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A b s t r a c t  

We investigate the cosmological constraints on exotic stable matter states which arise in realistic 
free fermionic superstring models. These states appear in the superstring models due to a "Wilson- 
line" breaking of the unifying non-abelian gauge symmetry. In the models that we consider the 
unifying SO(10) gauge symmetry is broken at the string level to SO(6) × SO(4), SU(5) x U(1) 
or SU(3) × SU(2) x U( 1)2. The exotic matter states are classified according to the patterns of 
the SO(10) symmetry breaking. In SO(6) × SO(4) and SU(5) x U(1) type models one obtains 
fractionally charged states with Qe.m. = 4-1/2. In SU(3) × SU(2) x U( 1)2 type models one also 
obtains states with the regular charges under the Standard Model gauge group but with "fractional" 
charges under the U( 1 )z, symmetry. These states include down-like color triplets and electroweak 
doublets, as well as states which are Standard Model singlets. By analyzing the renormalizable 
and nonrenormalizable terms of the superpotential in a specific superstring model, we show that 
these exotic states can be stable. We investigate the cosmological constraints on the masses and 
relic density of the exotic states. We propose that, while the abundance and the masses of the 
fractionally charged states are highly constrained, the Standard Model-like states, and in particular 
the Standard Model singlet, are good dark matter candidates. 
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1. Introduction 

Superstring theories [ 1 ] are believed to provide a consistent framework for the unifi- 
cation of gravity with the gauge interactions. An important task is to connect superstring 
theory with the Standard Model [2,3]. Several approaches may be pursued to derive the 
Standard Model from superstring theory. One possibility is to go through a simple [4] 
or a semi-simple [5-9] unifying gauge group at intermediate energy scale. Another is 
to derive the Standard Model directly from superstring theory [ 10-14]. Proton lifetime 
considerations motivate the hypothesis that the Standard Model must be obtained directly 
from superstring theory [ 15,16]. A second important question is whether there exists 
some property of superstring models that will distinguish them from other attempts to 
understand the origin of the Standard Model. If such a property exists it may result in 
an experimental signal that can prove or disprove the validity of superstring unification. 

In this paper we explore one such possible signature of superstring unification. We 
argue that realistic superstring models produce additional heavy stable matter, beyond 
the spectrum of the Standard Model. The specific matter states and their properties 
vary between models. However, the existence of additional stable matter, beyond the 
observed spectrum of the Standard Model, is generic. One type of such generic states 
in superstring models are of course the moduli fields. Indeed, it has been argued that 
because of the absence of superpotential for the moduli fields, they will decouple at a 
very early stage in the evolution of the universe and will overclose the universe [ 17]. 
However, in the class of models that we study, it has been suggested that all the moduli 
(except, of course, the dilaton) are projected out by the GSO projections [ 18]. Thus, 
for these models the cosmological moduli problem can be resolved. The matter states 
that we study in this paper arise due to the superstringy breaking of the unifying gauge 
symmetry. We investigate the possibility that these stringy stable matter states can be 
the dark matter and can perhaps be detected. 

In the attempts to derive the Standard Model from superstring theory one traditionally 
starts with a larger, unifying, gauge symmetry G. The gauge symmetry is then broken 
to the Standard Model by means of Wilson lines. In many respects the unifying gauge 

symmetry G is similar to the gauge group of four-dimensional grand unification and 
the Wilson lines are similar to the Higgs bosons in the adjoint representation. However, 
there are some notable differences. The eigenvalues of the Wilson lines are quantized 
while the eigenvalues of the Higgs in the adjoint representation are continuous. Another 
important difference is that the breaking of the gauge symmetries by Wilson lines 
results in massless states that do not fit into multiplets of the original unbroken gauge 
symmetry. We refer to such states generically as exotic "Wilsonian" matter states. This 
is an important property as it may result in conserved quantum numbers that will 
indicate the stability of these massless "Wilsonian" states. The simplest example of this 
phenomenon is the existence of states with fractional electric charge in the massless 
spectrum of superstring models [ 19-22]. Such states are stable due to electric charge 
conservation. As there exist strong constraints on their masses and abundance, states 
with fractional electric charge must be diluted away or must be extremely massive. 
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Remarkably, however, the same "Wilson line" breaking mechanism, which produces 

matter with fractional electric charge, is also responsible for the existence of states which 
carry the "standard" charges under the Standard Model gauge group but which carry 
fractional charges under a different subgroup of the unifying gauge group. For example, 
if the group G is SO(10) then the "Wilsonian" states carry nonstandard charges under 
the U( 1 )z, symmetry, which is embedded in SO(10) and is orthogonal to U( 1 )y. Such 
states can therefore be stable if the U(1)z,  gauge symmetry remains unbroken down 
to low energies, or if some residual local discrete symmetry is left unbroken after the 
U( 1 ) z, symmetry breaking. 

In this paper we propose that the existence of heavy stable "Wilsonian" matter may 
be the "smoking gun" of string unification. The existence of stable "Wilsonian" states 
at an intermediate energy scale has important cosmological implications. In a previous 
letter [24] we examined the possibility that one type of the extra "Wilsonian" states 
constitutes the dark matter of the universe. These states consist of heavy down-like quark 
with the standard down-like charge assignment. Due to its role in the string unification 
we referred to this type of particle as the uniton. We proposed that because of its 
"fractional" charge under the U(1) z, symmetry, the uniton may be stable. 

In this paper we extend the analysis of Ref. [24]. We discuss in detail the cosmolog- 
ical constraints on the existence of heavy "Wilsonian" states. We provide the details of 
the analysis of Ref. [24] and extend our investigation to other exotic matter states which 
appear in the realistic superstring derived models. In the superstring models that we con- 
sider the unifying gauge symmetry is SO(10). The SO(10) symmetry is broken at the 
string level to SO(6) x SO(4), SU(5) x U(1) or SU(3) x SU(2) x U(1) 2. We classify 
the exotic "Wilsonian" matter states according to the pattern of the SO(10) symmetry 
breaking. The SO(6) x SO(4) and SU(5) x U( l )  type models give rise to fractionally 
charged states with Qe.m. = 4-1/2. On the other hand, the SU(3) x SU(2) x U( 1)2 type 
models produce in addition states with the regular charges under the Standard Model 
gauge group but with "fractional" charges under the U(1) z, gauge group. These states 
include down-like color triplets and electroweak doublets, as well as states which are 
Standard Model singlets. We show, by analyzing the renormalizable and nonrenormaiiz- 
able terms of the superpotential in a specific superstring model, that these exotic states 
can be stable. We investigate the cosmological constraints on the masses and relic den- 
sity of the exotic states. We propose that, while the abundance and the masses of the 

fractionally charged states are highly constrained, the Standard Model-like states, and in 
particular the Standard Model singlet, are possible candidates for the dark matter. 

The exotic "Wilsonian" matter states that we study in this paper are divided into three 
distinct classes. 

The first class consists of down-like color triplets with "fractional" charge under the 
U( 1)z, symmetry. The existence of such a heavy colored state is motivated from the 
constraints arising from string gauge coupling unification [25]. In a specific superstring 
model we analyze the interaction terms of this colored triplets with the Standard Model 
states. In that model we show that if we assume that an hidden SU(3)n gauge group 
remains unbroken then all the interaction terms in the superpotential vanish to any order 
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of nonrenormalizable terms. This result arises due to the fractional U( 1)z, of the color 

"Wilsonian" triplets and because in the specific string model which we analyze in detail 
the only other Standard Model singlet states which carry fractional U( 1 )z '  charge are 
triplets of SU(3)n.  Thus, we argue that the "Wilsonian" states can arise as stable states. 
We then proceed to analyze the constraints on the relic density of stable heavy color 

triplets. The heavy color triplets can annihilate into quarks, squarks, gluons and gluinos. 

We examine the possibility that the heavy color down-like triplets are the dark matter. 

The heavy stable down-like states form charged and neutral meson bound states with 

the up and down quarks, respectively. An important issue in this regard is the mass 

splitting between the charged and neutral meson states. We argue that with our present 

understanding of QCD, and the experimental determination of the light quark masses, 

there exists a region in the parameter space in which the neutral heavy meson state is 
the neutral one. 

Next we examine the constraints on the relic density of fractionally charged states, 
with electric charge 5:1/2. We show that generically these states either have to be super 

massive or have to be inflated away. We demonstrate in one specific model that all the 

fractionally charged states have a cubic level mass term. Thus, all the fractionally charged 

states can decouple from the massless spectrum by some choices of fiat directions. An 

alternative is that all the fractionally charged states are confined by some non-abelian 

gauge group in the hidden sector. Another novel feature that arises in some string models 

is the appearance of fractionally charged baryons and fractionally charged leptons. Thus, 

one can speculate that these baryons and leptons will continue to scatter in the early 
universe until they coalesce to form neutral heavy hydrogen-like atoms. 

The final class of "Wilsonian" states that we consider are Standard Model singlets 

with fractional U(1)z ,  charge. These type of states arise in the superstring derived 
standard-like models and interact with the Standard Model states only via the U( 1)z, 

gauge boson and are candidates for weakly interacting dark matter (WIMPs). We 

examine four possible scenarios: with and without inflation and with the U(1)z ,  gauge 
boson being heavier or lighter than the "Wilsonian"-singlet states. We propose that this 

Standard Model singlet state is the most likely candidate for the dark matter in the 

superstring models. 
Our paper is organized as follows. In Section 2 we review the realistic free fermionic 

superstring models. In Section 3 we describe the exotic "Wilsonian" states and classify 
them according to the patterns of the S O ( I O )  symmetry breaking. In Section 4 we 

examine the cosmological constraints on the different classes of "Wilsonian" matter 
states which are obtained from the superstring models. In Section 5 we present our 
conclusions. Our discussion of the mass difference in the heavy meson system is given 
in Appendix A. The details of the calculation of the annihilation cross sections are give 
in Appendix B. 
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2. Realistic free fermionic models 

69 

In the free fermionic formulation of the heterotic string [2] all the degrees of free- 
dom needed to cancel the conformal anomaly are represented in terms of internal free 
fermions propagating on the string world-sheet. In four dimensions, this requires 20 left- 

moving and 44 right-moving real world-sheet fermions. Equivalently, some real fermions 

may be paired to form complex fermions. Under parallel transport around a noncon- 

tractible loop, the fermionic states pick up a phase. Specification of the phases for all 
world-sheet fermions around all noncontractible loops contributes to the spin structure 

of the model. Such spin structures are usually given in the form of boundary condition 

"vectors", with each element of the vector specifying the phase of a corresponding 
world-sheet fermion. The possible spin structures are constrained by string consistency 

requirements (e.g. modular invariance). A model is constructed by choosing a set of 

boundary condition basis vectors, which satisfies the modular invariance constraints. The 
basis vectors, bk, span a finite additive group ~ = ~-]k nkbk, where nk = 0 . . . . .  Nz~ - 1. 

The physical massless states in the Hilbert space of a given sector a E -~ are obtained 

by acting on the vacuum with bosonic and fermionic operators and by applying the gen- 
eralized GSO projections. The U( 1 ) charges, Q ( f ) ,  with respect to the unbroken Cartan 

generators of the four-dimensional gauge group, which are in one-to-one correspondence 

with the U ( I )  currents f * f  for each complex fermion f ,  are given by 

a ( f )  = ½a( f )  + F ( f ) ,  (2.1) 

where a ( f )  is the boundary condition of the world-sheet fermion f in the sector a,  

and F~( f )  is a fermion number operator counting each mode of f once (and if f is 
complex, f*  minus once). For periodic fermions, a ( f )  = 1, the vacuum is a spinor 
in order to represent the Clifford algebra of the corresponding zero modes. For each 

periodic complex fermion f there are two degenerate vacua I+), I - )  , annihilated by 

the zero modes f0 and f0* and with fermion numbers F ( f )  = 0 , -  1, respectively. 
The realistic models in the free fermionic formulation are generated by a basis of 

boundary condition vectors for all world-sheet fermions [6,11,7,12,23,13,9,14]. The 

basis is constructed in two stages. The first stage consists of the NAHE set [6,13], which 
is a set of five boundary condition basis vectors, {1, S, bl, b2, b3}. The gauge group after 
the NAHE set is SO(10) x SO(6) 3 x E8 with N = 1 space-time supersymmetry. The 

vector S is the supersymmetry generator and the superpartners of the states from a 
given sector a are obtained from the sector S + a. The space-time vector bosons that 

generate the gauge group arise from the Neveu-Schwarz sector and from the sector 
( = 1 + bl + b2 + b3. The Neveu-Schwarz sector produces the generators of SO(10) x 
SO(6) 3 x SO(16). The sector s c = 1 + bl + b2 + b3 produces the spinorial 128 of SO(16) 

and completes the hidden gauge group to E8. The vectors bl, b2 and b3 correspond 
to the three twisted sectors in the corresponding orbifold formulation and produce 48 
spinorial 16 of SO(IO), sixteen from each sector bl, b2 and b3. 

The NAHE set divides the 44 right-moving and 20 left-moving real internal fermions 
in the following way: ~1,...,5 are complex and produce the observable SO(10) symmetry; 
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~1,...,8 are complex and produce the hidden E8 gauge group; {f/l, y3,...,6}, {¢/2, yl,2, &5,6}, 

{r?3, &l,...,4} give rise to the three horizontal SO(6) symmetries. The left-moving {y, w} 
states are divided to, {y3,...,6}, {y1,2, 0)5,6}, (¢..o I ,...,4}. The left-moving X 12, X 34, X 56 states 

carry the supersymmetry charges. Each sector bj, b2 and b3 carries periodic boundary 
conditions under (~Oul~ 1'''''5) and one of the three groups: (Xl2, {y3'"61y3'""6},r/1), 
(.)(34, {yl,2, O.)5,61yl,2¢7)5,6}, ~]2) and (/t(56, {¢01'''''4]~91'''''4}, ~3). The division of the inter- 

nal fermions is a reflection of the underlying Z2 z Z2 orbifold compactification [26]. 
The set of internal fermions {y, wly,~} 1,,6 corresponds to the left-right symmetric 
conformal field theory of the heterotic string, or to the six-dimensional compactified 
manifold in a bosonic formulation. 

The second stage of the basis construction consists of adding three additional basis 
vectors to the NAHE set. The allowed boundary conditions in the additional basis vectors 
are constrained by the string consistency constraints, i.e. modular invariance and world- 
sheet supersymmetry. These three additional basis vectors correspond to "Wilson lines" 
in the orbifold formulation. The additional basis vectors distinguish between different 
models and determine their low energy properties. Three additional vectors are needed 
to reduce the number of generations to three, one from each sector bl, b2 and b3. At the 
same time the additional boundary condition basis vectors break the gauge symmetries of 
the NAHE set. The SO(IO) symmetry is broken to one of its subgroups SU(5) × U(I ) ,  
SO(6) x SO(4) or SU(3) x SU(2) x U(1)B-L × U(l)r~ R. This is achieved by the 

assignment of boundary conditions to the set ~1,...,5, 

b{~)~.,5} = {1 I 111 } ~ ~ S U ( 5 )  x U(1),  (2.2) 

b{0])'2 '5} = {11100} ~ SO(6) x SO(4). (2.3) 

To break the SO(10) symmetry to SU(3) x SU(2) x U( 1 )c x U( 1 )L 5, both steps, (2.2) 
and (2.3), are used in two separate basis vectors. In the superstring derived standard- 
like models the three additional basis vectors, beyond the NAHE set, are denoted by 
{a, fl, y}. The two basis vectors a and/3 break the SO(10) symmetry to SO(6) x SO(4) 
and the vector y breaks the SO(10) symmetry to SU(5) x U(1).  Since the standard- 
like superstring derived models contain the SO(6) x SO(4) breaking sectors, as well 
as the SU(5) x U(1) breaking sectors, their massless spectra admit also the exotic 
representations that can appear in these models. Therefore, below we will focus mostly 
on the superstring derived standard-like models and comment on the overlap with the 

other models. 
The observable gauge group after application of the generalized GSO projections is 

SU(3)c x U(1)c  x SU(2)L × U(1)L × U(I )  3 × U(1) n. The electromagnetic charge is 

given by 

g(1)e.m. =T3L + g (1 )y ,  (2.4) 

5 U(I)c = 3U(1)B-L;U(1)L = 2U(1)T3R. 
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where T3L is the diagonal generator of SU(2)L and U( 1)r is the weak hypercharge. The 
weak hypercharge is given by 6 

U(1)r  = ½U(1)c + ½U(1)L (2.5) 

and the orthogonal combination is given by 

U(1)z, = U(1)c - U(1)L. (2.6) 

The horizontal SO(6) 3 symmetries are broken to factors of U(1)s. The first three 
horizontal U(1) symmetries arise from the world-sheet complex fermions, r~J ( j  = 
1,2, 3). The additional U(1) n symmetries arise from complexifying two right-moving 
real fermions from the set {y, ta} 1''6. For each right-moving gauged U(1) symme- 
try there is a corresponding left-moving global U(1) symmetry. Alternatively, a left- 
moving real fermion can be paired with a right-moving real fermion to form an Ising 
model operator [ 28 ]. The hidden gauge group after application of the generalized GSO 
projections is SU(5)H × SU(3)H x U(1) 2. The U(1) symmetries in the hidden sec- 
tor, U(1)7 and U(1)8, correspond to the world-sheet currents q~lq~x* _ q~sq~8* and 
-2t/~Jq~* + q~l~l* _k_ 4q~2q~2* .{_ t~St~8*, respectively, where summation on j = 5 . . . . .  7 
is implied. 

The massless spectrum of the standard-like models contains three chiral generations 
from the sectors bl, b2 and b3 with charges under the horizontal symmetries. Three 
generations from the sectors bl, b2 and b3 are common to all the free fermionic standard- 
like models. For example, in the model of Ref. [27] we have 

(e~ c + UL ) l/2.0,0,1/2,0,0 + (d~ + N~ ) l/2,0,0,1/2.0,0 + (L) 1/2,0,0,- 1/2,0,0 

+ (Q)  1/2,0,0,-1/2.0,0, 

( ecL + uCL)o, ll2,0,O,l/2,0 + ( NCL + dCL)o,112,0,O,112,0 + (L)0,112,0,0,-112,0 

+(Q)o,1/2,o,o,-I/2,o, 

( ecL -q- UcL ) O,O,I /2,0,O,I /2 -4- ( NCL -1- dCL )O,O,l /2,0,O,l /2 -k- (L)o,0,1/2,o,0,-I/2 

-+-(Q)o,o,1/2,o,o,-1/2, (2.7) 

with 

e~.---- [(1,3);(1,1)1(1,1/2,1), 

u~.~ [(3, 1);(1,_1)](_2/3,1/2,_2/3),  

Q = [(3, 1); (2,0)](1/6,1/2.(2/3,-i /3)) ,  

N~ = [ (1 ,3) ;  (1,-1)1(o,5/2,o), 

d~ -- [(3, _1) ;  (1, 1)] (I/3,-3/2,1/3), 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

6 Note that we could have instead defined the weak hypercharge to be U ( I ) y  = ½U( 1 )c  - ½ U( 1 )L. This 
amounts to the same redefinition of fields between the straight and flipped SU(5) .  In this paper we will use 
the definition in Eq. (2.5) .  
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L = [(1,  _ 3 ) ;  (2,0)  ]~-1/2.-3/2,~0,1)), 

where we have used the notation 

(2.13) 

[ (SU(3)c  × U(1)c ) ;  (SU(2)L × U(1)L)]~Q~,Qz,.Qom), (2.14) 

and for the doublets we have written the electric charge of the two components. In the 

superstring-derived standard-like models the vectors bl, b2 and b3 are the only vectors 
in the additive group ~ which give rise to spinorial 16 of SO(10). In this case the three 

light generations are identified unambiguously with the states from these three sectors. 

The Neveu-Schwarz sector produces, in addition to the gravity and the gauge boson 

multiplets, three pairs of electroweak doublets, three pairs of SO(10) singlets which 

are charged with respect to U( ! )1,2,3, and three states which are singlets of the entire 

four-dimensional gauge group. In the realistic free fermionic models, typically there is 
one additional sector which produces electroweak doublet representations. Usually, this 

sector is a combination of two of the vectors which extend the NAHE set. For example, 

in the model of Ref. [ 12], the combination bl + b2 + a + / 3  produces one pair of 
electroweak doublets, one pair of color triplets and five pairs of SO(10) singlets which 

are charged with respect to the U(1) currents of the observable gauge group. All the 

states from the NS sector as well as the states from the sector bl + b2 + a +/3,  which 
carry Standard Model charges, are obtained by GSO projections from the 10 and 10 

representation of SO(10). Obviously, the SO(10) singlet fields from these sector do not 
carry any Standard Model charges. 

The states above complete the representations that we identify with possible represen- 

tations of the Standard Model. In addition to the Standard Model states, semi-realistic 
superstring models may contain additional multiplets, in the 16 and 16 representation 

of SO(10), in the vectorial 10 representation of SO(10), or the 27 and 27 of E6. Such 
states can pair up to form super massive states. They can mix with, and decay into, 

the Standard Model representation unless some additional symmetry, which forbids their 

decay, is imposed. For example, in the flipped SU(5) superstring models [6] two of 
the additional vectors which extend the NAHE set produce an additional 16 and 16 

representation of SO(10). These states are used in the flipped SU(5) model to break 

the SU(5) × U(1) symmetry to SU(3) x SU(2) × U(1).  
All the states above fit into standard representation of the grand unified group which 

may be, for example, SO(10) or E 6. They carry the standard charges under the Standard 
Model gauge group or of its GUT extensions. The superstring models, however, contain 
additional states that cannot fit into multiplets of the original unifying gauge group. In 
the next section we enumerate the states that appear in free fermionic models. These 
States have important cosmological implications which we study below. 
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3. Exotic matter in free fermionic models 

73 

At the level of the NAHE set the observable gauge symmetry is SO(10) × SO(6) 3 
and the number of spinorial 16 representations of SO(10) is 48. The basis vectors of the 

NAHE set are seen to correspond to Z2 x Z2 orbifold compactification at an enhanced 
symmetry point in the toroidal compactification space [26]. To reduce the number 
of generations, and to break the SO(10) gauge group to the Standard Model gauge 

symmetry, additional basis vectors are added to the NAHE set. Three additional basis 
vectors are needed to obtain three generations, one from each of the sectors bj, b2 and 

b3. The additional basis vectors which break the SO(10) gauge symmetry correspond 

to Wilson lines in the orbifold formulation. 

Adding to the untwisted sector the three twisted sectors bl, b2 and b3 results in addi- 
tional massless states from these sectors. In the same way, adding the sectors {a,/3, y} 

to the NAHE set results in an additional massless spectrum from combinations of these 
basis vectors with those of the NAHE set. However, since these sectors correspond 

to "Wilson lines" they give rise to massless states that do not fit into representations 

of the original SO(IO) symmetry. As a result the massless spectrum contains states 
with fractional charges under the unbroken U( 1 ) generators of the original non-abelian 

gauge group. This is a new feature of superstring models. Due to the absence of adjoint 

representations, at least in superstring models with level one gauge groups, "Wilson 
line" breaking is the only available mechanism to break the unifying gauge symmetry 

perturbatively. Therefore, the appearance of massless states with fractional U( 1 ) charges 

is a common phenomenon in superstring models. In many examples the exotic states 

appear in vector-like representations and can acquire a heavy mass. The "Wilsonian" 

matter phenomenon is an important feature as it may result in discrete symmetries that 

may prevent the decay of the exotic massive states into the Standard Model states. 
The following exotic matter representations can appear in free fermionic level one 

models. Sectors that break the SO(10) symmetry to SO(6) × SO(4) can contain the 
basis vectors a or/3. Sectors that break the SO(10) symmetry to SU(5) x U(1) contain 
the basis vector y with a combination of the other basis vectors. We use the following 

naming scheme for our particles. An exotic quark state will be denoted by Wq,, Wo,, 
while all the noncolored exotic states will be denoted by We,, We,. 

From the SO(6) x SO(4) type sectors we obtain the following exotic states. 

• Color triplets: 

I [ (3, 7); ( 1, O) ] (1/6,1/2,1/6), 

[(3, 1 ) ;  ( 1, O) ] (_1/6,_1/2,_1/6)" 

(3.1) 

(3.2) 

Due to its fractional charge under U( 1)r we refer to this state as the sexton. The 
sexton appears for example in the model of Ref. [ 14] from the sector 1 + a + 2y and 
in the model of Ref. [7] from the sector S + b2 + b4 + a. The sexton binds with light 
quarks to form mesons and baryons with fractional electric charges + 1 / 2  and -t-3/2. 
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• Electroweak doublets: 

[ ( 1 , 0 ) ;  (2, 0) ] (0,0,±U2). (3.3) 

Such states appear for example in the model of  Ref. [ 14] from the sectors I + bi ÷ 

oe + 2 7 (i = 1,2, 3). In the model of  Ref. [ 11 ] from the sectors ~: + bl + a + 2), and 

s c + a + 2"),, and in the model of  Ref. [7] from the sectors bl ÷ ol, bl + b2 ÷ b4 ÷ a,  

b2 + b 3  + b 5  + a ,  b4 + a ,  bl + b4 + b5 +ol .  
We also obtain from this type of  sectors fractionally charged S U ( 3 ) c  x SU(2)L 

singlets. In the S 0 ( 6 )  x S 0 ( 4 )  models these states are doublets of  SU(2)R which have 

zero U(1)  c charge and the SU(3)  c singlet in the quartets of  SU(4) with zero U( 1 )/~ 

charge. In the standard-like models these states are S U ( 3 ) c  x SU(2)L singlets with 

electric charge Qe.m. = 4-1/2. 

• Fractionally charged S U ( 3 ) c  x SU(2)I.  singlets: 

[ ( 1 ,0) ;  ( 1, +1 )  ] (+1/2,::F1/2,4-1/2), (3.4) 

[ ( 1,4 -3 ); ( 1 ,0 )  ] (+1/2,±1/2,±1/2). (3.5) 

From sectors which break the SO(10)  symmetry into SU(5)  x U(1)  we obtain exotic 

states with fractional electric charge 4-1/2. 

• Fractionally charged S U ( 3 ) c  x SU(2)L singlets: 

[ ( 1,4-3); ( 1, + l )  ] (41/2,±1/4,±1/2)" (3.6) 

In general the fractionally charged states may transform under a non-abel±an hidden 
gauge group in which case the fractionally charged states may be confined. For example, 

in the "revamped" flipped SU(5)  model [6] the states with fractional charge + 1 / 2  

transform as 4 and 2[ of  the hidden SU(4) gauge group. In other models these states 
may be singlets of  all the non-abel±an group factors. Such states appear for example in 

the model of  Ref. [ 12] from the sectors {bl + b2 + a + fl 4- y, bl + b3 + o~ ÷ fl 4- 3/, b2 + 

b3 + a + fl 4- y, bj + b2 ÷ b3 + a + fl 4- y}. In the model of  Ref. [ 11 ], they appear from 

the sector {4-y, s c 4- Y, 1 + b4 4- )', s ¢ ÷ 1 + b4 4- )', s c ÷ b3 te 4- y}. 
Finally, in the superstring derived standard-like models we may obtain exotic states 

from sectors which are combinations of  the SO(6) x SO(4) breaking vectors and 
SU(5)  x U(1)  breaking vectors. These states then carry the standard charges under 
the Standard Model gauge group but carry fractional charges under the U( 1 )z, gauge 

group. The following exotic states are obtained. 

• color triplets: 

[ (3, 1);  (1,½)1{_1/3,_1/4,_1/3), (3.7) 

[ (3, - ¼); ( 1 , 1 )  ] (1/3,1/4,1/3)" (3.8) 

In Ref. [24] ,  due to its potential role in string gauge coupling unification [27,25], 
we referred to this state as "the uniton". Such states appear for example in the model of  
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Ref. [ 12] from the sector b2 -k- b3 + ot 4- T, in the model of Ref. [ 14] from the sectors 

bl,2 + b3 + fl 4- y, and in the model of Ref. [ 11 ] from the sectors {b3 + ot -1- y, bl + 

b2 + b4 + a  + y } .  

* electroweak doublets: 

[ ( 1,4-3); (2, +½) ] (+1/2,4-1/4,(1,0);(0,-1)). (3.9) 

Unlike the previous electroweak doublets, these electroweak doublets carry the regular 

charges under the standard model gauge group but carry "fractional" charge under the 
SO(10)  symmetry. Electroweak doublets of this type appear for example in the model 
of Ref. [ 12] from the sector bl + b3 + ce -4- y, and in the model of Ref. [ 11] from the 
sectors {b3 + ce 4- y, bl + b2 + b4 + a -t- y}. 

Finally, in the superstring derived standard-like models we also obtain states which 
are Standard Model singlets and carry "fractional" charges under the U( 1 )z, symmetry. 

. Standard model singlets with "fractional" U( 1 )z, charge: 

[( l, "4-3); (1, =~:1) ] (0.±5/4,0). (3.10) 

These states may transform under a non-abel±an hidden gauge group or may be singlets 
of all the non-abel±an group factors. This type of Standard Model singlet appears in all 
the known free fermionic standard-like models. For example, in the model of Ref. [ 14] 
they are obtained from the sectors bl,2 + b3 q-/3 4- 3/. In the model of Ref. [ 11 ] they 
appear from the sectors {bl + b2 + b3 + a -4- y, b2 + b3 + b4 + a ± y, 1 + bl + b2 + ce 4- 

y, 1 + b 3 + b a + c r i y ,  b 3 + o l ± y ,  bl +b2 + b4 + ce ±/3}. 

There are several important issues that are important to examine with regard to the 
exotic states. Since some of these states carry fractional charges, it is desirable to 
make them sufficiently heavy or sufficiently rare. All the exotic matter states appear in 
vector-like representations. They can therefore obtain mass terms from renormalizable 
or higher order terms in the superpotential. We must then study the renormalizable and 
nonrenormalizable superpotential in the specific models. The cubic level and higher order 
terms in the superpotential are extracted by applying the rules of Ref. [ 28 ]. The problem 
of fractionally charged states was investigated in Ref. [22] for the model of Ref. [ 1 1 ]. 

In the notation of Ref. [ 11 ] the massless states {V41, V42, V43, V44, Tv47, V48, V49, ~'50} are of 
the form of Eq. (3.5); the massless states {¼5, V46, V51, ~2} are of the form of Eq. (3.3); 
the massless states { H I -  HI4} are of the form of Eq. (3.6); the massless colored states 
{H33, H40} are of the form of Eq. (3.8) and the massless weak doublets {H34, H41} 
are of the form of Eq. (3.9). The remaining exotic states, {H15 - H32, H35 - H39, H42}, 

are Standard Model singlets of the form of Eq. (3.10). The cubic level superpotential 
of the exotic massless states is given by 

W2 = ~ 2  {nlH2~b4 -q- n3H4q~4 q- n5H6q~4 -k- (H7H8 + H9nlo)~b~ 

+(HII  + H12) (HI3 + H14)q~ q- V41V42q~4 q- V43V44q~4 
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q'-~/45V46q~4 @ (1¢~7~"48 --1- ~,~9~,'~0) ~ + V51V52~b4} 

+[HIsH164~6 + H17H18q~56 + H19H20~6 + H21H::(b56 

-}-(VIIVI2 q- V13VI4)q~13 -}- (El5 q'- VI6) (VI7 + ~8)~b13 q- W191¢'20q~13 

--}-V21W22q~12 q- ~/23~/~4q~12 q- (V25 -~- V26) (V27 q-- V28)q~12 --}- W29~k,~o~12 

+V31V32q~23 q-]/33~'34~b23 q-H29H30q~13 q-H36H37~bI2 ] • (3.11 ) 

By examining the fractionally charged states and the trilinear superpotential, it is ob- 

served that all the fractionally charged states receive a Planck scale mass by giving 

a VEV to the neutral singlets ~4, ~ ,  ~b4, ~b~ which imposes the additional F flatness 

cons t ra in t  (q~4q~ q'- q~4q~) = 0. The other exotic states which are Standard Model sin- 

glets do not receive mass by this choice of fiat direction. Therefore, at this level of 

the superpotential, the fractionally charged states can decouple from the remaining light 
spectrum. Similarly, the issue of fractionally charged states in the model of Ref. [ 12] 

was studied in Ref. [29], where it was found that all the fractionally charged states 
receive a large mass from renormalizable or nonrenormalizable terms. Similar results 

were also found in the case of the Gepner models [21]. 

The second issue that must be examined with regard to the exotic "Wilsonian" matter 
is the interactions with the Standard Model states. The fractional charges of the exotic 

states under the unbroken U(1) generators of the SO(IO) gauge group may result in 

conserved discrete symmetry which forbid their decay to the lighter Standard Model 
states. In the following we will investigate this question with regard to particular states 

that appear in specific models. 

4. Cosmology of "WUsonian" matter 

4.1. Introduction 

The "Wilsonian" matter states obtained from the realistic superstring models are heavy 

and stable. Their mass density has important cosmological implications, since if they 

are too abundant they will overclose the universe. This gives a limit on their present 

relic density p0, 

p0 <_ Pc- = 1.054h2 x 104 eV cm -3, (4.1) 

where h is defined by the present value of the Hubble constant H0, 

h = H0 (4.2) 
100 km sec-  1 Mpc-  1 • 

The relic density of a particle depends on its mass, couplings and on the reheating 
temperature after inflation. If  the relic density is the same as (or at least comparable 
to) the critical density of the universe, it could account for the existence of dark matter 

in the universe. 
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Since the "Wilsonian" matter states are heavy, they are nonrelativistic at the time of 

structure formation and are candidates for cold dark matter. Models consisting of only 

hot dark matter, such as neutrinos of a few eV mass, are ruled out phenomenologically 
since they fail to explain the large-scale structure curve of the universe. Only models 
which contain cold dark matter, like the mixed (cold + hot) dark matter model [47] and 

the cold dark matter with extra radiation model [48], survive, except for models with 
nonstandard cosmology scenarios, such as models with nonzero cosmological constant. 

The heavy "Wilsonian" matter states are candidates for cold dark matter. The possible 

existence of heavy stable particles in the realistic superstring models provides further 
motivation to study this class of models. 

Since these "Wilsonian" states cannot decay into normal particles, their number den- 

sity can only change by annihilation processes. In several examples that we study 

below, the "Wilsonian" states are interacting strongly and therefore remain in ther- 
mal equilibrium until they become nonrelativistic. We will consider one exception of 

a SU(3) × SU(2) × U(1)v singlet which interacts weakly. A given "Wilsonian" mat- 

ter state decouples from the thermal bath when its annihilation rate falls below the 
expansion rate of the universe. The annihilation rate of a particle is given by 

/" -- (o'.°nlv[)nEQ, (4.3) 

where nEQ, the number density at the equilibrium, is given by 

geff \ ~ - - j  T3, relativistic, 

nEQ= ( m T ) 3 / 2  (4.4) 
geff ~ e x p ( - M / T ) ,  nonrelativistic. 

Here ( ( 3 )  = 1.20206 is the Riemann zeta function of 3 and ge~f is the effective number 
of degrees of freedom of the particle. 

In the expanding universe, the evolution equation of the particle number density is 
described by the Boltzmann equation 

dn 
d---t + 3Hn = - ( O ' a n n ] V l )  ( n  2 - n2Q), (4.5) 

where the Hubble constant in the radiation dominated era is a function of the temperature, 

T 2 
n = 1 .66v /~ - . - - .  (4.6) 

mpl 

During the radiation dominated era, time (t) and temperature are related by 

t = 0.301g~-l/2-~zl. (4.7) 
1 

It is standard to define the dimensionless parameters x = M / T  and the number density 
in a comoving volume Y = n/se, where se is the entropy density 

2~'z 3 -3 Se = - ~ - g . s M  x . (4.8) 
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Here g.  and g,s are the relativistic degrees of  freedom and are defined by 

i=bosons i=fermions 

g ' s=  Z gi + 7 Z gi , (4.9) 
i=bosons i=fermions 

where gi and Ti are the degrees of  freedom and the temperature of  a particle i, re- 

spectively. The Boltzmann equation, Eq. (4.5),  describes the evolution of  the number 

density with respect to temperature in a comoving volume, 

dY _ _  = _ ,~x-Z(y2 2 - Y~O), ( 4 . 1 0 )  
dx 

where 

~. = X(O-annlVl)Se (4.11) 
H 

In many cases, A, in the nonrelativistic limit, becomes x-independent. Eq. (4.10) can 

be solved if we know the annihilation cross section as a function of the temperature. 

It is known that the relic density of  a particle of  mass M is given by two different 

expressions, depending upon the two possible temperature regimes at which decoupling 

O c c u r s ,  

0.278 ( geff , M << /'dec, 
\g . s (r~)  ) (4.12) 

Y0 = 3.79Xdec 
V/~_. mplM(O_lUi), M > Tact, 

where we have defined Xaec = M/Tdec, and Tdec denotes the decoupling temperature. The 

two cases M << Tdec and M > Tjec describe decoupling in relativistic and nonrelativistic 
regimes, respectively. If  we define Se0 to be the entropy density of  the present universe, 

then the relic energy density of  a massive decoupled particle is given by 

PO = seoYoM = 2.97 x 103yo M c m  - 3 ,  (4.13) 

and we can estimate the S'2o parameter, which is given by the expression 

g_loh2 =_ poh~ _ 2970MY0 cm -3 (4.14) 
Pc 1.05 × 104 eV cm -3" 

Using the fact that the cosmological data set the bound 0.1 < Ooh 2 < 1, Eq. (4.14) 

gives a bound on the mass of  a stable particle, 

3.5 
M < - -  eV. (4.15) 

Y0 

If  a massive particle is weakly interacting (WIMP)  at high temperature, it can de- 
couple from thermal equilibrium when it is still relativistic. In this case the upper bound 
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for its mass is very low, since the Y0 value is too high. This can be deduced from 
Eq. (4.12). In the case of an inflationary scenario, however, this bound can be raised. 
We will elaborate over this possibility in some detail in the following sections. 

The class of superstring models which we have discussed in the previous sections 
allows several kinds of stable "Wilsonian" matter states. In the following we will specif- 
ically focus our attention on three cosmologically interesting cases. 

4.2. A stable heavy down-like quark: the uniton 

In this section we investigate the possibility that the dark matter is composed of 
heavy down-like color triplets of the form of Eq. (3.8). This will be our most detailed 
quantitative and complex analysis, and the discussion with regard to the other potential 
dark matter candidates from superstring models will be somewhat more qualitative. 

4.2.1. Motivation: string gauge coupling unification 

The existence of additional colored vector-like states beyond the spectrum of the Min- 
imal Supersymmetric Standard Model is motivated also from a different consideration. 
Superstring unification predicts that the gauge and gravitational couplings are unified 

at the string unification scale which is of the order Mstring "-~ gstring5 X 1017 GeV with 

gstring ~ 0.8 [31-33]. Assuming, naively, that the massless states below the string scale 
consists solely of the Minimal Supersymmetric Standard Model results in disagreement 
with the experimentally observed values for sin 20w(Mz) and Crstrong(Mz). If one as- 
sumes naively that the spectrum between the electroweak scale and the unification scale 
consists solely of the MSSM state then the gauge couplings are seen to intersect at 

2 × 1016 GeV [34]. This discrepancy is usually referred to as the order of magnitude 
mismatch between the MSSM and string unification scales. 

It would seem that in an extrapolation of the gauge parameters over fifteen orders of 
magnitude, a problem involving a single order of magnitude would have many possible 
resolutions. Indeed, in string theory there are many possible effects that can a priori 
account for the discrepancy. For example, there could be large corrections to the gauge 
couplings due to the infinite tower of heavy string modes [ 35]. Alternatively, additional 
matter [36,27,9,25] or gauge structure beyond the MSSM could reconcile the two scales. 
Yet another possibility is that the weak hypercharge normalization in string theory is 
not necessarily the one that is traditionally found in GUTs and could take values that 
would yield meeting of the couplings at the string scale [37]. 

Surprisingly, however, the discrepancy is not easily resolved. In Ref. [25] the string- 
scale gauge coupling unification problem was investigated in detail in the context of the 
realistic free fermionic superstring models. It was shown, in a wide range of realistic 
free fermionic models, that heavy string threshold corrections, nonstandard hypercharge 
normalizations, light SUSY thresholds or intermediate gauge structure do not resolve the 
problem. Instead, the problem may only be resolved due to the existence of additional 
intermediate matter thresholds, beyond the MSSM spectrum. This additional matter takes 
th.e form of additional color triplets and electroweak doublets, in vector-like representa- 
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tions. Remarkably, some string models contain in their massless spectrum the additional 
states with the specific weak hypercharge assignments, needed to achieve string scale 
unification [27]. Perhaps even more intriguing is the fact that in some models the addi- 
tional states are those that arise due to the "Wilson line" breaking. Thus, the existence of 

stable "Wilsonian" states at intermediate energy scales is motivated also from requiring 
consistency of the string-scale gauge coupling unification with the observed low energy 
gauge parameters. 

The mass scale of the additional color triplets is constrained by requiring agreement 
between the low energy gauge observables and unification of the gauge couplings at the 

string scale. In Ref. [25] the following two constraint equations on the intermediate 

matter mass scales were obtained: 

M s  
10.29 < Z ( b 2 ,  - bl~ ) In ~ / /  < 14.14, (4 .16)  

i 

Ms 
18.57 < Z ( b 3 ,  - b l , )  In ~ / /  < 30.58, (4.17) 

i 

where Ms is the string unification scale, Mi are the mass scales of the intermediate 

thresholds, and {b3, b2, bl }i are the corresponding one-loop fl-function coefficients of 
SU(3)c x SU(2)L x U(1)r .  Eqs. (4.16), (4.17) can now be used to constrain the 
mass scale of the additional color triplets. A variety of possible combinations exist. For 

example, in the model of Ref. [27] with one pair of light color triplets of the uniton 

type, {DI ,DI} ,  we obtain the limits 

experimental limit < M3 < 1.81 TeV. (4.18) 

Setting M3 at the upper limit of (4.18), we find 

7.2 x 1013 GeV < M2 < 2.6 x 1014 GeV, (4.19) 

while for a lower limit of M3 ~ 500 GeV we obtain 

3.6 x 105 GeV < M2 < 1.7 x 106 GeV. (4.20) 

By contrast, with two triplet pairs of the uniton type, { D 1 , 9 1 ,  D2,D2}, degenerate at 
one mass scale M3, we instead find 

4.3 x 10 6 GeV < M3 < 9.5 x 1010 GeV, (4.21) 

so that taking the upper limit for M3 yields 

7.2 x 1013 GeV < M 2 < 2.6 x 1014 GeV, (4.22) 

while the lower limit on M3 yields 

5 X 1012 GeV < M2 < 1.8 x 1013 GeV. (4.23) 
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Finally, adding the third pair of color triplets of the sexton type {D3,D3}, and with all 
three color triplet pairs degenerate at the scale M3, we find 

2.4 x 10 I1 GeV < M 3 < 7.2 × 1013 GeV, (4.24) 

for which the upper and lower limits respectively yield 

3.7 × 1014 GeV < (M2)upper < 1.1 × 1015 GeV, 

5.7 × 1013 GeV < (M2)lower < 2 × 1014 GeV. (4.25) 

Clearly, many viable scenarios exist, and the above examples are not exhaustive. 

Next we observe that these mass scales can be compatible with the fiat directions 

of the cubic level superpotential. For example, in the model of Ref. [27], the relevant 
cubic level mass terms are 

1 
+ ½(sClD1D1 + ~2D202) 4- ~(D1O2q~2  ÷ DtD2q~I )} (4.26) 

and there exist F and D fiat vacua in which the VEV of the singlets in (Eq. (4.26)) 

vanishes. We therefore conclude that indeed there is sufficient freedom in the superstring 

models that allows the additional color triplets to appear at intermediate mass scales. 

4.2.2. Interactions 

We now discuss the interactions of the uniton with the Standard Model states. In the 

model of Ref. [ 12] there is one pair of uniton states denoted by {H21, H22} and one 

pair of exotic doublets denoted by {H15, HI6}. The following cubic level superpotential 
terms are obtained: 

D45H18H21 + h2HI6HI7 + h45H16H25 + l(~:IH21H22 + ~:2HIsHI6). (4.27) 

The states {H18, H17,//25} are Standard Model singlets with "fractional" U(1)z ,  
charge of the form of Eq. (3.10). From Eq. (4.27) we observe that in the model of 

Ref. [12] there are no interactions terms, at order N = 3, with the states from the 

sectors bl, b2 and b3. However, potential interaction terms do appear for the exotic color 
triplets and electroweak doublets with the color triplets from the sector bl + b2 + a + fl 
and the electroweak doublets from the Neveu-Schwarz sector. These interaction terms 

are generated by the breaking of U( 1)z,. For specific choices of flat directions these 
terms vanish. However, potential nonvanishing interaction terms may be generated from 

nonrenormalizable terms. The uniton would be a more appealing dark matter candidate 
if there existed a gauge symmetry or a local discrete symmetry [39] that forbids the 
interactions terms to all orders of nonrenormalizable terms. 

Next we turn to the model of Ref. [ 14]. The superpotential terms of the exotic 
color triplets with the Standard Model states were studied in Ref. [ 16]. The potential 
interaction terms are 

LQD,  c c . . . .  ULeLD, QQD, ULdLD, dLNLD , (4.28) 
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QOh, (4.29) 

D DuCm . (4.30) 

For the terms in Eq. (4.28) the type of correlators that have to be checked are of 

the form bibjDfb n, where bi and bj represent states from the sectors bi and bj, D 
are the additional color triplets, and &n is a string of Standard Model singlets. For 

the first two pairs of color triplets from the sectors b~,2 ÷ b3 ÷ ot ÷ fl, the operators 

bibjD are invariant under the weak hypercharge. However, they break U( 1)z, because 

Q z , ( D )  = (1/2)Qz,(D45) .  Thus, D has one half the U(1)z ,  charge of the triplets 

from the Neveu-Schwarz and bl + b2 + a + fl sectors. Therefore, all the operators in 

Eq. (4.28), with D being a triplet from one of the sectors bl.2 + b3 ÷ a + fl, break 
U(1)z , .  Thus, the string (~b) n contains a U( 1)z, breaking VEV. However, in this model 

all the available Standard Model singlets with nontrivial U ( l ) z ,  charge transform as 

3 and 3 of the Hidden SU(3) gauge group [27]. The U(1)z ,  charges of the hidden 
SU(3) triplets are -t-5/4. The U(1)z ,  charges of the color triplets from the exotic 

"Wilson line" sectors are ±1/4 .  The last pair of color triplets has "fractional" weak 

hypercharge Qr = 4-1/12. Consequently, terms of the form of Eq. (4.28), with D being 

a triplet from one of the exotic "Wilson line" sectors, cannot be formed in this model. 
This result was verified by a computer search of the relevant nonrenormalizable terms 

up to order N = 12. 
The term in Eq. (4.29) breaks U(1)z, .  Therefore, the product ~b n in a potential 

nonvanishing higher order term must break U ( l ) z , .  The available fields are 
{HI,H2, H1,H2}. These fields transform as 3 and 3 of the hidden SU(3)t4 gauge 
group with opposite charges under U( 1 )z '  for the states and the bared states. Conse- 

quently, to obtain terms which are invariant under the hidden SU(3)H gauge group, 
some of the {V1,2,3,VI,2,3) fields, which transform as 3 and 3 of SU(3)u,  must get a 

VEV. Therefore, if we impose that the VEVs of the Vi, Vi are suppressed, the terms 
of Eq. (4.29) are suppressed to all orders of nonrenormalizable terms. We remark that 

there is no phenomenological constraint that requires the VEVs of V//, Vi to be nonva- 

nishing. In contrast to the model of Ref. [ 12] in which generation mixing is obtained 
by these VEVs [40], in this model the generation mixing is obtained by the VEVs of 

the fields T/, Ti. Finally, the term in Eq. (4.30) is invariant under U ( l ) v  and U(1)z, .  
However, the product D D carries nontrivial charges under U( 1 )7 and U( 1 )s. All the 
Standard Model singlet fields which are charged under U(1)7 and U(1)8 transform as 
5, 5 of SU(5)u  or as 3, 3 of SU(3)u.  Consequently, the product ~b n must contain 
a baryonic factor under SU(5)H or SU(3)H. Such terms were not found up to order 
N = 12. Imposing that the VEVs of V/, Vi are suppressed, suppresses the terms of 

the form of Eq. (4.30), because the U(1)7,8 charges of the product 5 u ' "  5u cannot 
be canceled. Thus, with this assumption the term D Duel is forbidden to all orders of 
nonrenormalizable terms. To summarize, if we assume that SU(3)H remains unbroken 
at the Planck scale, it is seen that all the interaction terms in Eqs. (4.28, (4.29), (4.30) 

vanish, to all orders or nonrenormalizable terms. 
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4.2.3. Uniton dark matter 

In the previous sections we have seen that superstring models in the free fermionic 
formulation motivate the existence of vector-like heavy stable SU(3)c triplets, (3, 1 ) I/3, 
(3, I )1/6. In this notation the second quantum number denotes their SU(2)L content and 
the subscript denotes the hypercharge. The uniton [24], i.e. the state (3, 1)1/3, is a d- 
type quark and interacts with the color force. In the mass range we are interested in 
(103 < M < 1014 GeV), the interaction rate is greater than the expansion rate of 

the universe, unless the number density of these particles is significantly suppressed. 
In general it is well known that it is hard to envision a scenario in which a particle 
carrying unbroken gauge charges decouples in a relativistic regime. Thus, the uniton can 
be decoupled only when it becomes nonrelativistic. In the nonrelativistic limit TIM < 1, 
the annihilation rate of the uniton is given by 

~Nce~ 
F ~ M2 nEQ, (4.31) 

where M is the mass of the uniton and as - ~ /47r  is the gauge coupling at the 
decoupling temperature. In this equation nEQ is the number density of the uniton in the 
nonrelativistic limit, while N is obtained by summing over all the available annihilation 
channels and is given by 

N = E cf. (4.32) 
f 

A discussion of this result can be found in Appendix B where we present a complete 
calculation of all the main channels of annihilation of this particle. The amplitudes cf 

are obtained by taking the nonrelativistic limit of the cross sections. The calculation is 
implemented in the case of N = 1 supersymmetric QCD with heavy quark-antiquark 
(QQ) initial states and light gluinos (~), squarks (~), quarks (q) and gluons (g) in the 

final state (QQ --~ q(l, QQ ~ gg, QQ ~ (t(1, QQ ~ ~ ) .  We refer to Figs. B.I-B.6 
for details. 

We obtain Cq = 4/3 for quarks, Cg = 14/27 for gluons, c~ = 2/3 for squarks and c~ = 
64/27 for gluinos. Using these results we get the expression for ,~ (see Eq. (4.10)),  

A = 0.83Nas 2 g.s mpj (4.33) 
v / ~ - .  M " 

At this point we can impose the decoupling condition dY/dx ~_ 0 [44], which gives 

Xdec = In[ (2 + c) aac] - 1 In{In[ (2 + c) aac] }, (4.34) 

where a = O.145(g/g.s) and c is Y(Tdec)/YEQ(Tdec), the latter being of order one. 
Therefore we estimate a decoupling temperature of the form 

M 
Tdec- ln(mpl/M)" (4.35) 

Using these results we can estimate the value of the number density in a comoving 
volume in the present universe, 
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3.79Xaec M ln(mpl/M) (4.36) 
YO = v/-~ mplM (o.[v[) = 3.8 NceZv,~ mpl . 

We have set g, = g,s, since the decoupling temperature is high [44]. 

Using this condition and Eq. (4.15), we get an upper bound on the mass of the 
uniton, 

M < 105O~s (Uv/~,ln(mpl/M)) 1/2 GeV. (4.37) 

We now turn to discuss the case in which we have inflation. The effect of inflation 

is important if the decoupling temperature is greater than the reheating temperature 

(Tdec >> TR). If  TR << Tjec the uniton will be diluted away, although it can be regenerated 
after reheating by out-of-equilibrium production [44]. Therefore we can approximately 

set the initial density of the uniton to be zero and obtain the relation 

d Y  ,~.x_2y2Q ' (4.38) 
dx 

with YEQ = 0.145geff/g,x 3/2 e-X. Integrating this equation from the reheating temperature 

down to the present temperature, we get 

hg2eff(O~?5) 2 
Yo = T - -  (Xr qt_ ½)e--2Xr, (4.39) 

where Xr ~- M/TR and 

_ 1 0 3 N 0 ~ 2 .  2 mpl  (Xr e -2xr, s'20h 2 '~ 9 x sseff~-~- + ½) (4.40) 

from which we derive a bound on the mass of the uniton, 

M > T R [ 2 5 + ½ 1 n ( ~ ) ] .  (4.41) 

Without inflation, we have a strict bound on the mass of the uniton which is around 

105 GeV. However, inflation can raise the mass bound to any arbitrary order, depending 

upon the estimated value of the reheating temperature. 
In Ref. [50] it was pointed out that an exotic stable heavy quark, which decouples 

at high temperature, can annihilate after color confinement. At low temperature heavy 
quarks will form bound states of finite size af with ordinary quarks. Since the tempera- 
ture at confinement is quite small compared to the heavy quark mass, the scattering cross 
section of two of these heavy hadrons will approximately be equal to their geometric 

cross section o- ~ 4~-a}, with af about 1 fm. We cannot estimate the corresponding 
annihilation cross section at this temperature. However, it is not unreasonable to assume 
that the two cross sections (annihilation and scattering) are proportional to each other, 

O'an n = r/47ra~. (4.42) 

Within this assumption, from the Boltzmann equation we can calculate the value of the 

relic density, 
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d___Y_Y= (o-lvl)S y2 = _Mmpl~TrraZfx_2.Sy2. (4.43) 
dx xH  

Notice that we have set YEQ to be zero since the temperature is much lower than the 

mass of  the uniton. 
After integration from confinement temperature to the present temperature, we get 

1  444, 
with i and f characterizing the beginning and end of  the annihilation period, respectively. 

If  we assume that this mechanism can give a large suppression to the relic density of  

the uniton, then we can ignore Tu/M and 1/Yi in Eq. (4.44) and the new relic density 

becomes 

Y0 "~ T/3/2 - (4.45) 
27rrla2fmpl 

At this point we need an estimate of  r/. If  we assume that the scattering and the 

annihilation cross sections are of  same order, i.e. r/ ~_ 1, and if we insert the value 

T~ ~ 1 GeV, which is the temperature at the confining phase, the upper bound on the 

uniton mass can be raised up to 107-108 GeV. However, we do not have any definitive 

argument which can help us estimate the value of  r/. Therefore this issue remains open. 

If  we ignore this re-equilibrium process, then the mass of  the uniton should be 

smaller than 105 GeV or greater than (_9(10)× reheating temperature, which is the 

result presented in Eqs. (4.37) and (4.41). 
On the other hand, the uniton can make a stable neutral bound state and as such 

can be component of  dark matter. This issue is crucially connected to the question of  

whether the neutral (U0) or the charged (U_j )  bound state is the lightest between the 

two possible states of  this meson. We refer to Appendix A for a discussion of  this point. 

There we use arguments based both on QCD potential models and results from the 

heavy quark effective theory to conclude that the possibility of  having U0 as the lowest 

state is not ruled out. The splitting between the two states is likely to be of  1-2 MeV, 

which is of  the order of  the electromagnetic mass splitting, and allows a conversion of  

U-1 into U0 by beta decay. 

If  U0 is a component of  dark matter then its relic energy density should have the 

same order of  magnitude as the critical energy density Pc. Therefore, from Eq. (4.14) 

we can estimate the mass of  the U0 both in the case of  inflation and without. In the first 

case we get 

M --~ 10Sees (Nv/-~, ln(mpl/M)) '/2 GeV, (4.46) 

while in the latter case the estimated mass is given by 
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We remark that there are three windows (in the parameter space M/o-p, with O-p 
denoting the scattering cross section on protons) for strongly interacting dark matter 

(such as U0) [49] which possibly meet our requirements. The first window is in the 
relatively low mass range (10 GeV < M < 104 GeV ) and in the range 10 -24 < 
O-p < 10 -20 cm 2. In other two windows it is required to have 105 GeV < M < 

107 GeV and M > 101° GeV, respectively, assuming a cross section, in both cases, less 
than 10 -25 cm 2. These constraints include bounds from various experiments (such as 
experiments performed using solid state cosmic-ray detectors and plastic track cosmic- 
ray detectors) and from cosmological consideration (such as the galactic halo infall rate 
and the life-time of neutron stars [45]) .  

4.3. Fractionally charged matter 

As we have discussed in the previous sections, among the "Wilsonian" states predicted 
by the free fermionic superstring models in the low energy limit, there are also heavy 
particles which are SU(2)L doublets and singlets (and which are SU(3) singlets), 
(1,2)0, (1, 1 )1/2. These two states are lepton-like, are stable and have fractional electric 
charge + 1/2. The behavior of these two states at high temperature is supposed to be the 
same as in the uniton case since the three gauge couplings become of the same order. 

We have also seen that superstring models contain fractionally charged vector-like 

quarks (3, 1)i/6. We refer to this particle as the sexton. This particle is expected to 
form bound states with u , d  quarks (since it is a color triplet) and can make stable 
baryons and mesons with fractional electric charge of +1 /2  and -4-3/2. The experimental 
searches for free quarks in various materials show that the upper bound on the number 
density of fractionally charged particle should be smaller than 10 -19 ,-~ 10 -26 [51]. 

This implies that the relic density of fractionally charged matter can be estimated to be 

yoFC < 10_19yg < 10_19 e___VV ,-~ 10_28 . (4.48) 
mp 

This result almost excludes the possibility of fractionally charged dark matter since from 
Eq. (4.15) the lower bound of the masses of fractionally charged states should be given 

by 

eV 1019 M ,~ y ~  > GeV. (4.49) 

Since the sexton is a color triplet, we can estimate its relic density Y0 by the same way 
as in the uniton case (see (4.36) and (4.39)). It is clear that the relic density of the 
sexton cannot satisfy the constraint given in Eq. (4.48) without inflation if the mass of 
the sexton is greater than 1 eV. Instead, if the mass is lighter than 10 eV, then the sexton 
behaves like a light quark (u ,d)  and is confined in a hadron bound state. However, 
the densities of fractionally charged hadron bound state at low temperature are severely 
constrained [ 51 ]. Therefore, string models which predict light stable fractionally charged 
particles cannot survive without inflation, since all these fractionally charged particles 
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should be diluted away. Another possible scenario is that the states which carry fractional 
charges also transform under a non-abelian gauge group in the hidden sector in which 
case the fractionally charged states are confined [6]. In this case the fractionally charged 
states form bound states which are integrally charged [20]. It should be noted, however, 
that in this scenario one must insure that the neutron star constraints [45] are not 
violated. 

From Eq. (4.39) we can also derive a bound on the relic density of these particles in 
an inflationary scenario, 

ro = T - -  (Xr q- 1) e-2Xr < 10-28. (4.50) 

In this equation ,~ is approximately the same as for the uniton case ,-~ Na2x /~mp l /M.  

Therefore we have the approximate bound 

~ > 3 8 + 1 o g  10g~eV . (4.51) 

In order to evade the experimental constraints on the relic densities of fractionally 
charged bound states, it is mandatory to show that the density of these states is sup- 
pressed. Our arguments on this matter are quite different from those presented in the 
earlier literature [50]. Two new elements appear in our analysis: (a) the value of the 
charge of the sexton ( +  1/6), which is different from the usual quark charge assignment 
(:t: 1/3, +2 /3 ) ;  and (b) the presence of fractionally charged leptons. 

At the confinement temperature, the sexton (denoted o-) can form neutral and charged 
color singlet bound states (o'o'o-, q o- o-, q q o-, g/o-) and their corresponding antiparticle 
(O'gr 0", g/~r 0", 0 g/O', q 6"). It is not hard to show that the number of fractionally charged 
bound states which can be generated in hadronic reactions is not small. For instance, 
we can classify all the possible conversion processes for both integer and fractional final 
states. Typical examples of these processes are 

qqo" + q qo" (frac.) --* qo-o '+ q q q  (int.) 

g/o- + qqo" (frac.) --~ qo-o- + g/q (int.) 

g/o- + qO- (frac.) ---~o-O'+qO (int.) 

q q o ' +  qO- (frac.) --~ o-?r+ q q q  (int.) (4.52) 

and their converses. Integer charged final states can be easily reconverted into fractionally 
charged states due to the large amount of ordinary particles (qg/and q q q )  present in 
the thermal bath. As we can see from (4.52), annihilation channels (trO') are always 
present, which in turn can reduce the total number of sexton bound states. This number 
has been estimated in the case of the uniton in the previous sections. As the temperature 
goes down due to the expansion of the universe, it is possible that the remaining 
fractional hadrons will form bound states of integer charge with fractionally charged 
heavy leptons (1,2)0 and (1,1)1/2 (in our conventions Qe.m. = T3 q-Y), therefore 
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making neutral heavy hydrogen-type bound states (e.g. B1/2 + L- l~2 --~ Ho) .  We can 
estimate the cross section for this process as follows. 

At a temperature of  a few eV, the fractionally charged bound state B1/2 or L- l~2  
can capture an electron and form a bound state of  radius aB (Bohr radius), which is 

hydrogen-like fractionally charged bound state (B1/2 + e - ) .  Therefore we can assume 
the cross section for two of these fractionally charged bound states to interact and form 

a neutral bound state is proportional to the scattering cross section of two hydrogen-like 
atoms, 

o- = r /4~a~.  (4.53) 

Then we can calculate the new relic density from the Boltzmann equation (4.10),  

assuming that YEQ is very small due to the exponential suppression of their number 
density, 

dYdx = - MmplflT"ra2 x -  25y2" (4.54) 

Notice that this the same as Eq. (4.43),  except that a f  is now replaced by aB. Therefore 

we obtain 

Yf Yii = 3Mmplrl'traB -- " (4.55) 

This result is the same as in Eq. (4.44),  but with a lower temperature value Ti and 

a larger geometrical size ( a s  > a f ) .  Yf here denotes the final density of  fractionally 

charged particles whose value is strongly restricted by experimental data [ 51 ]. If  this 
neutral bound state H0 is a dark matter candidate, it should have the maximally allowed 

value of Y/, i.e. the critical density is 

3.5 eV 
Y~ _~ , (4.56) 

M 

and if we insert this value into (4.55) we obtain the conversion rate of  fractionally 

charged bound states to the neutral ones, 

_ _ _  (106_~eU Ti ) ''5 
Y~ 1 ~ r/ (4.57) 
Yf 10-eV 

If  we assume, in the most optimistic scenario, that r / ~  1, from Eqs. (4.48) and (4.57) 
we easily deduce that a large Yi /Yf  ratio is allowed only if the mass M of this bound 
state is quite small ( 10 -20 GeV).  This is clearly unrealistic since our calculation is valid 

only if these particles are nonrelativistic. Therefore we conclude that light fractionally 

charged particles cannot be dark matter candidates. 
From Eq. (4.55) more generally, we can deduce the relic density of  the fractionally 

charged particles in the form 

Y/--~ 2 3/2' (4.58) 
2 q'rrla Bmpl T i 
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Fig. 1. Ws-Ws ~ ffdecay. 

Here, we ignore I/Y/ compared with 1/Yf, assuming that this scattering process can 
suppress the relic density. If  we insert the values aB ~- 2.7 x 105 GeV -1 and T/ _~ 

10 eV, it cannot satisfy the constraint (4.48) unless its mass is much smaller than 

the temperature Ti "~ 10 eV. Since a light particle with nonzero charge has not been 

detected in the laboratory experiments [51 ], it is hard to imagine that there is a strong 
suppression on the relic density of the fractionally charged matter at low temperature. 

These arguments seem to indicate that string models which contain light fractionally 

charged states always need inflation. Finally, we comment that fractionally charged 

states with Planck scale mass could perhaps constitute the dark matter, but in this case 

the tools that we have used for the analysis may not be adequate. 

4.4. A singlet of  SU(3)c × SU(2)L x U(1) r  

Another "Wilsonian" state which is obtained in the superstring models, and which is 

a possible candidate for dark matter is a singlet of SU(3)c x SU(2)L x U(1)r ,  carrying 

an additional nonstandard U( 1 )z '  charge. This type of "Wilsonian" matter state arises 
due to the breaking of the SO(10) symmetry to SU(3) × SU(2) × U(1) 2 and appears 

generically in the superstring derived standard-like models. For example, in the model of 
Refs. [27,14] such states appear from the sectors bl,2-4-b3 -4-/3 + 3'. In this model these 

states transform as 3 and 3 of a hidden SU(3)n gauge group. As in Section 4.2.2, their 

interactions with the Standard Model states vanish to all orders of nonrenormalizable 
terms if the SU(3)H is left unbroken. 

The U(1) z, symmetry should be broken somewhere in between the weak scale and 
the Planck scale. In this section we refer to this state as the "W-singled'(Ws). 

After symmetry breaking the W-singlet interaction is suppressed by 1/MZz , and can 
be classified as a weakly interacting massive particle (WIMP). 

The W-singlet can annihilate into two light Standard Model fermions and into their 
superpartners. The latter can decay afterwards into two Z '  gauge bosons. This decay 
will be suppressed if the gauge boson mass is greater than the mass of W-singlet and 
this singlet, therefore, will be a stable particle. 

Let M be the W-singlet mass, and Mz, the mass of the Z t gauge boson. Let us 

consider the total cross section for the annihilation of two W-singlet into two normal 
fermions and their superpartners. 

The two diagrams in Figs. 1 and 2 are similar to those shown in Figs. B.5 and B.6, 
except for the color factors and for the mass of the s-channel gauge boson, which is 
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~P~ r j 2 

Fig. 2. WsWs ----* f f* decay. 

Fig. 3. Ws'Ws ~ Z ' Z '  decay. 

R R 2 

+ 1 + ( R - - L )  

L L 

Fig. 4. WsW~ ~ Z'Z ~ decay. 

now assumed to have a mass Mz,. We get 

4~-Nz, x/s (s  + 2M 2) 
o" = 3 (M 2, _ s ) 2 ~ ,  (4.59) 

where s is the square of the C.M. energy s = 4E~M of each incoming particle and 

Q2 
Z Q~' (4.60) N z , -  (47r)2 

f 

In this equation Qi are the U( 1)z, charges of the W-singlet and of the Standard Model 

particle f .  Notice that we have to introduce a 1/2 suppression factor for each scalar 
partner if there is no mixing between the left-handed sfermion and the right-handed 

sfermion. 
Let us comment on the calculation of this cross section, which can be obtained with a 

slight modifications of the results of Appendix B. For this purpose we start distinguishing 
two cases: that of a heavy Z '  and that of a light Z t. In the case of a heavy Z ~ the 

only relevant diagrams are those of Figs. 1 and 2. Notice that we do not allow, in this 
case, Z~'s in the final state. Notice also that the annihilation of Ws into regular quarks 
and leptons (and into their supersymmetric partners) is allowed, since all the quarks 
carry an extra U( 1 )z, charge. In the case of a leptophobic Z'  charge [52,53] we would 
include in the final states only color states. 

In the second case, when Z ~ is light, we include also the channel Ws Ws -', 2 Z t beside 
those considered before. The cross section for this last channel is shown in Figs. 3 and 4. 
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The annihilation cross section into two Z'  is given by 

47ra2w [ { s + a ) ]  
o'= sA 2 ( s + 4 M 2 ) A  - ( s 2 + 4 M 2 s - 8 M 4 ) l n  \s--S--~/j  , (4.61) 

and the one into two gauginos, 

4¢ra2w [ ( s  + a '~]  
o - -  A2 A + 2M 21n k s - A  J] , (4.62) 

where A = V/s(s - 4 M 2 ) .  
Since the decoupling temperature of WIMP's depends on both the mass and coupling 

constant, we cannot use the same estimate as in the uniton case. 
Here we consider four different cases. 

( 1 ) W-singlet mass greater than Mz, without inflation. 
In this case, the W-singlet is a strongly interacting particle when it decouples from 

the heat bath and therefore the relic density estimate is the same as in the uniton case. 
The Ws is nonrelativistic at decoupling and its total annihilation cross section into two 
Z's and into two gauginos is given by 

o, lvl = ( 1 + 2) M---~-~a 2, (4.63) 

while the corresponding two-fermion/sfermion cross section is 
'/7" 

o'lvl = --~ Nz, , (4.64) 

where aw = Q2w/4m 
Although the W,'s are strongly interacting particles at decoupling from the thermal 

bath, they interact weakly in the present universe since the interaction of this particle 
with the Standard Model particles goes only through the U( 1)z, gauge bosons. This 
interaction, at the present epoch, is suppressed by the heavy Z' gauge boson mass since 
the symmetry is broken. Therefore the bounds on the three windows for the strongly 
interacting dark matter which we discussed above (Section 4.2) are not valid in this 
case. This leads to constraints which are similar to those of the uniton 

M < 105 ((Nz 2 1/2 + 2aw)X/~, ln(mpj/M))  GeV. (4.65) 

(2) W-singlet mass greater than Mz, with inflation. 
If the reheating temperature is greater than Mz,, the estimated cross section is the 

same as for the first case. Using Eq. (4.39) similarly we can estimate the relic density 
of the Ws in an inflationary scenario and obtain a bound on its mass, 

[ M > T R  25+½1n ~ . (4.66) 

However, if the reheating temperature is less than Mz,, the regeneration of Ws goes 
through a weak U( 1)z, process and the bound given above is not valid. This scenario 
will be discussed in the fourth case below. 
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(3) W-singlet mass is less than Mz, and no inflation. 

In this case the Ws is a WIME Therefore we will assume that decoupling will 
occur when it is still relativistic. Their number density in the comoving volume is then 
estimated to be 

Y0 ~- nEQ = 0.278 ge____g__ff _~ 1.2 X 10 -3. (4.67) 
S g.s(T~) 

In Eq. (4.67) we assumed that the particle content is that of the MSSM and that the 
decoupling temperature is larger than 1 TeV. This is a conservative assumption as it will 

minimize the value of Y0 and hence maximize the mass bound. Using this value of Y0 
in Eq. (4.14) we can derive the upper mass bound 

M < 3 keV. (4.68) 

The W,. with a few keV can be a candidate of warm dark matter. 

(4) W-singlet mass less than Mz, with inflation. 

A heavy mass WIMP can be a dark matter candidate only in the presence of inflation. 
In fact, inflation will dilute away all the existing W-singlets which will then be regen- 

erated after reheating. In this limit, i.e. M < Mz, and TR < Mz,,  we approximate the 

Z'-mediated interaction by a four-point Fermi interaction. In this temperature regime, a 

Ws Ws pair cannot annihilate into two Z 's  because it is too massive. We also observe 

that after supersymmetry breaking the mass of the superpartners of the Zts is of the 
same order (modulo soft breaking corrections) of the Z '  mass. Therefore the decay 
channel of two Ws's into two Z ¢ gauginos is forbidden as well. 

Thus, we have two limits for the cross section, 

and 

m 2 
olvl ~ 16Nz,Tr- z ' , if TR < M 

8 S 
o]v I --~ s N z , c r - ~ z  ' , if TR > M. (4.69) 

In the nonrelativistic case (TR < M) we can use Eq. (4.39) and obtain 

M 5 
M >  TR [25 + ½ In (M---~,TR)] . (4.70) 

We now consider the relativistic case (TR > M). In this case the value we obtain for 
A in Eq. (4.38) is temperature dependent. In order to estimate Eq. (4.69) we use the 
thermal average of the energy squared, 

(s) = 4(E 2) ~- [5] 40T 2. (4.71) 

Here the factor [5/4] is only appropriate for fermions. Using this result, it is straight- 
forward to rewrite the Boltzmann equation in the form 
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dY ( ° ' t v l ) S e y 2  = A '2^r , 2 - l . 5 m p l  M3 (4.72) 
dx - - -~ EQ --'n'"J'vZ geftg* M 4, X-4' 

and get the relic density of this particle by integrating this equation from the reheating 
temperature to the present temperature, 

An~t  t 2 - l . 5 m p  1T3 
]'0 = ~ . ~ J v z  geffg* ~ . (4.73) 

i r a  Z t 

If we insert this result into Eq. (4.15), we obtain 

MT 3M4z - 10 -25 (1019GeV" ] 1.5 < 6 .9×  ( 2--~0 ) 1 (4.74) 
mpl fl Nz, g2ff" 

Since there are three unknown parameters (M, Mz,, Tg) in Eq. (4.74) we cannot infer 
a definite value for the mass of the Ws and Z t, but we nevertheless deduce that Z p 
should be very heavy. 

There is still another possibility to be considered. The W-singlet can be a triplet of a 
hidden gauge group. If this gauge group is not broken, then the W-singlets can annihilate 
into two hidden gauge bosons. This will lead to the same result as for the triplet case 
(the uniton) and we can obtain similar mass bounds. 

5. Conclusion and discussion 

In this paper we studied the cosmological constraints on the exotic matter states that 
appear in the massless spectrum of realistic free fermionic superstring models. The free 
fermionic superstring models are among the most realistic string models constructed to 
date, and reproduce many of the observed properties of the Standard Model. Among 
those, the replication of three and only three families and the qualitative spectrum of 
fermion masses [23,40]. The realistic nature of the free fermionic models is perhaps 
not accidental but may reflect deeper properties of string compactification, which are 
at present unknown. Indeed, the free fermionic models are constructed at a highly 
symmetric point in the moduli space and the appearance of three generations is deeply 
rooted in the underlying Z2 × Z2 orbifold structure [26]. 

In the derivation of the Standard Model from superstring theory we start with some 
larger symmetry which is subsequently broken to the Standard Model. Absence of ad- 
joint representations in the massless spectrum of level one Kac-Moody algebras restricts 
the possible gauge groups in the effective low energy field theory. Furthermore, proton 
lifetime constraints motivate the hypothesis that the Standard Model must be derived 
directly from string theory, without an intermediate non-abelian gauge symmetry. Within 
the free fermionic construction the breaking is achieved by constructing boundary con- 
dition basis vectors which are equivalent to Wilson lines in the geometrical formulation. 
The use of Wilson lines to break the non-abelian gauge symmetries is quite generic in 
superstring theory. 
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The breaking of the non-abelian gauge symmetries by Wilson lines has an important 
feature: it produces matter representations that do not fit into multiplets of the original 
unbroken gauge symmetry. This is an important feature as it may result in local dis- 
crete symmetries that forbid the decay of the "Wilsonian" matter states into the lighter 
Standard Model particles. Superstring models thus provide an intrinsic mechanism that 
produces heavy stable states. 

The "Wilsonian" matter states are classified by the patterns of symmetry breaking, 
induced by the "Wilson" lines. In the free fermionic models the underlying S O ( 1 0 )  

gauge symmetry is broken to SO(6) × SO(4), SU(5) × U( 1 ) or SU(3) × SU(2) × U( 1 )2. 
All three cases give rise to fractionally charged states with Qe.m.. These states may all 
be confined, they may all be superheavy, or they may diluted by inflation. Nevertheless, 
it may be worthwhile to search for such states in experimental searches for rare matter. 

Of further interests are the exotic states which appear specifically when the symmetry 
is broken directly to the Standard Model. The "Wilsonian" sectors then contain also 
states which carry the Standard Model charges, but with fractional charge under the 
U(1)z,  symmetry. We have shown, in a specific model, that these states can, in fact, 
be stable. This is an exciting observation, for then the stable "Wilsonian" matter states 
can be natural dark matter candidates. Furthermore, their stability arises due to a well 

motivated local discrete symmetry [39]. 
The superstring derived standard-like models give rise to "Wilsonian" color triplets, 

electroweak doublets with the standard charge assignment, and to Standard Model sin- 
glets. Of those the Standard Model singlets are the most suited to be the dark matter. 

The appearance of a good dark matter candidate in the superstring derived standard- 
like models provides further motivation to focus on the phenomenology of this class 
of models. Although our analysis and results are limited to the models in the free 
fermionic formulation, the mechanism which gives rise to the "Wilsonian" matter states 
is generic in superstring models. Thus, exotic "Wilsonian" matter states may be the 
generic, long-sought, signature of string unification. It is of further interest to study 
other phenomenological properties of these states. Such questions are currently under 

investigation and will be reported in future publications. 
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Appendix A. The mass splitting 

95 

In this appendix we comment on the mass splitting relation between the two heavy- 
light mesons U0 and U-l .  The goal of our discussion here is to show in a semi- 
quantitative way that the mass splitting between these two heavy-light mesons is com- 
patible with zero and even with a U0 lighter than UI. 

While transition and elastic form factors are calculable in the heavy quark effective 
theory, the calculation of the static properties of hadrons, such as the electromagnetic 
mass splitting of mesons containing heavy-light quarks, relies on drastic approximations 
with a built-in model dependence. 

However, a simple estimate of the mass splitting between the two states Uo (Dd)  and 
U-i  (Da)  can be obtained in the context of potential models within a nonrelativistic 
approximation. Although this may not look appropriate, it has been shown that, even 
in the context of light mesons, the nonrelativistic approximation to the analysis of 
the spectra of these systems (which are relativistic) has been quite successful when 
a Coulomb + linear + constant potential has been used to model the interaction. On 

the other hand, relativistic approaches based on bag models [54] have also produced 
satisfactory results. In Ref. [55] it has been argued that there is an interesting duality 
relation between the bag model solutions (with a quadratic potential) and those produced 
by nonrelativistic potential models. This observation seems to clarify, to some extent, that 
the nonrelativistic approach is in part consistent even for systems which are intrinsically 
relativistic [59]. With these motivations in mind, let us first analyze the electromagnetic 
(plus mass difference of the two constituent quarks) contributions to the mass splitting. 
The interaction may be taken to be Coulomb (at short distances) + linear (the confining 
tail). We may assume that, in a meson, when one of the two quarks gets very heavy, the 
bound state is hydrogen-like. If we neglect the effect of the strong interactions (which 
is a questionable assumption since as is not small at distances of 1 fm) the potential of 

the Breit-Fermi Hamiltonian corresponding to the electromagnetic interaction, for states 
of with zero angular momentum, is given by 

Ql Q2 87r Sl • S2 
Vem = O~em - -  - Gem ~(3) (r) .  (A. 1 ) 

r 3 mlm 2 

ml and m2 are the masses of the two quarks and Oi the corresponding electromagnetic 
charges. For spin singlet configurations, 

(V)°- =trem(QIQ2) ( ( 1 )  + mll IR(0)'2) ' m 2  (A.2) 

with R(r)  the radial wave function of the ground state (~b(r) = (1/x/~--~)R(r)). The 
spin interactions drops out in the heavy mass limit of any of the two quarks. Under 
these assumptions we get 

t~em( 1 ) 
Muo - Mu_, = (md -- mu) -- - - ~  . (A.3) 
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If  we use the estimate m d -- mu ,~ MKo -- Mr+ = 4 MeV for the constituent mass of 

the two light quarks [56] and a size of the bound state of 1 fm, then we get that the 
electromagnetic corrections are 1 MeV, thereby giving a positive Mvo - M y _ ,  ~ 3 MeV. 
This difference can be reduced by strong interaction effects which can provide a AM, 

which can even overcompensate AMem [56]. In fact, the difference between the up 
and the down quark masses causes a difference between the expectation values of the 

strong interaction Breit-Fermi Hamiltonian. This effect, therefore, can be responsible of 

a reduction of the mass splitting between the two states. We remark here that, in the 

case of neutral and charged B mesons, all these arguments do apply. The particle data 

book [51 ] gives a mass splitting between B ° and B -  which is compatible with zero. 

Let us now comment on the estimate of the electromagnetic interaction to the mass 
splitting of heavy-light mesons in the context of the heavy quark effective theory. At the 

same time we will also comment on the strong interaction contribution to the splitting 
which plays a significant role - but is still not calculable - in the context of these 

same effective theories. Unfortunately, the evaluation of the binding energy of the light 

degrees of freedom from the heavy quark theory suffers from a large uncertainty. The 
discussion which follows has been included to make this point more explicit. 

In the heavy quark limit, the interaction between the quark spin and the chromomag- 

netic field vanishes, being inversely proportional to the heavy quark mass mQ. Beside 

the spin symmetry, a new symmetry appears in the effective description of the bound 

state, since the interaction between the heavy and the light degrees of freedom (u, d) 

is flavor blind. We picture the heavy quark then acting as a static color force. There are 

two basic scales appearing in the effective theory: mQ and A/mQ =-- (mhadron-  mQ)/mQ, 

with A the scale of the light degrees of freedom. While m a  sets the scale for the 

perturbative expansion (in a s ( m Q ) )  of the theory, the second scale characterizes the 
nonperturbative contributions of additional form factors in the form of matrix elements 

of higher-dimensional operators. Notice that the QED analogy breaks down exactly due 

to the presence of this second scale. To leading order in 1 / m o ,  h = mhadron -- m o  is 
flavor and spin independent. From QCD sum rules, using the pole mass for m a  (and 

neglecting renormalon ambiguities (see [58] and Refs. therein), one gets the estimate 

A = 570 4- 70 MeV (A.4) 

(see [ 58 ] and references therein). The uncertainty in Eq. (A.4) largely overcompensates 
the electromagnetic contribution to the splitting. 

Let us now comment briefly on the electromagnetic breaking contributions as esti- 

mated in the context of the heavy quark effective theory in Ref. [57]. The calculation 
of the electromagnetic splitting has been based, in the past, on the use of dispersion 
relations for forward Compton scattering [60]. We remark that the study of factorization 
in exclusive processes [62,61] and of dispersion relations, in particular for fixed angle 
Compton scattering [63], has a long and involved history. In the forward region, where 
perturbative QCD breaks down, the treatment of the process suffers from a strong model 
dependence. Therefore, the use of dispersion relations at very low momentum transfer, 
as needed in the case of the calculation of mass splittings, is an uncharted territory. The 
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basic strategy of the method in [57] is to relate the order e 2 isospin breaking corrections 

to the forward Compton scattering amplitude T and then use the heavy quark effective 
theory in the large Nc limit to write T in terms of heavy meson form factors. 

Neglecting 1/m 2 corrections, the authors of Ref. [57] give 

Mu. - Muo ~ + 1 . 7 -  0.13 l GeV - j  1 GeV - l  ' (A.5) 

where fl ,--, l /mQ measures the matrix element of the decay of the first excited heavy 

meson state into the ground state plus a photon. 
The use of large Nc arguments and the ans~itze used to match the dimensional counting 

behavior of the heavy quark form factor introduce a model dependence into the theory. 
The authors of Ref. [57] argue that their results are accurate within 30%. Notice that this 

result is compatible with the naive estimate obtained from the quark model discussion 
we have presented above. Also, notice that the combination of this result with Eq. (A.4), 

in particular the large uncertainty in the estimate of A, tells us that Mu0 - Mu_~ is not 

incompatible with zero, as suggested by potential model calculations. 

Appendix B. Quark decay modes 

In this appendix we summarize the derivation of the Feynman rules for N = 1 

supersymmetric QCD and define our conventions for the various diagrams. 
The Lagrangian is defined by [64] 

4-- " uv + ( DUq) * Duq, (B.1) 

where 

~9 (i = q~¢3ij - ½ i&4 aTi ~ (B.2) 

In SUSY QCD there is a gluino-gluino-gluon term, 

• = ~lgsfabcgayugbA c, (B.3) 

and a quark-squark-gluino term, 

a : k ~ "* = -- gaPRqi ~iR -- (B.4) ~q@ -v /2gsTj  k Z ( gaPLqi~L +~PRgaqkiL : k~'* cI[PLgagI~R), 
i=u,d 

where i is summed over the three families of quarks and T a = ,~a/2 are the usual 
SU(3) generators. The two chirality projectors are defined by PL = (1 - - y 5 ) / 2  and 
PR = (1 + 75)/2. The generators of SU(3) are taken to be Hermitian. The quark-gluon 
vertex, in these conventions, is given by 

£q@, = -OA~urUqV ". (B.5) 

In momentum space we get - igsyuT  a for the qgtg vertex and -gsfabcYu for the ~gg 
vertex. 
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I~ k2 

Fig. B.1. Momentum and fermion number flow. 

We introduce the following expansions for the Dirac fermions (quarks), Majorana 
fermions (gluinos) and for the scalar quarks: 

f d3k ( m )  q(x)= ~ ~ (b(k)u(k)e -ikxJr-dt(k)v(k)eikx), 

/ d3k (m)(b(k)fi(k)e-i,x e ikx) ~(x)= ~ ~o + bt(k)O(k) ' 

f d3 k t~(x) = (2,rr)32r.ok (a(k) e -ikx -q- bt(k)  eikx). 

(B.6) 

(B.7) 

(B.8) 

Notice that in (B.6), (B.7) and (B.8) we have omitted the sum over the polarizations 
for simplicity. We enforce the usual quantization conditions, 

{[~(k),[~t(k')}=(2¢r)3(k~°m)63(k-k'), 

{d(k),dt(k')}=(2~')3(k-~°m)~3(k-k'). (B.9) 

Scattering amplitudes can be defined in terms of the vacuum-to-vacuum correlators 
either by using the LSZ reduction formula or, more simply, by calculating expectation 
values of the interaction terms in initial and final states. 

Sfi = (igs)22 f d4yld4y2(Q-QI~'(Yl)ff'(Y:)I~). (B.10) 

We have defined 

[Q-Q) :- bt(pl)d+(P2)[O), Igg) = bf(k3)b*(kz) lO).  (B.11) 

Notice that it is convenient to fix a specific convention by labeling one of the two 
gluinos as first particle (k2) and the second one as second particle (k3) (see Fig. B.1 ). 
Define (AB)c -- (0]ABI0) to be the usual Wick contraction and set (symbolically) 

q(x) ,.- bu + dtO, 
gl(X) ~" bt~ + dO, 
~(x) ,., bu + bto, 
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Fig. B.2. Gluino vertices. 

~(x) ~ bt~ + bL 

•(x) ~ a + a t, (B.12) 

in order to get the only nonvanishing contractions with the initial (final) states, 

( q ( x ) b t ( k )  ) c=u(k )  e -ikx, 

(Cl(x)dt (k) )c  = O(k) e -ikx, 

( ~ ( x ) ~ t ( k ) ) c = f i ( k )  e -ikx, 

(~(x)[~ t (k ) )c  = ~(k) e -ikx, 

( b ( k ) ~ ( x ) ) c  = ~(k)  e ikx, 

( b( k )~(x )  )c = ~( k ) e -itx. (B.13) 

There are 5 diagrams which contribute in the supersymmetric case to the annihilation 

of a QQ pair into two gluinos (see Fig. B.2). In our calculation we neglect mixing 

between the squark fields. The amplitudes are given by 

2ias 
A1 - t ~- ~12s (TbTa)jk~ta(k3)PRuk(pl)vJ(p2)PL~)b(k2)' 

2ias 
A 2 -  t --- ~42s (TbTa) jk~a ( k2) PRUk (Pl )vJ (p2) PLvb( k3)' 

2ias 
A3 - t ~- ~42s (TbTa)jk~ta (k3)PLuk(pl)vJ(p2)PRvb(k2)'  

2ias 
A4 = t ~ h'12s ( TbT~ ) i Y  ( k2 ) Pz uk ( P~ ) vJ ( p2 ) PR~)b ( k3 ) ' 

1 . , .d . ' d a b  =a 
As=--~ssaS l )ky  u ~ka)yCzg)k(kz) )g~J(p2)y~zu~(pt), (B.14) 

where we have set s = (Pl + P2) 2 and t = (Pl - k3):. Here a and b are SU(3) octet 
indices for the two gluino spinors ~ and fi, while j and k are the color indices in the 

fundamental. We have assumed that the left and right squarks have equal masses (Ms). 

We also take the final gluinos to be massless. Notice that in the case of annihilation 
into a quark-antiquark pair, the number of diagrams is doubled (with a factor of two 
also for the As, absent in the QCD case) because of additional nonzero contractions 
with the Majorana final states. Notice that in the direct and exchange diagrams we have 
distinguished between the fermion flow and the momentum flow. In each exchanged 
t-channel diagram the fermion flow for the final states is reversed compared to the flow 
for each direct diagram. 
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R 2 

+ " + ( R ~ L ) +  

L 

Fig. B.3. QQ ~ o~ annihilation 

The averaged cross section for the annihilation of  the uniton into two gluinos or into 
two gluons is generically defined by 

1 <lMuI2>- (3)2(2)21~/tvl2, (B.15) 

where we have averaged over spin and color. The calculation has been performed in the 

most general case, taking all the mass parameters to be different. The final result is too 
cumbersome to be given here. 

For the annihilation of two heavy quarks into two gluinos (Fig. B.3) in the equal-mass 

limit we get 

256rr2as 2 (9m 8 - 18m6s + 13m4s 2 _ 8m2s 3 IMI2 = 27s2(t - m 2) (s  + t - m 2) 

+ (  13s 3 - 44m2s 2 + 63mas - 36m 6) t 

+ ( 3 1 s  2 - 72m2s + 54m4) t 2 + (27s - 36m2t3)t 3 + 9t4). (B.16) 

The total cross section is 

( s + A )  
o- = 16~ra~27A ------5- ( _ 2 4 m 4  _ 22m2s+7s  2 _ m21og \ ~ j )  . (B.17) 

2 We have set A = .v/S(S - 4m2). In the nonrelativistic limit we get s = 4m2( 1 + veto) 

and A = 4m2Vcm with a total cross section 

o-lvl- 64~o~ 27m-------- T + O(v2) ,  (B.18) 

where Iv I = 2lVcm I 
Let us now comment  on the QQ annihilation into two gluons (Fig. B.4).  The calcu- 

lation is performed in the Feynman gauge and we have included the ghost contribution 

diagram (since there are two gluons in the final state) to remove the unphysical polar- 
izations. We recall that in the case of  massive quarks all the interference diagrams give 

a nonvanishing contribution. 
We give expressions for all the cross sections in the relativistic and in the nonrela- 

tivistic cases. The total cross section is given by 

( fs  + A'~'] (B.19) O" = 27m2s2A216-rrot~ k , - ( 7 s + 3 1 m 2 ) A + 4 ( s 2 + 4 m 2 s + m a ) l ° g \ ~ - A J J  

In the nonrelativistic limit we get 
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Fig. B.4. Q-Q ~ gg annihilation. 
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X 
Fig. B.5. QQ ~ q~ annihilation. 

o.[v I _ 147rcr~ + O(v2). (B.20) 
27m 2 

In the case of  the annihilation of  a heavy Q Q  pair into a light q~7 pair (see Figs. B.5 

and B.6) we get 

8otzTr(s + 2m 2) 
or = (B.21) 

2 7 s ~ / s (  s - 4m2) ' 

which in the nonrelativistic limit gives 

< v l -  2¢ra2 
- 9m--- T- + O(v2). (B.22) 

If  we sum over all 6 quark flavors of  the final state, we get 

o_lv I _ 4rra~ + O(v2). (B.23) 
3m 2 

The total cross section for squark production from Q Q  annihilation is given by 

4as27r( s + 2m 2 ) 4a~2rr( s + 2m z) 
o- = = (B.24) 

27s V/S ( s - 4m 2) 27sA  

In the nonrelativistic limit we get 

rra~ 
olvl = ~ + o(v2). (B.25) 

If  we sum over all 6 flavors of  the quarks in the final state, we get 

2~rOts 2 
~rlv I = ~ + O(v2). (B.26) 
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Fig. B.6. QQ ~ ~ *  annihilation. 

References 

[ 1 ] For a review, see M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory, Vols. I & 2 (Cambridge 
Univ. Press, Cambridge, 1987). 

[2] D.J. Gross, J.A. Harvey, J.A. Martinec and R. Rohm, Phys. Rev. Lett. 54 (1985) 502; Nucl. Phys. B 
256 (1986) 253. 

[3] E Candelas, G.T. Horowitz, A. Strominger and E. Witten, Nucl. Phys. B 258 (1985) 46. 
14] D.C. Lewellen, Nucl. Phys. B 337 (1990) 61; 

J. Ellis, J.L. Lopez and D.V. Nanopoulos, Phys. Lett. B 245 (1990) 375; 
A. Font, L.E. lb~ifiez and E Quevedo, Nucl. Phys. B 345 (1990) 389; 
S. Chaudhuri, S.-W. Chung, G. Hockney and J. Lykken, hep-ph/9501361; 
G. Aldazabal, A. Font, L.E. Ib~ifiez and A.M. Uranga, hep-th/9410206; 
G. Cleaver, hep-th/9506006; 
D. Finnell, Phys. Rev. D 53 (1996) 5781; 
J. Erler, hep-th/9602032; 
K. Dienes and J. March-Russell, hep-th/9604112. 

[5] M. Dine et al., Nucl. Phys. B 259 (1985) 549; 
B. Greene, K.H. Kirklin, EJ. Miron and G.G. Ross, Phys. Lett. B 180 (1986) 69; Nucl. Phys. B 292 
(1987) 606; 
R. Arnowitt and E Nath, Phys. Rev. D 39 (1989) 2006; 42 (1990) 2498; Phys. Rev. Lett. 62 (1989) 
222. 

[6] I. Antoniadis, J. Ellis, J. Hagelin and D.V. Nanopoulos, Phys. Lett. B 231 (1989) 65. 
[7] I. Antoniadis, G.K. Leontaris and J. Rizos, Phys. Lett. B 245 (1990) 161; 

G.K. Leontaris, hep-ph/9601337. 
[8] T.T. Burwick, A.K. Kaiser and H.E Muller Nucl. Phys. B 362 (1991) 232; 

A. Kagan and S. Samuel, Phys. Lett. B 284 (1992) 289. 
[9] J. Lopez, D.V. Nanopoulos and K. Yuan, Nucl. Phys. B 399 (1993) 654. 

[ 10] L.E. lbafiez, J.E. Kim, H.E Nilles and E Quevedo, Phys. Lett. B 191 (1987) 282; 
A. Font, L.E. Ibanez, H.P. Nilles and F. Quevedo, Phys. Lett. B 210 (1988) 101; 
A. Font, L.E. Ibanez, E Quevedo and A. Sierra, Nucl. Phys. B 331 (1990) 421; 
D. Bailin, A. Love and S. Thomas, Nucl. Phys. B 298 (1988) 75; 
J.A. Casas, E.K. Katehou and C. Mufioz, Nucl. Phys. B 317 (1989) 171; 
S. Chaudhuri, G. Hockney and J. Lykken, Nucl. Phys. B 469 (1996) 357. 

[ I l] A.E. Faraggi, D.V. Nanopoulos and K. Yuan, Nucl. Phys. B 335 (t990) 347. 
[12] A.E. Faraggi, Phys. Lett. B 278 (1992) 131. 
[13] A.E. Faraggi, Nucl. Phys. B 387 (1992) 239. 
[14] A.E. Faraggi, Phys. Lett. B 339 (1994) 223. 
[15] E. Witten, Nucl. Phys. B 258 (1985) 75; 

J.D. Breit, B.A. Ovrut and G.C. Segr6, Phys. Lett. B 158 (1985) 75; 
A. Sen, Phys. Rev. Lett. 55 (1985) 33. 

[ 16] A.E. Faraggi, Nucl. Phys. B 428 (1994) 111. 
[17] T. Banks, D. Kaplan and A. Nelson, Phys. Rev. D 49 (1994) 779. 
[18] E. Halyo, Nucl. Phys. B 438 (1995) 138. 



S. Chang et al./Nuclear Physics B 477 (1996) 65-104 103 

[19] X.G. Wen and E. Witten, Nucl. Phys. B 261 (1985) 651; 
G.G. Athanasiu, J.J. Atick, Michael Dine and Willy Fischler, Phys. Lett. B 214 (1988) 55; 
A. Schellekens, Phys. Lett. B 237 (1990) 363. 

[20] J. Ellis, J.L. Lopez and D.V. Nanopoulos, Phys. Lett. B 247 (1990) 257. 
[21] P. Huet, Nucl. Phys. B 350 (1991) 375. 
[22] A.E. Faraggi, Phys. Rev. D 46 (1992) 3204. 
[23] A.E. Faraggi, Phys. Lett. B 274 (1992) 47. 
[24] S. Chang, C. Corianb and A.E. Faraggi, hep-ph/9603272. 
[25] K.R. Dienes and A.E. Faraggi, Phys. Rev. Lett. 75 (1995) 2646; Nucl. Phys. B 457 (1995) 409. 
[26] A.E. Faraggi, Nucl. Phys. B 407 (1993) 57; Phys. Lett. B 326 (1994) 62. 
[27] A.E. Faraggi, Phys. Lett. B 302 (1993) 202. 
[28] S. Kalara, J. Lopez and D.V. Nanopoulos, Nucl. Phys. B 353 (1991) 650. 
[29] A.E. Faraggi, Nucl. Phys. B 403 (1993) 101. 
[301 M. Turner, astro-ph/9503017. 
[31] P. Ginsparg, Phys. Lett. B 197 (1987) 139. 
[32] M. Dine and N. Seiberg, Phys. Rev. Lett. 55 (1985) 366; 

V.S. Kaplunovsky, Phys. Rev. Lett. 55 (1985) 1036. 
[33] V.S. Kaplunovsky, Nucl. Phys. B 307 (1988) 145; Erratum: 382 (1992) 436. 
[34] U. Amaldi et al., Phys. Rev. D 36 (1987) 1385; 

P. Langacker and M. Luo, Phys. Rev. D 44 (1991) 817; 
J. Ellis, S. Kelley and D. V. Nanopoulos, Phys. Lett. B 260 ( 1991 ) 131; 
U. Amaldi, W. de Boer and H. Fiistenau, Phys. Lett. B 260 (1991) 447; 
H. Arason et al., Phys. Rev. D 46 (1992) 3945; 
E Anselmo, L. Cifarelli, A. Peterman and A. Zichichi, Nuovo Cimento A 105 (191992) 1179; 
L. Langacker and N. Polonsky, Phys. Rev. D 47 (1993) 4028; 
A.E. Faraggi and B. Grinstein, Nucl. Phys. B 422 (1994) 3. 

[35] See, e.g., the following papers and references therein: L.J. Dixon, V.S. Kaplunovsky and J. Louis, Nucl. 
Phys. B 355 (1991) 649; 
I. Antoniadis, J. Ellis, R. Lacaze, D.V. Nanopoulos, Phys. Lett. B 268 (1991) 188; 
I. Antoniadis, K.S. Narain and T.R. Taylor, Phys. Lett. B 267 (1991) 37; 
J.P. Derendinger, S. Ferrara, C. Kounnas and F. Zwimer, Nucl. Phys. B 372 (1992) 145; 
G. Lopes Cardoso and B.A. Ovrut, Nuci. Phys. B 369 (1992) 351; 
E Mayr and S. Stieberger, Nucl. Phys. B 412 (1994) 502; 
D. Bailin and A. Love, Phys. Lett. B 292 (1992) 315; 
D. Bailin, A. Love, W.A. Sabra and S. Thomas, Mod. Phys. Lett. A10 (1995) 337; 
M. Chemtob, Phys. Rev. D 53 (1996) 3920; 
E. Kiritsis and C. Kounnas, Nucl. Phys. B 442 (1995) 472. 

[361 I. Antoniadis, J. Ellis, S. Kelley and D.V. Nanopoulos, Phys. Lett. B 272 (1991) 31; 
S. Kelley, J. Lopez and D.V. Nanopoulos, Phys. Lett. B 278 (1992) 140; 
I. Antoniadis, G.K. Leontads and N.D. Tracas, Phys. Lett. B 279 (1992) 58; 
M.K. Gaillard and R. Xiu, Phys. Lett. B 296 (1992) 71; 
I. Antoniadis and K. Benakli, Phys. Lett. B 295 (1992) 219; 
S.E Martin and P. Ramond, Phys. Rev. D 51 (1995) 6515. 

[37] J.A. Casas and C. Munoz, Phys. Lett. B 214 (1988) 543; 
L.E. lb,4fiez, Phys. Lett. B 318 (1993) 73; 
K.R. Dienes, A.E. Faraggi and J. March-Russell, Nucl. Phys. B 467 (1996) 44. 

[ 38 ] For an alternative proposal based on strongly interacting strings, see E. Witten, hep-th/9602070. 
[39] L.M. Krauss and E Wilczek, Phys. Rev. Lett. 62 (1989) 1221. 
[401 A.E. Faraggi and E. Halyo, Phys. Lett. B 307 (1993) 305; Nucl. Phys. B 416 (1994) 63. 
[41 ] M. Dine, N. Seiberg and E. Witten, Nucl. Phys. B 289 (1987) 589; 

J.J. Atick, L.J. Dixon and A. Sen, Nucl. Phys. B 292 (1987) 109; 
S. Cecotti, S. Ferrara and M. Villasante, Int. J. Mod. Phys. A 2 (1987) 1839. 

142] J.C. Pati and A. Salam, Phys. Rev. D8 (1973) 1240; Phys. Rev. Lett. 31 (1973) 661; Phys. Rev. D 10 
(1974) 275. 

[43] M. Srednicki, R. Watkins and K. Olive, Nucl. Phys. B 310 (1988) 693. 
[44] E.W. Kolb and M.S. Turner, The Early Universe (Addison-Wesley, New York, 1990). 



104 S. Chang et al./Nuclear Physics B 477 (1996) 65-104 

[45] A. Gould, B. Draine, R. Romani and S. Nussinov, Phys. Lett. B 238 (1990) 337. 
[46] M. W. Goodman and E. Witten, Phys. Rev. D 31 (1985) 3059. 
[47] D.B. Sanders, E.S. Phinney, G. Neugebauer, B.T. Soifer and K. Mathews, Astrophys. J. 347 (1989) 29; 

A. van Dalen and R. K. Schaefer, Astrophys. J. 398 (1992) 33; 
A.N. Taylor and M. Rowan-Robinson, Nature 359 (1992) 396; 
J.A. Holtzman and J.R. Primack, Astrophys. J. 405 (1993) 428. 

[48] J.M. Bardeen, J.R. Bond and G. Efstathiou, Astrophys. J. 321 (1987) 28; 
E. J. Chun, H. B. Kim and J. E. Kim, Phys. Rev. Lett. 72 (1994) 1956; 
S. Chang and H.B. Kim, hep-ph/9604222. 

[49] G. D. Starkman, A. Gould, R. Esmailzadeh and S. Dimopoulos, Phys. Rev. D 41 (1990) 3594. 
[501 E. Nardi and E. Roulet, Phys. Lett. B 245 (1990) 105. 
[51 ] Particle Data Group, Review of Particle Properties, Phys. Rev. D 50 (1994) 1; 1995 off-year partial 

update for the 1996 edition available on the PDG WWW pages (URL: http://pdg.lbl.gov/). 
[52] B. Holdom, Phys. Lett. B 339 114 (1994); 

E Chiappetta, J. Layssac, EM. Renard and C. Verzegnassi, preprint PM/96-05, hep-ph/9601306; 
G. Altarelli, N. Di Bartolomeo, E Feruglio, R. Gatto and M. Mangano, hep-ph/9601324; 
K.S. Babu, C. Kolda and J. March-Russell, hep-ph/9603212; 
P.H. Frampton and B.D. Wright, hep-ph/9604260; 
K. Agashe, M. Graesser, I. Hinchliffe and M. Suzuki, hep-ph/9604266. 

[53] A.E. Faraggi and M. Masip, hep-ph/9604302. 
[54] A. Chodos, R.L. Jaffe, K. Johnson and C.B. Thorn, Phys. Rev. D 10 (1974) 2599. 
[55] B. Rosenstein, Phys. Rev. D 33 (1986) 813. 
[56] W. Lucha, F. Sch6berl and D. Gromes, Phys. Rep. 200 (1991) 127. 
[571 M. Luty and R. Sundrum, Phys. Rev. D 52 (1995) 1627. 
[581 T. Mannel, hep-ph/9409387. 
[59] D. Flamm, F.Sch6berl and H. Uematsu, Nuovo Cimento A 98 (1987) 559. 
[60] R.P. Feynman and G. Speisman, Phys. Rev. D 94 (1954) 500; 

M. Cini, E. Ferrari and R. Gatto, Phys. Rev. Lett. 2 (1959) 7; 
A. Zee, Phys. Rep. 3 (1972) 129. 

[61] J. Botts and G. Sterman, Nucl. Phys. B 325 (1989) 526; 
H. N. Li and G. Sterman, Nuci. Phys. B 381 (1992) 129. 

[62] G.P. Lepage and S.J. Brodsky, in: Perturbative QCD, ed. A.H. Mueller (World Scientific, Singapore, 
1989). 

[631 C. Corianb, A. Radyushkin and G. Sterman, Nucl. Phys. B 405 (1993) 481; 
C. Corian6, Nucl. Phys. B 410 (1993) 481; 434 (1995) 565; 
C. Corian6 and H.N. Li, Phys. Lett. B 309 (1993) 481; Nucl. Phys. B 434 (1995) 535. 

[64] H.E. Haber and G.L. Kane, Phys. Rep. 117 (1985) 75. 


