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Spectrum of the O(g4) Scale-Invariant Lipatov Kernel
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An infrared scale-invariant approximation to the O(g4) Lipatov kernel has been determined by
t-channel unitarity. The forward kernel responsible for parton evolution is evaluated and its eigenvalue
spectrum determined. It can be written as a sum of two terms. The first term is proportional to the

square of the O(g ) kernel. The second term is a new kinematic form whose spectrum shares many

properties of the leading-order kernel. The full kernel gives a reduction (—68n2/7r~) in the power
growth of parton distributions at small x.

PACS numbers: 12.40.Nn, 11.10.Hi

The Balitsky-Fadon-Kuraev-Lipatov (BFKL) Pomeron
[1] or, more simply, the Lipatov Pomeron, has recently
attracted growing attention, both from the theoretical
and the experimental sides. The BFKL equation resums
leading logarithms in 1/x. When applied in the forward
direction, at large Q, it becomes an evolution equation
for parton distributions. The Lipatov Pomeron solution
of the equation predicts that a growth of the form

F2(x, Q ) —x' ' —x

where no —l is the leading eigenvalue of the forward
O(g2) Lipatov kernel, should be observed in the small-
x behavior of structure functions. The BFKL Pomeron
is important in hard diffractive processes in general, for
example deep-inelastic diffraction [2], and, perhaps, in

rapidity-gap jet production [3]. BFKL resummation is
also anticipated to play a key role in all semihard QCD
processes [4], where there is a direct coupling of the
hard scattering process to the Pomeron. It is one of the
major results of the experimental program at the DESY
ep collider HERA that a growth similar to that of (1) is
observed [5].

From both a theoretical and an experimental viewpoint,
it is vital to understand how the BFKL equation, and (1) in

particular, is affected by next-to-leading logarithm contri-
butions. In recent papers [6,7] a scale-invariant (in trans-
verse momentum) infrared approximation to the O(g ),
or next-to-leading order, kernel has been determined by
Reggeon diagram and t-channel unitarity techniques. In
this Letter we summarize some newly derived properties
of this kernel, concentrating on the forward direction rel-
evant for the evolution of parton distributions. We find
that there are two components. The first has the struc-
ture of the O(g2) kernel but with additional logarithms of
all the transverse momenta involved. It can be obtained

by squaring the O(g ) kernel. The second component is
a new kinematic form, which appears for the first time
at O(g ), and has a number of interesting properties. It
is separately finite and has no singularities generating in-
frared divergences after integration. A new eigenvalue

spectrum is produced with characteristics which are sug-
gestive of underlying holomorphic factorization and con-
formal symmetry properties [8].

We show that the full scale-invariant kernel gives a sub-
stantial reduction in no. We are unable, as yet, to give a
complete result for how (1) is modified by our results. In
particular, we must determine how scale invariance is bro-
ken by the off-shell renormalization scale so that, presum-
ably, g /4' ~ n, (Q ). Fadin and Lipatov have already
calculated [9] the full Reggeon trajectory function (that
gives the disconnected piece of the kernel) in the next-to-
leading log approximation —including renormalization ef-
fects. The diagram structure we have anticipated is what
is found, but there are additional scale-breaking logarithm
factors involving internal transverse momenta. As out-
lined in [7], we hope to determine these effects in the
remainder of the kernel by an extension of the Ward iden-

tity plus infrared finiteness analysis that gives the scale-
invariant kernel.

It will be convenient to introduce a diagrammatic
notation for transverse momentum integrals. A vertex
with n incoming and I outgoing lines represents

(..)"(y~, -y~;)(ya, ), (.)
and an n-line intermediate state represents

d ki. d k, /k, . k„.
27r 3"

We define all kernels (and parts of kernels) to include a
momentum-conserving delta function, i.e., we write

K, = (2~) 6 (ki + k2 —k3 —k4)K; .

(3)

(a) (b) (c) (d) (e)

FIG. 1. (a)—(c) Connected diagrams for the O(g4) kernel;
(d), (e) disconnected diagrams.

The contribution of (t-channel) four-particle nonsense
states to the O(g4) kernel is given in [6] as a sum of
transverse momentum diagrams of the form of Figs. 1(a)—
1(d), i.e.,
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with

(g +) It2, 2 (kl » k2» k3» k4)c +I + +2 + +3 + +4»

K& = —— p (2') k( J2(k))k2[k36 (k2 —k4) + k46 (k2 —k3)],
1&—~2

k1 J1 k1 k2k3 + k1 J1 k1 k2k4 + k1k3 J1 k3 k4 + kjk3k4 J1 k4
K2 =—

1&—~2 (kt —k3)2

where

K3 = g J)[(k) —k3) ](k2k3 + k) k4),
1&—&2

K4 = g k, k2 k3 k4I(k), k2, k3, k4),
1&—&2

Ji(k ) = 1

(22r) 3

1

q'(k —q)2'
1J,(k') = 2 1 2d q, J(q),

k —
q

1
I(k(, k2, k3, k4) =

27r 3

1
p

I '(u + ki)2(I + k4)'(P + ki —k3)'
'

Diagrams of the form of Fig. 1(e) were not included
in [6], essentially because they cannot be associated with

(4n)higher-order Reggeization. However, for %22 to be prop-
erly regulated after integration, disconnected diagrams of
the form of both Figs. 1(d) and 1(e) must be included.
This leads us to add a further contribution, [%22], to the(2) 2

O(g ) kernel, from iteration of the two-particle nonsense
state, as in Fig. 2. That diagrams of the form of Fig. 1(e)
in %22 and (K22) must cancel then determines that the

(4n) (2) 2

full O(g4) kernel is given by

(4) 1 (4n) (2) 2
+2,2 3 +2,2 (+2,2) (12)

This is the kernel that we wish to evaluate in the
"forward" direction k1 = —k2 k k3 k4 k . Our
result for ICz 2(k, —k, k', —k') is a much simpler expression
than the full result given by (12).

In writing down (12) we have determined the overall
sign by the requirement that the contribution of the four-
particle state should be positive. The overall magnitude
has been determined by noting that the diagrams of the
form of Fig. 1(e) contain only elements that appear in

(4n)
the leading-order kernel and their contribution in E22 is
unambiguous. This implies that these diagrams should

occur in IC22 [and therefore (K22) ] with an absolute
(4n) (2) 2

magnitude that is equal to that obtained by simple-
minded iteration of the leading-order kernel. The color

structure is also determined by the role of the leading-
order kernel in this construction. (In a forthcoming paper
[10] we will actually determine all of the coefficients of

(4n)
%22, including the color factors, directly from t-channel
unitarity. )

We should note that since we are specifically consid-
ering only the infrared structure of the O(g4) color zero
interaction of two Reggeized gluons, the even-signature
color octet trajectory found as a bound state of two
Reggeized gluons in [2] does not enter our discussion. If
we were to simultaneously consider the leading-order cou-
pling of two Reggeized gluons to four Reggeized gluons,
which is also O(g4) and is discussed in [6], this would
not be the case. As we noted in [6], solving the BFKL
equation in the O(g ) approximation for the kernel should
consistently involve also the 2-4 coupling (and simultane-
ously a possible coupling of two Reggeized gluons to two
even-signature octet Reggeons), but this would lead to a
complete Reggeon field theory and not a self-contained
integral equation.

The major technical problem in determining

K& 2(k, —k, k', —k') is the evaluation of the box graph, i.e.,

I(k, —k, k', —k') defined in (11). As we will show in detail
in [11], if we regularize I with a mass term m2 in each
propagator, it can be evaluated as a sum of logarithms
associated with each of the possible "two-particle" thresh-

!

olds in the external momenta. As I ~ 0, we obtain

where

27r I[k, k'] =, ln[k' /m ] + 1n[k /m ] +, 1n[k' /m ]+, 1n[(k + k') /m ]

+ 1n[k /m ] + ln[(k —k') /m ],k2 (k —k') 2

A12 = —A14 = —323 = A34 =
k2(k + k')2(k —k')2 '

1
~24 (14)
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andso, as I ~0,
k2kt2 r 2(kf2 k2) k/2

K4 ~ 1n2~~ ((k + k')2(k —k')2 k2

1 (k —k')'
+ 1n

(k —k')2 m~

(k + k')'
+ 1n

(k + k')' m'

K3 simply gives a contribution of the same form as the last two terms in (15), i.e., as m ~ 0

k k' r 1 (k —k') 1 (k + k')
K3 I ln + ln

2 ' ~(k —k')' ' (k + k')2

Similarly E2 gives

r
+ I 1n

(k + k')'
g2~2

—k'k'2 1 r k' k" k2
K2 ~ 1n + ln + ln

(k —k')2 t m2 m~ j m2 m2 )
—(4n)The infrared finiteness of Kc = K2 + K3 + K4 is now apparent and we can write

r k'k" (k —k')' k'k" (k + k')' l r 2k'k"(k' —k")
277K, " =l ln + ln 1n

( (k —k~)& k&k~& (k + k~)& k2ki& ) ( (k —k')&(k + k')2 k'2 j
= (~i) —(~2) .

(16)

(17)

(18)

Note that only 3C~ gives infrared divergences (at k' =
~k) when integrated over k'. These divergences are
canceled by the disconnected part of the kernel which we
implicitly include in 3C~ for the rest of our discussion.

Apart from the logarithmic factors, 3C~ has the same
structure as the forward (connected) O(g2) kernel. Indeed,
if we evaluate all of the diagrams generated by Fig. 2 that
survive in the forward direction, it is straightforward to
show that

n = 0, ~1, ~2, . . . ,

@,.(k') = (k")'e'"', (21)
1

p, = —+iv,
2

which are complete and orthogonal (in D = 2).
The eigenvalues of (%22) are trivially given by the(2) 2

square of the O(g ) eigenvalues, and so the essential
problem is to determine the eigenvalues of F2. We first
define BC' in D dimensions as

3C, = (2~)'(IC„)',2 (2) 2

implying from (12) and (18) that

(19)

where

[(k2)D/2 —
1 (k(2)o/2 —1]

(k + k')2(k —k')2
(22)

IC„= —,, (3', + 3C,).—(4)

24~2 (20)

The appearance of 3C2 is a particularly interesting fea-
ture, since its symmetry properties (the antisymmetry of
ln[k2/k'2) compensates for that of (k —k' )) determine
that it can only appear at the first logarithmic level.

(4)We now move on to the eigenvalues of K22. Our
integration measure will be I dok'/(k'2), and so we use
as eigenfunctions

I [2 —D/2] 1[D/ 2—1] 2
vl =

I [D —2] D-2 D —2

~e then look for eigenvalues A(p„, n) such that

(23)

d k'
q F2(k, k') @~„(k') = A(p, n) P~ „(k) . (24)

If we define cosg = k x and cos0 = k'x, ~here x is an
arbitrarily chosen unit vector, the only nontrivial angular
integral is

I~[n] =
27r zn0

dO
1 —g(k, k') sin2(0 —

A )

,„rk' —k" & r k'&"
2' e O[k —k'] — —"O[k' —k],«'+ k'2J k' (25)

4e'I"
(k2 ki2)2 '

if n is an even integer (~ 0). I~[n] vanishes if n is an odd integer and I~[ n] = I~[lnl]—.
I~[n] is symmetric under the exchange of k and k', and also is invariant under k ~ 1/k, k' ~ 1/k'. This last

invariance is sufficient to show that

A(p„, n) = A(1 —p„, n).

Using (25) we obtain from (24) that, as D 2,
/'

A(p„, n) ~ 2g [p(lnl/2 + D/2 + p —1) —p(lnl/2 — D/2 —p, + 2)I [D/2]
—p(l~l/2 + D + p —2) + p(l~l/2 —D —p + 3)],

(26)

(27)
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Combining with the 3C& term in K22 gives, for the full
(4)

correction to no,
FIG. 2. Iteration of the leading-order kernel via two-particle
nonsense states. 3 12 l 9 A—In[2]n,

~

— ' P'(I/2) ——68
4 ) 2m2 772

' (32)

where P(x) is the incomplete beta function. Writing
1

A(v, n) —= A(z + it, n) we obtain, for D = 2,
, Inl+ I

A(v, n) = —2vr P' + iv)2

Since

(n(+ Ipl
2 )

—it [ (28)

(29)

(30)

9n' &

87r2 (~„(n + 1/4)2

~ ( + 3/4)')
A——16.5
7T2

(31)

and oo

( ) P ( )2

P'(x) is a real analytic function, and it follows from (28)
that the eigenvalues A(v, n) are all real.

The symmetry property (26) is re]]ected directly in the
appearance of the two terms in A(v, n), one depending
on (iv + 1/2 + n/2) and the other on (iv + 1/2—
n/2) As.imilar decomposition of the O(g2) eigenvalues
leads ultimately to the holomorphic factorization property
[8] closely related to conformal symmetry. Since (26)
is a consequence of inversion in k space one might
also suspect that it is related to underlying conformal
symmetry properties in the conjugate coordinate space. If
the eigenvalues of the full O(g4) kernel are independent
of q2 [as seems likely based on analogy with the O(g )
kernel] then we do expect the coordinate space conformal
symmetry and holomorphic factorization properties of
the full kernel to be rejected in the forward eigenvalue
spectrum.

Moving on to the modification of no, we note that

to obtain the contribution to the eigenvalue of K22 we
—(4)

multiply A(v, n) by —1/2 vr To com. pare with no —1

we have to multiply, in addition, by N~g /(2~)s, where
N = 3 for QCD. It follows from the above that the
leading eigenvalue is A(0, 0), as it is for the O(g ) kernel.
From (28)—(30), and writing a, = g2/4vr, we obtain the
contribution to no due to the F2 term in (20) as

2 2

', A(0, 0) =;P'(1/2)

which is a substantial negative correction.
We close by noting that the t-channel transverse-

momentum integral formalism, on which our results are
based, may well be valid only when a cutoff is introduced
[10]. For small-x physics at relatively large transverse
momentum, the cutoff dependence of our kernels will
be crucial and, of course, without knowing this we
cannot reliably estimate the relative magnitude of our
contributions in the full physical kernel. In this sense our
results give only the size of effects that are obtained by
naively extending the infrared behavior of the theory to
infinite transverse momentum.
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