80.1407 5.7936 · 10+0 5.7936 · 10+0 1.7260 · 10−6

90.1876 2.2499 · 10+2 2.2499 · 10+2 2.0712 · 10−6

91.1876 3.6905 · 10+2 3.6905 · 10+2 3.4413 · 10−6

92.1876 2.2475 · 10+2 2.2475 · 10+2 1.6907 · 10−6

120.0701 7.2456 · 10−1 7.2456 · 10−1 0

146.0938 2.0557 · 10−1 2.0557 · 10−1 9.7291 · 10−6

172.1175 8.9583 · 10−2 8.9584 · 10−2 1.1163 · 10−5

200.0000 4.4674 · 10−2 4.4674 · 10−2 0

Table 3: Comparison between the cross sections obtained using Candia and Pegasus at LO.

Candia vs Pegasus PDFs at NLO, Les Houches input, VFN scheme, Q = µF = µR = 100 GeV

x xg(x)Candia
asymp xg(x)Pegasus δxg(x) xuv(x)Candia

asymp xuv(x)Pegasus δxuv(x)

1e − 05 2.2804 · 10+2 2.2753 · 10+2 2.2623 · 10−3 2.7428 · 10−3 2.7419 · 10−3 3.2619 · 10−4

0.0001 8.9671 · 10+1 8.9513 · 10+1 1.7658 · 10−3 1.3042 · 10−2 1.3039 · 10−2 2.5581 · 10−4

0.001 3.0284 · 10+1 3.0245 · 10+1 1.2762 · 10−3 5.8519 · 10−2 5.8507 · 10−2 2.1253 · 10−4

0.01 7.7547 · 10+0 7.7491 · 10+0 7.1653 · 10−4 2.3132 · 10−1 2.3128 · 10−1 1.5701 · 10−4

0.1 8.5590 · 10−1 8.5586 · 10−1 4.3846 · 10−5 5.5328 · 10−1 5.5324 · 10−1 8.1196 · 10−5

0.2 2.4330 · 10−1 2.4335 · 10−1 2.1829 · 10−4 4.8848 · 10−1 4.8845 · 10−1 5.5160 · 10−5

0.3 7.9588 · 10−2 7.9625 · 10−2 4.5913 · 10−4 3.5131 · 10−1 3.5129 · 10−1 4.3636 · 10−5

0.4 2.5845 · 10−2 2.5862 · 10−2 6.4662 · 10−4 2.2093 · 10−1 2.2092 · 10−1 5.2929 · 10−5

0.5 7.7200 · 10−3 7.7265 · 10−3 8.4504 · 10−4 1.2130 · 10−1 1.2130 · 10−1 4.1179 · 10−5

0.6 1.9616 · 10−3 1.9637 · 10−3 1.0442 · 10−3 5.6094 · 10−2 5.6093 · 10−2 1.8017 · 10−5

0.7 3.7529 · 10−4 3.7574 · 10−4 1.1940 · 10−3 2.0103 · 10−2 2.0102 · 10−2 3.3196 · 10−5

0.8 4.1724 · 10−5 4.1780 · 10−5 1.3352 · 10−3 4.5862 · 10−3 4.5861 · 10−3 2.0342 · 10−5

0.9 1.1941 · 10−6 1.1955 · 10−6 1.1525 · 10−3 3.5234 · 10−4 3.5233 · 10−4 1.9592 · 10−5

Table 4: Pdf’s obtained in the two evolutions at NLO.

(x = 10−3) to 0.7% (x = 10−4), growing larger at x = 10−5, where they reach 7%.

This last value is presented only for comparison, although it is not relevant at the LHC.

Moving to NNLO, the differences are about 4% at x = 10−5, 3% at x = 10−4, decreasing

to 0.4% at x = 10−2. They become significant at large x values, being around 9% at

x = 0.9. These determinations, of course, need to be tested in the related cross sections

in order to appreciate their real impact. As we have already shown in figure 1 the various

determinations stay below 1% for Q = MZ . Even if these differences are not big, they will

become more significant as the determination of the pdf’s is going to improve in the near

future, using the large amount of data coming from the LHC. This will allow to reduce the

errors on the pdf’s and, therefore, on the cross sections. As we are going to show next,
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dσNLO/dQ [pb/GeV]. Candia vs Pegasus with Les Houches input.

Q [GeV] σCandia
NLO σPegasus

NLO δσNLO

50.0000 7.6946 · 10+0 7.6419 · 10+0 6.8857 · 10−3

60.0469 4.6319 · 10+0 4.6010 · 10+0 6.7059 · 10−3

70.0938 4.1787 · 10+0 4.1515 · 10+0 6.5564 · 10−3

80.1407 8.5604 · 10+0 8.5055 · 10+0 6.4543 · 10−3

90.1876 3.2787 · 10+2 3.2581 · 10+2 6.3294 · 10−3

91.1876 5.3713 · 10+2 5.3376 · 10+2 6.3133 · 10−3

92.1876 3.2672 · 10+2 3.2468 · 10+2 6.2844 · 10−3

120.0701 1.0243 · 10+0 1.0183 · 10+0 5.8833 · 10−3

146.0938 2.8483 · 10−1 2.8325 · 10−1 5.5852 · 10−3

172.1175 1.2208 · 10−1 1.2144 · 10−1 5.2947 · 10−3

200.0000 5.9997 · 10−2 5.9694 · 10−2 5.0759 · 10−3

Table 5: NLO cross sections obtained using Candia and Pegasus using the Les Houches model.

Candia vs Pegasus PDFs at NNLO, Les Houches input, VFN scheme, Q = µF = µR = 100 GeV

x xg(x)Candia
asymp xg(x)Pegasus δxg(x) xuv(x)Candia

asymp xuv(x)Pegasus δxuv(x)

1e − 05 2.1922 · 10+2 2.2012 · 10+2 4.1108 · 10−3 3.0823 · 10−3 3.1907 · 10−3 3.3962 · 10−2

0.0001 8.8486 · 10+1 8.8804 · 10+1 3.5856 · 10−3 1.3871 · 10−2 1.4023 · 10−2 1.0811 · 10−2

0.001 3.0319 · 10+1 3.0404 · 10+1 2.8106 · 10−3 6.0060 · 10−2 6.0019 · 10−2 6.9117 · 10−4

0.01 7.7785 · 10+0 7.7912 · 10+0 1.6326 · 10−3 2.3287 · 10−1 2.3244 · 10−1 1.8584 · 10−3

0.1 8.5284 · 10−1 8.5266 · 10−1 2.1595 · 10−4 5.4977 · 10−1 5.4993 · 10−1 2.9526 · 10−4

0.2 2.4183 · 10−1 2.4161 · 10−1 9.1195 · 10−4 4.8313 · 10−1 4.8323 · 10−1 2.0148 · 10−4

0.3 7.9005 · 10−2 7.8898 · 10−2 1.3515 · 10−3 3.4629 · 10−1 3.4622 · 10−1 1.9857 · 10−4

0.4 2.5636 · 10−2 2.5594 · 10−2 1.6452 · 10−3 2.1711 · 10−1 2.1696 · 10−1 6.7488 · 10−4

0.5 7.6538 · 10−3 7.6398 · 10−3 1.8314 · 10−3 1.1883 · 10−1 1.1868 · 10−1 1.2434 · 10−3

0.6 1.9439 · 10−3 1.9401 · 10−3 1.9844 · 10−3 5.4753 · 10−2 5.4652 · 10−2 1.8520 · 10−3

0.7 3.7162 · 10−4 3.7080 · 10−4 2.2059 · 10−3 1.9537 · 10−2 1.9486 · 10−2 2.6105 · 10−3

0.8 4.1248 · 10−5 4.1141 · 10−5 2.5990 · 10−3 4.4306 · 10−3 4.4148 · 10−3 3.5750 · 10−3

0.9 1.1766 · 10−6 1.1722 · 10−6 3.7723 · 10−3 3.3696 · 10−4 3.3522 · 10−4 5.1816 · 10−3

Table 6: NNLO pdf’s determined with Candia and Pegasus using the Les Houches model.

these errors remain, at the moment, larger than the theoretical indetermination coming

from the choice of the solution, at least in the region that we have explored. In the gluon

sector (see table 10, 11) the situation seems to improve, and the differences stay below 1 %

in all the x-range, but this can be misleading: asymptotic and truncated solutions in the

singlet sector are in fact both determined by the same logarithmic ansatz.

A similar analysis has been performed for the MRST model. In this case we perform

the evolution using Candia, the MRST input and a treatment of the heavy flavors exactly

as in MRST, with the thresholds for the heavy quarks chosen as in [10]. Also in this case

truncated solutions and asymptotic solutions show a small difference, both for the valence

distributions and for the singlet ones. We show in tables 12, 13, 14 and 15 results for the
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dσNNLO/dQ [pb/GeV]. Candia vs Pegasus with Les Houches input.

Q [GeV] σCandia
NNLO σPegasus

NNLO δσNNLO

50.0000 8.0734 · 10+0 8.1044 · 10+0 3.8288 · 10−3

60.0469 4.8771 · 10+0 4.8948 · 10+0 3.6106 · 10−3

70.0938 4.4033 · 10+0 4.4184 · 10+0 3.4110 · 10−3

80.1407 8.9241 · 10+0 8.9527 · 10+0 3.1936 · 10−3

90.1876 3.3570 · 10+2 3.3669 · 10+2 2.9388 · 10−3

91.1876 5.4905 · 10+2 5.5067 · 10+2 2.9299 · 10−3

92.1876 3.3344 · 10+2 3.3441 · 10+2 2.8919 · 10−3

120.0701 1.0249 · 10+0 1.0274 · 10+0 2.4285 · 10−3

146.0938 2.8527 · 10−1 2.8590 · 10−1 2.1826 · 10−3

172.1175 1.2295 · 10−1 1.2319 · 10−1 1.9887 · 10−3

200.0000 6.0923 · 10−2 6.1029 · 10−2 1.7369 · 10−3

Table 7: NNLO cross sections in the two evolution methods.

xuv(x) Candia evolution at NLO, Les Houches input, Nf = 4, Q = µF = µR = 100 GeV

x xuv(x)Candia
asymp κ = 1 κ = 2 κ = 3 κ = 4 κ = 5 κ = 6

1e − 05 2.6878·10−3 2.5121·10−3 2.4829·10−3 2.4828·10−3 2.4833·10−3 2.4831·10−3 2.4832·10−3

0.0001 1.2844·10−2 1.2474·10−2 1.2290·10−2 1.2307·10−2 1.2306·10−2 1.2306·10−2 1.2306·10−2

0.001 5.7937·10−2 5.7893·10−2 5.7161·10−2 5.7260·10−2 5.7246·10−2 5.7248·10−2 5.7248·10−2

0.01 2.3029·10−1 2.3340·10−1 2.3188·10−1 2.3213·10−1 2.3209·10−1 2.3209·10−1 2.3209·10−1

0.1 5.5456·10−1 5.5556·10−1 5.5738·10−1 5.5712·10−1 5.5716·10−1 5.5715·10−1 5.5715·10−1

0.2 4.9105·10−1 4.8494·10−1 4.8836·10−1 4.8784·10−1 4.8792·10−1 4.8790·10−1 4.8791·10−1

0.3 3.5395·10−1 3.4503·10−1 3.4837·10−1 3.4785·10−1 3.4793·10−1 3.4792·10−1 3.4792·10−1

0.4 2.2304·10−1 2.1470·10−1 2.1729·10−1 2.1689·10−1 2.1695·10−1 2.1694·10−1 2.1694·10−1

0.5 1.2271·10−1 1.1661·10−1 1.1830·10−1 1.1803·10−1 1.1808·10−1 1.1807·10−1 1.1807·10−1

0.6 5.6866·10−2 5.3292·10−2 5.4212·10−2 5.4067·10−2 5.4090·10−2 5.4086·10−2 5.4087·10−2

0.7 2.0429·10−2 1.8840·10−2 1.9232·10−2 1.9169·10−2 1.9179·10−2 1.9178·10−2 1.9178·10−2

0.8 4.6754·10−3 4.2230·10−3 4.3329·10−3 4.3152·10−3 4.3180·10−3 4.3175·10−3 4.3176·10−3

0.9 3.6098·10−4 3.1538·10−4 3.2674·10−4 3.2486·10−4 3.2516·10−4 3.2511·10−4 3.2512·10−4

Table 8: NLO valence distribution of the up quark with the Les Houches benchmark model.

various κ-truncated (accurate) solutions.

For instance, in the case of the gluon density, if we choose κ = 3 (3rd truncated

solution), at x = 10−3 the difference in the gluon density respect to the asymptotic solution

is about 0.01% at NNLO, which appears to be small, but can easily grow to 0.5% or so if

would let a brute force solution replace the asymptotic determination. In fact the valence

u-quark distribution, whose asymptotic value is supposed to be pretty close to the exact

value, shows more substantial differences. For instance, at NLO, for x = 10−3 the same

truncated ansatz (κ = 3) differs from the exact one by 2.6%. At NNLO in the more relevant

region of x (0.01-0.1) is about 2% and below. The differences grow bigger at larger x-values,

for instance they are 9% for x = 0.5 at NNLO.

Coming to the cross sections obtained by the various truncated solutions, these are
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xuv(x) Candia evolution at NNLO, Les Houches input, Nf = 4, Q = µF = µR = 100 GeV

x xuv(x)Candia
asymp κ = 2 κ = 3 κ = 4 κ = 5 κ = 6 κ = 7

1e − 05 3.0260·10−3 2.9464·10−3 2.8972·10−3 2.8928·10−3 2.8945·10−3 2.8944·10−3 2.8944·10−3

0.0001 1.3656·10−2 1.3320·10−2 1.3179·10−2 1.3177·10−2 1.3181·10−2 1.3181·10−2 1.3181·10−2

0.001 5.9360·10−2 5.8657·10−2 5.8425·10−2 5.8448·10−2 5.8451·10−2 5.8450·10−2 5.8450·10−2

0.01 2.3139·10−1 2.3254·10−1 2.3248·10−1 2.3253·10−1 2.3252·10−1 2.3252·10−1 2.3252·10−1

0.1 5.5125·10−1 5.5406·10−1 5.5451·10−1 5.5446·10−1 5.5446·10−1 5.5446·10−1 5.5446·10−1

0.2 4.8672·10−1 4.8416·10−1 4.8463·10−1 4.8454·10−1 4.8454·10−1 4.8454·10−1 4.8454·10−1

0.3 3.5017·10−1 3.4470·10−1 3.4507·10−1 3.4497·10−1 3.4498·10−1 3.4498·10−1 3.4498·10−1

0.4 2.2030·10−1 2.1460·10−1 2.1486·10−1 2.1478·10−1 2.1479·10−1 2.1479·10−1 2.1479·10−1

0.5 1.2099·10−1 1.1660·10−1 1.1676·10−1 1.1671·10−1 1.1671·10−1 1.1671·10−1 1.1671·10−1

0.6 5.5957·10−2 5.3309·10−2 5.3392·10−2 5.3364·10−2 5.3366·10−2 5.3367·10−2 5.3367·10−2

0.7 2.0052·10−2 1.8854·10−2 1.8888·10−2 1.8877·10−2 1.8877·10−2 1.8878·10−2 1.8878·10−2

0.8 4.5726·10−3 4.2288·10−3 4.2387·10−3 4.2352·10−3 4.2355·10−3 4.2356·10−3 4.2356·10−3

0.9 3.5079·10−4 3.1629·10−4 3.1736·10−4 3.1698·10−4 3.1701·10−4 3.1702·10−4 3.1702·10−4

Table 9: NNLO Valence distribution for the up quark with the Les Houches benchmark model.

xg(x) Candia evolution at NLO, Les Houches input, Nf = 4, Q = µF = µR = 100 GeV

x xg(x)Candia
asym κ = 1 κ = 2 κ = 3 κ = 4 κ = 5 κ = 6

1e − 05 2.3578·10+2 2.2829·10+2 2.3693·10+2 2.3560·10+2 2.3580·10+2 2.3577·10+2 2.3578·10+2

0.0001 9.3027·10+1 9.1414·10+1 9.3237·10+1 9.2998·10+1 9.3031·10+1 9.3026·10+1 9.3027·10+1

0.001 3.1540·10+1 3.1320·10+1 3.1562·10+1 3.1537·10+1 3.1540·10+1 3.1540·10+1 3.1540·10+1

0.01 8.1120·10+0 8.1098·10+0 8.1116·10+0 8.1122·10+0 8.1120·10+0 8.1120·10+0 8.1120·10+0

0.1 8.9872·10−1 9.0284·10−1 8.9826·10−1 8.9877·10−1 8.9871·10−1 8.9872·10−1 8.9872·10−1

0.2 2.5540·10−1 2.5695·10−1 2.5523·10−1 2.5542·10−1 2.5539·10−1 2.5540·10−1 2.5540·10−1

0.3 8.3414·10−2 8.4005·10−2 8.3353·10−2 8.3422·10−2 8.3414·10−2 8.3415·10−2 8.3414·10−2

0.4 2.7017·10−2 2.7232·10−2 2.6995·10−2 2.7020·10−2 2.7017·10−2 2.7017·10−2 2.7017·10−2

0.5 8.0411·10−3 8.1131·10−3 8.0338·10−3 8.0420·10−3 8.0410·10−3 8.0411·10−3 8.0411·10−3

0.6 2.0343·10−3 2.0552·10−3 2.0321·10−3 2.0345·10−3 2.0342·10−3 2.0343·10−3 2.0343·10−3

0.7 3.8654·10−4 3.9132·10−4 3.8603·10−4 3.8660·10−4 3.8653·10−4 3.8654·10−4 3.8654·10−4

0.8 4.1712·10−5 4.2399·10−5 4.1634·10−5 4.1722·10−5 4.1710·10−5 4.1712·10−5 4.1712·10−5

0.9 1.8310·10−6 1.8598·10−6 1.8272·10−6 1.8315·10−6 1.8309·10−6 1.8310·10−6 1.8310·10−6

Table 10: NLO gluon density in the Les Houches model.

shown in two tables (see tables 29, 30), which summarize these studies at NLO and NNLO

respectively. Using again the κ = 3 solution, for Q = MZ the NLO determination differs

by 0.2% compared to the asymptotic one. They tend to grow at larger Q-values, 0.4% at

Q = 200 GeV (NNLO).

There are some conclusions that we can draw from this analysis. We clearly have

several ways to choose the solution and by doing so we make errors which are around

1%. They tend to grow as Q increases, at larger invariant mass of the lepton pair, where

we get more sensitive to larger x-values. This theoretical errors may grow slightly bigger

at very large Q-values, say for Q around 1 TeV or so, where we need specific studies of

that kinematical region, since we could expect that extra neutral interactions be found. It

is important, however, to remind that the DY cross section is anyhow quite sensitive to

the behavior of the hard scatterings around x = 1, as pointed out in [12]. This implies

that various determinations may differ already at percent level because of the different
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xg(x) Candia evolution at NNLO, Les Houches input, Nf = 4, Q = µF = µR = 100 GeV

x xg(x)Candia
asymp κ = 2 κ = 3 κ = 4 κ = 5 κ = 6 κ = 7

1e − 05 2.2328·10+2 2.2090·10+2 2.2351·10+2 2.2330·10+2 2.2328·10+2 2.2328·10+2 2.2328·10+2

0.0001 9.0763·10+1 9.0383·10+1 9.0795·10+1 9.0765·10+1 9.0762·10+1 9.0763·10+1 9.0763·10+1

0.001 3.1371·10+1 3.1336·10+1 3.1372·10+1 3.1371·10+1 3.1371·10+1 3.1371·10+1 3.1371·10+1

0.01 8.1407·10+0 8.1433·10+0 8.1403·10+0 8.1407·10+0 8.1407·10+0 8.1407·10+0 8.1407·10+0

0.1 9.0545·10−1 9.0662·10−1 9.0538·10−1 9.0545·10−1 9.0545·10−1 9.0545·10−1 9.0545·10−1

0.2 2.5753·10−1 2.5793·10−1 2.5750·10−1 2.5752·10−1 2.5753·10−1 2.5753·10−1 2.5753·10−1

0.3 8.4120·10−2 8.4266·10−2 8.4112·10−2 8.4119·10−2 8.4120·10−2 8.4120·10−2 8.4120·10−2

0.4 2.7238·10−2 2.7288·10−2 2.7235·10−2 2.7238·10−2 2.7238·10−2 2.7238·10−2 2.7238·10−2

0.5 8.1019·10−3 8.1176·10−3 8.1009·10−3 8.1018·10−3 8.1019·10−3 8.1019·10−3 8.1019·10−3

0.6 2.0476·10−3 2.0518·10−3 2.0473·10−3 2.0476·10−3 2.0477·10−3 2.0476·10−3 2.0476·10−3

0.7 3.8845·10−4 3.8929·10−4 3.8837·10−4 3.8845·10−4 3.8845·10−4 3.8845·10−4 3.8845·10−4

0.8 4.1738·10−5 4.1842·10−5 4.1724·10−5 4.1738·10−5 4.1738·10−5 4.1738·10−5 4.1738·10−5

0.9 1.8861·10−6 1.8899·10−6 1.8853·10−6 1.8862·10−6 1.8861·10−6 1.8861·10−6 1.8861·10−6

Table 11: NNLO gluon density in the Les Houches model.

xuv(x) Candia evolution at NLO, MRST input, µ0 = 1GeV, Q = µF = µR = 100 GeV

x xuv(x)Candia
asymp κ = 1 κ = 2 κ = 3 κ = 4 κ = 5 κ = 6

1e − 05 1.3874·10−2 1.4223·10−2 1.4015·10−2 1.4049·10−2 1.4043·10−2 1.4044·10−2 1.4044·10−2

0.0001 2.9241·10−2 3.0230·10−2 2.9654·10−2 2.9753·10−2 2.9734·10−2 2.9738·10−2 2.9737·10−2

0.001 7.2512·10−2 7.5810·10−2 7.4246·10−2 7.4530·10−2 7.4472·10−2 7.4485·10−2 7.4482·10−2

0.01 2.1394·10−1 2.2294·10−1 2.2014·10−1 2.2068·10−1 2.2057·10−1 2.2059·10−1 2.2059·10−1

0.1 5.1946·10−1 5.1264·10−1 5.1673·10−1 5.1598·10−1 5.1613·10−1 5.1610·10−1 5.1611·10−1

0.2 4.7098·10−1 4.4773·10−1 4.5514·10−1 4.5372·10−1 4.5402·10−1 4.5395·10−1 4.5397·10−1

0.3 3.3696·10−1 3.1056·10−1 3.1763·10−1 3.1627·10−1 3.1655·10−1 3.1649·10−1 3.1650·10−1

0.4 2.0581·10−1 1.8429·10−1 1.8952·10−1 1.8851·10−1 1.8872·10−1 1.8868·10−1 1.8869·10−1

0.5 1.0726·10−1 9.3306·10−2 9.6490·10−2 9.5870·10−2 9.6001·10−2 9.5972·10−2 9.5979·10−2

0.6 4.5848·10−2 3.8656·10−2 4.0225·10−2 3.9918·10−2 3.9983·10−2 3.9968·10−2 3.9972·10−2

0.7 1.4636·10−2 1.1901·10−2 1.2479·10−2 1.2365·10−2 1.2390·10−2 1.2384·10−2 1.2385·10−2

0.8 2.7935·10−3 2.1669·10−3 2.2968·10−3 2.2710·10−3 2.2765·10−3 2.2753·10−3 2.2756·10−3

0.9 1.5488·10−4 1.1138·10−4 1.2032·10−4 1.1852·10−4 1.1891·10−4 1.1882·10−4 1.1884·10−4

Table 12: NLO distribution of the uv quark with MRST input evolved with Candia.

treatment of the edge-point region in the Bjorken variable even for moderate Q values.

6. Other comparisons with the MRST evolution

Now we perform a comparison between the various cross sections obtained using the pdf’s

evolved by MRST and the same distributions, taken at their starting value, but evolved by

us using Candia. These studies are performed using in Candia the asymptotic solutions

in the singlet and non singlet sectors. We use the MRST input in a grid form with an

initial scale µ2
0 = 1.25 GeV2,

√
S = 14 TeV and with µ2

F = µ2
R = Q2. The choices for the

thresholds of the heavy flavors have been chosen in Candia to coincide with those reported

by MRST. For this reason we have used for comparison the asymptotic solution and the

VFN scheme. The relative variations are computed respect to the MRST value and are

indicated in the columns labeled as δσ. Also in this case we show in 3 tables (16- 18) the
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xuv(x) Candia evolution at NNLO, MRST input, µ0 = 1 GeV, Q = µF = µR = 100 GeV

x xuv(x)Candia
asymp κ = 2 κ = 3 κ = 4 κ = 5 κ = 6 κ = 7

1e − 05 1.2678·10−2 1.3052·10−2 1.2939·10−2 1.2940·10−2 1.2945·10−2 1.2944·10−2 1.2944·10−2

0.0001 2.9047·10−2 2.9858·10−2 2.9616·10−2 2.9627·10−2 2.9636·10−2 2.9634·10−2 2.9634·10−2

0.001 7.3813·10−2 7.5701·10−2 7.5337·10−2 7.5391·10−2 7.5399·10−2 7.5395·10−2 7.5395·10−2

0.01 2.1492·10−1 2.2015·10−1 2.1997·10−1 2.2009·10−1 2.2008·10−1 2.2007·10−1 2.2007·10−1

0.1 5.2810·10−1 5.2525·10−1 5.2612·10−1 5.2599·10−1 5.2597·10−1 5.2598·10−1 5.2598·10−1

0.2 4.8293·10−1 4.6760·10−1 4.6869·10−1 4.6841·10−1 4.6841·10−1 4.6842·10−1 4.6842·10−1

0.3 3.4556·10−1 3.2689·10−1 3.2781·10−1 3.2753·10−1 3.2753·10−1 3.2755·10−1 3.2755·10−1

0.4 2.0973·10−1 1.9409·10−1 1.9473·10−1 1.9451·10−1 1.9452·10−1 1.9453·10−1 1.9453·10−1

0.5 1.0794·10−1 9.7714·10−2 9.8084·10−2 9.7952·10−2 9.7958·10−2 9.7964·10−2 9.7963·10−2

0.6 4.5227·10−2 3.9989·10−2 4.0165·10−2 4.0101·10−2 4.0104·10−2 4.0107·10−2 4.0106·10−2

0.7 1.4011·10−2 1.2057·10−2 1.2121·10−2 1.2097·10−2 1.2098·10−2 1.2099·10−2 1.2099·10−2

0.8 2.5508·10−3 2.1205·10−3 2.1343·10−3 2.1291·10−3 2.1294·10−3 2.1297·10−3 2.1296·10−3

0.9 1.2957·10−4 1.0200·10−4 1.0290·10−4 1.0257·10−4 1.0258·10−4 1.0260·10−4 1.0260·10−4

Table 13: NNLO uv quark distribution evolved with Candia using the MRST input.

xg(x) Candia evolution at NLO, MRST input, µ0 = 1GeV, Q = µF = µR = 100 GeV

x xg(x)Candia
asymp κ = 1 κ = 2 κ = 3 κ = 4 κ = 5 κ = 6

1e − 05 1.9288·10+2 1.8441·10+2 1.9429·10+2 1.9262·10+2 1.9293·10+2 1.9287·10+2 1.9288·10+2

0.0001 8.1300·10+1 7.9222·10+1 8.1613·10+1 8.1245·10+1 8.1310·10+1 8.1297·10+1 8.1300·10+1

0.001 2.9001·10+1 2.8675·10+1 2.9043·10+1 2.8995·10+1 2.9002·10+1 2.9001·10+1 2.9001·10+1

0.01 7.8335·10+0 7.8282·10+0 7.8328·10+0 7.8339·10+0 7.8334·10+0 7.8336·10+0 7.8335·10+0

0.1 9.3962·10−1 9.4520·10−1 9.3881·10−1 9.3976·10−1 9.3959·10−1 9.3963·10−1 9.3962·10−1

0.2 2.7632·10−1 2.7832·10−1 2.7605·10−1 2.7636·10−1 2.7631·10−1 2.7632·10−1 2.7632·10−1

0.3 9.1622·10−2 9.2347·10−2 9.1533·10−2 9.1635·10−2 9.1619·10−2 9.1622·10−2 9.1622·10−2

0.4 2.9629·10−2 2.9876·10−2 2.9600·10−2 2.9633·10−2 2.9628·10−2 2.9629·10−2 2.9629·10−2

0.5 8.6249·10−3 8.6999·10−3 8.6170·10−3 8.6260·10−3 8.6248·10−3 8.6249·10−3 8.6249·10−3

0.6 2.0714·10−3 2.0901·10−3 2.0697·10−3 2.0716·10−3 2.0714·10−3 2.0714·10−3 2.0714·10−3

0.7 3.5704·10−4 3.6038·10−4 3.5677·10−4 3.5707·10−4 3.5704·10−4 3.5704·10−4 3.5704·10−4

0.8 3.2860·10−5 3.3189·10−5 3.2839·10−5 3.2861·10−5 3.2861·10−5 3.2860·10−5 3.2860·10−5

0.9 6.4223·10−7 6.4990·10−7 6.4192·10−7 6.4218·10−7 6.4225·10−7 6.4222·10−7 6.4223·10−7

Table 14: NLO gluon density with MRST input, evolved with Candia.

results for the LO, NLO and NNLO cross sections. The differences between our prediction

and the MRST result for the total cross sections are around 1 per cent or below at LO, vary

from 0.02% to 0.3% at NLO and are 2.6% and below at NNLO. In this case the maximum

difference has been found for Q = 50 GeV. These differences, clearly, affect the values of

the K-factors, as we are going to discuss below, which in our evolution are larger compared

to those of MRST.

We perform some more tests using Vrap [13] and compare the results against those

of CandiaDY for the calculations of the hard scattering piece. In the results given below

σ̂Vrap refers to the hard scatterings for the invariant mass distributions computed using

Vrap, while ΦMRSTCandia
refers to the luminosities using one of the MRST inputs

evolved using Candia. Similarly, ΦMRSTevol
denotes the luminosities predicted by MRST

with their evolution. In this case the original scale is not indicated, but the grid scale

µ0 = 1.25 GeV2 is the first available point, at which the evolution with Candia is also
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xg(x) Candia evolution at NNLO, MRST input, µ0 = 1 GeV, Q = µF = µR = 100 GeV

x xg(x)Candia
asymp κ = 2 κ = 3 κ = 4 κ = 5 κ = 6 κ = 7

1e − 05 1.6068·10+2 1.5727·10+2 1.6089·10+2 1.6075·10+2 1.6063·10+2 1.6066·10+2 1.6066·10+2

0.0001 7.1188·10+1 7.0542·10+1 7.1229·10+1 7.1197·10+1 7.1176·10+1 7.1181·10+1 7.1181·10+1

0.001 2.6591·10+1 2.6526·10+1 2.6596·10+1 2.6591·10+1 2.6589·10+1 2.6590·10+1 2.6590·10+1

0.01 7.5377·10+0 7.5426·10+0 7.5373·10+0 7.5374·10+0 7.5377·10+0 7.5376·10+0 7.5376·10+0

0.1 9.8748·10−1 9.8964·10−1 9.8738·10−1 9.8748·10−1 9.8755·10−1 9.8753·10−1 9.8753·10−1

0.2 3.0191·10−1 3.0265·10−1 3.0188·10−1 3.0192·10−1 3.0194·10−1 3.0193·10−1 3.0193·10−1

0.3 1.0210·10−1 1.0235·10−1 1.0210·10−1 1.0211·10−1 1.0211·10−1 1.0211·10−1 1.0211·10−1

0.4 3.3271·10−2 3.3345·10−2 3.3270·10−2 3.3274·10−2 3.3275·10−2 3.3275·10−2 3.3275·10−2

0.5 9.6593·10−3 9.6776·10−3 9.6592·10−3 9.6606·10−3 9.6607·10−3 9.6607·10−3 9.6607·10−3

0.6 2.2882·10−3 2.2915·10−3 2.2882·10−3 2.2885·10−3 2.2885·10−3 2.2885·10−3 2.2885·10−3

0.7 3.8337·10−4 3.8368·10−4 3.8339·10−4 3.8345·10−4 3.8343·10−4 3.8343·10−4 3.8343·10−4

0.8 3.3492·10−5 3.3487·10−5 3.3495·10−5 3.3501·10−5 3.3497·10−5 3.3498·10−5 3.3498·10−5

0.9 5.8939·10−7 5.8839·10−7 5.8951·10−7 5.8960·10−7 5.8947·10−7 5.8950·10−7 5.8950·10−7

Table 15: NNLO gluon density evolved with Candia using the MRST input.

interfaced.

The NLO total cross sections in [pb/GeV] at the peak Q = MZ and at
√

S = 14 TeV

using the MRST inputs with µ2
0 = 1GeV2 and µ2

0 = 1.25 GeV2, in the various cases, are

given by

σ̂NLO
V rap ⊗ ΦMRSTevol

= 501.96 ,

σ̂NLO
V rap ⊗ ΦMRSTCandia

= 505.87 from µ2
0 = 1 GeV2 ,

σ̂NLO
V rap ⊗ ΦMRSTCandia

= 502.65 from µ2
0 = 1.25 GeV2 ,

σ̂NLO
CandiaDY

⊗ ΦMRSTevol
= 501.72 ,

σ̂NLO
CandiaDY

⊗ ΦMRSTCandia
= 505.82 from µ2

0 = 1 GeV2 ,

σ̂NLO
CandiaDY

⊗ ΦMRSTCandia
= 502.42 from µ2

0 = 1.25 GeV2 (6.1)

with differences that stay well below 1%, while at NNLO we obtain

σ̂NNLO
V rap ⊗ ΦMRSTevol

= 490.51 ,

σ̂NNLO
V rap ⊗ ΦMRSTCandia

= 479.60 from µ2
0 = 1 GeV2 ,

σ̂NNLO
V rap ⊗ ΦMRSTCandia

= 482.63 from µ2
0 = 1.25 GeV2 ,

σ̂NNLO
CandiaDY

⊗ ΦMRSTevol
= 488.22 ,

σ̂NNLO
CandiaDY

⊗ ΦMRSTCandia
= 477.81 from µ2

0 = 1 GeV2 ,

σ̂NNLO
CandiaDY

⊗ ΦMRSTCandia
= 480.27 from µ2

0 = 1.25 GeV2 (6.2)

cross sections that differ approximately by 2%. The reduction of the cross section in

Candia is more remarked compared to MRST and is due to the evolution.

6.1 The renormalization/factorization scale dependence of the cross section

An interesting aspect of the prediction of the QCD observables is their factorization and

renormalization scale dependence. We will denote by µF and µR the two scales. The
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dσLO/dQ [pb/GeV]. Candia vs MRST evol. with MRST input, µ2
0 = 1.25 GeV2

Q [GeV] σCandia
LO σMRST

LO δσLO

50.0000 5.6629 · 10+0 5.7110 · 10+0 8.4230 · 10−3

60.0469 3.4301 · 10+0 3.4692 · 10+0 1.1274 · 10−2

70.0938 3.1248 · 10+0 3.1646 · 10+0 1.2583 · 10−2

80.1407 6.4675 · 10+0 6.5540 · 10+0 1.3191 · 10−2

90.1876 2.4859 · 10+2 2.5189 · 10+2 1.3086 · 10−2

91.1876 4.0723 · 10+2 4.1261 · 10+2 1.3059 · 10−2

92.1876 2.4767 · 10+2 2.5094 · 10+2 1.3033 · 10−2

120.0701 7.6837 · 10−1 7.7755 · 10−1 1.1796 · 10−2

146.0938 2.1196 · 10−1 2.1415 · 10−1 1.0240 · 10−2

172.1175 9.0345 · 10−2 9.1149 · 10−2 8.8207 · 10−3

200.0000 4.4185 · 10−2 4.4504 · 10−2 7.1679 · 10−3

Table 16: LO cross section for Drell-Yan obtained by Candia using the MRST input and the

evolved MRST pdf’s.

dσNLO/dQ [pb/GeV]. Candia vs MRST evol. with MRST input, µ2
0 = 1.25 GeV2

Q [GeV] σCandia
NLO σMRST

NLO δσNLO

50.0000 6.8119 · 10+0 6.8100 · 10+0 2.7680 · 10−4

60.0469 4.1552 · 10+0 4.1521 · 10+0 7.5793 · 10−4

70.0938 3.8110 · 10+0 3.8080 · 10+0 8.1120 · 10−4

80.1407 7.9371 · 10+0 7.9287 · 10+0 1.0526 · 10−3

90.1876 3.0657 · 10+2 3.0615 · 10+2 1.3656 · 10−3

91.1876 5.0242 · 10+2 5.0172 · 10+2 1.3903 · 10−3

92.1876 3.0569 · 10+2 3.0526 · 10+2 1.4133 · 10−3

120.0701 9.5677 · 10−1 9.5496 · 10−1 1.8964 · 10−3

146.0938 2.6562 · 10−1 2.6504 · 10−1 2.1997 · 10−3

172.1175 1.1382 · 10−1 1.1356 · 10−1 2.2278 · 10−3

200.0000 5.5940 · 10−2 5.5778 · 10−2 2.9044 · 10−3

Table 17: NLO cross section for Drell-Yan obtained by Candia using the MRST input and the

evolved MRST pdf’s.

dependence is important and appears both in the hard scatterings and in the evolved

pdf’s, using the modified NNLO kernels defined above. The optimal choices for these

scales are identified in the region of stability of the cross section, usually a small plateau in

a multi-parameter space, which can be searched numerically. In the case of the Higgs, for

instance, a rather general analysis of the structure of these surfaces for specific observables

(such as the total cross section for Higgs production and the corresponding K-factors)

through NNLO has been given. There one can show, but the result is quite general, that

the concavity of the bidimensional surfaces describing the cross sections, plotted in terms
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dσNNLO/dQ [pb/GeV]. Candia vs MRST evolution with MRST input, µ2
0 = 1.25 GeV2

Q [GeV] σCandia
NNLO σMRST

NNLO δσNNLO

50.0000 6.4935 · 10+0 6.6707 · 10+0 2.6560 · 10−2

60.0469 3.9997 · 10+0 4.0961 · 10+0 2.3534 · 10−2

70.0938 3.6962 · 10+0 3.7743 · 10+0 2.0678 · 10−2

80.1407 7.6755 · 10+0 7.8198 · 10+0 1.8455 · 10−2

90.1876 2.9325 · 10+2 2.9827 · 10+2 1.6834 · 10−2

91.1876 4.8006 · 10+2 4.8822 · 10+2 1.6702 · 10−2

92.1876 2.9179 · 10+2 2.9671 · 10+2 1.6575 · 10−2

120.0701 9.0411 · 10−1 9.1687 · 10−1 1.3918 · 10−2

146.0938 2.5267 · 10−1 2.5567 · 10−1 1.1714 · 10−2

172.1175 1.0938 · 10−1 1.1049 · 10−1 1.0028 · 10−2

200.0000 5.4431 · 10−2 5.4876 · 10−2 8.1092 · 10−3

Table 18: NNLO cross section for Drell-Yan obtained by Candia using the MRST input and the

evolved MRST pdf’s.

of the two independent scales, changes sign as we move from leading to next-to-leading

order [29]. We show in figures 3 and 4 global plots of the DY cross section near the Z

peak for the two models Alekhin and MRST, evolved by the same authors, and zooms of

the peak region (figure 4), in which the LO, NLO and NNLO contributions are resolved in

great detail. Here we have set the factorization scale to be Q (µF = Q). In two following

plots, figure 5 and 6, we show instead the variation of the same cross section using an

evolution provided by Candia at LO, NLO and NNLO of the MRST input from the grids

(µ2
0 = 1.25 GeV2)and we have varied µF and µR. As we have already mentioned, our

analysis includes all the µR dependence (see tables 19, 20, 21, 22, 23), coming both from

the pdf’s and from the hard scatterings. The first is usually not reported in the standard

parameterizations such as MRST and Alekhin. The variation has been performed setting,

for each (fixed) value of Q, µF = Q and studying the variation of the renormalization

scale µR in the ratio kF ≡ µ2
R/µ2

F , which has been taken to vary between 1/2 and 2. The

decreased dependence of the result on the spurious scales of the process as we move toward

the NNLO predictions from the LO ones are quite visible. This is particularly easy to see

from figure 6. The options µR = µF and Q 6= µF are shown both for Alekhin’s and the

MRST inputs (figures 8 and 9) where a zoom of the region above the Z peak and of the tail

of the cross section are presented. The region covered is quite small (100-110 GeV) so to

allow to discern between the various results. The bands of variations of the LO, NLO and

NNLO results can be identified by a close look at these figures. One can see immediately

the reduced sizes of these bands as we increase the perturbative order of accuracy. The

same bands are shown right on the peak of the Z in figure 9. One can immediately notice

that the the NNLO variations take place right inside the NLO error band for the Alekhin

model (figure 9 (a)), while they overlap at the edge in the MRST model (figure 9 (b)).

Regarding the precise size of these variations, these can be inferred from the corresponding
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dσLO(Q, µF , µR)/dQ [pb/GeV]. Candia evolution with MRST input, µ2
0 = 1.25 GeV2

Q [GeV] σLO(Q) kF = 2 σLO(Q) kF = 1 σLO(Q) kF = 1/2 δσkF =1/2% δσkF =2%

50.0000 6.0789 · 10+0 5.6629 · 10+0 7.0877 · 10+0 2.5159 · 10+1 1.7291 · 10+1

60.0469 2.8718 · 10+0 3.4301 · 10+0 4.2241 · 10+0 2.3148 · 10+1 1.6276 · 10+1

70.0938 2.6438 · 10+0 3.1248 · 10+0 3.7952 · 10+0 2.1454 · 10+1 1.5394 · 10+1

80.1407 5.5230 · 10+0 6.4675 · 10+0 7.7598 · 10+0 1.9981 · 10+1 1.4604 · 10+1

90.1876 2.1411 · 10+2 2.4859 · 10+2 2.9498 · 10+2 1.8662 · 10+1 1.3869 · 10+1

91.1876 3.5104 · 10+2 4.0723 · 10+2 4.8272 · 10+2 1.8538 · 10+1 1.3798 · 10+1

120.0701 6.7639 · 10−1 7.6837 · 10−1 8.8706 · 10−1 1.5446 · 10+1 1.1972 · 10+1

146.0938 1.8945 · 10−1 2.1196 · 10−1 2.4008 · 10−1 1.3267 · 10+1 1.0620 · 10+1

172.1175 8.1799 · 10−2 9.0345 · 10−2 1.0070 · 10−1 1.1463 · 10+1 9.4593 · 10+0

200.0000 4.0486 · 10−2 4.4185 · 10−2 4.8524 · 10−2 9.8201 · 10+0 8.3716 · 10+0

Table 19: Study of the variation of the LO cross sections with respect to kF = µ2
R/µ2

F . Here we

choose Q = µF and the µ2
R/µ2

F variation is also included in the pdf’s evolved with Candia.

tables. The range explored in our analysis (1/2 < kF < 2) is somehow smaller than that

explored in [13], but includes the entire dependence on the renormalization scale of the

pdf’s. Being the evolution rather important in the determination of the NNLO total cross

section, it is clear that also the µR dependence on the evolution is not negligible. The

two cases µR < µF and µR > µF are characterized by substantially different excursions in

range. In the first case the variations, at LO, are from 25 % at 50 GeV down to 10 % for

Q = 200 GeV, while for kF = 2 they are more moderate (from 17 % down to 8 %). At

NLO the excursions are approximately from 11% down to 6% in the same range of Q, for

both cases of kF . The variations at NNLO can be found in 21, and are in the range of

1-3 %. We have also shown in table 22 and 23 results for the scale dependence when we

remove µR in the pdf’s, by equating µR to µF and keep them separate only in the hard

scatterings. The range of variation are sensibly reduced especially at lower values of Q,

with a drastic reduction especially around the peak. The reduction in the variation is by a

factor of 10 less: from about 10% down to less than 1%. On the peak the NNLO variations

are between 0.1 and 0.03 %. It is clear from this results that the µR scale dependence

coming from the evolution is pretty relevant and, in a complete analysis of the stability of

the NNLO corrections can’t be forgotten.

6.2 The K factors

We have summarized in figure 7 four plots of the behavior of the 3 K-factors K =

σNNLO/σNLO, K1 = σNLO/σLO and K2 = σNNLO/σLO obtained using Candia and the

MRST evolution. These are shown as a function of Q, and evaluated at the center of mass

energy of
√

S = 14 TeV. The dependence of the results on the evolution is significant. In

fact, from figure 7 it is evident that while the shapes of the plots of the K-factors are

similar, there are variations of the order 2%, in the results using the two different evolu-

tions. Both in the evolution performed with Candia and in the MRST evolution we use

the same MRST input, choosing the initial scale µ2
0 = 1.25 GeV2, and the same treatment
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dσNLO(Q,µF , µR)/dQ [pb/GeV]. Candia evol. with MRST input, µ2
0 = 1.25 GeV2

Q [GeV] σNLO(Q) kF = 2 σNLO(Q) kF = 1 σNLO(Q) kF = 1/2 δσkF =1/2% δσkF =2%

50.0000 6.0789 · 10+0 6.8121 · 10+0 7.5694 · 10+0 1.1116 · 10+1 1.0763 · 10+1

60.0469 3.7343 · 10+0 4.1554 · 10+0 4.5906 · 10+0 1.0473 · 10+1 1.0134 · 10+1

70.0938 3.4443 · 10+0 3.8112 · 10+0 4.1920 · 10+0 9.9929 · 10+0 9.6262 · 10+0

80.1407 7.2077 · 10+0 7.9374 · 10+0 8.6992 · 10+0 9.5986 · 10+0 9.1922 · 10+0

90.1876 2.7965 · 10+2 3.0658 · 10+2 3.3480 · 10+2 9.2047 · 10+0 8.7856 · 10+0

91.1876 4.5849 · 10+2 5.0243 · 10+2 5.4848 · 10+2 9.1649 · 10+0 8.7461 · 10+0

120.0701 8.8285 · 10−1 9.5681 · 10−1 1.0345 · 10+0 8.1197 · 10+0 7.7303 · 10+0

146.0938 2.4702 · 10−1 2.6563 · 10−1 2.8526 · 10−1 7.3907 · 10+0 7.0048 · 10+0

172.1175 1.0654 · 10−1 1.1382 · 10−1 1.2155 · 10−1 6.7940 · 10+0 6.3978 · 10+0

200.0000 5.2673 · 10−2 5.5942 · 10−2 5.9441 · 10−2 6.2547 · 10+0 5.8436 · 10+0

Table 20: Study of the variation of the NLO cross sections with respect to kF = µ2
R/µ2

F . Here we

choose Q = µF and the µ2
R/µ2

F variation is also included in the pdf’s evolved with Candia.

dσNNLO(Q,µF , µR)/dQ [pb/GeV]. Candia evolution with MRST input, µ2
0 = 1.25 GeV2

Q [GeV] σNNLO(Q) kF = 2 σNNLO(Q) kF = 1 σNNLO(Q) kF = 1/2 δσkF =1/2% δσkF =2%

50.0000 6.2855 · 10+0 6.4940 · 10+0 6.5465 · 10+0 8.0790 · 10−1 3.2107 · 10+0

60.0469 3.8626 · 10+0 3.9989 · 10+0 4.0503 · 10+0 1.2850 · 10+0 3.4090 · 10+0

70.0938 3.5635 · 10+0 3.6948 · 10+0 3.7557 · 10+0 1.6481 · 10+0 3.5528 · 10+0

80.1407 7.4312 · 10+0 7.6740 · 10+0 7.7729 · 10+0 1.2890 · 10+0 3.1640 · 10+0

90.1876 2.8672 · 10+2 2.9335 · 10+2 2.9409 · 10+2 2.5092 · 10−1 2.2615 · 10+0

91.1876 4.6986 · 10+2 4.8027 · 10+2 4.8094 · 10+2 1.4037 · 10−1 2.1663 · 10+0

120.0701 9.0247 · 10−1 9.0552 · 10−1 8.8841 · 10−1 −1.8901 · 10+0 3.3748 · 10−1

146.0938 2.5416 · 10−1 2.5318 · 10−1 2.4664 · 10−1 −2.5808 · 10+0 −3.8826 · 10−1

172.1175 1.1060 · 10−1 1.0963 · 10−1 1.0633 · 10−1 −3.0129 · 10+0 −8.8480 · 10−1

200.0000 5.5290 · 10−2 5.4572 · 10−2 5.2727 · 10−2 −3.3809 · 10+0 −1.3157 · 10+0

Table 21: Study of the variation of the NNLO cross sections with respect to kF = µ2
R/µ2

F . Here

we choose Q = µF and the µ2
R/µ2

F variation is also included in the pdf’s evolved with Candia.

dσNLO(Q,µF , µR)/dQ [pb/GeV]. Candia evolution with MRST input, µ2
0 = 1.25 GeV2 σ̂(kF ) ⊗ Φ(µF )

Q [GeV] σNLO(Q) kF = 2 σNLO(Q) kF = 1 σNLO(Q) kF = 1/2 δσkF =1/2% δσkF =2%

50.0000 6.7636 · 10+0 6.8121 · 10+0 6.8667 · 10+0 8.0201 · 10−1 7.1156 · 10−1

60.0469 4.1271 · 10+0 4.1554 · 10+0 4.1871 · 10+0 7.6402 · 10−1 6.8044 · 10−1

70.0938 3.7863 · 10+0 3.8112 · 10+0 3.8390 · 10+0 7.3124 · 10−1 6.5324 · 10−1

80.1407 7.8873 · 10+0 7.9374 · 10+0 7.9933 · 10+0 7.0434 · 10−1 6.3080 · 10−1

90.1876 3.0469 · 10+2 3.0658 · 10+2 3.0869 · 10+2 6.8790 · 10−1 6.1737 · 10−1

91.1876 4.9934 · 10+2 5.0243 · 10+2 5.0589 · 10+2 6.8677 · 10−1 6.1649 · 10−1

120.0701 9.5104 · 10−1 9.5681 · 10−1 9.6321 · 10−1 6.6868 · 10−1 6.0294 · 10−1

146.0938 2.6405 · 10−1 2.6563 · 10−1 2.6738 · 10−1 6.5806 · 10−1 5.9519 · 10−1

172.1175 1.1315 · 10−1 1.1382 · 10−1 1.1456 · 10−1 6.5014 · 10−1 5.8952 · 10−1

200.0000 5.5615 · 10−2 5.5942 · 10−2 5.6303 · 10−2 6.4531 · 10−1 5.8453 · 10−1

Table 22: Study of the variation of the NLO cross sections with respect to kF = µ2
R/µ2

F . Here we

choose Q = µF and the µ2
R/µ2

F variation is only included in the hard scattering piece.
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dσNNLO(Q, µF , µR)/dQ [pb/GeV]. Candia evolution with MRST input, µ2
0 = 1.25 GeV2 σ̂(kF ) ⊗ Φ(µF )

Q [GeV] σNNLO(Q) kF = 2 σNNLO(Q) kF = 1 σNNLO(Q) kF = 1/2 δσkF =1/2% δσkF =2%

50.0000 6.4534 · 10+0 6.4940 · 10+0 6.5389 · 10+0 6.9133 · 10−1 6.2544 · 10−1

60.0469 3.9563 · 10+0 3.9989 · 10+0 4.0484 · 10+0 1.2371 · 10+0 1.0648 · 10+0

70.0938 3.6442 · 10+0 3.6948 · 10+0 3.7544 · 10+0 1.6123 · 10+0 1.3704 · 10+0

80.1407 7.5963 · 10+0 7.6740 · 10+0 7.7638 · 10+0 1.1711 · 10+0 1.0122 · 10+0

90.1876 2.9315 · 10+2 2.9335 · 10+2 2.9340 · 10+2 1.6344 · 10−2 6.7867 · 10−2

91.1876 4.8042 · 10+2 4.8027 · 10+2 4.7977 · 10+2 −1.0389 · 10−1 −3.0745 · 10−2

120.0701 9.2166 · 10−1 9.0552 · 10−1 8.8539 · 10−1 −2.2235 · 10+0 −1.7820 · 10+0

146.0938 2.5909 · 10−1 2.5318 · 10−1 2.4588 · 10−1 −2.8814 · 10+0 −2.3367 · 10+0

172.1175 1.1256 · 10−1 1.0963 · 10−1 1.0604 · 10−1 −3.2701 · 10+0 −2.6699 · 10+0

200.0000 5.6183 · 10−2 5.4572 · 10−2 5.2608 · 10−2 −3.5989 · 10+0 −2.9521 · 10+0

Table 23: Study of the variation of the NNLO cross sections with respect to kF = µ2
R/µ2

F . Here

we choose Q = µF and the µ2
R/µ2

F variation is only included in the hard scattering piece.

of the heavy flavors. On the Z resonance we get

K(MZ) = (σ̂NNLO ⊗ ΦNNLO
MRST)/(σ̂NLO ⊗ ΦNLO

MRST) = 0.97

K(MZ) = (σ̂NNLO ⊗ ΦNNLO
Candia)/(σ̂NLO ⊗ ΦNLO

Candia) = 0.95

K(MZ) = (σ̂NNLO ⊗ ΦNNLO
Alekhin)/(σ̂NLO ⊗ ΦNLO

Alekhin) = 0.98 (6.3)

which corresponds to a reduction by 2.7% of the NNLO cross section compared to the NLO

result, (MRST evolution) and larger for the Candia evolution, 4.4%, while for Alekhin is

1.5%. From the analysis of the errors on the pdf’s to NNLO, for instance for the Alekhin’s

set, the differences among these determinations are still compatible, being the variations

on the K-factors of the order of 4%. We will get back to this point in the next sections.

Similar K-factors can be introduced to study the variations from LO to NNLO. We obtain

K2(MZ) = (σ̂NNLO ⊗ ΦNNLO
MRST)/(σ̂LO ⊗ ΦLO

MRST) = 1.18

K1(MZ) = (σ̂NLO ⊗ ΦNLO
MRST)/(σ̂LO ⊗ ΦLO

MRST) = 1.21

K2(MZ) = (σ̂NNLO ⊗ ΦNNLO
Candia)/(σ̂LO ⊗ ΦLO

Candia) = 1.17

K1(MZ) = (σ̂NLO ⊗ ΦNLO
Candia)/(σ̂LO ⊗ ΦLO

Candia) = 1.23 ,

K1(MZ) = (σ̂NLO ⊗ ΦNLO
Alekhin)/(σ̂LO ⊗ ΦLO

Alekhin) = 1.23 ,

K2(MZ) = (σ̂NNLO ⊗ ΦNLO
Alekhin)/(σ̂LO ⊗ ΦLO

Alekhin) = 1.21.

corresponding to a growth around 17 − 23%.

6.3 The rapidity distributions

Another cross section of relevance is the calculation of the rapidity distributions of the

lepton pair in the final state at the resonance of the Z at NNLO. Since the number of

events expected from Drell-Yan cross at LHC is large, the study of these distributions will

be very important for partonometry. As we have already mentioned, the analysis presented

here is going to be rather short, and we hope to return to this point in a separate work. We
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perform a numerical calculation of the differential cross section interfacing Vrap [13], which

computes the hard scatterings, with Candia. At this point we recall that the rapidity of

the vector boson Z is defined as

Y =
1

2
log

(

E + pz

E − pz

)

, (6.4)

where E and pz are respectively the energy and the longitudinal momentum of Z in the

center of mass frame of the colliding hadrons. Integrating over this variable one obtains

the total cross section as

σZ =

∫ (1/2) ln 1/τ

(1/2) ln τ
dY

dσ

dY
(6.5)

where

dσZ

dY
=

∑

ab

∫ 1

√
τeY

∫ 1

√
τe−Y

dx1dx2f
h1
a (x1, Q

2/µ2
F , µ2

R/µ2
F )fh2

b (x2, Q
2/µ2

F , µ2
R/µ2

F ) ×

dσZ
ab

dY
(x1, x2, Q

2/µ2
F , µ2

R/µ2
F ). (6.6)

Notice that the evolution implemented in Candia allows to analyze the renormaliza-

tion/factorization scale dependence also in the evolution, which is not present in the MRST

parameterizations.

If we set the scales to be equal, µF = µR and vary µF in the interval 1/2Q ≤ µF ≤ 2Q

we obtain the results in figure 10, which differ from those obtained in [13] by 2% due to

the different implementation of the evolution. Using Candia and as initial condition the

MRST grid input with µ2
0 = 1.25 GeV2 the NNLO band and the NLO one are resolved

separately. From figure 11 it is clear that including the µ2
R/µ2

F effects in the pdf’s evolution,

the dependence on µR is quite sizeable at NLO, but is reduced at NNLO.

We show in figure 12 the plots of the variations of the rapidity distributions at the three

orders and the corresponding pdf’s errors for Alekhin’s model and for MRST for Q = MZ .

In both cases the reduction of the variation of the cross sections as we move toward higher

orders is quite evident. We report also the errors on these distributions obtained in both

models, which also get systematically smaller as the accuracy of the calculation increases.

7. The cross sections and the errors

We are now going to quantify the errors coming from the pdf’s on the differential cross

section in the peak region of the Z by setting the condition µR = µF . The numerical

determination of the errors is computationally very intensive. We perform the analysis

at LO, NLO and NNLO for the case of the Alekhin’s pdf’s, and only at NLO for the

case of the MRST model, since the error analysis in the latter case is not available at LO

and at NNLO. We present our results in figures 13, 14, 15 and 16 at typical LHC energy

(
√

S = 14 TeV).

Figure 13 (a) shows that the 2 error bands at NLO and NNLO intersect, though the

average NNLO cross section is located outside the area covered by the error band in the

– 41 –



J
H
E
P
0
8
(
2
0
0
7
)
0
3
0

0.01

0.1

1

10

100

1000

60 80 100 120 140 160 180 200

dσ
/d

Q
 [

pb
/G

eV
]

Q [GeV]

Alekhin, µf = Q, LO
NLO

NNLO

(a) Alekhin Evolution

0.01

0.1

1

10

100

1000

60 80 100 120 140 160 180 200

dσ
/d

Q
 [

pb
/G

eV
]

Q [GeV]

MRST, µf = Q, LO
NLO

NNLO

(b) MRST Evolution

Figure 3: Cross sections in the region of the peak of the Z boson at LO, NLO, and NNLO obtained

using the luminosities evolved respectively by Alekhin and MRST.
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Figure 4: Cross sections in the region of the Z with a zoom in the peak region.

fast fall off region. This feature of the result is shown more clearly in figures 14 and 15. A

zoom of the same region is shown in figure 16.

The calculation of the error bands has been done following the usual theory of the linear

propagation of the errors. Starting from the errors on the pdf’s known in the literature

(see [10, 30, 9]), we have generated different sets of cross sections. Then, the error on the

cross section has been calculated using the formula

∆σ =
1

2

√

√

√

√

N
∑

k=1

[σ2k−1 − σ2k]
2, (7.1)

where σk is the k-th cross section belonging to a certain set, and N is the number of free

parameters, which is 15 for MRST and 17 for Alekhin.
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Figure 5: Factorization vs Renormalization scale dependence of the cross section at LO, NLO with√
S = 14TeV. The pdf’s have been evolved by using the MRST parametric input at µ2

0 = 1GeV2.
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Figure 6: Factorization vs renormalization scale dependence of the cross section at NNLO at√
S = 14TeV. The pdf’s have been evolved by Candia using the MRST parametric input at

µ2
0 = 1 GeV2.

We show in table 24 the values for the cross section with values obtained by the best

fits and the errors at the corresponding orders. It is evident that the relevance of the NNLO

corrections is reduced at lower Q, given the actual quantification of the pdf’s errors, since

the NNLO corrections are not outside the error bands. The situation, however, changes

beyond the resonance (120 GeV and above) , where it is clear that the cross section of best

the fit at NNLO lays outside the error band, on the tail of the region that we analyze. The

errors induced on the K-factors ( (K(Q) − 1)%), as one can easily figure out, are of the

order of 4% on the peak (K(MZ) for the Alekhin set) from their best fit value, widening

quite sharply that determination (K(MZ) = 0.98 ± 0.04). For Q = 50 GeV the percentile

variation of the cross section in moving from NLO to NNLO is about 1.5 ± 4%. As a last

example, for Q = 146 GeV we obtain a rate of variation of 3% (K(146) = 0.97 ± 0.03).
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Figure 7: Various K-factors obtained with the evolution performed by Candia and MRST.

Regarding the size of the errors at NNLO at various Q values, in the Alekhin set these equal

- for Q = 50 GeV - 2.8% of the best fit value, raising to almost 3% at MZ and decreasing

to 1.7% at 200 GeV. For the MRST set we have determined the error on the NLO cross

sections in table 8. They are about 2.8% of the best fit value at Q = 50 GeV, decrease to

1.6% on the peak and decrease moving toward the tail, equating 1.2% at 200 GeV.

A more complete view of the role played both by the errors at each perturbative order

and the corresponding best-fit values can be obtained from figures 13– 16. In figure 13

we have zoomed on the region of invariant mass of the lepton pair around 100-102 GeV

and presented plots of the Alekhin model with the relative errors. The NLO and NNLO

predictions show overlapping error bands, while the NLO error band for the MRST set

(figure 14) lays slightly below the Alekhin’s result at the corresponding order. We have

also tried to provide an overall view of the tail of the distribution in figure 15, where we

show the best-fit result at NNLO and the NLO error band. The best-fit value lays outside

this band. A similar result holds for the MRST set and is shown in figure 15. Finally,

in figure 16 we have zoomed over the region of the resonance, where the best-fit value is
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tions, with input energy µ2
0 = 1.25 GeV2.

Figure 8: Factorization scale dependence of the cross section at LO NLO and NNLO with
√

S =

14TeV for two models.
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Figure 9: Factorization scale dependence of the cross section at LO NLO and NNLO with
√

S =

14TeV. Zoom in the peak region.

shown to lay inside the error band.

8. Estimating the size of the QCD corrections due to the evolution

To estimate the role played by the evolution in determining the full NNLO prediction,

we show in three tables results for some approximations of the NNLO DY cross sections

obtained by varying either the hard scattering or the order of the evolved pdf’s in the

factorization formula. These approximations may serve as possible ways to estimate the

contribution coming from the evolution from that of the hard scatterings, and may provide
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Figure 10: Rapidity distributions obtained by changing 1/2Q ≤ µF ≤ 2Q. Here we choose

Q = MZ = µF . The evolution is based on Candia using MRST grid input with µ2
0 = 1.25GeV2,

while we used Vrap for the calculation of the hard scattering pieces.

0

20

40

60

80

100

-4 -2 0 2 4

dσ
/d

Y
 [

pb
/G

eV
],

 Q
 =

 M
Z  =

  µ
F

Y

MRST CANDIA evol.,  κF  =  µR
2   / µF

2     1/2 < κF  < 2 , LO
NLO

NNLO

Figure 11: Rapidity distributions obtained by changing 1/2 ≤ kF ≤ 2 where kF = µ2
R/µ2

F .

Here we choose Q = MZ = µF . The evolution is based on Candia using MRST grid input with

µ2
0 = 1.25GeV2. As before Vrap has been used for the calculation of the hard scattering.

some partial information on their role in the final result. Tables 26 and 27 show that the

error made by neglecting the NNLO corrections in the hard scatterings - while keeping

the entire NNLO evolution - is around 2-3 %, and the correct NNLO cross section is both

underestimated and overestimated, while a slight bigger error is made if we neglect the

NNLO corrections to the evolution (4%). The overall decrease of the total cross section

appears only after the inclusion of the NNLO evolution. In a final table (table 28) we

repeat the trick at NLO, by keeping the hard scatterings at NLO and convoluting with the

NNLO evolution. Also in this case the errors are around 4% and below in the region of Q

that we have studied.

There are some features which are quite evident from this analysis. The first is that

both at NLO (table 28) and at NNLO (table 26) the role of the NNLO terms is to reduce
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Figure 12: Plot of the rapidity distributions at LO, NLO and NNLO for Alekhin’s model and

MRST. Shown are also the bands due to the variation of the µF scale, and the errors on the cross

sections at the corresponding orders.

dσ/dQ in [pb/GeV] for Alekhin with Q2 = µ2
F = µ2

R,
√

S = 14 TeV

Q [GeV] σLO σNLO σNNLO

50 6.22 ± 0.27 7.48 ± 0.24 7.43 ± 0.21

60.04 3.72 ± 0.15 4.50 ± 0.13 4.49 ± 0.12

70.1 3.30 ± 0.12 4.03 ± 0.11 4.05 ± 0.10

80.1 6.65 ± 0.24 8.20 ± 0.24 8.19 ± 0.23

90.19 253 ± 8 313 ± 9 309 ± 8

91.19 415 ± 14 514 ± 15 506 ± 15

120.07 0.80 ± 0.02 0.99 ± 0.02 0.96 ± 0.03

146.1 0.225 ± 0.006 0.277 ± 0.007 0.269 ± 0.007

172.1 0.097 ± 0.002 0.119 ± 0.003 0.117 ± 0.003

200 0.047 ± 0.001 0.058 ± 0.001 0.058 ± 0.001

Table 24: Cross sections derived from the best fits for the 3 orders with their errors for the set by

Alekhin.

the contribution to the cross section. A second piece of information can be extracted by

comparing all the tables, and extracting the differences ∆0 ≡ σNNLO ⊗ ΦNNLO − σNLO ⊗
ΦNNLO over the entire range of variability of Q and comparing them with the canonical

NLO cross section, σNLO⊗ΦNLO. One can easily come to the conclusion that by combining

the NNLO evolution with the NLO hard scatterings this “improved” NLO cross section

is much closer to the true NNLO result than the canonical NLO approximation obtained

using the NLO pdf’s. For instance for Q=50GeV the improved NLO result differs by

0.3% from the correct determination, while the ordinary NLO prediction differs from it by

4%. On the Z peak the improved NLO result differs by 1% respect to the correct NNLO

prediction, while the standard NLO cross section is 4% away. The pattern is quite general.
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dσ/dQ in [pb/GeV] for MRST with Q2 = µ2
F = µ2

R,
√

S = 14 TeV

Q [GeV] σNLO

50 6.77 ± 0.19

60.04 4.13 ± 0.10

70.1 3.79 ± 0.08

80.1 7.90 ± 0.14

90.19 305 ± 5

91.19 499 ± 8

120.1 0.952 ± 0.014

146.1 0.264 ± 0.003

172.1 0.113 ± 0.001

200 0.0556 ± 0.0007

Table 25: Cross sections derived from the best fits at NLO with the errors for the MRST set.
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Figure 13: Errors of the pdf’s on the cross sections at LHC. Zoom in the region of 100GeV.

It would be interesting to test the same approach on other NNLO computations and check

whether on a more general basis the NLO “improved” cross section can be used also for

other processes as a better estimate of the NNLO result when this is not available. We

have seen that using these types of approaches, one can estimate the role played by the

evolution, which in DY dominates over the NNLO corrections to the hard scatterings.

It is clear from the results of these studied that the role played by the NNLO QCD

corrections in the K-factors at NNLO on the Z peak is relevant, corresponding to variations

that can be reasonably assumed around the few percent level. We recall that with 10−1 fb

of integrated luminosity the statistical error expected on the Z peak is around 0.05% at the

LHC. As we have mentioned, suitable choices of the electroweak parameters allow to take

into account the bulk of the electroweak effects, while the non-factorizable contributions are

not included in this approach [26]. It is then clear that, given the size of the QCD NNLO
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Figure 14: NNLO cross section for Alekhin with the respective pdf’s errors at NLO in the 100GeV

region, with Q = µF = µR and
√
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Figure 15: NNLO cross section for MRST with the respective pdf’s errors at NLO in the 100GeV

region, with Q = µF = µR and
√

S = 14TeV.

corrections, we need to worry about these additional effects, which are clearly dominant

especially if we are interested in having a robust determination of all the contributions to

this process. Searching for heavy extra Z’ is going to be critically linked to the correct

quantification of these additional corrections [26].

9. Conclusions

We have presented a comparative study of the NNLO predictions for lepton pair production

and discussed their robustness. We have presented results concerning K-factors, renormal-

ization/factorization scale dependence and errors on the cross sections - induced by errors

on the pdf’s - following different approaches. For this reason we have put under close

scrutiny the theory of the logarithmic expansions, which we have shown to give results

which are compatible with other approaches, and allows to address the issue of accuracy

in the context of the QCD evolution. Our estimate of the difference between the different
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Figure 16: NNLO cross section for Alekhin and MRST with the respective pdf’s errors at NLO

in the Z peak region. Zoom in the region of 90GeV.

Candia evolution with MRST input, µ2
0 = 1.25 GeV2

Q [GeV] σNNLO ⊗ ΦNNLO σNLO ⊗ ΦNNLO δσ

50.0000 6.4935 · 10+0 6.5164 · 10+0 3.5195 · 10−3

60.0469 3.9997 · 10+0 3.9864 · 10+0 3.3040 · 10−3

70.0938 3.6962 · 10+0 3.6683 · 10+0 7.5645 · 10−3

80.1407 7.6755 · 10+0 7.6639 · 10+0 1.5087 · 10−3

90.1876 2.9325 · 10+2 2.9676 · 10+2 1.1988 · 10−2

91.1876 4.8006 · 10+2 4.8644 · 10+2 1.3293 · 10−2

92.1876 2.9179 · 10+2 2.9604 · 10+2 1.4556 · 10−2

120.0701 9.0411 · 10−1 9.3152 · 10−1 3.0318 · 10−2

146.0938 2.5267 · 10−1 2.5981 · 10−1 2.8222 · 10−2

172.1175 1.0938 · 10−1 1.1179 · 10−1 2.2061 · 10−2

200.0000 5.4431 · 10−2 5.5145 · 10−2 1.3118 · 10−2

Table 26: σNNLO ⊗ΦNNLO vs σNLO ⊗ΦNNLO in [pb/GeV]. Comparison between NNLO and NLO

cross sections obtained by the convolution of NNLO pdf’s. δσ is defined as |σNNLO ⊗ ΦNNLO −
σNLO ⊗ ΦNNLO|/σNNLO ⊗ ΦNNLO.

approaches is slightly above the level of 1%. The K-factors found using these new methods

appears to be slightly larger than those coming from the MRST and Alekhin evolved parton

distributions, but compatible with them, given the actual errors on the pdf’s. Clearly, with

the advent of the LHC, these analysis should be rendered even more accurate, especially at

large values of the mass distributions, where a detailed analysis of the electroweak effects

should be included. This is particularly important in the search of extra gauge interactions

using this channel. On the Z resonance these effects are smaller, at the percent level, but

are important for calibration and partonometry. These and other related issues will be left

for future work.

Note added. The extended analysis presented in this work has been performed within
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Candia evolution with MRST input, µ2
0 = 1.25 GeV2

Q [GeV] σNNLO ⊗ ΦNNLO σNNLO ⊗ ΦNLO δσ

50.0000 6.4935 · 10+0 6.7853 · 10+0 4.4938 · 10−2

60.0469 3.9997 · 10+0 4.1805 · 10+0 4.5206 · 10−2

70.0938 3.6962 · 10+0 3.8571 · 10+0 4.3521 · 10−2

80.1407 7.6755 · 10+0 7.9669 · 10+0 3.7967 · 10−2

90.1876 2.9325 · 10+2 3.0219 · 10+2 3.0498 · 10−2

91.1876 4.8006 · 10+2 4.9437 · 10+2 2.9809 · 10−2

92.1876 2.9179 · 10+2 3.0029 · 10+2 2.9141 · 10−2

120.0701 9.0411 · 10−1 9.2025 · 10−1 1.7858 · 10−2

146.0938 2.5267 · 10−1 2.5593 · 10−1 1.2890 · 10−2

172.1175 1.0938 · 10−1 1.1039 · 10−1 9.2157 · 10−3

200.0000 5.4431 · 10−2 5.4781 · 10−2 6.4302 · 10−3

Table 27: σNNLO ⊗ ΦNNLO vs σNNLO ⊗ ΦNLO in [pb/GeV]. Upper bound on the NNLO cross

sections obtained by the convolution of NNLO and NLO pdf’s. δσ is defined as |σNNLO ⊗ΦNNLO −
σNNLO ⊗ ΦNLO|/σNNLO ⊗ ΦNNLO.

Candia evolution with MRST input, µ2
0 = 1.25 GeV2

Q [GeV] σNLO ⊗ ΦNLO σNLO ⊗ ΦNNLO δσ

50.0000 6.8119 · 10+0 6.5164 · 10+0 4.3376 · 10−2

60.0469 4.1552 · 10+0 3.9864 · 10+0 4.0623 · 10−2

70.0938 3.8110 · 10+0 3.6683 · 10+0 3.7465 · 10−2

80.1407 7.9371 · 10+0 7.6639 · 10+0 3.4420 · 10−2

90.1876 3.0657 · 10+2 2.9676 · 10+2 3.2000 · 10−2

91.1876 5.0242 · 10+2 4.8644 · 10+2 3.1790 · 10−2

92.1876 3.0569 · 10+2 2.9604 · 10+2 3.1584 · 10−2

120.0701 9.5677 · 10−1 9.3152 · 10−1 2.6396 · 10−2

146.0938 2.6562 · 10−1 2.5981 · 10−1 2.1896 · 10−2

172.1175 1.1382 · 10−1 1.1179 · 10−1 1.7801 · 10−2

200.0000 5.5940 · 10−2 5.5145 · 10−2 1.4212 · 10−2

Table 28: σNLO ⊗ ΦNLO vs σNLO ⊗ ΦNNLO in [pb/GeV]. Lower bound on the NLO cross sections

obtained by the convolution of NLO and NNLO pdf’s. δσ is defined as |σNLO ⊗ ΦNLO − σNLO ⊗
ΦNNLO|/σNLO ⊗ ΦNLO.

the 2006 Monte Carlo workshop held in Frascati under the sponsorship of INFN of Italy.

Detailed tables/plots are provided only for reference in this version for the arXiv since

they may be of practical use. Candia, CandiaDY and their interface with Vrap will be

released and described in forthcoming work.
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dσNLO/dQ [pb/GeV] with MRST input, µ2
0 = 1.25 GeV2, Candia evolution, µR = µF = Q,

√
S = 14 TeV

Q σNLO asym. κ = 1 κ = 2 κ = 3 κ = 4 κ = 5 κ = 6

50.0000 6.8121·10+0 7.0043·10+0 6.7706·10+0 6.8020·10+0 6.7972·10+0 6.7980·10+0 6.7978·10+0

60.0469 4.1554·10+0 4.2645·10+0 4.1317·10+0 4.1495·10+0 4.1468·10+0 4.1473·10+0 4.1472·10+0

70.0938 3.8112·10+0 3.9073·10+0 3.7916·10+0 3.8071·10+0 3.8047·10+0 3.8051·10+0 3.8051·10+0

80.1407 7.9374·10+0 8.1327·10+0 7.9013·10+0 7.9327·10+0 7.9278·10+0 7.9287·10+0 7.9285·10+0

90.1876 3.0658·10+2 3.1385·10+2 3.0529·10+2 3.0646·10+2 3.0627·10+2 3.0630·10+2 3.0630·10+2

91.1876 5.0243·10+2 5.1429·10+2 5.0033·10+2 5.0223·10+2 5.0193·10+2 5.0198·10+2 5.0197·10+2

120.0701 9.5681·10−1 9.7592·10−1 9.5264·10−1 9.5582·10−1 9.5531·10−1 9.5540·10−1 9.5538·10−1

146.0938 2.6563·10−1 2.7026·10−1 2.6442·10−1 2.6522·10−1 2.6509·10−1 2.6511·10−1 2.6511·10−1

172.1175 1.1382·10−1 1.1558·10−1 1.1328·10−1 1.1360·10−1 1.1355·10−1 1.1356·10−1 1.1355·10−1

200.0000 5.5942·10−2 5.6694·10−2 5.5662·10−2 5.5805·10−2 5.5782·10−2 5.5786·10−2 5.5785·10−2

Table 29: Drell-Yan cross section at NLO computed with the MRST parametric input (µ2
0 =

1.25GeV2) and the evolution performed using Candia. Shown are the cross sections for the trun-

cated solutions and the asymptotic cross section.

dσNNLO/dQ [pb/GeV] with MRST input, µ2
0 = 1.25, GeV2 Candia evolution, µR = µF = Q,

√
S = 14TeV

Q σNNLO asym. κ = 2 κ = 3 κ = 4 κ = 5 κ = 6 κ = 7

50.0000 6.4940·10+0 6.5052·10+0 6.4758·10+0 6.4807·10+0 6.4805·10+0 6.4803·10+0 6.4804·10+0

60.0469 3.9989·10+0 4.0040·10+0 3.9886·10+0 3.9911·10+0 3.9911·10+0 3.9910·10+0 3.9910·10+0

70.0938 3.6948·10+0 3.6995·10+0 3.6868·10+0 3.6888·10+0 3.6888·10+0 3.6887·10+0 3.6887·10+0

80.1407 7.6740·10+0 7.6871·10+0 7.6600·10+0 7.6641·10+0 7.6642·10+0 7.6640·10+0 7.6640·10+0

90.1876 2.9335·10+2 2.9395·10+2 2.9283·10+2 2.9299·10+2 2.9299·10+2 2.9299·10+2 2.9299·10+2

91.1876 4.8027·10+2 4.8124·10+2 4.7940·10+2 4.7966·10+2 4.7967·10+2 4.7966·10+2 4.7966·10+2

120.0701 9.0552·10−1 9.0678·10−1 9.0326·10−1 9.0373·10−1 9.0376·10−1 9.0373·10−1 9.0373·10−1

146.0938 2.5318·10−1 2.5334·10−1 2.5243·10−1 2.5255·10−1 2.5256·10−1 2.5255·10−1 2.5255·10−1

172.1175 1.0963·10−1 1.0963·10−1 1.0927·10−1 1.0931·10−1 1.0932·10−1 1.0931·10−1 1.0931·10−1

200.0000 5.4572·10−2 5.4533·10−2 5.4367·10−2 5.4388·10−2 5.4390·10−2 5.4389·10−2 5.4389·10−2

Table 30: NNLO Drell-Yan cross section with the MRST initial conditions and the evolution

performed with Candia. We present the results for the various truncated solutions and for the

asymptotic one.

ported by the grant MTKD-CT-2004-014319 and by the EU grant MRTN-CT-2004-512194

with partial support from the INTERREG IIIA Greece - Cyprus program. The work of

C.C. is partly supported by the Marie Curie Research and Training network “Universenet”

(MRTN-CT-2006-035863) and by the INTERREG IIIA Greece - Cyprus program. The

numerical analysis has been performed on the INFN cluster at the University of Salento.

The work of M.G. is partly supported by MIUR and by INFN. We thank the Participants

of the INFN 2006 Monte Carlo workshop in Frascati, and the Organizers, in particular

Barbara Mele and Paolo Nason for the effort with the organization and for discussions.

References

[1] P. Langacker and M.-X. Luo, Constraints on additional Z bosons, Phys. Rev. D 45 (1992)

278;
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