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We compute the dark matter relic densities of neutralinos and axions in a supersymmetric model with a

gauged anomalous U(1) symmetry. The model is a variant of the USSM [the U(1) extended NMSSM],

containing an extra U(1) symmetry and an extra singlet in the superpotential with respect to the MSSM,

where gauge invariance is restored by Peccei-Quinn interactions using a Stückelberg multiplet. This

approach introduces an axion (Imb) and a saxion (Reb) in the spectrum and generates an axino component

for the neutralino. The Stückelberg axion (Imb) develops a physical component (the gauged axion) after

electroweak symmetry breaking. We classify all the interactions of the Lagrangian and perform a complete

simulation study of the spectrum, determining the neutralino relic densities using MICROMEGAS.We discuss

the phenomenological implications of themodel analyzingmass values for the axion from themilli-eV to the

MeV region. These depend sensitively on the value of tan!. The possible scenarios that we analyze are

significantly constrained by a combination of WMAP data, the exclusion limits from direct axion searches,

and the veto on late entropy release at the time of nucleosynthesis.
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I. INTRODUCTION

Axions have been studied along the years both as a
realistic attempt to solve the strong CP problem [1–8], to
which they are closely related, but also as a possible candi-
date to answer more recent puzzles in cosmology, such as
the origin of dark energy, whose presence has found con-
firmation in the study of type I supernovae [9,10]. In this
second case it has been pointed out that they can contribute
to the vacuum energy, a possibility that remains realistic if
their mass ma—which in this case should be !10"33 eV
and smaller—is of electroweak (EW) [11] and not of QCD
origin. In this case they differ significantly from the stan-
dard (Peccei-Quinn, PQ) invisible axion.

According to this scenario, the vacuum misalignment
(see [12,13] for a discussion in the PQ case) induced at
the electroweak scale would guarantee that the degree of
freedom associated with the axion field remains frozen,
rolling down very slowly toward the minimum of the non-
perturbative instanton potential, withma much smaller than
the current Hubble rate. Given the rather tight experimental
constraints which have significantly affected the parameter
space (axion mass and gauge couplings) for PQ axions
[14–16], the study of these types of fields has also taken
into account the possibility to evade the current bounds
[17,18]. These are summarized into both anupper and a lower
bound on the size of fa, the axion decay constant, which sets
the scale of the misalignment angle ", defined as the ratio of
the axion field (a) over the PQ scale vPQ (vPQ ! fa).

Axionlike particles can be reasonably described by
pseudoscalar fields characterized by an enlarged parameter
space for mass and couplings, with a direct coupling to the
gauge fields (of the form aF ~F) whose strength remains
unrelated to their mass. They have been at the center of
several recent and less recent studies (see for instance
[18–25]). They are supposed to inherit most of the prop-
erties of a typical invisible axion—a PQ axion—while
acquiring some others which are not allowed to it.
We recall that the axion mass [which in the PQ case is

Oð!2
QCD=faÞ] and the axion coupling to the gauge fields

are indeed related by the same constant fa. In the PQ case
fa (! 1010–1012 GeV) makes the axion rather light
(! 10"3–10"5 eV) and also very weakly coupled. The
same (large) scale plays a significant role in establishing
the axion as a possible dark matter candidate, contributing
significantly to the relic densities of cold dark matter. A
much smaller value of fa, for instance, would diminish
significantly the axion contribution to cold dark matter due
to the suppression of its abundance (Y#) which depends

quadratically on fa.
It is quite immediate to realize that the gauging of the

axionic symmetries by introducing a local anomalous
U(1)—inherited from an underlying anomalous structure,
i.e. a gauge anomaly—allows one to leave the mass and the
coupling of the axion to the gauge fields unrelated [26,27],
offering a natural theoretical justification for the origin of
axionlike particles. We recall that effective low energy
models incorporating gauged PQ interactions emerge in
several string and supergravity constructions, for instance
in orientifold vacua of string theory and in gauged super-
gravities (see for instance [28,29]).
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The analysis that we perform in this work has the goal to
capture the relevant phenomenological features of the ax-
ions present in this class of models, extending a previous
study presented in a nonsupersymmetric context [30].
We will be following, as in previous studies, a bottom-up
approach. This allows one to identify the low energy
effective action on the basis of a rather simple operatorial
structure typical of anomalous Abelian models. The theory
is then fixed by the condition of gauge invariance of the
anomalous effective action, amended by operators of
dimension-5 [Wess-Zumino (WZ) or PQ-like terms] which
appear in the action suppressed by a suitable scale, the
Stückelberg mass (MSt).

The introduction of the Stückelberg multiplet (or axion
multiplet), while necessary for the restoration of gauge
invariance, is in general expected to raise some concerns
at the cosmological level because of the presence, among
its components, of a scalar modulus, the saxion. In super-
symmetric (ordinary) PQ formulations this has a mass of
the order of the weak scale or smaller and poses severe
problems to the standard cosmological scenario. A late
time decay of this particle, for instance, could cause an
entropy release with a low reheating temperature (TRH <
5 MeV) which is unacceptable for nucleosynthesis. For
comparison, we mention that in the case of string moduli,
for instance, the interaction of these states with the rest of
the fields of the low energy spectrum is suppressed by the
Planck scale. In turn, this forces the mass of these states to
be quite large (100 TeVor so) [31,32] in order to enhance
the phase space for their decay, for a similar reason.

In our construction the scalar modulus of the axion
multiplet acquires a mass of the order of the Stückelberg
scale and has sizable interactions with the other fields
of the model, thereby decaying pretty fast (! 10"23 s).
Therefore, smaller values of its mass—in the TeV range—
turn out to be compatible with the standard scenario for
nucleosynthesis.

Nonsupersymmetric versions of the class of models that
we are going to analyze have been discussed in detail in
[26,27,33]. Recently [34,35], an extension of a specific
supersymmetric model, the USSM [the U(1)-extended
next-to-minimal supersymmetric standard model of [36]]
has been presented, in which the U(1) symmetry is anoma-
lous. This model supports an axionlike particle in its
spectrum. It has been named the ‘‘USSM-A,’’ to recall
both its supersymmetric origin and its anomalous
Abelian gauge structure. It is also close to a similar Uð1Þ0
extension of the MSSM [the Uð1Þ0 minimal supersymmet-
ric standard model)] [37], which supports an axino com-
ponent among the interaction eigenstates of the neutralino
sector, but not a gauged axion, due to the structure of the
MSSM superpotential. The study of relic densities in this
model have been performed in [38,39]. In the nonsuper-
symmetric case the identification of a physical axion in the
spectra of these models has been discussed in detail in [33],

a realization called ‘‘the minimal low scale orientifold
model’’ or MLSOM for short.
Both in the USSM-A and in the model of [37], the extra

U(1) symmetry takes an anomalous form and the violation
of gauge invariance requires supersymmetric PQ inter-
actions, with a Stückelberg supermultiplet for the restora-
tion of the gauge symmetry. The extra gauge boson of
the anomalous U(1) symmetry is massive and in the
Stückelberg phase, as in previous nonsupersymmetric
constructions [26,27,33]. As shown in the case of the
MLSOM, axionlike particles appear in the CP-odd spec-
trum of these theories whenever Higgs-axion mixing [33]
occurs. For this reason in this work we will be using the
term ‘‘gauged supersymmetric axion’’ (or axi-Higgs, de-
noted equivalently as # or H5

0) to refer to this state.
As we have mentioned in the Introduction, we will

follow a minimal approach. This approach allows one to
define an effective theory on the basis of (1) an assigned
gauge structure (the number of anomalous Abelian inter-
actions); (2) some conditions of anomaly cancellation and
gauge invariance of the effective Lagrangian; and (3) the
choice of a suitable value of the Stückelberg mass scale
characterizing the range in which the description of these
effective models is compatible with unitarity [40]. As in a
previous analysis for the LHC in the MLSOM [41], we will
first stress the general features of these models, deriving
the defining conditions for the counterterms which appear
in the structure of the effective action, before moving to a
specific realization with a selected charge assignment. In
our simulations we have found that the dependence of the
results on the choices of the independent charges is, how-
ever, extremely mild. In this respect the properties that we
are able to extrapolate from this class of models—even
with a single charge assignment—are pretty general and
depend quite sensitively only on the choice of the
Stückelberg mass MSt and the MSSM Higgs vacuum ex-
pectation value (VEV) ratio tan!.
In this section we will focus on the axion/saxion

Lagrangian, leaving a general discussion of the various
contributions to Appendix A. It is given by

L axion=saxion ¼ LSt þLWZ; (1)

where LSt is the supersymmetric version of the
Stückelberg mass term [42], while LWZ denotes the WZ
counterterms responsible for the axionlike nature of the
pseudoscalar b. Specifically

LSt ¼
1

2

Z
d4"ðb̂þ b̂y þ

ffiffiffi
2

p
MStB̂Þ2;

LWZ ¼ " 1

2

Z
d4"

"#
cG
MSt

TrðGGÞb̂þ cW
MSt

TrðWWÞb̂

þ cY
MSt

b̂WY
$W

Y;$ þ cB
MSt

b̂WB
$W

B;$

þ cYB
MSt

b̂WY
$W

B;$

$
%ð ""2Þ þ H:c:

%
; (2)
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where we have denoted with G the supersymmetric field
strength of SUð3Þc, with W the supersymmetric field
strength of SU(2), with WY and with WB the supersym-
metric field strength of Uð1ÞY and Uð1ÞB, respectively. The
Lagrangian LSt is invariant under the Uð1ÞB gauge trans-
formations

%BB̂ ¼ !̂þ !̂y; %Bb̂ ¼ "2MSt!̂; (3)

where !̂ is an arbitrary chiral superfield. So the scalar
component of b̂, that consists of the saxion and the axion
field, shifts under a Uð1ÞB gauge transformation. The co-
efficients cI ' ðcG; cW; cY; cB; cYBÞ are dimensionless,
fixed by the conditions of gauge invariance, and are func-
tions of the free charges Bi of the model [as shown in
Eq. (5)]. Extracting the group factors we have

cB ¼ "ABBB

384&2 ; cY ¼ "ABYY

128&2 ;

cYB ¼ "ABBY

128&2 ; cW ¼ "ABWW

64&2 ;

cG ¼ "ABGG

64&2 : (4)

The coefficients A are defined by the conditions of gauge
invariance of the effective action, related to the anomalies
fUð1Þ3Bg, fUð1ÞB;Uð1Þ2Yg, fUð1Þ2B;Uð1ÞYg, fUð1ÞB; SUð2Þ2g,
and fUð1ÞB; SUð3Þ2g. Using the conditions of gauge invari-
ance these coefficients assume the form

ABBB ¼ "3B3
H1

" 3B2
H1
ð3BL þ 18BQ " 7BSÞ

" 3BH1
ð3B2

L þ ð18BQ " 7BSÞBSÞ
þ 3B3

L þ BSð27B2
Q " 27BSBQ þ 8B2

SÞ;
ABYY ¼ 1

2ð"3BL " 9BQ þ 7BSÞ;
ABBY ¼ 2BH1

ð3BL þ 9BQ " 5BSÞ þ ð12BQ " 5BSÞBS;

ABWW ¼ 1
2ð3BL þ 9BQ " BSÞ; ABGG ¼ 3

2BS: (5)

We have expressed all the anomaly equations in terms of 4
charges Bi ' ðBH1

; BS; BQ; BLÞ ordered from 1 to 4 (left to
right). Notice that these charges can be taken as funda-
mental parameters of the model. Their independent varia-
tion allows one to scan the entire spectra of these models
with no reference to any specific construction. These rela-
tions appear in the anomalous variation (%B) of the super-
symmetric 1-loop effective action of the model, which
forces the introduction of supersymmetric PQ-like inter-
actions (WZ terms) for its overall vanishing. Formally we
have the relation

%BðBiÞS1 loop þ %BðcIðBiÞÞSWZ ¼ 0; (6)

where the anomalous variation can be parametrized by the
4 chargesBi together with the coefficients cJðBiÞ in front of
the WZ counterterms. In these notations, the uppercase
index J runs over all the 5 mixed-anomaly conditions

B3, BY2, B2Y, BW2, and BG2, ordered from 1 to 5 (left
to right). Before coming to the definition of the charge
assignments we pause for a remark. As we are going to
show in the next sections, the scalar potential takes a non-
local form unless all the anomaly coefficients in Eq. (5) are
zero. Such potential can however be expanded in powers of
Reb=MSt, and as such these contributions turn out to be
irrelevant ifMSt is a very large scale. The situation is rather
different if MSt is bound to lay around the 1 TeV region,
where the potential could actually develop a singularity. In
fact, in this case, it is in general expected that a singular
potential will soon dominate the dynamics of the model.
We will give the explicit expression of the D terms for a

general choice of the counterterms. The function (f) which
allows one to identify all the charges in terms of the free
ones is formally given by

fðBQ; BL; BH1
; BSÞ ¼ ðBQ; BUR

; BDR
; BL; BR; BH1

; BH2
; BSÞ:
(7)

These depend only upon the 4 free parameters BQ, BL,BH1
,

and BS. In our analysis, the charges of Eq. (7) have been
assigned as

fð2; 1;"1; 3Þ ¼ ð2; 0;"1; 1; 0;"1;"2; 3Þ: (8)

As we have already mentioned, the dependence of our
results on this choice of parametric charges is very small.
Instead, as we will see, the relevant parameters of our
analysis turn out to be (1) the anomalous coupling of the
gauge boson gB, which controls the decay rate of the
saxion and of the axion, and (2) the Stückelberg mass.

II. AXIONS, SAXIONS, AND ALL ORDERS
INTERACTIONS

The contributions of the axion and saxion to the total
Lagrangian are derived from the combination of the
Stückelberg and Wess-Zumino terms. The complete ax-
ion/saxion Lagrangian expressed in terms of component
fields is given by

L axion=saxion ' LSt þLWZ (9)

and contains a mixing among the D terms which is rather
peculiar, as we are going to show. The off-shell expression
of this Lagrangian is given by

Laxion=saxion ¼
1

2
ð@' ImbþMStB'Þ2 þ

1

2
@' Reb@' Reb

þ i

2
c b(

'@' "c b þ
i

2
"c b "(

'@'c b

þ Fy
bFb þLaxion;i; (10)

where the expression ofLaxion;i is quite lengthy and can be
found in Appendix A [Eq. (A10)].
The equation of motion for the auxiliary field Fb can be

derived quite immediately and give for the F term of the
Stückelberg field the expression
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Fb ¼ " 1

16

cG
MSt

")a
G
")a
G " 1

16

cW
MSt

")i
W
")i
W " 1

2

cY
MSt

")Y
")Y

" 1

2

cB
MSt

")B
")B þ 1

2

cYB
MSt

")Y
")B: (11)

One important feature of the supersymmetric model is that
b is a complex field with its real and imaginary parts.
While Imb may appear in the CP-odd part of the scalar
sector and undergoes mixing with the Higgs sector, its real
part, Reb, the saxion (or scalar axion) before the EW
symmetry breaking, has a mass exactly equal to the
Stückelberg mass, as expected from supersymmetry. We
recall that in the absence of supersymmetry (SUSY) break-
ing parameters, the components of the Stückelberg multi-
plet form, together with the vector multiplet of the
anomalous gauge boson, a massive vector multiplet of
mass MSt. This is composed of the massive anomalous
gauge boson, whose mass is given by the Stückelberg
term, the massive saxion, and a massive Dirac fermion of
mass MSt. The fermion is obtained by diagonalizing the
2-dimensional mass matrix constructed in the basis of
)B—the gaugino from the vector multiplet B̂—and c b,
which is the axino of the Stückelberg multiplet. The diag-
onalization of this matrix trivially gives two Weyl eigen-
states of the same massMSt, which can be assembled into a
single massive Dirac fermion of the same mass. Notice that
in this reidentification of the degrees of freedom contained

in b̂ and in the vector multiplet B̂, Imb takes the role of a
Nambu-Goldstone mode and can be gauged away.
The saxion has typical interactions of the form RebFiFj,

with the gauge fields which have mixed anomalies with
Uð1ÞB, beside nonpolynomial interactions with the remain-
ing fields of the theory. As we are going to elaborate, this
features shows up because of the presence of terms con-
sisting of the product of two D fields and the saxion. To
clarify this point, we recall that the general Lagrangian
contains a supersymmetric Wess-Zumino term of the form

LWZ;Y ¼ " 1

2

Z
d4"

cY
MSt

b̂WY
$W

Y$%ð ""2Þ þ H:c:; (12)

which gives, after the expansion in components, a term
proportional to

cY
MSt

RebDYDY: (13)

This kind of terms, once the equations of motion (EOM) of
the auxiliary fields D are calculated and substituted back
into the Lagrangian, give the nonpolynomial form of the
potential. Furthermore, from the WZ term corresponding
to the anomaly BBY (which is the term proportional to
cYB), we get a term proportional to RebDYDB so that the
EOM for the Abelian D fields are coupled. The derivation
of such equations involves all the terms of the Lagrangian
discussed in Appendix A. We obtain

DB;OS¼
1

12þ12
ffiffiffi
2

p
RebðcBþcYÞ=MSt"6Reb2ðc2YB"4cYcBÞ=M2

St

"#
2
cB
MSt

& ffiffiffi
2

p
þ2

cY
MSt

Reb
'
"c2YB
M2

St

Reb
$
ð"3i)Bc bþH:c:Þ

"12MStReb"12
ffiffiffi
2

p
cYReb

2þ12gB

&
1þ

ffiffiffi
2

p cY
MSt

Reb
'
ðBSS

ySþBH1
Hy

1H1

þBH2
Hy

2H2þBDR
~Dy
R
~DRþBUR

~Uy
R
~URþBQ

~Qy ~QþBR
~Ry ~RþBL

~Ly ~LÞþ3
ffiffiffi
2

p cYB
MSt

ði)Yc bþH:c:Þ

þ
ffiffiffi
2

p cYB
MSt

gYRebð"3Hy
1H1þ3BH2

Hy
2H2þ2 ~Dy

R
~DR"4 ~Uy

R
~URþ ~Qy ~Qþ6 ~Ry ~R"3 ~Ly ~LÞ

%
;

DY;OS¼
1

12þ12
ffiffiffi
2

p
RebðcBþcYÞ=MSt"6Reb2ðc2YB"4cYcBÞ=M2

St

"
3
c2YB
M2

St

Rebði)Yc bþH:c:Þþ3
ffiffiffi
2

p cYB
MSt

ði)Yc bþH:c:Þ

"6
ffiffiffi
2

p
cYBReb

2þ6
ffiffiffi
2

p cYB
MSt

RebgBðBSS
ySþBH1

Hy
1H1þBH2

Hy
2H2þBDR

~Dy
R
~DRþBUR

~Uy
R
~UR

þ2gB

&
1þ

ffiffiffi
2

p cB
MSt

Reb
'
ð"3Hy

1H1þ3BH2
Hy

2H2þ2 ~Dy
R
~DR"4 ~Uy

R
~URþ ~Qy ~Qþ6 ~Ry ~R"3 ~Ly ~LÞ

%
; (14)

showing that their on-shell expressions are characterized by the appearance of the saxion field in a nonpolynomial form.
The presence of the Stückelberg mass allows one to perform an expansion of these terms to all orders in Reb=MSt. The first
terms of the series expansion are given by

1

12þ 12
ffiffiffi
2

p
RebðcB þ cYÞ=MSt " 6Reb2ðc2YB " 4cYcBÞ=M2

St

¼ 1

12
" cY

Reb

6
ffiffiffi
2

p
MSt

" cB
Reb

6
ffiffiffi
2

p
MSt

þ 1

6
c2Y

Reb2

M2
St

þ 1

24
c2YB

Reb2

M2
St

þ 1

6
c2B

Reb2

M2
St

þ 1

6
cBcY

Reb2

M2
St

þOðReb2=M2
StÞ: (15)
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We present a list of the vertices to leading order in 1=MSt in
Fig. 1. Additional vertices (not shown) come with n inser-
tions ofReb and a suppression by higher powers (2n) ofMSt.
Some considerations are in order concerning the allowed
values of MSt. A very large Stückelberg mass, in principle,
would be sufficient to guarantee that the effect of reheating—
caused by the decay of the saxion—takes place well above
the temperature of nucleosynthesis (see for instance the
discussion in [32]) therebyavoiding the problemof a possible
late entropy release at that time. In this case one can essen-
tially neglect the saxion from the low energy spectrum.
For moduli of string origin the required mass value
(!100 TeV), much larger than in our case, is justified by
the suppressed gravitational interaction of the modulus with

the rest of the matter fields and works as an enhancing factor
for its decay. In our case, instead, such a suppression is absent
and a fast decay of the saxion is guaranteed already by a
Stückelberg mass around the TeV scale.

III. THE SCALAR POTENTIAL AND THE SAXION

As we have mentioned, in this model there are three
scalar fields which take a VEV, H1, H2, and S, the scalar
components of the scalar superfield Ŝ. We assume that also
the saxion field gets a VEV, vb. The scalar potential is
composed by contributions coming from the D terms,
F terms, and scalar mass terms. Expanding up to
OðReb=MStÞ we find

V¼ j)H1 (H2j2þ j)Sj2ðjH1j2þ jH2j2Þþm2
1jH1j2þm2

2jH2j2þm2
SjSj2þða)SH1 (H2þH:c:Þ

"1

8
g2YðHy

1H1"Hy
2H2Þ2"

1

2
g2BðBH1

Hy
1H1þBH2

Hy
2H2þBSS

ySÞ2"1

8
g22½ðHy

1H1"Hy
2H2Þ2þ4jHy

1H2j2*

þReb3
#
cBMStffiffiffi

2
p þgY

ðcY þcBÞcYB
2MSt

ðHy
1H1"Hy

2H2Þ
$
"Reb2

#
m2

Reb

2
þM2

St

2
þ

ffiffiffi
2

p
cBgBðBH1

Hy
1H1

þBH2
Hy

2H2þBSS
ySÞþcYBgB

2
ffiffiffi
2

p ðHy
1H1"Hy

2H2Þ
$
þReb

"
gBMStðBH1

Hy
1H1þBH2

Hy
2H2þBSS

ySÞ

þ cWg2
32

ffiffiffi
2

p
MSt

½ðHy
1H1"Hy

2H2Þ2þ4jHy
1H2j2*þ

cYg
2
Y

4
ffiffiffi
2

p
MSt

ðHy
1H1"Hy

2H2Þ2þ
cBg

2
Bffiffiffi

2
p

MSt

ðBH1
Hy

1H1þBH2
Hy

2H2þBSS
ySÞ2

þcYBgYgB
2

ffiffiffi
2

p
MSt

ðBH1
Hy

1H1þBH2
Hy

2H2þBSS
ySÞðHy

1H1"Hy
2H2Þ

%
: (16)

To proceed with the analysis of this potential we introduce
the following parametrizations:

H1 ¼
1ffiffiffi
2

p ReH0
1 þ i ImH0

1

ReH"
1 þ i ImH"

1

 !
;

H2 ¼
1ffiffiffi
2

p
ReHþ

2 þ i ImHþ
2

ReH0
2 þ i ImH0

2

 !
; S¼ 1ffiffiffi

2
p ðReSþ i ImSÞ;

expanded around the VEVs of the Higgs fields and of the
saxion as

hH1i ¼
1ffiffiffi
2

p v1

0

 !
; hH2i ¼

1ffiffiffi
2

p 0

v2

 !
; tan! ¼ v2

v1
;

hSi ¼ vSffiffiffi
2

p ; hRebi ¼ vbffiffiffi
2

p : (17)

The scalar mass parameters can be expressed in terms of
the remaining parameters of the theory using the minimi-
zation conditions for the scalar potential. In particular,
taking a derivative of the potential with respect to the
saxion field we get the relation

@V

@Reb
¼ "vbm

2
Reb " vbM

2
St þ

1

2
gBMStBH1

v2
1

þ 1

2
gBMStBH2

v2
2 þ

1

2
gBMStBSv

2
S; (18)

where we have neglected all the contributions suppressed
by the Stückelberg mass. We can use this relation as a
necessary condition in order to expressm2

Reb in terms of the
VEVs and of the other parameters of the scalar potential. A
numerical analysis of the Hessian at this point, for the
selected parameters of the model used in our simulations,
shows that indeed this extremal point indeed corresponds
to a minimum.
We will try to highlight the most interesting features of

these types of models and the implications for the axion,
which are all connected to the properties of the vacuum of
these theories below the scale of SUSY breaking and at the
scales of the electroweak and QCD phase transitions.

IV. SAXION DECAY MODES

Having summarized the basic structure of the model, we
now turn to describe the leading contributions to the
2-body decays of the saxion. The goal of this analysis is
to ensure that the decay rate of the saxion is such that
it occurs fast enough in order not to interfere with the
nucleosynthesys.
We will compute its decay rate by considering the

worst possible scenario, i.e. by assuming that this decay
occurs around the SUSY breaking scale, or temperature
T around 1 TeV. At this temperature, the decays of the
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saxion are parametrized by the typical SUSY breaking
scales such as Mb and MY , both of OðMSUSYÞ. The model
is in a symmetric electroweak phase (MSUSY > v), which
justifies the use of the interaction eigenstates (rather than

the mass eigenstates) for the description of the final
decay products.
The relevant interactions for the saxion decay are de-

scribed by the general Lagrangian

Lsaxion dec ¼ Reb
#
gBMStBH1

Hy
1H1 þ gBMStBH2

Hy
2H2 þ gBMStBSS

ySþ gBMStBQ

X3

j¼1

~Qy
j
~Qj þ gBMStBDR

X3

j¼1

~Dy
R;j

~DR;j

þ gBMStBUR

X3

j¼1

~Uy
R;j

~UR;j þ gBMStBL

X

l¼e;';*

~Ly
l
~Ll þ gBMStBR

X

l¼e;';*

~Ry
l
~Rl " i

cB
2

ffiffiffi
2

p ð)Bc b þ ")B
"c bÞ

" i
cYB
2

ffiffiffi
2

p ðc b)Y þ "c b
")YÞ

$
: (19)

They involve CP-even and CP-odd massless scalars, the
extra singlet scalar S, the squarks, and the sleptons and the
gauginos c b, )Y . We compute the total decay rate into
fermions, squarks and sleptons, and Higgs scalars. The left-
handed doublets of the squarks and the sleptons are defined as

~Qj and ~Ll, respectively, while the right-handed singlets are
~UR;j, ~DR;j, and ~Rl, with j, l labeling the fermion families.
(i) Decays into fermions.—Assuming that Mb + MY

are slightly less than 1 TeV, the decay rates of the
saxion into one gaugino and one axino are

FIG. 1. Saxion interactions to lowest order in 1=MSt. An infinite number of additional higher order interactions (in powers of 1=MSt)
are generated by the insertion on these vertices of n powers of saxion lines. We use the double line notation for Majorana particles.
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#ðReb ! ")Bc bÞ ¼ c2B
MReb

32&

&
1" 4

M2
b

M2
Reb

'
3=2

;

#ðReb ! ")Yc bÞ ¼ c2YB
MReb

32&

&
1" 4

M2
Y

M2
Reb

'
3=2

(20)

with the expressions of the coefficients cB and cYB
determining the couplings given explicitly in Eq. (4).
Notice that these rates are large due to the linear
dependence on MRebð¼ MStÞ.

(ii) Decays into squarks and sleptons.—In this channel
we consider, for simplicity, the decay only into
squarks and sleptons of the same type. Even in
this case we are assuming that the masses of the
squarks and of the sleptons are all equal and slightly
below 1 TeV. The decay rate into the i-type sfermion
is given by

#ðReb ! ~fyi ~fiÞ ¼
g2i)

1=2

16&M3
Reb

; (21)

where the kinematic function ) is, in general, de-
fined as ) ¼ ðM2

i þM2
j "M2

Reb
Þ2 " 4M2

i M
2
j (here

with Mi ¼ Mj), and the couplings gi, in the various
cases, are defined as

gi¼

8
>>>>>>>><
>>>>>>>>:

NccUR
R-handed singletu-type squark;

NccDR
R-handed singlet quarkd-type squark;

NccQL
L-handed doublet squark;

cR R-handed singlet slepton ~e; ~';~*;

cL L-handed doublet slepton.

(22)

Here Nc ¼ 3 is the color factor and the various
couplings are given as

cDR
¼ 1

2gBMStBDR
; cUR

¼ 1
2gBMStBUR

;

cQL
¼ "1

2gBMStBQ; cL ¼ "1
2gBMStBL;

cR ¼ 1
2gBMStBR: (23)

(iii) Decays into massless scalars.—The decay rate into
particles of the Higgs sector that we denote generi-
cally with hi ¼ ReH1; ImH1; . . . is given by

#ðReb ! hihiÞ ¼
s2i

32&MReb

&
1" 4

M2
si

M2
Reb

'
1=2

;

(24)

where the couplings si are defined as

si ¼

8
>><
>>:

cH1
H1 Higgs doublet;

cH2
H2 Higgs doublet;

cS S Higgs singlet;

(25)

and the coefficients cH1
, cH2

, and cS are

cH1
¼ "1

4gBMStBH1
; cH2

¼ "1
4gBMStBH2

;

cS ¼ "1
4gBMStBS: (26)

The total decay rate is obtained by summing over all the
decay modes

#tot ¼ #ðReb ! ")0
bc bÞ þ #ðReb ! ")Yc bÞ

þ
X

i

#ðReb ! ~"fi ~fiÞ þ
X

i

#ðReb ! hihiÞ: (27)

All the decay rates depend upon the value of the extra
UBð1Þ coupling gB, the Stückelberg mass MSt, and the
SUSY breaking scale MSUSY.
The total decay rate and the lifetime of the saxion are

shown in Fig. 2, with the saxion mass MReb given by the
Stückelberg scale (MReb ¼ MSt) around 1.4 TeV, and with
all the squarks and the sleptons in the final state taken of a
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FIG. 2. Total decay rate and lifetime of the saxion for different values of gB as a function of the Stückelberg mass.
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mass of 700 GeV. All the particles of the Higgs sector are
considered to be massless. For gB ¼ 0:01 we obtain a
saxion whose decay rate is around 60 MeV if its mass is
1.7 TeV, and which decays rather quickly, since its lifetime
is about 10"23 s. The lifetime decreases quite significantly
as we increase the gauge coupling of the anomalous gauge
symmetry. For instance, for gB ¼ 0:1 it decreases to
!10"24 s, since the phase space for the decay is consid-
erably enhanced.

We conclude that the saxion decays sufficiently fast and
does not generate any late entropy release at the time of
nucleosynthesis. Obviously, this scenario remains valid for
all values of the Stückelberg mass above the 1 TeV value.
Therefore, in the analysis of the evolution of the contribu-
tions to the total energy density (+) of the Universe, either
due to matter (+m) or to radiation (+R), at temperatures
T , 2 TeV, the contribution coming from the saxion is
entirely accounted for by +R.

At this point, having cleared the way of any possible
obstruction due to the presence of moduli at the low energy
stage (T , 2 TeV) of the evolution of our model, we are
ready to discuss the relevant features of the Stückelberg
field. In particular, we will discuss the appearance of a
physical axion, the physical component of the Stückelberg,
at the electroweak scale. This is extracted from the CP-odd
sector and generated by the mechanism of vacuum mis-
alignment taking place at the same scale. In particular, the
discussion serves to illustrate how a flat—but physical—
direction might be singled out from the vacuum manifold,
acquiring a small curvature at the electroweak phase
transition.

V. THE FLAT DIRECTION OF THE PHYSICAL
AXION FROM HIGGS-AXION MIXING

In [34,35] we have presented in some detail an approxi-
mate procedure in order to identify in the CP-odd sector
one state that inherits axionlike interactions. The approach
did not require the explicit expressions of the curvature
terms in the CP-odd part of the supersymmetric potential,
which are instead needed in the discussion of the angle of
misalignment. Here we are going to extend this analysis by
giving the explicit parametrization of these additional
terms. The determination of the angle of misalignment
and its parametrization in terms of the physical axion is
based on an extension of the method presented in [30]. We
are going to illustrate this point starting, for simplicity,
from the nonsupersymmetric case and then moving to the
supersymmetric one.

A. The nonsupersymmetric case

In the nonsupersymmetric case the scalar sector contains
two Higgs doublets VPQðHu;HdÞ plus one extra contribu-
tion (a PQ breaking potential), denoted as V 6P 6QðHu;Hd; bÞ,
which mixes the Higgs sector with the Stückelberg axion b,

V ¼ VPQðHu;HdÞ þ V 6P 6QðHu;Hd; bÞ: (28)

The mixing induced in the CP-odd sector determines the
presence of a linear combination of the Stückelberg field b
and of the Goldstones of the CP-odd sector, called #,
which is characterized by an almost flat direction, whose
curvature is controlled by the strength of the extra potential
V 6P 6Q. VPQðHu;HdÞ is the ordinary potential of 2 Higgs
doublets,

VPQ ¼ '2
uH

y
uHu þ'2

dH
y
dHd þ )uuðHy

uHuÞ2

þ )ddðHy
dHdÞ2 " 2)udðHy

uHuÞðHy
dHdÞ

þ 2)0
udjHT

u*2Hdj2: (29)

Concerning the V 6P 6Q contribution to the total potential, its
structure is inferred on the basis of gauge invariance and
given by

V 6P 6Q ¼ )0ðHy
2H1e

"igBðBH2
"BH1

Þðb=2MStÞÞ
þ )1ðHy

2H1e
"igBðBH2

"BH1
Þðb=2MStÞÞ2

þ )2ðHy
2H2ÞðHy

2H1e
"igBðBH2

"BH1
Þðb=2MStÞÞ

þ )3ðHy
1H1ÞðHy

2H1e
"igBðBH2

"BH1
Þðb=2MStÞÞ þ H:c:

(30)

These terms are the only ones allowed by the symmetry
of the model and are parametrized by one dimensionful
()0 ' ")0v) and three dimensionless constants ð)1;)2;)3Þ.
The CP-odd sector is then spanned by the three fields

(ImH1, ImH2, and b), with the potential VPQ a function
only of H1 and H2. After electroweak symmetry breaking,
due to Higgs-axion mixing, b can be written as a linear
combination of a physical axion and of an extra compo-
nent. The latter is a linear combination of the two
Goldstone modes of the total potential (VPQ þ V 6P 6Q), de-
noted as G1

0, G
2
0. The physical axion, #, i.e. the component

of b which is not proportional to the two Goldstones, can
be identified using the rotation matrix O# which relates
interaction and mass eigenstates in the CP-odd sector

G1
0

G2
0

#

0
BB@

1
CCA ¼ O#

ImH0
1

ImH0
2

b

0
BB@

1
CCA; (31)

which takes the form

b ¼ O#
13G

1
0 þO#

23G
2
0 þO#

33#: (32)

# inherits WZ interactions from b via Eq. (32), once this is
introduced into the WZ counterterms.
From an explicit computation one finds that O#

13 ¼ 0,
O#

23 !Oð1Þ, and O#
33 ! v=MSt. The Goldstones of the two

neutral gauge bosons, GZ, GZ0 are linear combinations of
G1

0 and G2
0 and can be extracted from the bilinear mixings

after an expansion around the broken electroweak vacuum.
Then, the entire CP-odd sector can be spanned by the basis
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ðGZ;GZ0 ;#Þ. The presence of an extra degree of freedom in
this sector has been established in [33] using a simple
counting of the degrees of freedom. We review this point
for clarity.

There are 9 degrees of freedom in the set
ðAY;W3; B; ImH1; ImH2Þ, where B is the massive
Stückelberg gauge vector field, before electroweak sym-
metry breaking, as well as 9 in the set ðA,; Z; Z

0;#Þ, which
is generated after the breaking. The direction determining
the gauged axion # is then physical but flat, in the absence
of an extra potential which may depend explicitly on b.
The potential V 0 is responsible for giving a small mass for
# and can be used to parametrize the mechanism of vac-
uum misalignment originated at the electroweak scale.

One can explore the structure of this potential and, in
particular, investigate its periodicity. The phase of the
potential is indeed parametrized by the ratio #=(# [30]

V 6P 6Q ¼ 4v1v2ð)2v
2
1 þ )3v

2
2 þ )0Þ cos

&
#

(#

'

þ 2)1v
2
1v

2
2 cos

&
2
#

(#

'
(33)

with a mass for the physical axion # given by

m2
# ¼ 2v1v2

(2
#

ð ")0v
2 þ )2v

2
1 þ )3v

2
2 þ 4)1v1v2Þ + )effv

2;

(34)

with (# !OðvÞ. The size of this expression is the result of
two factors which appear in Eq. (34): the size of the
potential, parametrized by ð ")0;)1;)2;)3Þ, and the electro-
weak VEVs of the two Higgses. The appearance of # in
Eq. (33)—in the phase of the extra potential—shows ex-
plicitly that the angle of misalignment is entirely described
by this field. The angle is defined as

"ðxÞ ' #ðxÞ
(#

; (35)

where

(# ' 2v1v2MStffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2BðBH2

" BH1
Þ2v2

1v
2
2 þ 2M2

Stðv2
1 þ v2

2Þ
q (36)

is the new dimensionful constant which takes the same role
of the scale fa of the PQ case ["ðxÞ ¼ a=fa]. The potential
is characterized by a small strength !)effv

4, and for this
reason one can think of # as a pseudo Nambu-Goldstone
mode of the theory.

At this stage, it is important to realize that the size of the
extra potential is significant in order to establish whether
the degree of freedom associated with the axion field
remains frozen or not at the electroweak scale. For in-
stance, if )eff is associated with electroweak instantons
()eff ! )inst), then m# is very suppressed (see the discus-
sion in Sec. VC) and far smaller than the corresponding
Hubble rate at the electroweak scale

HðTÞ ¼ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

5
&3g-;T

s
T2

MP
; (37)

which is about 10"5 eV. In the expression above g-;Ti
is the

number of effective massless degrees of freedom of
the model at a given temperature (T), while MP denotes
the Planck mass. We recall that the condition

m#ðTÞ ! 3HðTÞ (38)

which ensures the presence of oscillations and determines
implicitly the oscillation temperature Ti, is indeed impos-
sible to satisfy if the misalignment that generates the value
of m# at the electroweak scale is assumed of being of
instanton origin (see the discussion in Appendix C). This
implies that the degree of freedom associated with this
physical axion would be essentially frozen at the electro-
weak scale, and the oscillations could take place at a later
stage in the early universe, only around the QCD hadron
transition. Instead, a more sizable potential, providing an
axion mass larger than 10"5 eV, would allow such oscil-
lations. For an axion mass around 1 MeV oscillations
indeed occur, but are damped by the particle decay, given
that its lifetime (*l ! 10"4 s) is much larger than the
period of their oscillation (*osc ! 10"13 s). This discussion
is going to be expanded to the supersymmetric case.

B. Supersymmetry and the angle of misalignment

In the supersymmetric case the situation is analogous, in
the sense that the physical direction # can be identified by
the same criteria. The superpotential that we are consider-
ing allows the presence of 1 extra degree of freedom, given
by ImS, to appear in the CP-odd sector beside the states
ðImH1; ImH2; ImbÞ, already present in the nonsupersym-
metric case.
From the supersymmetric potential V in (16), we iden-

tify two massless states that we call G0
1 and G0

2, and a
massive eigenstate, called H0

4 . G
0
1 and G0

2 do not coincide
with the true Goldstones of the model, as in the previous
case, since the V potential does not include any contribu-
tion involving Imb. The correct neutral Goldstone modes
are extracted from the derivative couplings between the
CP-odd scalar fields and the neutral gauge bosons present
in the Lagrangian. The physical axion is then identified as
the massless direction which is orthogonal to the subspace
spanned by ðGZ;GZ0 ; H0

4Þ. This state is called H5
0 ' # and

is given by the linear combination

# ¼ 1

N#
½MStv1v

2
2 ImH0

1 þMStv
2
1v2 ImH0

2

"MStv
2vS ImS" BSgBðv2v2

S þ v2
1v

2
2ÞImb*;

N# ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Stv
2ðv2v2

S þ v2
1v

2
2Þ þ B2

Sg
2
Bðv2v2

S þ v2
1v

2
2Þ2

q
:

(39)

It is important to remark that this state is not constructed, at
least at this stage, from the matrix O#, since the projection
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of Imb on # would be zero, if the matrix O# were derived
from the potential V since it does not depend on Imb. Also
in this case, the identification of the Goldstones of the two
neutral massive gauge bosons (Z and Z0) is obtained by
looking at the bilinear mixing terms; these appear in the
Lagrangian once this is rewritten in the physical basis (in
the form MZZ@GZ, and MZ0Z0@GZ0). Then one can imme-
diately figure out that the linear basis spanning the entire
CP-odd sector can be completed by the addition of an
extra, orthogonal state # ðGZ;GZ0 ; H0

4 ;#Þ. The new entry
parametrizes a massless but physical direction in this sec-
tor. Once Imb is reexpressed in terms of the physical axion
# and of the Goldstone modes GZ, GZ0 of the massive
gauge bosons, # will inherit from Imb axionlike interac-
tions and will be promoted to a generalized PQ axion.

At this point, having identified this flat but physical
direction of the potential in the CP-odd sector, one can
ask the obvious question whether the same potential can
acquire a curvature. These effects are indeed parametrized
by the strength ()eff) of the potential V

0 (the ‘‘extra poten-
tial’’) that we are going to identify below, and which
remains a free parameter in the theory.

One special comment is deserved by vS, the VEVof the
scalar singlet, which is new compared to the standard
MSSM scenario and which is part of the scalar potential.

We recall that this new scale is essentially bound by the
condition )vS !'! 102–103 GeV [see Eq. (A6)]. This
defines the typical range for the ' term, which sets the
scale of the interaction for the two Higgs doublets in
supersymmetric theories.
In our case we are allowed to parametrize this new

nonperturbative contribution (V0) to the potential, as dis-
cussed in the previous section, in a rather straightforward
way, by classifying all the phase-dependent operators
which can be constructed using the fundamental fields of
the model. In analogy to the nonsupersymmetric case (the
MLSOM) [33] we rely only on gauge invariance as a
guiding principle to identify them. These include, in par-
ticular, a dependence of V0, again in the form of a phase
factor, from the Stückelberg field Imb.
The contributions appearing in V 0 do not need to be

given necessarily in a supersymmetric form, since we are
assuming that supersymmetry is already broken at the scale
at which they appear (v <MSUSY). They are parametrized
in the form

V 0 ¼
X6

i¼1

Vi; (40)

where

V1 ¼ a1S
4e"i4gBBSðImb=2MStÞ þ H:c:;

V2 ¼ e"igBBSðImb=2MStÞða2H1 (H2S
2 þ b2H

y
1H1Sþ b3H

y
2H2Sþ b4S

yS2 þ d1SÞ þ H:c:;

V3 ¼ e"igB2BSðImb=2MStÞða3Hy
1H1S

2 þ a4H
y
2H2S

2 þ a5S
yS3 þ c1S

2Þ þ H:c:;

V4 ¼ a6ðH1 (H2Þ2eigB2BSðImb=2MStÞ þ H:c:;

V5 ¼ b1S
3e"igB3BSðImb=2MStÞ þ H:c:;

V6 ¼ c2H1 (H2e
igBBSðImb=2MStÞ þ H:c:

(41)

In the expressions above we have grouped together terms
that share the same phase factor. Notice that the parameters
ai, bj, ck, and d1 carry different mass dimensions. For these
reasons they can be parametrized by suitable powers of the
SUSY breaking mass MSUSY times )eff . We explicitly
obtain the estimates

ai ! )eff ; bj ! )effMSUSY; ck ! )effM
2
SUSY;

d1 ! )effM
3
SUSY: (42)

If we introduce any of the terms in Eq. (41), and recompute
the CP-odd mass matrix using the new potential (V þ V0),
this gets modified, but we still find two massless eigen-
states corresponding to the neutral Goldstone modes,
which also in this case we call G1

0 and G2
0. They can be

expressed as linear combinations of the neutral Goldstone
states coming from the derivative couplings between the
gauge bosons and the CP-odd Higgs fields. An important
point to make is that these states (Goldstone modes) do not
depend on the parameters of the Peccei-Quinn breaking

potential, as we expect, since the presence of this extra
potential does not affect the bilinear derivative couplings
through which they are identified.
In the basis ðImH1

1 ; ImH2
2 ; ImS; ImbÞ they are given by

G1
0 ¼

"
v1

v
;
"v2

v
; 0; 0

%
;

G2
0 ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

St þ g2BðB2
H1
v2
1 þ B2

H2
v2
2 þ B2

Sv
2
SÞ

q

.
"
gBBS

v1v
2
2

v2 ; gBBS
v2
1v2

v2 ;"gBBSvS;MSt

%
:

(43)

C. The strength of the potential and !eff

One important comment concerns the possible size of
the axion mass m# induced by V 0 at the electroweak scale.
In this respect we will take into account two basic possi-
bilities. A first possibility that we will explore is to assume
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that the axion mass is PQ like, in the milli-eV region; as a
second possibility we will select an axion mass around the
MeV region. These choices cover a region of parameter
space that has never been analyzed in these types of
models, while a study of the GeV region for the axion
mass has been addressed before in [41]. These choices
have to be confronted with constraints coming from
(a) direct axion searches, (b) nucleosynthesis constraints,
and (c) constraints on the relic densities fromWMAP data.

A PQ-like axion is bound to emerge in the spectrum of
the theory if the potential V 0 is strongly suppressed and the
real mechanism of misalignment which determines its
mass is the one taking place at the QCD transition, as
illustrated in Fig. 3. The value of )eff , under these assump-
tions, should be truly small and one way to achieve this
would be to attribute its origin to electroweak instantons.
Using the numerical relations for the electromagnetic ($)
and weak couplings ($W), 1=$ðMZÞ ¼ 128 and $W ¼
$=sin2"W with sin2"WðMZÞ ¼ 0:23 on the Z mass
ð$WðMZÞ ¼ 0:034Þ, the exponential suppression of the
extra potential is controlled by )eff ! e"185 ' )inst ¼
4:5. 10"81. This corresponds to a mass for the axion
given by m# ! ffiffiffiffiffiffiffiffi

)eff

p
v! 10"29 eV. This mass would be

obviously redefined at the QCD epoch.
As we have briefly mentioned in the Introduction, mass

values of the axion field around 10"33 eV [for global
U(1)’s or of PQ type] and with a spontaneous breaking
scale fa ! 1018 eV have been considered as a possible
origin of a cosmological constant !4 ! ð10"3 eVÞ4 [11].
In such models the misalignment is purely of electro-
weak origin and connected to electroweak instantons.
Oscillations of fields of such a mass would not take place
even at the current cosmological time.

Instead, for an axion of a mass in the MeV region, the
value of )eff is larger (!10"12) and will be estimated below.
In this case the effect of vacuum misalignment at the QCD
scale is irrelevant in determining the mass of this particle.
A more massive axion, in fact, decays at a much faster rate
than a very light one and the usual picture typical of a long-
lived PQ-like axion, in this specific case, simply does not
apply.
In order to characterize in more detail the potential in

Eq. (40), we proceed with a careful analysis of the field
dependence of the phase factors in the exponentials that we
expect to be written exclusively in terms of the physical
fields of the CP-odd sector,H4

0 , and the axion # ð# ' H5
0Þ.

In fact, this is the analogous (and a generalization) of what
was found in the previous section [see Eq. (33)], where the
periodicity has been shown to depend only on the axion #.
For this purpose we use the following parametrization of
the fields:

H1
1ðxÞ ¼

1ffiffiffi
2

p ð+1
1ðxÞ þ v1Þei$

1
1ðxÞ;

H2
1ðxÞ ¼

1ffiffiffi
2

p +2
1ðxÞei$

2
1ðxÞ; H1

2ðxÞ ¼
1ffiffiffi
2

p +1
2ðxÞei$

1
2ðxÞ;

H2
2ðxÞ ¼

1ffiffiffi
2

p ð+2
2ðxÞ þ v2Þ; ei$

2
2ðxÞ

SðxÞ ¼ 1ffiffiffi
2

p ð+SðxÞ þ vSÞei$SðxÞ; (44)

and select some of the Vi in Eq. (41) in order to illustrate
the general behavior.
For instance, if we consider only the V1 term we get the

corresponding symmetric mass matrix for the total poten-
tial V þ V1, with V defined in Eq. (16),

M2
odd ¼ " a)ffiffiffi

2
p

v2vS

v1
vS v2 0

( v1vS

v2
v1 0

( ( v1v2

vS
þ 8

ffiffiffi
2

p
a1
a)
v2
S "4

ffiffiffi
2

p
a1
a)

gBBSv
3
S

MSt

( ( ( 2
ffiffiffi
2

p
a1
a)

g2BB
2
Sv

4
S

M2
St

0
BBBBBB@

1
CCCCCCA
; (45)

expressed in the basis ð$1
1;$

2
2;$S; ImbÞ. From this matrix

we get two null eigenvalues corresponding to the neutral
Goldstones and two eigenvalues which correspond to the
masses of the twoCP-odd statesH4

0 andH
5
0 . In this specific

case they take the form

m2
H4

0 ;H
5
0

¼ 1

2MStv1v2vS
ðA/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2"B

p
Þ;

A¼4a1v1v2v
3
Sð4M2

Stþg2BB
2
Sv

2
SÞ

þ
ffiffiffi
2

p
a)M

2
Stðv2

1v
2
2þv2v2

SÞ;
B¼16

ffiffiffi
2

p
a1a)M

2
Stv1v2v

5
Sð4v2M2

St

þg2BB
2
Sðv2

1v
2
2þv2v2

SÞÞ:

(46)

FIG. 3 (color online). Illustration of the two misalignments at
the electroweak (upper curve) and at the QCD phase transitions
(lower curve) for a PQ-like axion (not to scale).
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In the limit of a vanishing a1 ð!)effÞ we obtain a massless
state corresponding toH5

0 (#) and amassive one correspond-
ing toH4

0 . In fact, expanding the expressions above up to first
order in a1, which is a very small parameter due to (42), we
obtain for the two eigenvalues the approximate forms

m2
H4

0
’

ffiffiffi
2

p
a)

&
v1v2

vS
þ v1vS

v2
þ v2vS

v1

'

þ 16a1
v2
1v

2
2v

2
S

v2v2
S þ v2

1v
2
2

;

m2
H5

0

’ 4a1v
4
S½4v2M2

St þ g2BB
2
Sðv2v2

S þ v2
1v

2
2Þ*

M2
Stðv2v2

S þ v2
1v

2
2Þ

: (47)

These relations show that indeedmH5
0
isOð)effvÞ whilemH4

0

is OðvÞ.
Moving to the analysis of the phase factor of the same

term (V1), the linear combination of fields that appears in
the exponential factor is given by the expression

"" 1 '
4$SðxÞ
vS

" 2gBBSImbðxÞ
MSt

: (48)

We rotate this linear combination on the physical basis
ðGZ;GZ;H

4
0 ; H

5
0Þ using the rotation matrix O#. After the

rotation we can reexpress the angle of misalignment as a
linear combination of the physical states of the CP-odd
sector in the form

"" 1 ¼
H4

0

(H4
0

þ H5
0

(H5
0

: (49)

This linear combination will appear in all the operatorial
terms included in V 0 and is a generalization of Eq. (35),
with(H4

0
and(H5

0
defining, separately, the scales of the two

angular contributions to the total phase. It is not difficult to
show that the periodicity of the potential depends predomi-
nantly onH4

0 . This can be easily seen by analyzing the size
of (H4

0
and (H5

0
. In fact, expanding to first order in a1 we

get

1

(H4
0

¼ " 4v1v2

v2sgnBS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2v2

S þ v2
1v

2
2

q

" 8
ffiffiffi
2

p
v2
1v

2
2v

4
S½4v2M2

St þ g2BB
2
Sðv2v2

S þ v2
1v

2
2Þ*a1

a)M
2
Stðv2v2

S þ v2
1v

2
2Þ5=2sgnðBSÞ

þOða21Þ;
1

(H50
0

¼ " 8
ffiffiffi
2

p
v2
1v

2
2v

4
S½4v2M2

St þ g2BB
2
Sðv2v2

S þ v2
1v

2
2Þ*a1

a)M
2
Stðv2v2

S þ v2
1v

2
2Þ5=2sgnBS

þOða21Þ; (50)

with a) being proportional to the SUSY breaking scale
MSUSY. A more careful look at the structure of these two
scales shows that (H4

0
! vS (vS ¼ 400 GeV in our case)

while (H5
0
!MSUSY=)eff . Clearly, (H5

0
0 (H4

0
, but the

dependence of the extra potential on # is clearly affected
by the different possible sizes of )eff . For an instanton
generated potential ()eff ! )inst) the direction of # is
essentially flat and (H5

0
turns out to be very large. In

turn, this implies that the dependence of the potential V1

on H5
0 , which takes place exclusively through the expo-

nential, is negligible, being essentially controlled by H4
0

( ""1 !H4
0=v) with

V1 ! )effv
4 cosð ""1Þ: (51)

We can conclude, indeed, that in this case the effect of
misalignment on #, generated at the electroweak scale, can
be neglected. This feature is shown in the left panel of
Fig. 4, where we plot V 0ðH4

0 ;#Þ. It is immediately clear
from these plots that for )eff ! )inst the only periodicity of
the extra potential is in the variable H4

0 (left panel), due to
the flatness of the H5

0 direction. For a more sizable poten-
tial, with )eff ! 10"12, the curvature generated in # is
responsible for giving a mass to the axion in the MeV
range (Fig. 4, right panel). This result is generic for all
the terms. One can draw some conclusions regarding the
role played by the exponential phase and compare the
supersymmetric with the nonsupersymmetric case. In
the nonsupersymmetric case the periodicity of the potential
is controlled by the weak scale (v) and is expressed directly

FIG. 4 (color online). Shape of the extra potential V0 at the electroweak scale in the CP-odd sector in the (H4
0 , # ' H5

0) plane. # is an
almost flat direction for a strength induced by the instanton vacuum at the electroweak scale (left panel) and acquires a curvature for an
axion mass in the MeV region (curvature in the # direction, right panel).
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in terms of the physical component of b (which is a real
field). The size of the potential, in this case, is of order
)effv

4

V0 ! )effv
4 cos

&
#

v

'
(52)

and therefore very small, while the periodicity shows that
the amplitude of the axion field is #!OðvÞ. In the super-
symmetric case, more generally, we obtain for a generic
component Vi

V 0 ! )M4
SUSY cos

&
H4

0

vS
þ #

MSUSY=)eff

'
(53)

from which it is clear that the curvature in the axion field is
controlled by the parameter )eff . In the supersymmetric
case we can think of the periodicity in Eq. (53) as essen-
tially controlled by the massive CP-odd Higgs H4

0 , with a
period which is Oð&vSÞ, with superimposed a second
periodicity of Oð&MSUSY=)effÞ (with MSUSY=)eff 0 vS)
in the perpendicular direction (#). We conclude that the
actual structure of the complete (V þ V 0) potential indeed
guarantees the presence in the spectrum of a physical and
light pseudoscalar field. This analysis holds, in principle,
for an axion of any mass, although we do not explicitly
study an axion whose mass goes beyond the MeV region.
To have an axion which is long lived, the true discriminant
of our study is the axion mass, and for this reason we are
going to present a study of the decay rates of this particle
keeping the mass as a free parameter varying in the milli-
eV–MeV interval.

VI. DECAY OFA GAUGED
SUPERSYMMETRIC AXION

In this section we compute the decay rate of the axion of
the supersymmetric model into two photons, mediated
both by the direct PQ interaction and by the fermion
loop, which are shown in Fig. 5, keeping the axion mass
as a free parameter. Denoting with NcðfÞ the color factor
for a fermion specie, and introducing the function *f-ð*fÞ,
a function of the mass of the fermions circulating in the
loop with

* ¼ 4m2
f=m

2
#; -ð*Þ ¼ arctan2

1
ffiffiffiffiffiffiffiffiffiffiffiffi
"+2

f#

q ;

+f# ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1"

&
2mf

m#

'
2

s
;

(54)

the WZ interaction in Fig. 5 is given by

M '.
WZð# ! ,,Þ ¼ 4g#,,"½';.; k1; k2*; (55)

where g#,, is the coupling, defined via the relations

g#,, ¼ "gBBSð4cYg22 þ cWg
2
YÞ

16g2MSt

.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2v2
S þ v2

1v
2
2

4M2
Stv

2 þ g2BB
2
Sðv2v2

S þ v2
1v

2
2Þ

s
(56)

obtained from the rotation of the WZ vertices on the
physical basis (we will comment in more detail on the
size of this coupling in the next section). The massless
contribution to the decay rate coming from the WZ coun-
terterm #F,F, is given by

#WZð# ! ,,Þ ¼ m3
#

4&
ðg#,,Þ2: (57)

Combining also in this case the tree-level decay with the
1-loop amplitude, we obtain for # ! ,, the amplitude

M '.ð# ! ,,Þ ¼ M'.
WZ þM'.

f : (58)

The second amplitude in Fig. 5 is mediated by the
triangle loops and is given by the expression

M'.
f ð#!,,Þ¼

X

f

NcðfÞiC0ðm2
#;mfÞc#;f,, "½';.;k1;k2*;

f¼ fqu;qd;.l; l;#
/
1 ;#

/
2 g; (59)

where NcðfÞ is the color factor for the fermions. In the
domain 0<m# < 2mf, which is the relevant domain for
our study, with the axion being very light, the pseudoscalar
triangle when both photons are on mass shell is given by
the expression

C0ðm2
#; mfÞ ¼ " mf

&2m2
#
arctan2

&&4m2
f

m2
#
" 1

'"1=2
'

¼ " mf

&2m2
#

-ð*Þ: (60)

The coefficient c#;f,, is the factor for the vertex between the
axi-Higgs and the fermion current. The expressions of
these factors are

c#;qu ¼" i
ffiffiffi
2

p
yuMStv

2
1v2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðv2v2
Sþv2

1v
2
2Þ½4M2

Stv
2þgBBSðv2v2

Sþv2
1v

2
2Þ*

q ;

c#;qd ¼"v2yd
v1yu

c#;qu ; c#;l ¼ ye
yd

c#;qd : (61)
FIG. 5. Contributions to the axi-Higgs decay # ! ,,.
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We obtain the following expression for the decay
amplitude:

## ' #ð# ! ,,Þ

¼ m3
#

32&

"
8ðg#,,Þ2 þ

1

2

((((((((
X

f

NcðfÞi
*f-ð*fÞ
4&2mf

e2Q2
fc

#;f

((((((((
2

þ 4g#,,
X

f

NcðfÞi
*f-ð*fÞ
4&2mf

e2Q2
fc

#;f

%
; (62)

where the three terms correspond, respectively, to the
pointlike WZ term, to the 1-loop contribution, and to their
interference.

Notice that in the expression of this decay rate both the
direct [!ðg#,,Þ2] and the interference (! g#,,) contributions
are suppressed as inverse powers of the Stückelberg mass,

here taken to be equal to 1 TeV. We have chosen v as the
SM electroweak VEV, and for vS we have chosen the value
of 500 GeV. In order to have an acceptable Higgs spectrum,
the Yukawa couplings have been set to give the right
fermion masses of the standard ,odel, while for gB and
BS we have chosen gB ¼ 0:1 and BS ¼ 4.
We show in Figs. 6 and 7 results obtained from the

numerical evaluation of the decay amplitude as a function
of the mass of the axion m#, which clearly indicates that

the decay rates are very small for a milli-eV particle,
although larger than those of the PQ case [30]. We con-
clude that a PQ-like axion is indeed long lived also in these
models and as such could, in principle, contribute to the
relic densities of dark matter. For an axion with a mass in
the MeV region, instead, the particle is not stable and as
such would decay rather quickly. The decay, in this case, is

FIG. 6 (color online). Decay amplitude (left panel) and mean lifetime (right panel) for # ! ,, as a function of the axi-Higgs mass.

FIG. 7 (color online). Decay amplitude and mean lifetime for # ! ,, as a function of the axi-Higgs mass for an axion whose mass
is in the MeV range.
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fast enough (* & 10"3 s) and does not interfere with the
nucleosynthesis.

VII. COLD DARK MATTER BY MISALIGNMENT
OF THE AXION FIELD

In the case of a long-lived axion, the generation of relic
densities of axion dark matter, in this model, involves two
(sequential) misalignments, generated, as we have already
discussed, the first at the electroweak scale, and the second
at the QCD phase transition. The presence of two misalign-
ments at two separate scales, as discussed in [30], is typical
of axions which show interactions both with the weak and
with the strong sectors, due to the presence of mixed
anomalies. This point has been addressed in detail within
a nonsupersymmetric model, but in a supersymmetric sce-
nario the physical picture remains the same.

In the PQ-like case, at the first misalignment, taking
place at the electroweak scale, the physical axion is singled
out as a component of Imb, with a mass which is practically
zero, due to the small value of the curvature induced by the
potential generated by electroweak instantons (Fig. 3, top
panel) given in Eq. (40). In the case of a very small extra
potential ()eff ! )inst) it is the second misalignment that is
responsible for generating an axion mass. At the second
misalignment, taking place at the QCD phase transition, the
mass of this pseudo Nambu-Goldstone mode is redefined
from zero to a small but more significant value
(! 10"3 eV) induced by the QCD instantons (Fig. 3, bot-
tom). The final value of the mass is determined in terms of
the hadronic scale!QCD and of a second intermediate scale,
M2

St=v, which replaces fa in all of the expressions usually
quoted in the literature and held valid for PQ axions, as we
are now going to clarify.

(i) MeV axion.—An MeV axion is allowed only if the
extra potential (the misalignment) is assumed to be
generated at a scale different from the electroweak
phase transition, say at an earlier time. This mis-
alignment, in fact, should be unrelated to the (qua-
siperiodic) corrections induced at the electroweak
time, as shown in Fig. 4, the latter being of very
small size. However, such an axion would not be
long lived. One can easily realize that in this sce-
nario, due to the sizable value of m#, there is an
overlap between the period of coherent oscillations
at the QCD hadron transition and the typical lifetime
at which the axion decays. This can be trivially
checked by comparing the QCD time, defined as
the inverse Hubble rate at the temperature of con-
finement [HðTQCDÞ ! 10"11 eV, TQCD ! 200 MeV]
tQCD ! 10"4 s with the axion lifetime in this typical
mass range.

(ii) PQ-like axion.—For a PQ-like axion the effective
scale (M2

St=v) is the result of the product of two
factors: the first factor due to the rotation matrix of
the Stückelberg field Imb onto #—which is propor-

tional to v=M—times the second factor (1=MSt)
which is inherited from the original Imb=MStF ~F
(WZ) counterterm. Specifically, starting from
Eq. (39), the size of the projection of Imb into #
is given by

1

N#
BSgBðv2v2

S þ v2
1v

2
2Þ ! v=MSt; (63)

and hence a typical PQ interaction term involving
the Stückelberg field b becomes

Imb

MSt
FF0 ! #

M2
St=v

FF0: (64)

The physical state with a b component (i.e. #)
acquires an interaction to F ~F which is suppressed
by the scale M2

St=v.
Having identified this scale, if we neglect the axion mass

generated by V 0 [Eq. (40)] at the electroweak scale, the
final mass of the physical axion induced at the QCD scale
is controlled by the ratio m# !!2

QCDv=M
2
St, where the

angle of misalignment is given by "0 ¼ #v=M2
St.

Coming to the value of the abundances for a PQ-like
axion—defined as the number density to entropy ratio
Y ¼ n#=s—these can be computed in terms of the relevant
suppression scale appearing in the #F ~F interaction. We
have expanded on the structure of the computation in
Appendix C. If we indicate with "0ðTiÞ the angle of mis-
alignment at the QCD hadron transition and with Ti the
initial temperature at the beginning of the oscillations, the
expression of the abundances takes the form

Y#ðTiÞ ¼
&
v

MSt

'
45M2

Stð"0ðTiÞÞ2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5&g-;T

p
TiMP

; (65)

which depends linearly on MSt. As we have already men-
tioned, the computation of the relic densities for a non-
thermal population follows rather closely the approach
outlined in the nonsupersymmetric case. For instance, a
rather large value of MSt, of the order of 107 GeV [30],
determines a sizable contribution of the gauged axion to
the relic densities of cold dark matter. These, in turn,
follow rather closely the behavior expected in the case of
the PQ axion. In practice, to obtain a sizable nonthermal
population of gauged axions, MSt should be such that
M2

St=v! fa, with fa the usual estimated size of the PQ
axion decay constant. This allows a sizable contribution of
# to the relic density of cold dark matter, with a partial
contribution to % (%#h

2 ! 0:1) in close analogy to what
was expected in the case of the PQ axion. These consid-
erations, which are in close relation with what was found in
the nonsupersymmetric construction [30], in this case will
be subject to the constraints coming from the neutralino
sector and its abundances derived from WMAP. We will
come back to this point after presenting the results of our
simulations in the next sections.
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VIII. THE NEUTRALINO SECTOR

The neutralino sector is constructed from the eigenstates
of the space spanned by the neutral fields (i)W3 , i)Y , i)B,
~H1
1, ~H2

2,
~S, and c b), which involve the three neutral gau-

ginos, the two Higgsinos, the singlino (the fermion com-
ponent of the singlet superfield), and the axino component
of the Stückelberg supermultiplet. We denote withM#0

the
corresponding mass matrix and we list its components
in Appendix B. The neutralino eigenstates of this mass
matrix are labeled as ~#0

i (i ¼ 0; . . . ; 6) and can be ex-

pressed in the basis fi)W3
; i)Y; i)B; ~H

1
1; ~H

2
2; ~S; c bg

~#0
i ¼ ai1i)W3

þ ai2i)Y þ ai3i)B þ ai4 ~H
1
1 þ ai5 ~H

2
2

þ ai6 ~Sþ ai7c b: (66)

The neutralino mass eigenstates are ordered in mass and
the lightest eigenstate corresponds to i ¼ 0. We indicate
with O#0

the rotation matrix that diagonalizes the neutra-
lino mass matrix. In order to perform a numerical analysis
of the model we need to fix some of the parameters, first of
all requiring consistency of their choice with the masses of
the standard-model particles. For this purpose, the Higgs
VEVs v1 and v2 have been constrained in order to generate
the correct mass values of theW/, which depends on v2 ¼
v2
1 þ v2

2, and of the Z gauge boson.
The Yukawa couplings have been fixed in order to give

the correct masses of the SM fermions. The choice of vS

and of the parameter ) in the trilinear term )SH1 (H2 in
the scalar potential has been made in order to obtain mass
values in the Higgs sector in agreement with the limits
from direct searches [with )! Oð1Þ]. For this reason we
have selected the value ) ¼ 0:5 and the assignment
BH1

¼ "1, BS ¼ 3 for the Uð1ÞB charges of the Higgs
and the singlet; BQ ¼ 2 for the quark doublet, and BL ¼
1 for the lepton doublet. The gauge mass term parameters
have been selected according to the relation

MY :MW :MG ¼ 1:2:6; (67)

coming from the unification condition for the gaugino
masses. As a further simplification, the sfermion mass
parameters ML, MQ, mR, mD, and mU have been set to a
unique valueM0. We have also chosen a common value a0
for the trilinear couplings ae, ad, and au. With these
choices, besides tan!, the only other free parameters left
are the Stückelberg mass MSt, the gaugino mass term for
)B, denoted by MB, and the axino mass term, Mb. Our
choices are the following:

MY ¼ 500 GeV; MYB ¼ 1 TeV;

MW ¼ 1 TeV; MG ¼ 3 TeV;

ML ¼ MQ ¼ mR ¼ mD ¼ mU ¼ M0 ¼ 1 TeV;

ae ¼ ad ¼ au ¼ a0 ¼ 1 TeV;

a) ¼ "100 GeV; (68)

where with ML and MQ we have denoted the scalar mass
terms for the sleptons and the squarks, assumed to be equal
for all 3 generations. We have also chosen

MB ¼ Mb ¼ 1 TeV (69)

with a coupling constant gB of the anomalous U(1) of 0.4.
From previous investigations such values of the anomalous
coupling are known to be compatible with LEP data at the
Z resonance [43,44]. In particular, the mass of the extra Z0

(MZ0), which in our case is of the order of the Stückelberg
mass, MZ0 !MSt [43], due to the region of variability of
MSt that we investigate in our simulations, obviously
satisfies the current LHC constraints at 95% C.L.
(> 1140 GeV) from CMS [45] and from ATLAS
(> 1:83 TeV) [46] on the absence of a resonance in the
dilepton channel at 7 TeV for an extra Z prime with
standard-model-like couplings. This parameter choice is
our benchmark, which is compatible with all the SM
requirements on the spectrum of the known particles. It
involves SUSY breaking scales in a kinematical range
which is under investigation at the LHC. We also assume
a value vb ¼ 20 GeV for the VEVof the saxion field Reb.
The most significant parameters in the relic density

calculation are MSt and the Higgs VEV ratio tan!.
Concerning the Stückelberg mass, its value has been
chosen to be varied in two different regions, 2–10 TeV
and 11–25 TeV. In both regions we will consider different
values of tan!.

IX. NEUTRALINO RELIC DENSITIES AND
COSMOLOGICAL BOUNDS

As is well known, the evaluation of the relic densities
requires the calculation of a great number of thermally
averaged cross sections, given the number of particles
which are present. Before coming to the discussion of the
results of this very involved analysis, which is summarized
in some simple plots of the relic densities of the lightest
neutralino—as a function both of MSt and tan!,—we
present a general description of the structure of the inter-
actions in the model. We also list the 2-to-2 processes that
have been considered in the coupled Boltzmann equations.
We start from the action involving the physical axion

(H5
0) and its interactions with the various sectors. These

involve, typically, interactions with the Higgs sector via

bilinear vertices (proportional to RH5
0HH), and trilinear ones

(proportional to RH5
0HHH) in H, with H denoting generi-

cally CP-even and CP-odd Higgs eigenstates. Other inter-
actions in the same component of the Lagrangian involve

axion-neutralino terms (RH5
0#

0
i#

0
j ) plus axion charginos

(RH5
0#

/
i #

1
j ). Other terms are those involving interactions

of the axion with the sleptons ðRH5
0
~lyi
~ljÞ and the squarks

ðRH5
0
~qyi ~qjÞ; vertices involving gauge bosons (for instance

RH5
0A#

/
i #

1
j , with a photon A and two charginos) and quartic

contributions with 2, 3, and 4 axion lines. The Lagrangian
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describing all the tree-level interactions involving the axion is

LH5
0"int ¼ RH5

0H
4
0H

i
0H5

0H
4
0H

i
0 þ RH52

0 Hi
0ðH5

0Þ2Hi
0 þ RH5

0H
4
0H

i
0H

j
0H5

0H
4
0H

i
0H

j
0 þ RH52

0 Hi
0H

j
0ðH5

0Þ2Hi
0H

j
0 þ RH5

0H
43
0 H5

0H
43
0

þ RH52
0 H42

0 ðH5
0Þ2ðH4

0Þ2 þ RH53
0 H4

0 ðH5
0Þ3H4

0 þ RH54
0 ðH5

0Þ4 þ RH5
0#

0
i#

0
jH5

0#
0
i#

0
j þ RH5

0#
/
i #

1
j H5

0#
/
i #

1
j þ RH5

0
~li~ljH5

0
~lyi ~lj

þ RH5
0 ~qi~qjH5

0 ~q
y
i ~qj þ RH5

0A#
/
i #

1
j H5

0A
' "#/

i ,'#
1
j þ RH5

0Z#
/
i #

1
j H5

0Z
' "#/

i ,'#
1
j þ RH5

0Z
0#/

i #
1
j H5

0Z
0' "#/

i ,'#
1
j

þ RH5
0W

1#/
i #

0
jH5

0W
1
' "#0

j,
'#1

i þ R#0
i#

/H1H5
0#0

i#
/
j H

1H5
0 þ R#0

i#
0
jH

5
0H

4
0#0

i#
0
jH

5
0H

4
0 : (70)

The explicit expressions of these vertices are rather involved and we omit them. Other interactions appearing in the
interaction Lagrangian involve derivative couplings with the gauge bosons and the Higgses and they are given by

L H5
0"int ¼ RH5

0H
/W1

H5
0W

1
'@

'H/ þ RH5
0H

i
0AH5

0A'@
'Hi

0 þ RH5
0H

i
0ZH5

0Z'@
'Hi

0 þ RH5
0H

i
0Z

0
H5

0Z
0
'@

'Hi
0: (71)

Similar interactions are also typical for H4
0 , the CP-odd Higgs. Some of the vertices are illustrated in Fig. 8. Besides the

interaction with the axi-Higgs, we have the following vertices involving neutralinos:

L#0"int ¼ R#0
i#

0
jZZ' "#0

i,'#
0
j þ R#0

i#
0
jZ

0
Z0' "#0

i,'#
0
j þ R#0

i#
/
j W

1
W1

' "#0
i,'#

/
j þ R#0

i#
/
j H

1
H1#0

i#
/
j þ R#0

i#
0
jH

k
0Hk

0#
0
j#

0
k

þ R#0
i f

~f#0
i f~f1;2 þ R#0

i#
/
j ~qy~q#0

i#
/
j ~q

y
k ~ql þ R#0

i#
0
j
~fy ~f#0

i#
/
j
~fyk ~fl þ R#0

i#
/
j H

1Hk
0#0

i#
/
j H

1Hk
0

þ R#0
i#

0
jH

k
0H

l
0#0

i#
0
jH

k
0H

l
0 þ R#0

i#
0
jH

/H1
#0
i#

0
jH

/H1: (72)

Some of these vertices are illustrated in Fig. 9. The full
Lagrangian has been implemented using the FEYNRULES

[47] package. The same package allows one to generate
the CALCHEP [48] model files which are needed by
MICROMEGAS [49] for the calculation of the scattering cross
section that are required in the relic density calculation.

With our choice for the parameters the lightest neutra-
lino is the lightest supersymmetric particle and so it is the
dark matter component in our simulations. The value of the
neutralino mass in this case turns out to be around 23 GeV
with a rather mild dependence on tan!. For tan! varying

between 5 and 25 the neutralino mass varies from 22.4 to
23.8 GeV.
We show in Table I a list of the most relevant 2-to-2

processes which are generated in the s, t, and u channels
having neutralinos in the initial state (in), while the pos-
sible final states are shown on the right-hand side of the
same table (out).
In Fig. 10 we show the results obtained for the lightest

neutralino relic density with MSt in the range 5–8 TeV,
vS ¼ 600 GeV, and a varying tan!. The values of vS,
tan!, and MSt for which we plot the result coming from

FIG. 8. Axi-Higgs (H5
0) interactions. The double arrows denote Majorana particles (neutralinos).
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the relic density calculation are those that give also accept-
able mass values for the whole spectrum, in particular, for
the neutral Higgs (!124–126 GeV) [50,51]. The horizon-
tal bar represents the experimental value for the physical
dark matter density measured by WMAP, %h2 ¼
0:1123/ 0:0035 [52]. In Fig. 11 we show the analogous
results obtained in the range 11–24 TeV with vS ¼
1:2 TeV and varying tan!. Once again these values are
such that we obtain acceptable values for the masses of all
the particles in the model. One can immediately notice that
for a fixed value of tan! as we increase MSt, the relic
densities grow and tend to violate the WMAP bound. This
trend has been found over a sizable range of variability of
tan! and is a central feature of the model. It is then
obvious, from the same figures, that it is possible to raise
the Stückelberg mass and stay below the bound if, at the
same time, we increase tan!.

X. SUMMARY: WINDOWS ON THE AXION MASS

At this point, before coming to our conclusions, we can
try to gather all the information that we have obtained so
far in the previous sections, summarizing the basic prop-
erties of axions in these types of models.

(i) The milli-eV (PQ-like) axion.—One possibility that
we have explored in this work is that V 0, the extra
potential which is periodic in the axion field, may be
generated around the TeV scale or at the electroweak
phase transition. The actual strength of the potential
remains, in our construction, undetermined and the
physical features of the axion (primarily its mass)

depend on this parameter. We have tried to describe
the various possibilities, in this respect, and the
essential features for each choice for the value of
the mass. In particular, if the extra potential is gen-
erated by nonperturbative effects at the electroweak
phase transition, then the mass of the axion is tiny
and the true mechanism of misalignment which de-
termines its mass takes place at a second stage, at the
QCD phase transition. In this case the physical axion
of the model would not be much different from an
ordinary PQ axion and would be rather long lived. At
the same time, its abundances are fixed by the pos-
sible value of the scale M2

St=v, which should be
rather large (!1010–1012 GeV), of the same order
of fa in typical axion models, to be a significant
component of cold dark matter. In the region that
we have analyzed numerically, with MSt around the
2–20 TeVs, the contribution to dark matter from
misalignment of the axion field, in this case, should
be small.
A second important constraint on this particle, in this
mass range, comes from direct axion searches, which
also requires the interaction of the axions with the
gauge fields (in particular the photon) to be sup-
pressed by a large fa. For this reason, with MSt in
the TeV region, these simulations indicate that an
axion of this mass, in fact, can be excluded by typical
searches with detectors of the Sikivie type. The
reason is rather obvious, since axions in the
milli-eV mass range could be copiously produced
at the center of the Sun and probably should have

FIG. 9. Neutralino interactions.

TABLE I. Tree-level neutralino annihilation processes in the 3 kinematic channels.

In s channel Out

Z, Z0 H/H1, Hk
0H

4
0 , H

k
0H

5
0 , Z=Z

0Hk
0 ,

"ff, ~fy ~f
#0
i#

0
j Hk

0 H/H1, Hl
0H

m
0 , H

4
0H

4
0 , H

4
0H

5
0 , H

5
0H

5
0 , Z=Z

0H4
0=H

5
0 , W

/H1, Z=Z0Z=Z0, W/W1, "ff, ~fy ~f
H4

0 , H
5
0 Hk

0H
4
0 , H

k
0H

5
0 , Z=Z

0Hk
0 , W

/H1, "ff, ~fy ~f

In t=u channel Out

#0
k Hl

0H
m
0 , H

l
0H

4
0=H

5
0 , H

4
0=H

5
0H

4
0=H

5
0 , Z=Z

0Hl
0=H

4
0=H

5
0 , Z=Z

0Z=Z0

#0
i#

0
j #/

k W/=H/W1=H1
~f "ff
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been seen by now in ground based detectors (helio-
scopes), such as CAST [53]. We recall that one of the
goals of searches with helioscopes is to set a lower
bound on the suppression scale fa of the axion-
photon vertex, which is currently experimentally
constrained, as we have already mentioned, to be
rather large.

(ii) The meV axion.—A second possibility that we have
investigated is that the extra potential appearing in
the CP-odd sector is unrelated to instanton correc-
tions in the electroweak vacuum. In this case the
mass of the axion remains a free parameter. The
range that we have explored in this second case
involves an axion mass in the MeV region, discus-
sing several constraints that emerge from the model.

In this case the axion is, in general, not long lived
and as such is not a component of dark matter. On
the other hand, the constraints from CAST can be
avoided, since the particle would not be produced by
ordinary thermal mechanisms at the center of the
Sun, where the temperature is about 1.7 keV, being
its mass above the keV range. Obviously, in this
case other constraints emerge from nucleosynthesis
requirements, since a particle in this mass range has
to decay fast enough in order not to generate a late
entropy release at nucleosynthesis time. We have
seen that an axion in the MeV range is consistent
with these two requirements. An axion of this type
could be searched for at colliders, and in this respect
the analysis of its possible detection at the LHC
would follow quite closely the patterns described
by two of us in [41]. As in this previous (nonsuper-
symmetric) study, where the axion is Higgs like (of
a mass in the GeV region), typical channels of
where to look for this particle would be (a) the
associated production of an axion and a direct pho-
ton, (b) the multiaxion production channel, and
(c) the associated production of one axion and other
Higgses of the CP-even sector. The modifications,
compared to that previous study, would now involve
(1) the lower value of the mass of the axion (MeV
rather than GeV), and (2) the presence of extra
supersymmetric interactions.

Comments.—One important comment concerns the con-
nection between these classes of models and their comple-
tion theories such as string theory, which lay at their
foundation. In our study we have selected a scenario char-
acterized by low energy supersymmetry, with a phenome-
nological analysis that is essentially connected with the
TeV scale and above. This is the scale which is likely to be
scanned in the near future by several experiments, includ-
ing the LHC, and for this reason we have directed out
numerical studies in this direction. There is, however, a
second case that involves a value ofMSt which is very large
and close to the Planck scale. In this second case the model
predicts, obviously, a decoupling of the anomalous sym-
metry, leaving at low energy a scenario which is essentially
the same as that of the MSSM, since the extra Z prime,
which is part of the spectrum, is extremely heavy. This
would obviously imply a decoupling both of the anomalous
gauge boson and of the anomalous trilinear interactions
which are associated with it. A physical axion could,
however, survive this limit, if the scale of the extra poten-
tial is also of the order of MSt, but its interaction with
ordinary matter would be extremely suppressed by the
same scale.

XI. CONCLUSIONS

We believe the investigation of the phenomenological
role played by models containing anomalous gauge

FIG. 10 (color online). Relic density of the lightest neutralino
as a function of the Stückelberg mass in the region 5–8.5 TeV for
different values of the Higgs VEV ratio tan!.

FIG. 11 (color online). Relic density of the lightest neutralino
as a function of the Stückelberg mass in the region 2–24 TeV for
different values of the Higgs VEV ratio tan!.
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interactions from Abelian extensions of the standard model
will receive further attention in the future. These studies
can be motivated within several scenarios, including string
and supergravity theories, in which gauged axionic sym-
metries are introduced for anomaly cancellation. In turn,
these modified mechanisms of cancellation of the anoma-
lies, which involve an anomalous fermion spectrum and an
axion, are essentially connected with the UV completion of
these field theories, which in a string framework is realized
by the Green-Schwarz mechanism.

The model that we have investigated (the USSM-A)
summarizes the most salient physical features of these
types of constructions, where a Stückelberg supermulti-
plet is associated with an anomalous Abelian structure in
order to restore the gauge invariance of the anomalous
effective action. In this work we have tried to character-
ize in detail some of the main phenomenological
implications of these models, which are particularly in-
teresting for cosmology. The physical axion of this con-
struction, or gauged axion, emerges as a component of
the Stückelberg field Imb. We have pointed out that the
mechanism of sequential misalignment, formerly dis-
cussed in the nonsupersymmetric case [30], finds a natu-
ral application also in the presence of supersymmetry,
with minor modifications.

One relevant feature of these models, already noticed in
[30], is that their axions do not contribute to the isocurva-
ture perturbations of the early universe, being gauge de-
grees of freedom at the scale of inflation.

We have followed a specific pattern in order to come out
with specific results in these types of models, using for this
purpose a particular superpotential (the USSM superpoten-
tial), whose essential features, however, may well be
generic.

We have presented an accurate study of the neutralino
relic densities, showing that the Stückelberg mass value is
constrained by the requirement of a consistent mass spec-
trum, with values for the lightest CP-even Higgs larger
than the current LHC limits (>120 GeV) and by the
experimental value for the dark matter abundance from
WMAP [52]. Thus, in these models, the allowed value of
the Stückelberg scale is positively correlated with the
value of tan!. As it grows, tan! has also to grow (for a
fixed value of the VEV of the singlet vS) in order to
preserve the WMAP bound. In particular MSt and vS are
positively correlated. This correlation is necessary in
order to obtain values of the neutralino mass which allow
one to satisfy the same bounds, which in our case is
around 20 GeV.

We have seen that with a Stückelberg mass in the TeV
range the nonthermal population of axions does not con-
tribute significantly to the dark matter densities if these
axions are PQ like. These types of constraints, obviously,
are typical of supersymmetric constructions and are
avoided in a nonsupersymmetric context. In this second

case, as discussed in [30], a Stückelberg scale around
107 GeV is sufficient to revert this trend.
We have also pointed out that gauged axions in the milli-

eV mass range are probably difficult to reconcile with
current bounds from direct searches, while the case for
detecting MeVor heavier axions, in these types of models,
remains a wide open possibility. In this second case, cas-
cade decays of these light particles and their associated
production with photons should be seen as their possible
event signatures at the LHC.
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APPENDIX A: GENERAL FEATURES
OF THE MODEL

In this Appendix we summarize some of the basic
features of the USSM-A. The gauge structure of the model
is of the form SUð3Þc . SUð2Þ . Uð1ÞY . Uð1ÞB, where B
is the anomalous gauge boson, and with a matter content
given by the usual generations of the SM. In all the
Lagrangians below we implicitly sum over the three fer-
mion generations. A list of the fundamental superfields
and charge assignments is summarized in Table II. The
Lagrangian can be expressed as

L USSM"A ¼ LUSSM þLKM þLFI þLaxion; (A1)

where the Lagrangian of the USSM (LUSSM) has been
modified by the addition of Laxion to compensate for the
anomalous variation of the corresponding effective action
due to the anomalous charge assignments. The former is
given by

LUSSM ¼ Llep þLquark þLHiggs þLgauge

þLSMT þLGMT (A2)

TABLE II. Charge assignment of the model.

Superfields SU(3) SU(2) Uð1ÞY Uð1ÞB
b̂ðx;"; ""Þ 1 1 0 s
Ŝðx; "; ""Þ 1 1 0 BS

L̂ðx;"; ""Þ 1 2 "1=2 BL

R̂ðx;"; ""Þ 1 1 1 BR

Q̂ðx;"; ""Þ 3 2 1=6 BQ

ÛRðx;"; ""Þ "3 1 "2=3 BUR

D̂Rðx; "; ""Þ "3 1 þ1=3 BDR

Ĥ1ðx;"; ""Þ 1 2 "1=2 BH1

Ĥ2ðx;"; ""Þ 1 2 1=2 BH2
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with contributions from the leptons, quarks, and Higgs plus
gauge kinetic terms. The matter contributions from leptons
and quarks

L lep ¼
Z

d4"½L̂ye2g2ŴþgYŶþgBB̂L̂þ R̂ye2g2ŴþgYŶþgBB̂R̂*;

(A3)

L quark ¼
Z

d4"½Q̂ye2gsĜþ2g2ŴþgYŶþgBB̂Q̂

þ Ûy
Re

2gsĜþgYŶþgBB̂ÛR þ D̂y
Re

2gsĜþgYŶþgBB̂D̂R*
(A4)

are accompanied by a sector which involves two Higgs
SU(2) doublet superfields, Ĥ1 and Ĥ2, and one singlet Ŝ

LHiggs ¼
Z

d4"½Ĥy
1e

2g2ŴþgYŶþgBB̂Ĥ1

þ Ĥy
2e

2g2ŴþgYŶþgBB̂Ĥ2 þ ŜyegBB̂ŜþW%2ð ""Þ
þ "W%2ð"Þ* (A5)

with the superpotential chosen of the form

W ¼ )ŜĤ1 ( Ĥ2 þ yeĤ1 ( L̂ R̂þydĤ1 ( Q̂D̂R

þ yuĤ2 ( Q̂ÛR: (A6)

This superpotential, as shown in [34,35], allows a physical
axion in the spectrum. The gauge content plus the soft
breaking terms in the form of scalar mass terms (SMT) are
identical to those of the USSM

Lgauge ¼
1

4

Z
d4"½G$G$ þW$W$ þWY$WY

$ þWB$WB
$*%2ð ""Þ þ H:c:;

LSMT ¼ "
Z

d4"%4ð"; ""Þ½M2
LL̂

yL̂þm2
RR̂

yR̂þM2
QQ̂

yQ̂þm2
UÛ

y
RÛR þm2

DD̂
y
RD̂R þm2

1Ĥ
y
1 Ĥ1 þm2

2Ĥ
y
2 Ĥ2 þm2

SŜ
yŜ

þ ða)ŜĤ1 ( Ĥ2 þ H:c:Þ þ ðaeĤ1 ( L̂ R̂þH:c:Þ þ ðadĤ1 ( Q̂D̂R þ H:c:Þ þ ðauĤ2 ( Q̂ÛR þ H:c:Þ*: (A7)

As usual, ML, MQ, mR, mUR
, mDR

, m1, m2, and mS are the
mass parameters of the explicit supersymmetry breaking,
while ae, a), au, and ad are dimensionful coefficients. The
soft breaking due to gaugino mass terms (GMT) now
includes a mixing mass parameter MYB

LGMT ¼
Z

d4"
#
1

2
ðMGG$G$ þMwW

$W$ þMYW
Y$WY

$

þMBW
B$WB

$ þMYBW
Y$WB

$Þ þ H:c:
$
%4ð"; ""Þ:

(A8)

The superfield b̂ describes the Stückelberg multiplet,

b̂ ¼ bþ
ffiffiffi
2

p
"c b " i"(' ""@'bþ iffiffiffi

2
p "" "" "('@'c b

" 1

4
"" "" ""hb" ""Fb; (A9)

and contains the Stückelberg axion (a complex b field) and
its supersymmetric partner, referred to as the axino (c b),
which combines with the neutral gauginos and Higgsinos
to generate the neutralinos of the model. Details on the
notation for the superfields components can be found in
Table III. We recall that we denote with )B and )Y the two
gauginos of the two vector superfields (B̂, Ŷ) correspond-
ing to the anomalous Uð1ÞB and to the hypercharge vector
multiplet. The singlet superfield Ŝ has as components the
scalar ‘‘singlet’’ S and its supersymmetric partner, the
singlino, denoted as ~S.

The interactions and dynamics of the axion superfield
are defined inLaxion, the Lagrangian that contains both the
kinetic (Stückelberg) term, responsible for the mass of the
anomalous gauge boson (which reaches the electroweak
symmetry breaking scale already in a massive state), the
kinetic term of the saxion and of the axino, and the Wess-
Zumino terms, which are needed for anomaly cancellation.
We recall that Stückelberg fields appear both in anomalous
and in nonanomalous contexts. The second one has been
analyzed recently in [54].
The extra contributions to Laxion, called Laxion;i are

given by

TABLE III. Superfields and their components.

Superfield Bosonic Fermionic Auxiliary

b̂ðx;"; ""Þ bðxÞ c bðxÞ FbðxÞ
Ŝðx; "; ""Þ SðxÞ ~SðxÞ FSðxÞ
L̂ðx;"; ""Þ ~LðxÞ LðxÞ FLðxÞ
R̂ðx;"; ""Þ ~RðxÞ "RðxÞ FRðxÞ
Q̂ðx;"; ""Þ ~QðxÞ QðxÞ FQðxÞ
ÛRðx;"; ""Þ ~URðxÞ "URðxÞ FUR

ðxÞ
D̂Rðx; "; ""Þ ~DRðxÞ "DRðxÞ FDR

ðxÞ
Ĥ1ðx;"; ""Þ H1ðxÞ ~H1ðxÞ FH1

ðxÞ
Ĥ2ðx;"; ""Þ H2ðxÞ ~H2ðxÞ FH2

ðxÞ
B̂ðx;"; ""Þ B'ðxÞ )BðxÞ DBðxÞ
Ŷðx;"; ""Þ AY

'ðxÞ )YðxÞ DYðxÞ
Ŵiðx; "; ""Þ Wi

'ðxÞ )Wi ðxÞ DWi ðxÞ
Ĝaðx;"; ""Þ Ga

'ðxÞ )ga ðxÞ, ")ga ðxÞ DGa ðxÞ
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(A10)

We finally recall that the three scalar sectors of the model
are characterized in terms of

(i) A charged Higgs sector.—This sector involves the
states ðReH1

2 ;ReH
2
1Þ. The mass matrix has one zero

eigenvalue corresponding to a charged Goldstone
boson and a mass eigenvalue corresponding to the
charged Higgs mass

m2
H/ ¼

&
v1

v2
þ v2

v1

'&
1

4
g2v1v2 "

1

2
)2v1v2 þ a)

vSffiffiffi
2

p
'
;

(A11)

where g2 ¼ g22 þ g2Y .
(ii) A CP-even sector.—This sector is diagonalized start-

ing from the basis ðReH1
1 ;ReH

2
2 ;ReS;RebÞ. The four

physical states obtained in this sector are denoted as
H1

0 ,H
2
0 ,H

3
0 , andH

4
0 . Together with the charged physi-

cal state extracted before, H/, they describe the
6 degrees of freedom of the CP-even sector.

(iii) A CP-odd sector.—This sector is diagonalized
starting from the basis ðImH1

1 ; ImH2
2 ; ImS; ImbÞ.

We obtain two physical states, H4
0 and H5

0 , and
two Goldstone modes that provide the longitudinal
degrees of freedom for the neutral gauge bosons, Z
and Z0.

APPENDIX B: NEUTRALINO MASS MATRIX

Now we turn to the neutralino sector; the mass matrix in
the basis ði)w3

; i)Y; i)B; ~H
1
1; ~H

2
2; ~S; c bÞ takes the form

M#0 ¼

M11
#0 0 0 M14

#0 M15
#0 0 M17

#0

( M22
#0 M23

#0 M24
#0 M25

#0 0 0

( ( M33
#0 M34

#0 M35
#0 M36

#0 M37
#0

( ( ( 0 M45
#0 M46

#0 0

( ( ( ( 0 M56
#0 0

( ( ( ( ( 0 0

( ( ( ( ( ( M77
#0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

;

(B1)

with

M11
#0 ¼ Mw; M14

#0 ¼ "g2v1

2
; M15

#0 ¼
g2v2

2
;

M17
#0 ¼ 0; M22

#0 ¼ MY; M23
#0 ¼

1

2
MYB;

M24
#0 ¼

gYv1

2
; M25

#0 ¼ "gYv2

4
; M33

#0 ¼
1

2
MB;

M34
#0 ¼ "v1gBBH1

; M35
#0 ¼ "v2gBBH2

;

M36
#0 ¼ "vSgBBS; M37

#0¼ MSt; M45
#0 ¼ )vSffiffi

2
p ;

M46
#0 ¼

)v2ffiffiffi
2

p ; M56
#0 ¼

)v1ffiffiffi
2

p ; M77
#0 ¼ "Mb: (B2)
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The rotation matrix for this sector is implicitly defined as
O#0

and

i)w3

i)Y

i)B

~H1
1

~H2
2

~S

c b

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

¼ O#0

#0
0

#0
1

#0
2

#0
3

#0
4

#0
5

#0
6

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

: (B3)

Chargino sector.—We recall here the structure of the
chargino sector and the diagonalization procedure. We
define

)wþ ¼ 1ffiffiffi
2

p ð)w1
" i)w2

Þ; )w" ¼ 1ffiffiffi
2

p ð)w1
þ i)w2

Þ;

(B4)

and in the basis ð)wþ ; ~H1
2;)w" ; ~H2

1Þ we obtain the mass
matrix

M2
~#/ ¼

0 0 MW g2v1

0 0 g2v2 )vS

MW g2v2 0 0

g2v1 )vS 0 0

0
BBBBB@

1
CCCCCA
: (B5)

From the diagonalization we get the squared eigenvalues

m~#/
1;2
¼ 1

2½M2
Wþ)2v2

Sþg22v
2

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

Wþ)2v2
Sþg22v

2Þ2"4ð)vSMW"g22v1v2Þ2
q

*:
(B6)

If we define

cþ ¼ )wþ

~H1
2

& '
; c" ¼ )w"

~H2
1

& '
; (B7)

and define the mass eigenstates as

#þ ¼ Vcþ; #" ¼ Uc"; (B8)

where U and V are two unitary matrices that perform the
diagonalization of this sector. If we define

X ¼
MW g2v2

g2v1 )vS

 !
; (B9)

then these unitary matrices are defined in such a way that

VXyXV"1 ¼ U-XXyUT ¼ M#/;diag; (B10)

where M#/;diag is given by

M#/;diag ¼
m~#/

1
0

0 m~#/
2

 !
: (B11)

APPENDIX C: RELIC DENSITIES AT THE
SECOND MISALIGNMENT

In this Appendix we fill in the gaps in the derivation
of the expression of the abundances generated by the
mechanism of vacuum misalignment. We start from the
Lagrangian

S ¼
Z

d4x
ffiffiffi
g

p &
1

2
_#2 " 1

2
m2

### _#
'
; (C1)

where ## is the decay rate of the axion and we have
expanded the potential around its minimum up to quadratic
terms. The same action is derived from the quadratic
approximation to the general expression

S ¼
Z

d4xR3ðtÞ
&
1

2
(2

#ð@$"Þ2 "'4ð1" cos"Þ " V0

'
;

(C2)

which, in our case, is constructed from the expression of V0

given in Eq. (33), with '! v, the electroweak scale. We
also set other contributions to the vacuum potential to
vanish (V0 ¼ 0). In a Friedmann-Robertson-Walker space-
time metric with a scaling factor RðtÞ, this action gives the
equation of motion

d

dt
½ðR3ðtÞð _#þ ##Þ* þ R3m2

#ðTÞ ¼ 0: (C3)

We will neglect the decay rate of the axion in this case
and set ## + 0. At this point, since the potential V 0 is of
nonperturbative origin, we can assume that it vanishes
far above the electroweak scale (or temperature TEW).
For this reason m# ¼ mb ¼ 0 for T 0 TEW, which is
essentially equivalent to assume that the Stückelberg
axion is not subject to any mixing far above the weak
scale. The general equation of motion derived from
Eq. (C3), introducing a temperature dependent mass,
can be written as

€#þ 3H _#þm2
#ðTÞ# ¼ 0; (C4)

which clearly allows as a solution a constant value of the
misalignment angle " ¼ "i. The T dependence of the
mass term should be generated, for consistency, from a
generalization to finite temperature of V 0. In practice this
is not necessary in our case, being the role of the first
misalignment negligible in determining the final mass of
the axion. The axion energy density is given by

+ ¼ 1
2 _#

2 þ 1
2m

2
##

2; (C5)

which after a harmonic averaging gives

h+i ¼ m2
#h#2i: (C6)
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Notice that after differentiating Eq. (C5) and using the
equation of motion in (C4), followed by the averaging
Eq. (C6) one obtains the relation

h _+i ¼ h+i
&
"3Hþ _m

m

'
; (C7)

where the time dependence of the mass is through its
temperature TðtÞ, while HðtÞ ¼ _RðtÞ=RðtÞ is the Hubble
parameter. By inspection one easily finds that the solu-
tion of this equation is of the form

h+i ¼ m#ðTÞ
R3ðtÞ (C8)

showing a dilution of the energy density with an increasing
space volume, valid even for a T-dependent mass. At this
point, the universe must be (at least) as old as the required
period of oscillation in order for the axion field to start
oscillating and to appear as dark matter, otherwise " is
misaligned but frozen; this is the content of the condition

m#ðTiÞ ¼ 3HðTiÞ; (C9)

which allows one to identify the initial temperature of the
coherent oscillation of the axion field #, Ti, by equating
m#ðTÞ to theHubble rate, taken as a function of temperature.

To quantify the relic densities at the current temperature
T0 [T0 ' Tðt0Þ, at current time t0] we define preliminarily
the two standard effective couplings

g-;S;T ¼
X

B

gi

&
Ti

T

'
3
þ 7

8

X

F

gi

&
Ti

T

'
3
;

g-;T ¼
X

B

gi

&
Ti

T

'
4
þ 7

8

X

F

gi

&
Ti

T

'
4
; (C10)

functions of the massless relativistic degrees of freedom of
the primordial state, with T 0 TEW. The counting of the
degrees of freedom is 2 for a Majorana fermion and for a
massless gauge boson, 3 for a massive gauge boson, and 1
for a real scalar. In the radiation era, the thermodynamics
of all the components of the primordial state is entirely
determined by the temperature T, being the system at
equilibrium. We exclude for simplicity all sorts of possible
sources of entropy due to any inhomogeneity (see, for
instance, [55]). Pressure and entropy are then given as a
function of the temperature

+ ¼ 3p ¼ &2

30
g-;TT

4; s ¼ 2&2

45
g-;S;TT

3; (C11)

while the Friedmann equation allows one to relate the
Hubble parameter and the energy density

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

3
&GN+

s
; (C12)

with GN ¼ 1=M2
P being the Newton constant and MP the

Planck mass. The number density of axions n# decreases as

1=R3 with the expansion, as does the entropy density
s ' S=R3, where S indicates the comoving entropy
density—which remains constant in time ( _S ¼ 0)—
leaving the ratio Ya ' n#=s conserved. We define, as
usual, the abundance variable of #

Y#ðTiÞ ¼
n#
s

((((((((Ti

(C13)

at the temperature of oscillation Ti, and observe that at the
beginning of the oscillations the total energy density is the
potential one

+# ¼ n#ðTiÞm#ðTiÞ ¼ 1=2m2
#ðTiÞ#2

i : (C14)

We then obtain for the initial abundance at T ¼ Ti

Y#ðTiÞ ¼
1

2

m#ðTiÞ#2
i

s
¼ 45m#ðTiÞ#2

i

4&2g-;S;TT
3
i

; (C15)

where we have inserted at the last stage the expression of
the entropy of the system at the temperature Ti given by
Eq. (C11). At this point, plugging the expression of + given
in Eq. (C11) into the expression of the Hubble rate as a
function of density given in Eq. (C12), the condition for
oscillation Eq. (C9) allows one to express the axion mass at
T ¼ Ti in terms of the effective massless degrees of free-
dom evaluated at the same temperature; that is

m#ðTiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

5
&3g-;Ti

s
T2
i

MP
: (C16)

This gives for Eq. (C15) the expression

Y#ðTiÞ ¼
45(2

#"
2
i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5&g-;Ti

p
TiMP

; (C17)

where we have expressed # in terms of the angle of
misalignment "i at the temperature when oscillations start.
We assume that "i ¼ h"i is the zero mode of the initial
misalignment angle after an averaging. As we have already
mentioned, Ti should be determined consistently by
Eq. (C9). However, the presence of two significant and
unknown variables in the expression of m#, which are the
coupling of the anomalous U(1), gB, and the Stückelberg
mass M, forces us to consider the analysis of the
T dependence of # phenomenologically less relevant. It
is more so if the Stückelberg mass is somehow close to the
TeV region, in which case the zero temperature axion mass
m# acquires corrections proportional to the bare coupling
[m# ! )vð1þOðgBÞÞ].
For this reason, assuming that the oscillation tempera-

ture Ti is close to the electroweak temperature TEW,
Eq. (C16) provides an upper bound for the mass of the
axion at which the oscillations occur, assuming that they
start around the electroweak phase transition. Stated differ-
ently, mass values of # such that mðTiÞ 2 3HðTiÞ corre-
spond to frozen degrees of freedom of the axion at the
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electroweak scale. This is clearly an approximation, but it
allows one to define the oscillation mass in terms of the
Hubble parameter for each given temperature.

We recall that the relic density due to misalignment can
be extracted from the relations

%mis
# '

+mis
#0

+c
¼ ðn#0m#Þ

+c
¼

&
n#0
s0

'
m#s0
+c

; (C18)

where we have denoted with n#0 the current number den-
sity of axions and with +mis

#0 their current energy density

due to vacuum misalignment. This expression can be re-
written as

%mis
# ¼ n#

s

((((((((Ti

m#
s0
+c

(C19)

using the conservation of the abundance Ya0 ¼ YaðTiÞ.
Notice that in Eq. (C19) we have neglected a possible
dilution factor , ¼ sosc=s0 which may be present due to
entropy release. We have introduced the variable

+c ¼
3H2

0

8&GN
; (C20)

which is the critical density and

s0 ¼
2&2

45
g-S;T0

T3
0 ; (C21)

which is the current entropy density. To fix g-S;T0
we recall

that at the current temperature T0 the relativistic species
contributing to the entropy density s0 are the photons and
three families of neutrinos with

g-S;T0
¼ 2þ 7

8
. 3. 2

&
T.

T0

'
3
; (C22)

where, from entropy considerations, T.=T0 ¼ ð4=11Þ1=3.
To proceed with the computation of the massless degrees

of freedom above the electroweak phase transition we
recall the structure of the model. We have 13 gauge bosons
corresponding to the gauge group SUð3Þ . SUð2Þ.
UYð1Þ . UBð1Þ, 2 Higgs doublets, 3 generations of leptons,
and 3 families of quarks. Above the energy of the electro-
weak transition we have only massless fields with the
exception of the UBð1Þ gauge boson, since this symmetry
takes the Stückelberg form above the electroweak scale,
giving g-;T ¼ 110:75. Below the same scale this number is
similarly computed with g-;T ¼ 91:25. Other useful pa-
rameters are the critical density and the current entropy

+c ¼ 5:2. 10"6 GeV=cm3; s0 ¼ 2970 cm"3;

(C23)

with "i ’ 1. It is clear by inserting these numbers into
Eq. (C18) that %mis

#

45(2
#"

2
i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5&g-;Ti

p
TiMP

m#s0
+c

(C24)

is negligible unless (# !M2
St=v is of the same order of

fa ! 1012 GeV, the standard PQ constant. This choice
would correspond to%# ! 0:1, but the value ofMSt should
be of Oð107Þ GeV.
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