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Abstract
Topology enters quantum field theory (QFT) in multiple forms: one of the most important, in non-Abelian gauge theories, is the identification of the vacuum θ angle
in QCD. A very relevant aspect of this connection is through the phenomenon of chiral and conformal qft anomalies. It has been realized that a class of materials,
including topological insulators and Weyl semimetals, they also exhibit the phenomenon of anomalies, which are responsible for numerous exotic phenomena. For
example, the presence of edge currents, resilient to perturbations and dispersion from impurities, has been associated with qft anomalies and their topological
properties. Another example comes from the response functions of these materials, which can be performed using correlation functions of the stress energy tensors
in General Relativity. In this case the conformal anomaly plays an important role. In this work we briefly illustrate some salient features of this correspondence,
and the effective action that describes the long-range interactions which can account for these topological effects. It can be matched with numerical studies of these
materials at lattice scale.

1. The Quantum Hall Effect
The first example of topological behavior in matter
was first observed in 1980, when Klaus von Klitzing
discovered a quantized conductivity in the Quan-
tum Hall Effect (QHE). The QHE is the first exam-
ple of a topological insulator (TI), because the bulk
of the material acts as an insulator, while electrons
at the boundary of the material move in a surface
current. Therefore, the boundary is a conductor.
The topological origin of such behaviour requires
some comments. In fact, the quantized conductivity
σxy = − e2

2πh̄CN depends on CN , the Chern number,
which is a topological invariant and is connected to a
gauge field Aµ, called the Berry gauge potential,
and also to a field strength Fµν = ∂µAν − ∂νAµ,
whose volume integral is exactly CN . These cur-
rents of non-zero Chern number are topologically
protected, since they are resilient under scattering
by impurities and disorder present in the material.

(K. von Klitzing et al., 40 years of the quantum Hall effect., Nat. Rev.

Phys., 2, 397-401, (2020).)

2. Other TI’s and Bands Structure
The bands of such materials are characterized by
some edge states located between the gapped va-
lence band and the conductance band. We have
several kind of TI’s, characterized by some specific
topological invariants. The QHE, nowadays recog-
nized as the first example of TI, is characterized
by a non-zero Chern number, CN = 1. However,
there are some materials that have Chern number
CN = 0, but exhibit a topological behavior. In
these examples we have two different topologi-
cal surface states associated to two separate spin-
up/down configurations, despite having ~Bext = 0.
We call these materials Z2 TI’s.

(M. Z. Hasan and C. L. Kane, Rev. of Mod. Phys., 82, (2010).)

3. Topological Field Theory (TFT) Description of the QHE
A Lagrangian description of the QHE is realized thanks to the Chern-Simons action. One can start from
a discrete and local Hamiltonian (for example a tight binding Hamiltonian) H[c+i,α, ciα, Aµ], describing the
motion of the electrons in a periodic lattice in the presence of an external electromagnetic field. Resorting to
a path integral formulation of the dynamics, we can integrate over the fermions and treat the EM field as
a background e−Seff [Aµ] =

∫
Dc†iαDciαe−S[c†iα,ciα,Aµ]. We can perform an expansion of the effective action

in powers of Aµ, obtaining the Chern-Simons action at the lowest order in a Aµ

SCS = i
σH
2

∫
d3xεµνρA

µ∂νAρ,

where σH is a quantized coefficient that preserves the gauge invariance under eiθ(t) of e−Seff , with θ(t)
the gauge parameter. This qft description captures the long range behaviour of the material. Moreover, in
(3+1)D, quite similar to (2+1)D, one may derive another expression of the topological action

Sθ = i

32π

∫
d4xθ(x)εµνστFµνFστ .

4. Weyl Semimetals
In a Dirac semimetals the valence and conductance bands touch each other in a single point, called
a Dirac point. At this specific points the energy/momentum dispersion relation is linear, similarly to the
relativistic case. However this Dirac points could split into a pair of so-called Weyl points in the Weyl
semimetals. In correspondence of these pairs of Weyl points the dispersion relation is exactly that of a Weyl
Hamiltonian H±Weyl = ±~p · ~σ. The Weyl points can be seen as monopoles for the Berry’s flux, so they
are robust and topologically protected. Also for these materials we can analyze the topological response. In
fact, relative to the Weyl nodes, it happens that the particle number is not conserved. This means that
the time variation of the densities nL/R is of the form ∂

∂t
(nL/R) = ± e2

h2
~E · ~B. The presence of massless Weyl

fermions is strongly and closely connected with the presence of the chiral anomaly.

(Y. Binghai and C. Felser, Topological Materials: Weyl Semimetals, Ann. Rev. of Cond. Mat. Phys., 8, 1, 337-345, (2017).)

5. Gravity and Topological Materials:Theoretical and Numerical Studies
Gravity can also play a fundamental role in Condensed Matter. The link is provided by the Tolman-Ehrenfest
theorem on the equilibrium temperature of a gravitational system, which is position-dependent, combined
with Luttinger’s formula 1

T
∇T = − 1

c2∇Φ. The basic idea is that the effect of a temperature gradient ∇T
that drives a system out of equilibrium can be compensated, at linear order, by a non-uniform gravitational
potential Φ. Therefore, in a stationary gravitational field holds that T (x) = T0/

√
g00, where g00 is the

"00" component of the metric gµν . In the case of massless QED, renormalization induces a conformal
anomaly at quantum level

〈Tµµ 〉 = b C2 + b′E + cMFµνF
µν ,

where Tµν is the stress energy tensor of the material and 〈, 〉 is the quantum average over the fermions in
the material. C2 and E are the square of the Weyl tensor and E is the topological Euler-Poincarè density.
Our investigation combines both a theoretical and a phenomenological analysis of the response
functions associated to thermal and mechanical stresses on these materials. In particular, the anomalous
part of the response to 〈Tµµ 〉, generated by a thermal/mechanical stress, can be extracted from
the non-local action

Sanom[g,A] = 1
8

∫
d4x

√
g(x)

∫
d4y

√
g(y)E(x)G4(x, y)[2bC2(y) + b′E(y) + cMFµνF

µν(y)],

where G4 is the Green function of a quartic conformally covariant operator. Its local form, obtained by the
inclusion of extra scalar degrees of freedom, is central to our analysis, which is interfaced with numerical
investigations of the properties of such materials at lattice level. Our study involves two different scales:
the lattice scale, investigated by many-body methods, and the long-range one, that can be addressed using
TFT.
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