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1. Introduction

There is no doubt that the study of neutrino masses and of flavour mixing in the leptonic
sector will play a crucial role for uncovering new physics beyond the Standard Model and
to test Unification. In fact, the recent discovery of neutrino oscillations in atmospheric
and solar neutrinos (see [1] for an overview) has raised the puzzle of the origin of the
mass hierarchy among the various neutrino flavours, a mystery which, at the moment,
remains unsolved. The study of the mixing among the leptons also raises the possibility of
detecting possible sources of CP violation in this sector as well. It seems then obvious that
the study of these aspects of flavour physics requires the exploration of a new energy range
for neutrino production and detection beyond the one which is accessible at this time.

For this purpose, several proposals have been presented recently for neutrino factories,
where a beam, primarily made of muon neutrinos produced at an accelerator facility, is di-
rected to a large volume located several hundreds kilometers away at a second facility. The
goal of these experimental efforts is to uncover various possible patterns of mixings among
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flavours - using the large distance between the points at which neutrinos are produced and
detected - in order to study in a more detailed and “artificial” way the phenomenon of
oscillations. Detecting neutrinos at this higher energies is an aspect that deserves special
attention since several of these experimental proposals [2, 3, 4] require a nominal energy
of the neutrino beam in the few GeV region. We recall that the incoming neutrino beam,
scattering off deuteron or other heavier targets at the detector facility, has an energy which
covers, in the various proposals, both the resonant, the quasi-elastic (in the GeV range)
and the deep inelastic region (DIS) at higher energy. In the past, neutrino scattering on
nucleons has been observed over a wide interval of energy, ranging from few MeV up to
100 GeV, and these studies have been of significant help for uncovering the structure of the
fundamental interactions in the Standard Model. Generally, one envisions contributions
to the scattering cross section either in the low energy region, such as in neutrino-nucleon
elastic scattering, or in the deep inelastic scattering (DIS) region. Recent developments
in perturbative QCD have emphasized that exclusive (see [5]) and inclusive processes can
be unified under a general treatment using a factorization approach in a generalized kine-
matical domain. The study of this domain, termed deeply virtual Compton scattering, or
DVCS, is an area of investigation of wide theoretical interest, with experiments planned in
the next few years at JLAB and at DESY. The key constructs of the DVCS domain are
the non-forward parton distributions, where the term non-forward is there to indicate the
asymmetry between the initial and final state typical of a true Compton process, in this
case appearing not through unitarity, such as in DIS, but at amplitude level.

In this work, after a brief summary of the generalities of process, we discuss its gener-
alization to the case of neutral currents. We recall that DVCS has been extensively studied
in the last few years for electromagnetic interactions. The extension of DVCS to the case
of neutral currents is presented here, while the charged current version will be presented
in a forthcoming paper. Also, in this work we will just focus on the lowest order contribu-
tions to the process, named by us Deeply Virtual Neutrino Scattering (DVNS) in order to
distinguish it from standard DVCS, while a renormalization group analysis of the factor-
ized amplitude, which requires an inclusion of the modifications induced by the evolution
will also be presented elsewhere. The application of the formalism that we develop here
also needs a separate study of the isoscalar cross sections together with a detailed analysis
of the various experimental constraints at neutrino factories in order to be applicable at
forthcoming experiments.

2. The generalized Bjorken region and DVCS

Compton scattering has been investigated in the near past by several groups, since the
original work by Ji and Radyushkin [6, 7, 8]. Previous work on the generalized Bjorken
region, which includes DVCS and predates the “DVCS period” can be found in [9].

A pictorial description of the process we are going to illustrate is given in figure 1
where a neutrino of momentum l scatters off a nucleon of momentum P1 by an interaction
with a neutral current; from the final state a photon and a nucleon emerge, of momenta q2

and P2 respectively, while the momenta of the final lepton is l ′. The process is described
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Figure 1: Leading hand-bag diagrams for the process.

in terms of new constructs of the parton model termed generalized parton distributions
(GPD) or also non-forward (off-forward) parton distributions. We recall that the regime
for the study of GPD’s is characterized by a deep virtuality of the exchanged photon in the
initial interaction (e + p → e + p + γ) ( Q2 ≈ 2 GeV2), with the final state photon kept on-
shell; large energy of the hadronic system (W 2 > 6GeV2) above the resonance domain and
small momentum transfers |t| < 1 GeV2. The process suffers of a severe Bethe-Heitler (BH)
background, with photon emission taking place from the lepton. Therefore, in the relevant
region, characterized by large Q2 and small t, the dominant Bethe-Heitler background
(∼ 1/t) and the 1/Q behaviour of the DVCS scattering amplitude render the analysis
quite complex. From the experimental viewpoint a dedicated study of the interference
BH-VCS is required in order to explore the generalized Bjorken region, and this is done by
measuring asymmetries. Opting for a symmetric choice for the defining momenta, we use
as independent variables the average of the hadron and gauge bosons momenta

P1,2 = P̄ ± ∆
2

q1,2 = q̄ ∓ ∆
2

(2.1)

with −∆ = P2 − P1 being the momentum transfer. Clearly

P̄ · ∆ = 0 , t = ∆2 P̄ 2 = M2 − t

4
(2.2)

and M is the nucleon mass. There are two scaling variables which are identified in the
process, since 3 scalar products can grow large in the generalized Bjorken limit: q̄2, ∆ · q,
P̄ · q̄.

The momentum transfer t = ∆2 is a small parameter in the process. Momentum
asymmetries between the initial and the final state nucleon are measured by two scaling
parameters, ξ and η, related to ratios of the former invariants

ξ = − q̄2

2P̄ · q̄
η =

∆ · q̄
2P̄ · q̄

(2.3)

where ξ is a variable of Bjorken type, expressed in terms of average momenta rather than
nucleon and Z-boson momenta. The standard Bjorken variable x = −q2

1/(2P1 · q1) is
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trivially related to ξ in the t = 0 limit. In the DIS limit (P1 = P2) η = 0 and x = ξ, while
in the DVCS limit η = ξ and x = 2ξ/(1 + ξ), as one can easily deduce from the relations

q2
1 =

(
1 +

η

ξ

)
q̄2 +

t

4
, q2

2 =
(

1 − η

ξ

)
q̄2 +

t

4
. (2.4)

We introduce also the inelasticity parameter y = P1 · l/(P1 · q1) which measures the
fraction of the total energy that is transferred to the final state photon. Notice also that
ξ = ∆+

2P̄+ measures the ratio between the plus component of the momentum transfer and
the average momentum. A second scaling variable, related to ξ is ζ = ∆+/P1

+, which
coincides with Bjorken x (x = ζ) when t = 0.

ξ, therefore, parametrizes the large component of the momentum transfer ∆, which
can be generically described as

∆ = 2ξP̄ + ∆̂ (2.5)

where all the components of ∆̂ are O(
√

t) [10].

3. DIS versus DVNS

In the study of ordinary DIS scattering of neutrinos on nucleons (see figure 2), the relevant
current correlator is obtained from the T-product of two neutral currents acting on a
forward nucleon state of momentum P1

jµ
Z ≡ u(l′)γµ

(
−1 + 4 sin2 θW + γ5

)
u(l) (3.1)

where θW is the Weinberg angle, l and l′ are the initial and final-state lepton. The relevant
correlator is given by

Tµν(q2
1, ν) = i

∫
d4zeiq·z⟨P1|T (Jµ

Z(ξ)Jν
Z(0)|P1⟩ (3.2)

with ν = E−E ′ being the energy transfered to the nucleon, P1 is the initial-state nucleon 4-
momenta and q1 = l−l′ is the momentum transfered. The hadronic tensor Wµν is related to
the imaginary part of this correlator by the optical theorem. We recall that for an inclusive

P1

l l’

q1

X

Figure 2: Leading diagram for a generic DIS process.
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electroweak process mediated by neutral currents the hadronic tensor (for unpolarized
scatterings) is identified in terms of 3 independent structure functions at leading twist

Wµν =
(
−gµν +

q1µq1ν

q2
1

)
W1(ν, Q2) +

P̂1
µ
P̂1

ν

P 2
1

W2(ν, Q2)
M2

− iϵµνλσqλ
1P σ

1
W3(ν, Q2)

2M2
(3.3)

where transversality of the current is obvious since P̂1
µ

= Pµ
1 − qµ

1 P1 · q1/q2
1 .

The analysis at higher twists is far more involved and the total number of structure
functions appearing is 14 if we include polarization effects. These are fixed by the require-
ments of Lorenz covariance and time reversal invariance, neglecting small CP-violating
effects from the CKM matrix. Their number can be reduced to 8 if current conservation is
imposed, which is equivalent to requiring that contributions proportional to non-vanishing
current quark masses can be dropped (see also [11]). We recall that the DIS limit is
performed by the identifications

MW1(Q2, ν) = F1(x,Q2)

νW2(Q2, ν) = F2(x,Q2)

νW3(Q2, ν) = F3(x,Q2) , (3.4)

in terms of the standard structure functions F1, F2 and F3. There are various ways to ex-
press the neutrino-nucleon DIS cross section, either in terms of Q2 and the energy transfer,
in which the scattering angle θ is integrated over, or as a triple cross section in (Q2, ν, θ),
or yet in terms of the Bjorken variable x, inelasticity y and the scattering angle (x, y, θ).
This last case is close to the kinematical setup of our study. In this case the differential
Born cross section in DIS is given by

d3σ

dxdydθ
=

yα2

Q4

∑

i

ηi(Q2)Lµν
i W µν

i , (3.5)

the index i denotes the different current contributions, ( i = |γ|2, |γZ|, |Z|2 for the neutral
current) and α denotes the fine structure constant. By θ we indicate the azimuthal angle of
the final-state lepton, while y = (P1 ·q1)/(l·P1) is the inelasticity parameter, and Q2 = −q2

1.
The factors ηi(Q2) denote the ratios of the corresponding propagator terms to the photon
propagator squared,

η|γ|
2
(Q2) = 1 ,

η|γZ|(Q2) =
GF M2

Z

2
√

2πα

Q2

Q2 + M2
Z

,

η|Z|2(Q2) = (η|γZ|)2(Q2) . (3.6)

where GF is the Fermi constant and MZ is the mass of the Z boson while the leptonic
tensor has the form

Li
µν =

∑

λ′

[
ū(k′,λ′)γµ(gi1

V + gi1
A γ5)u(k,λ)

]∗
ū(k′,λ′)γν(gi2

V + gi2
A γ5)u(k,λ) . (3.7)
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In the expression above λ and λ′, denote the initial and final-state helicity of the leptons.
The indices i1 and i2 refer to the sum appearing in eq. (3.5)

gγ
V = 1 , gγ

A = 0 ,

gZ
V = −1

2
+ 2 sin2 θW , gZ

A =
1
2

, (3.8)

In the case of neutrino/nucleon interaction mediated by the neutral current the dom-
inant diagram for this process appears in figure 2. A similar diagram, with the obvious
modifications, describes also charged current exchanges. We recall that the unpolarized
cross section is expressed in terms of F1 and F2, since F3 disappears in this special case,
and in particular, after an integration over the scattering angle of the final state neutrino
one obtains

d2σ

dxdy
= 2πS

α2

Q4
(gZ

V )2η|γZ|(Q2)
(

2xy2F1 + 2
(

1 − x − xyM2

S

)
F2

)
, (3.9)

where S = 2MEν is the nucleon-neutrino center of mass energy.
We also recall that in this case the cross section in the parton model is given by

d2σ

dxdy
=

G2
F MEν

2π

(
M2

Z

Q2 + M2
Z

)2 [
xq0(x,Q2) + xq̄0(x,Q2)(1 − y)2

]
(3.10)

where q0(x,Q2) and q̄0(x,Q2) are linear combinations of parton distributions

q0(x,Q2) =
[
uv(x,Q2) + dv(x,Q2)

2
+

ū(x,Q2) + d̄(x,Q2)
2

] (
L2

u + L2
d

)
+

+
[
ū(x,Q2) + d̄(x,Q2)

2

] (
R2

u + R2
d

)

q̄0(x,Q2) =
[
uv(x,Q2) + dv(x,Q2)

2
+

ū(x,Q2) + d̄(x,Q2)
2

] (
R2

u + R2
d

)
+

+
[
ū(x,Q2) + d̄(x,Q2)

2

] (
L2

u + L2
d

)
(3.11)

with
Lu = 1 − 4

3
sin2 θW , Ld = −1 +

2
3

sin2 θW

Ru = −4
3

sin2 θW , Rd =
2
3

sin2 θW (3.12)

and we have identified the sea contributions us and ds with ū and d̄ rispectively.
Let’s now move to the nonforward case. Here, when a real photon is present in the

final state, the relevant correlator is given by

Tµν(q2
1, ν) = i

∫
d4zeiq·z

〈
P̄ − ∆

2

∣∣∣∣T
(

Jµ
Z

(
− z

2

)
Jν

γ

(
z

2

)∣∣∣∣P̄ +
∆
2

〉
. (3.13)

The dominant diagrams for this process appears in figure 1. We impose Ward identities
on both indices, which is equivalent to requiring that terms proportional to the quark
masses in ∂ · JZ are neglected. This approximation is analogous to the one performed in
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Figure 3: The cross section of a neutrino process of DIS-type at x ≈ 0.1 with neutral current at
ultrahigh energy.

the forward case in order to reduce the structure functions from 8 to 3 (in the absence of
any polarization), imposing symmetric trasversality conditions on the weak currents

(
P̄µ − ∆µ

2

)
Tµν = 0

(
P̄µ +

∆µ

2

)
Tµν = 0 . (3.14)

The leading twist contribution to DVNS is obtained by performing a collinear ex-
pansion of the loop momentum of the hand-bag diagram and neglecting terms of order
O(∆2

⊥/Q2) and M2/Q2. Transversality is satisfied at this order. Violation of transversal-
ity condition in the hand-bag approximation is analogous to the DVCS case, where it has
been pointed out that one has to include systematically “kinematical” twist-3 operators,
which appear as total derivatives of twist-2 operators [10, 12] in order to restore it.

For the parametrization of the hand-bag diagram (figure 1) we use the light-cone
decomposition in terms of 2 four-vectors (n, ñ), where

ñµ = Λ(1, 0, 0, 1)

nµ =
1

2Λ
(1, 0, 0,−1)

ñ2 = n2 = 0 , ñ · n = 1 .

At the same time we set

Pµ
1 = (1 + ξ)ñµ + (1 − ξ)

M

2
nµ −

∆µ
⊥

2

Pµ
2 = (1 + ξ)ñµ + (1 + ξ)

M

2
nµ +

∆µ
⊥

2
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qµ
1 = −2ξñµ +

Q2

4ξ
nµ

kµ = (k · n) ñµ + (k · ñ) nµ + kµ
⊥

M
2 = M2 − ∆2

4
(3.15)

with P̄ 2 = M
2. We will also use the notation −q2

1 = Q2 for the invariant mass of the
virtual Z boson and we will denote by q̄ the average gauge bosons momenta respectively.

After a collinear expansion of the loop momentum we obtain

T µν
A = i

∫
d4k

(2π)4
tr

{
guγν/PDγµg̃

(
Uv − γ5

)
Mu(k) + gdγ

ν/PDγµg̃
(
Dv − γ5

)
Md(k)

}

T µν
B = i

∫
d4k

(2π)4
tr

{
g̃γµ

(
Uv − γ5

)
/PEγνguMu(k) + g̃γµ

(
Dv − γ5

)
/PEγνgdM

d(k)
}

(3.16)

where we have used the following notations

gu =
2
3
e , gd =

1
3
e , g̃ =

g

4 cos (θW )
,

Uv = 1 − 8
3

sin2 θW , Dv = 1 − 4
3

sin2 θW , (3.17)

/PD =
k/ − α∆/ + q1/

(k − α∆ + q1)2 + iϵ
,

/PE =
k/ − q1/ + ∆/ (1 − α)

(k − q1 + ∆(1 − α))2 + iϵ
(3.18)

where the constant α (α is a free parameter) ranges between 0 and 1. The M matrix is
the quark density matrix and is given by

M (i)
ab (k) =

∫
d4yeik·y⟨P ′|ψ(i)

a (−αy)ψ(i)
b ((1 − α)y)|P ⟩ . (3.19)

The index i = u, d runs on flavours. Using a Sudakov decomposition of the internal
loop we can rewrite T µν

A and T µν
B as

T µν
A = i

∫
d(k · n)
(2π)4

d(k · ñ)d2k⊥

∫
dλ

(2π)
dzeiλ(z−k·n) ×

× tr

{
guγν/PDγµg̃

(
Uv − γ5

)
Mu(k) + gdγ

ν/PDγµg̃
(
Dv − γ5

)
Md(k)

}

T µν
B = i

∫
d(k · n)
(2π)4

d(k · ñ)d2k⊥

∫
dλ

(2π)
dzeiλ(z−k·n) ×

× tr
{

g̃γµ
(
Uv − γ5

)
/PEγνguMu(k) + g̃γµ

(
Dv − γ5

)
/PEγνgdM

d(k)
}

(3.20)

to which we will refer as the direct and the exchange diagram respectively. It is also
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convenient to introduce two new linear combinations T µν = T µν
A + T µν

B = T̃ µν
A + T̃ µν

B which
will turn useful in order to separate Vector (V) and axial vector parts (A) of the expansion

T̃ µν
A = i

∫
d(k · n)
(2π)4

d(k · ñ)d2k⊥

∫
dλ

(2π)
dzeiλ(z−k·n) ×

×g̃guUv tr {[γν/PDγµ + γµ/PEγν ]Mu(k)} +

+g̃gdDv tr
{

[γν/PDγµ + γµ/PEγν ] Md(k)
}

T̃ µν
B = −i

∫
d(k · n)
(2π)4

d(k · ñ)d2k⊥

∫
dλ

(2π)
dzeiλ(z−k·n) ×

×g̃gu tr
{
[γν/PDγµ + γµ/PEγν ] γ5Mu(k)

}
+

+g̃gd tr
{
[γν/PDγµ + γµ/PEγν ] γ5Md(k)

}
, (3.21)

with T̃A including the vector parts (V × V + A × A) and T̃B the axial-vector parts (V ×
A + A × V ). After some algebraic manipulations we finally obtain

T̃ µν
A =

i

2

∑

i=u,d

g̃giCi

∫
dλdz

(2π)
eiλz

{
(ñµnν + ñνnµ − gµν)α(z) ×

× ⟨P ′|ψ(i)
(
−λn

2

)
n/ ψ(i)

(
λn

2

)
|P ⟩ + iϵµναβñαnββ(z) ×

× ⟨P ′|ψ(i)
(
−λn

2

)
γ5n/ ψ(i)

(
λn

2

)
|P ⟩

}

T̃ µν
B = − i

2

∑

i=u,d

g̃gi

∫
dλdz

(2π)
eiλz

{
(ñµnν + ñνnµ − gµν)α(z) ×

× ⟨P ′|ψ(i)
(
− λn

2

)
γ5n/ ψ(i)

(
λn

2

)
|P ⟩ +

+ iϵµναβñαnββ(z) ×

× ⟨P ′|ψ(i)
(
− λn

2

)
n/ ψ(i)

(
λn

2

)
|P ⟩

}
(3.22)

where Ci = Uv, Dv and

α(z) =
(

1
z − ξ + iϵ

+
1

z + ξ − iϵ

)
, β(z) =

(
1

z − ξ + iϵ
− 1

z + ξ − iϵ

)
(3.23)

are the “first order” propagators appearing in the factorization of the amplitude. We
recall, if not obvious, that differently from DIS, DVCS undergoes factorization directly at
amplitude level [13].

The parameterizations of the non-forward light cone correlators in terms of GPD’s is
of the form given by Ji at leading twist [6]

∫
dλ

(2π)
eiλz⟨P ′|ψ

(
−λn

2

)
γµψ

(
λn

2

)
|P ⟩ =

= H(z, ξ,∆2)U(P ′)γµU(P ) + E(z, ξ,∆2)U (P ′)
iσµν∆ν

2M
U(P ) + · · ·

– 9 –
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∫
dλ

(2π)
eiλz⟨P ′|ψ

(
−λn

2

)
γµγ5ψ

(
λn

2

)
|P ⟩ =

= H̃(z, ξ,∆2)U(P ′)γµγ5U(P ) + Ẽ(z, ξ,∆2)U(P ′)
γ5∆µ

2M
U(P ) + · · · (3.24)

which have been expanded in terms of functions H,E, H̃, Ẽ [14] and the ellipses are meant
to denote the higher-twist contributions. It is interesting to observe that the amplitude
is still described by the same light-cone correlators as in the electromagnetic case (vector,
axial vector) but now parity is not conserved.

4. Operatorial analysis

The operatorial structure of the T-order product of one electroweak current and one elec-
tromagnetic current is relevant in order to identify the independent amplitudes appearing
in the correlator at leading twist and the study is presented here. We will identify four op-
eratorial structures. For this purpose let’s start from the Fourier transform of the correlator
of the two currents

Tµν = i

∫
d4xeiqx⟨P2|T

(
Jγ

ν

(
x

2

)
JZ0

µ

(
− x

2

))
|P1⟩ , (4.1)

where for the neutral and electromagnetic currents we have the following expressions

JµZ0

(
− x

2

)
=

g

2 cos θW
ψu

(
− x

2

)
γµ(gZ

uV + gZ
uAγ5)ψu

(
− x

2

)
+

+ψd

(
− x

2

)
γµ(gZ

dV + gZ
dAγ5)ψd

(
− x

2

)
,

Jν,γ

(
x

2

)
= ψd

(
x

2

)
γν

(
− 1

3
e

)
ψd

(
x

2

)
+ ψu(x/2)γν

(
2
3
e

)
ψu

(
x

2

)
. (4.2)

By simple calculations one obtains

⟨P2|T
(

Jγ
ν

(
x

2

)
JZ0

µ

(
− x

2

))
|P1⟩ = ⟨P2|ψu

(
x

2

)
guγνS(x)γµ(gZ

uV + gZ
uAγ5)ψu

(
−x

2

)
−

− ψd

(
x

2

)
gdγνS(x)γµ(gZ

dV + gZ
dAγ5)ψd

(
−x

2

)
+

+ ψu

(
x

2

)
γµ(gZ

uV + gZ
uAγ5)S(−x)guγνψu

(
x

2

)
−

− ψd

(
x

2

)
γµ(gZ

dV + gZ
dAγ5)S(−x)gdγνψd

(
x

2

)
|P1⟩ .

(4.3)

The coefficients used in eqs. (4.2), (4.3) gZ
V and gZ

A, are

gZ
uV =

1
2

+
4
3

sin2 θW gZ
uA = −1

2

gZ
dV = −1

2
+

2
3

sin2 θW gZ
dA =

1
2

, (4.4)
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and
gu =

2
3

, gd =
1
3

(4.5)

are the absolute values of the charges of the up and down quarks in units of the electron
charge.

The function S(x) denotes the free quark propagator

S(x) ≈ i/x
2π2(x2 − iϵ)2

. (4.6)

After some standard identities for the γ’s products

γµγαγν = Sµανβγβ + iϵµανβγ5γβ ,

γµγαγνγ
5 = Sµανβγβγ5 − iϵµανβγβ ,

Sµανβ = (gµαgνβ + gναgµβ − gµνgαβ) , (4.7)

we rewrite the correlators as

Tµν = i

∫
d4x

eiqxxα

2π2(x2 − iϵ)2
×

×⟨P2|
[
guguV

(
SµανβOβ

u − iϵµανβO5β
u

)
− guguA

(
SµανβÕ5β

u − iϵµανβÕβ
u

)
−

− gdgdV

(
SµανβOβ

d − iϵµανβO5β
d

)
+ gdgdA

(
SµανβÕ5β

d − iϵµανβÕβ
d

)]
|P1⟩ . (4.8)

The x-dependence of the operators in the former equations was suppressed.
Whence the relevant operators are denoted by

Õβ
a

(
x

2
,−x

2

)
= ψa

(
x

2

)
γβψa

(
− x

2

)
+ ψa(−

x

2

)
γβψa

(
x

2

)
,

Õ5β
a

(
x

2
,−x

2

)
= ψa

(
x

2

)
γ5γβψa

(
− x

2

)
− ψa

(
− x

2

)
γ5γβψa

(
x

2

)
,

Oβ
a

(
x

2
,−x

2

)
= ψa

(
x

2

)
γβψa

(
− x

2

)
− ψa

(
− x

2

)
γβψa

(
x

2

)
,

O5β
a

(
x

2
,−x

2

)
= ψa

(
x

2

)
γ5γβψa

(
− x

2

)
+ ψa

(
− x

2

)
γ5γβψa

(
x

2

)
,

(4.9)

where a is a flavour index.

5. Phases of the amplitude

The numerical computation of the cross section requires a prescription for a correct handling
of the singularities in the integration region at z = ±ξ. The best way to proceed is to work
out explicitly the structure of the factorization formula of the amplitude using the Feynman
prescription for going around the singularities, thereby isolating a principal value integral
(P.V., which is real) and an imaginary contribution coming from the δ function term. A
P.V. integral is expressed in terms of “plus” distributions and of logarithmic terms, as
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illustrated below. The expression of the factorization formula of the process in the parton
model, in which α(z) and β(z) appear as factors in the coefficient functions, is then given
by

Mfi = Jµ
Z(q1)D(q1)ϵν∗(q1 − ∆) ×

×
{

i

2
g̃guUv

∫ 1

−1
dz(ñµnν + ñνnµ − gµν) ×

× α(z)
[
Hu(z, ξ,∆2)U(P2)n/ U(P1) + Eu(z, ξ,∆2)U(P2)

iσµνnµ∆ν

2M
U(P1)

]
+

+ β(z)iϵµναβ ñαnβ

[
H̃u(z, ξ,∆2)U (P2)n/ γ5U(P1) +

+ Ẽu(z, ξ,∆2)U(P2)γ5(∆ · n)U(P1)
]

+

+
i

2
g̃gdDv

∫ 1

−1
dz{u → d}− i

2
g̃gu

∫ 1

−1
dz(−ñµnν − ñνnµ + gµν) ×

× α(z)
[
H̃u(z, ξ,∆2)U(P2)n/ γ5U(P1) + Ẽu(z, ξ,∆2)U (P2)

iγ5∆ · n
2M

U(P1)
]

+

+ β(z)iϵµναβ ñαnβ

[
Hu(z, ξ,∆2)U (P2)n/ U(P1) +

+ Eu(z, ξ,∆2)U(P2)
iσµνnµ∆ν

2M
(P1)

]
−

− i

2
g̃gd

∫ 1

−1
dz{u → d}

}

. (5.1)

To handle the singularity on the path of integration in the factorization formula, as
we have already mentioned, we use the Feynman (iϵ) prescription, thereby generating
imaginary parts. In particular, any standard integral containing imaginary parts is then
separated into real and imaginary contributions as

∫
dz

T (z)
z ∓ ξ ± iϵ

= PV

∫ 1

−1
dz

T (z)
z ∓ ξ

∓ iπT (±ξ) (5.2)

for a real coefficient T (z). We then rewrite the P.V. integral in terms of “plus” distributions

P.V.

∫ 1

−1
dz

H(z)
z − ξ

=
∫ 1

−1
dz

H(z) − H(ξ)
z − ξ

+ H(ξ) log
(

1 − ξ

1 + ξ

)

=
∫ 1

−1
dzQ(z)H(z) +

∫ 1

−1
dzQ̄(z)H(z) + H(ξ) log

(
1 − ξ

1 + ξ

)
(5.3)

where

Q(z) = θ(−1 ≤ z ≤ ξ)
1

(z − ξ)+

= θ(−1 ≤ z ≤ ξ)
(

θ(z < ξ)
(z − ξ)

− δ(z − ξ)
∫ ξ

−1

dz

(z − ξ)

)
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Q̄(z) = θ(ξ ≤ z ≤ 1)
1

(z − ξ)+

= θ(−1 ≤ z ≤ ξ)
(

θ(z > ξ)
(z − ξ)

− δ(z − ξ)
∫ 1

ξ

dz

(z − ξ)

)
(5.4)

and the integrals are discretized using finite elements methods, in order to have high
numerical accuracy. This last point is illustrated in appendix C, where the computations
are done analytically on a grid and then the grid spacing is sent to zero.

We can now proceed and compute the cross section. We define the scalar amplitude

Mfi = Jµ
Lep(q1)D(q1)T µνϵ∗ν(q1 −∆) (5.5)

where D(q1) is the Z0 propagator in the Feynman gauge and Jµ
Lep(q1) is the leptonic current

and we have introduced the polarization vector for the final state photon ϵν .
In particular, for the squared amplitude we have

|Mfi|2 = −LµλD(q1)2TµνT
∗ν
λ (5.6)

which is given, more specifically, by

|M|2 =
∫ 1

−1
dz

∫ 1

−1
dz′

(
K1(z, z′)α(z)α∗(z′) + K2(z, z′)β(z)β∗(z′)

)
(5.7)

with K1 and K2 real functions, combinations of the generalized distributions (H, H̃,E, Ẽ)
with appropriate kinematical factors. Mixed contributions proportional to α(z)β ∗(z′) and
β(z)α∗(z′) cancel both in their real and imaginary parts and as such do not contribute to
the phases. A similar result holds also for the pure electromagnetic case.

After some further manipulations, we finally rewrite the squared amplitude in terms
of a P.V. contribution plus some additional terms coming from the imaginary parts

|M|2 = P.V.

∫ 1

−1
dz

∫ 1

−1
dz′

(
K1(z, z′)α(z)α∗(z′) + K2(z, z′)β(z)β∗(z′)

)
+

+π2 (K1(ξ, ξ) −K1(ξ,−ξ) − K1((−ξ, ξ) + K1(−ξ,−ξ)) +

+π2 (K2(ξ, ξ) + K2(ξ,−ξ) + K2((−ξ, ξ) + K2(−ξ,−ξ)) (5.8)

which will be analized numerically in the sections below. In order to proceed with the
numerical result, it is necessary to review the standard construction of the nonforward
parton distribution functions in terms of the forward distributions, which is the topic of
the next section.

6. Construction of the input distributions

The computation of the cross section proceeds rather straightforwardly, though the con-
struction of the initial conditions is more involved compared to the forward (DIS) case.
This construction has been worked out in several papers [15, 16, 17, 18, 19, 8] in the case of
standard DVCS, using a diagonal input appropriately extended to the non-diagonal kine-
matics. Different types of nonforward parton distribution, all widely used in the numerical
implementations have been put forward, beside Ji’s original distributions, which we will be
using in order to construct the initial conditions for our process.

– 13 –



J
H
E
P
0
2
(
2
0
0
5
)
0
3
8

−ξ

−1

1+   ξ(
z+

)
ξ

1+   ξ( )
−zξ

ξ

1 1

0

0

1

DGLAP

ERBL

DGLAP

ERBL
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X
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ξ=ζ/(2−ζ)

Figure 4: The relationship between F q(X, ζ), F q̄(X, ζ) and Ji’s function Hq(z, ξ).

For our purposes it will be useful to introduce Golec-Biernat and Martin’s (GBM)
distributions [17] at an intermediate step, which are linearly related to Ji’s distributions.

We recall, at this point, that the quark distributions Hq(z, ξ) have support in z ∈
[−1, 1], describing both quark and antiquark distributions for z > 0 and z < 0 respectively.
In terms of GBM distributions, two distinct distributions F̂ q̄(X, ζ) and F̂q(X, ζ) with
0 ≤ X ≤ 1 are needed in order to cover the same information contained in Ji’s distributions
using only a positive scaling variable (X). In the region X ∈ (ζ, 1] the functions F̂q and
F̂ q̄ are independent, but if X ≤ ζ they are related to each other, as shown in the (by now
standard) plot in figure 4.

In this new variable (X) the DGLAP region is described by X > ζ (|z| > ξ), and the
ERBL region by X < ζ (|z| < ξ). In the ERBL region, F̂q and F̂ q̄ are not independent.

The relation between H(z, ξ) and F̂q(X, ζ) can be obtained explicitly [20] as follows:
for z ∈ [−ξ, 1] we have

F̂q,i

(
X =

z + ξ

1 + ξ
, ζ

)
=

Hq,i(z, ξ)
1 − ζ/2

, (6.1)

and for z ∈ [−1, ξ]

F̂ q̄,i

(
X =

ξ − z

1 + ξ
, ζ

)
= −Hq,i(z, ξ)

1 − ζ/2
, (6.2)

where i is a flavour index.
In our calculations we use a simplified model for the GPD’s where the ∆2 dependence

can be factorized as follows [21, 15]

H i(z, ξ,∆2, Q2) = F i
1 (∆2)qi(z, ξ, Q2)

H̃ i(z, ξ,∆2, Q2) = Gi
1(∆

2)∆qi(z, ξ, Q2)

Ei(z, ξ,∆2, Q2) = F i
2(∆

2) ri(z, ξ, Q2) (6.3)

where qi(z) and ∆qi(z) are obtained from the standard non-polarized and longitudinally
polarized (forward) quark distributions using a specific diagonal ansatz [22].
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The ansatz ri(z, ξ) = qi(z, ξ) is also necessary in order for the quark sum rule to
hold [23]. Analogously, in the case of the Ẽi distributions [8, 24, 25] one can use the special
model

Ẽu = Ẽd =
1
2ξ

θ(ξ−|z|)φπ

(
z

ξ

)
gπ(∆2) , gπ(∆2) =

4g(3)
A M2

m2
π − ∆2

, φπ(x) =
4
3
(1−x2) (6.4)

valid at small ∆2, where g(3)
A = 1.267, M is the nucleon mass and mπ is the pion mass,

with the normalization

F i
1(0) = Gi

1(0) = 1 . (6.5)

Notice that, analogously to the H distributions, q i(z, ξ, Q2) and ∆qi(z, ξ, Q2), which
describe the ∆2 = 0 limit of the H-distributions, have support in [−1, 1] and, again, they
describe quark distributions (for z > 0) and antiquark distributions (for z < 0)

q̄i(z, ξ, Q2) = −qi(−z, ξ, Q2)

∆q̄i(z, ξ, Q2) = ∆qi(−z, ξ, Q2) . (6.6)

Now we’re going to estabilish a connection between the q(z, ξ, Q̄2) and the F̂q(X, ζ)
functions, which is done using Radyushkin’s nonforward “double distributions” [8]. The
construction of the input distributions, in correspondence of an input scale Q0, is performed
following a standard strategy. This consists in generating nonforward double distributions
f(x, y) from the forward ones (f(x)) using a “profile function” π(x, y) [7]

f(y, x) = π(y, x)f(x) , (6.7)

where we just recall that the π(y, x) function can be represented by

π(y, x) =
3
4

[1 − |x|]2 − y2

[1 − |x|]3
, (6.8)

taken to be of an asymptotic shape (see ref. [7, 16]) for quarks and gluons. A more general
profile is given by

π(x, y) =
Γ(2b + 2)

22b+1Γ2(b + 1)
[(1 − |x|)2 − y2]b

(1 − |x|)2b+1
(6.9)

and normalized so that
∫ 1−|x|

−1+|x|
dy π(x, y) = 1 . (6.10)

b parameterizes the size of the skewing effects starting from the diagonal input. Other
choices of the profile function are also possible. For instance, the double distributions (DD)
defined above have to satisfy a symmetry constraint based on hermiticity. This demands
that these must be symmetric with respect to the exchange y ←→ 1− x− y, and a profile
function which respects this symmetry constraint is given by [26]

π(x, y) =
6y(1 − x − y)

(1 − x)3
. (6.11)
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This symmetry is crucial for establishing proper analytical properties of meson pro-
duction amplitudes. We will be using below this profile and compare the cross section
obtained with it against the one obtained with (6.9).

Now we are able to generate distributions q(z, ξ, Q2) in the z variable at ∆2 = 0,
q(z, ξ, Q2), by integrating over the longitudinal fraction of momentum exchange y charac-
teristic of the double distributions

q(z, ξ, Q2) =
∫ 1

−1
dx′

∫ 1−|x′|

−1+|x′|
dy′δ(x′ + ξy′ − z)f(y′, x′, Q2) . (6.12)

Using (6.12) and the expression of the profile functions introduced above, the GBM
distributions are generated by the relation

F̂q,a(X, ζ) =
2
ζ

∫ X

X−ζ
1−ζ

dx′πq

(
x′,

2
ζ
(X − x′) + x′ − 1

)
qa(x′) . (6.13)

with a similar expression for the anti-quark distributions in the DGLAP region X > ζ (z <

−ξ)

F̂ q̄,a(X, ζ) =
2
ζ

∫ −X+ζ
1−ζ

−X
dx′πq

(
x′,−2

ζ
(X + x′) + x′ + 1

)
q̄a(|x′|) . (6.14)

In the ERBL region, X < ζ (|z| < ξ), after the integration over y, we are left with the
sum of two integrals

F̂q,a(X, ζ) =
2
ζ

[∫ X

0
dx′πq

(
x′,

2
ζ
(X − x′) + x′ − 1

)
qa(x′) −

−
∫ 0

X−ζ
dx′πq

(
x′,

2
ζ
(X − x′) + x′ − 1

)
q̄a(|x′|)

]
,

F̂ q̄,a(X, ζ) = −2
ζ

[∫ ζ−X

0
dx′πq

(
x′,−2

ζ
(X + x′) + x′ + 1

)
qa(x′) −

−
∫ 0

−X
dx′πq

(
x′,−2

ζ
(X + x′) + x′ + 1

)
q̄a(|x′|)

]
. (6.15)

Solving numerically the integrals we obtain the value of the function F qs on a grid,
and using eqs. (6.1) and 6.2 we end up with the numerical form of the H-distributions. We
have used diagonal parton distribution functions at 0.26 GeV2 [22] and the results of our
numerical implementation can be visualized in figures 5 and 6.

7. The differential cross section

Our kinematical setup is illustrated in figure 8, and we choose momenta in the target frame
with the following parameterizations

l = (E, 0, 0, E) , l′ =
(
E′, E′ cos φν sin θν , E

′ sin φν sin θν , E
′ cos θν

)
,

P1 = (M, 0, 0, 0) , P2 = (E2, |P2| cos φN sin θN , |P2| sin φN sin θN , |P2| cos θN ) (7.1)
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Figure 5: GPD’s Hu and Hd generated by the diagonal parton distribution with a profile func-
tion (6.9) at an initial 0.26GeV2.
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Figure 6: GPD’s flavour singlet combination at 0.26GeV2 generated with a profile (6.9).

where the incoming neutrino is taken in the positive ẑ-direction and the nucleon is originally
at rest. The first plane is identified by the momenta of the final state nucleon and of the
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Figure 7: A pictorial description of the DVNS experimental setup, where the recoiled nucleon is
detected in coincidence with a final state photon.
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Figure 8: Kinematics of the process ν(l)N(P1) → ν(l′)N(P2)γ(q2).

incoming neutrino, while the second plane is spanned by the final state neutrino and the
same ẑ-axis. φν is the angle between the x̂ direction and the second plane, while φN is
taken between the plane of the scattered nucleon and the same x̂ axis. We recall that the
general form of a differential cross section is given by

dσ =
1

4(l · P1)
|Mfi|2(2π)4δ(4)(l + P1 − P2 − l′ − q2)

d3 l⃗′

2l′0(2π)3
d3P⃗2

2P 0
2 (2π)3

d3q⃗2

2q0
2(2π)3

(7.2)

and it will be useful to express it in terms of standard quantities appearing in a standard DIS
process such as Bjorken variable x, inelasticity parameter y, the momentum transfer plus
some additional kinematical variables typical of DVCS such as the asymmetry parameter
ξ and ∆2.
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We will be using the relations

q̄2 = −1
2
q2
1

(
1 − ∆2

2q2
1

)
≈ 1

2
Q2

ξ =
x

(
1 − ∆2

2q2
1

)

2 − x
(
1 − ∆2

2q2
1

) ≈ 2x
2 − x

(7.3)

in the final computation of the cross section. It is also important to note that ∆2 has to
satisfy a kinematical constraint

∆2
min = − M2x2

1 − x + xM2

Q2

(
1 + O

(
M2

Q2

))
. (7.4)

One possible cross section to study, in analogy to the DVCS case [27], is the following

dσ

dxdQ2d|∆2|dφr
=

y

Q2

dσ

dxdyd|∆2|dφr
=

xy2

8πQ4

(
1 +

4M2x2

Q2

)− 1
2

|Mfi|2 , (7.5)

where φr is the angle between the lepton and the hadron scattering planes. To proceed we
also need the relations

l · n =
[

Q2

2xy
− (1 + ξ)

2ξ
Q2

2

]
χ ,

l · ñ =
Q2

2ξ
+

Q2

4ξ2

[
Q2

2xy
− (1 + ξ)

2ξ
Q2

2

]
χ ,

n · q1 =
2x

x − 2
, ñ · q1 = Q2 (2 − x)

8x
, (7.6)

where χ is given by

χ =
ξ

1+ξ
2

Q2

4ξ + ξ(1−ξ)
2

M
2

2

. (7.7)

After some manipulations we obtain a simplified expression for |Mfi|2, similarly to
eq. (5.7)

|Mfi|2 =
∫ 1

−1
dz

∫ 1

−1
dz′

[
A1(z, z′, x, t,Q2)α(z)α∗(z′) + A2(z, z′, x, t,Q2)β(z)β∗(z′)

]
×

×
[
− 2Q2 (4M2 − t) (x − 2)2 (x − 1)x2y + (t − 4M 2)2(x − 1)2 x4y2 +

+ Q4(x − 2)4 (2 − 2y + y2)
]

×
[
2M2(MZ

2 + Q2)2 (x − 2)2 [Q2(x − 2)2 − (4M2 − t)(−1 + x)x2]2y2
]−1 (7.8)

where A1(z, z′, x, t,Q2) and A2(z, z′, x, t,Q2) are functions of the invariants of the process
and of the entire set of GPD’s. Their explicit form is given in appendix D. As we have
already mentioned, the (z, z ′) integration is be done by using the Feynman prescription
to extract the phases and then using the distributional identities (5.3) and (5.4). For
numerical accuracy we have discretized the final integrals by finite element methods, as
shown in appendix C.
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Figure 9: DVCS cross section at x = 0.1 and center of mass energy ME = 10GeV2 using the
profile (6.9).

We have plotted the differential cross section as a function of Q2, for various values of
∆2 and at fixed x values. We have used both the profile given by (6.9) (figures 9–12) and
the one given in eq. (6.11) (figures 13 and 14) and their direct comparison in a specific kine-
matical region (figure 15). The different profiles generate differences in the cross sections
especially for larger ∆2 values. Notice also that the DVNS cross section decreases rather
sharply with ∆2, at the same time it increases appreciably with x. The results shown are
comparable with other cross sections evaluated in the quasi-elastic region (≈ 10−5 nb) for
charged and neutral current interactions, and appear to be sizeable. Coherence effects due
to neutral current interactions with heavy nuclei, in particular with the neutron component
may substantially increase the size of the cross sections, with an enhancement proportional
to N2, where N is the number of neutrons [28], though an accurate quantification of these
effects requires a special study [29] which is underway. It is worth to emphasize that in the
past this contribution had never been included in the study of neutrino-nucleon interactions
since very little was known about the intermediate energy kinematics in QCD from the point
of view of factorization. It seems obvious to us that with the new developments now taking
place in the study of QCD at intermediate energy, especially in the case of the generalized
Bjorken region, of which the deeply virtual scattering limit is just a special case, it will be
of wide interest to quantify with accuracy the role of these new contributions for neutrino
factories. In general, one expects that electromagnetic effects are suppressed compared to
the standard (hadronic) deeply inelastic cross section, and this has led in the past to a
parameterization of the intermediate energy cross section as either dominated by the quasi
elastic region and/or by the DIS region at higher energies, as we have mentioned in our
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Figure 10: DVCS cross section at x = 0.2 and center of mass energy ME = 10GeV2 using the
profile (6.9).
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Figure 11: DVCS cross section at x = 0.3 and center of mass energy ME = 10GeV2 using the
profile (6.9).
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Figure 12: DVCS cross section at x = 0.1 and center of mass energy ME = 27GeV2 using the
profile (6.9).
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Figure 13: DVCS cross section at x = 0.3 and center of mass energy ME = 10GeV2 with
non-forward partons distribution functions generated by the profile function (6.11).
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Figure 14: DVCS cross section at x = 0.3 and center of mass energy ME = 27GeV2 with
non-forward partons distribution functions generated by the profile function (6.11).
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Figure 15: DVCS cross sections at x = 0.2 and center of mass energy ME = 27GeV2, σ̃ is
obtained using profile (6.11).
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introduction. However, the exclusive cross section has some special positive features, one
of them being to provide a clean signal for the detection of weakly interacting particles,
and we expect that this aspect is going to be of relevance at experimental level.

8. Conclusions

We have presented an extension of the standard DVCS process to the case of one neutral
current exchange, describing the scattering of a neutrino off a proton in the parton model.
We have described the leading twist behaviour of the cross section; we have found that
this is comparable to other typical neutrino cross sections and discussed its forward or DIS
limit. We have presented a complete formalism for the study of these processes in the parton
model. The process is the natural generalization of DIS with neutral currents and relies on
the notion of Generalized Parton Distributions, new constructs in the parton model which
have received considerable attention in recent years. The possible applications of these new
processes are manifold and we hope to return in the near future with a discussion of some
of the issues not addressed in this work.
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A. Collinear expansion

The collinear expansion of the internal loop momentum k allows to identify the light cone
operators appearing in the process at leading twist. We recall at this point that the analysis
of the hand-bag contribution is carried out exactly as in the electromagnetic case.

To perform the collinear expansion and isolate the light-cone correlators of DVNS from
the hand-bag contribution we use the relation

∫
dλ dx

2π
eiλ(x−k·n) = 1 (A.1)

inside the expression of T µν in order to obtain

T µν = −
∫

d4k

(2π)4

∫
dλ dx

2π
eiλ(x−k·n) ×

× tr
{[

γν i

/k − α/∆ + /q1 + iϵ
γµ + γµ i

/k + (1 − α)/∆ − /q1 + iϵ
γν

]
M(k)

}
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and therefore

T µν = −
∫

dk · n dk · ñ dk2
⊥

(2π)4

∫
dλ dx

2π
eiλ(x−k·n)

∫
d4z eik·z ×

× tr
{[

γν i

/k − α/∆ + /q1 + iϵ
γµ + γµ i

/k + (1 − α)/∆ − /q1 + iϵ
γν

]
·

· ⟨P ′|ψ(−αz)ψ((1 − α)z)|P ⟩
}

.

Keeping the leading terms for the loop momenta

kµ − α∆µ + qµ
1 = ñµ (k · n + 2αξ − 2ξ) + nµ

(
k · ñ − αξM

2 +
Q2

4ξ

)

kµ + (1 − α)∆µ − qµ
1 = ñµ(k · n − 2(1 − α)ξ + 2ξ) + nµ

(
k · ñ + 2(1 − α)ξM 2 − Q2

4ξ

)

we thus obtain

T µν = −
∫

d(k · n) d(k · ñ) dk2
⊥

(2π)4

∫
dλ dx

2π
eiλ(x−k·n)

∫
d4z eik·z ×

× tr

{[

γν /̃n

2
(
k · ñ − αξM

2 + Q2

4ξ

)γµ + γµ /̃n

2
(
k · ñ + (1 − α)ξM 2 − Q2

4ξ

)γν +

+ γν /n
2(k · n + 2αξ − 2ξ)

γµ + γµ /n
2(k · n − 2(1 − α)ξ + 2ξ)

γν

]

·

· ⟨P ′|ψ(−αz)ψ((1 − α)z)|P ⟩
}

.

We expand
k · z = (k · n) (ñ · z) + (k · ñ) (n · z) − k⃗⊥ · z⃗⊥

and choose α = 1/2. These expansions are introduced in eq. 3.16 and after some manipu-
lations the tensor T now becomes

T µν |α=1/2 = −
∫

d(k · n) d(k · ñ) dk2
⊥

(2π)4

∫
dλ dx

2π
eiλ(x−k·n)

∫
d4z eik·z ×

× tr

{[

γν /̃n

2
(
k · ñ − α

2 ξM
2 + Q2

2ξ

)γµ + γµ /̃n

2
(
k · ñ + (1 − α)ξM 2 − Q2

4ξ

)γν +

+ γν /n

2
(
k · n + 2αξ − 2ξ

)γµ + γµ /n

2
(
k · n − 2(1 − α)ξ + 2ξ

)γν

]

·

· ⟨P ′|ψ(−αz)ψ((1 − α)z)|P ⟩
}

.
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We also recall that the expansion of the matrix element M(k) proceeds also in this
case as in the electromagnetic case

M (i)
ab (k) =

∫
d4yeik·y⟨P ′|ψ(i)

a (−αy)ψ(i)
b ((1 − α)y)|P ⟩ = A1ñ/ + A2γ5ñ/ + · · · . (A.2)

where the ellipses refer to terms which are of higher twist or disappear in the trace of the
diagram.

B. Form factors parameterizations

The last ingredients needed in the construction of the input distribution functions are
the form factors F i

1 and F i
2. From experimental measurements we know, by a dipole

parametrization in the small ∆2 region, that

Gp
E(∆2) = (1 + κp)−1Gp

M (∆2) = κ−1
n Gn

M (∆2) =
(

1 − ∆2

m2
V

)−2

, Gn
E(∆2) = 0 , (B.1)

where the electric, Gi
E(∆2) = F i

1(∆2)+ ∆2

4M2 F i
2(∆2), and magnetic form factors Gi

M (∆2) =
F i

1(∆2) + F i
2(∆2) are usually parametrized in terms of a cutoff mass mV = 0.84GeV. For

non-polarized GPD’s the valence u and d quark form factors in the proton can be easily
extracted from F

( p
n )

I = 2(Qu
Qd

)F u
I + (Qd

Qu
)F d

I and given exclicitely by

2F u
I (∆2) = 2F p

I (∆2) + Fn
I (∆2) , F d

I (∆2) = F p
I (∆2) + 2Fn

I (∆2) , for I = 1, 2 . (B.2)

This exploits the fact that proton and neutron form an iso-spin doublet.
At the scale mA = 0.9 GeV one can get

Gi
1(∆

2) =
(

1 − ∆2

m2
A

)−2

(B.3)

for the valence quarks. For the form factors F we obtain

F u
1 = − A∆2

M2(1 − B∆2)2
(
−1 + ∆2

4M2

) +
1 − C∆2

M2
(
1− ∆2

4M2

)

(1 − B∆2)2
,

F u
2 =

D

(1 − B∆2)2
(
1 − ∆2

4M2

) ,

F d
1 = − E∆2

M2(1 − B∆2)2
(
−1 + ∆2

4M2

) +
1 − C∆2

M2
(
1− ∆2

4M2

)

(1 − B∆2)2
,

F d
2 =

F

(1 − B∆2)2
(
1 − ∆2

4M2

) , (B.4)

where
A = 0.238 B = 1.417 C = 0.447 ,

D = 0.835 E = 0.477 F = 0.120 . (B.5)
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C. Principle value prescription

In this section we illustrate an analytical computation of the integrals by discretization,
using finite elements method. We want to approximate with high numerical accuracy
integrals of the form

P.V.

∫ 1

−1

H(z)dz

z − ξ
=

∫ ξ

−1
dz

H(z) − H(ξ)
z − ξ

+
∫ 1

ξ
dz

H(z) − H(ξ)
z − ξ

+ H(ξ) ln
∣∣∣∣
ξ − 1
ξ + 1

∣∣∣∣ . (C.1)

For this purpose we start by choosing a grid on the interval (−1 = x0, . . . , xn+1 = ξ)
and define

J1 =
∫ ξ

−1
dz

H(z) − H(ξ)
z − ξ

=
n∑

j=0

∫ xj+1

xj

dx
H(x) −H(ξ)

x − ξ
. (C.2)

Performing a simple linear interpolation we get

J1 =
n−1∑

j=0

∫ xj+1

xj

{
H(xj)

[
xj+1 − x

xj+1 − xj

]
+ H(xj+1)

[
x − xj

xj+1 − xj

]}
dx

x − ξ
+

+
∫ ξ

xn

{
H(xn)

[
ξ − x

ξ − xn

]
+ H(ξ)

[
x − xn

ξ − xn

]}
dx

x − ξ
−

∫ ξ

−1
dx

H(ξ)
x − ξ

. (C.3)

After the integration we are left with

J1 =
n−1∑

j=0

H(xj)
[
−1 +

(
xj+1 − ξ

xj+1 − xj

)
ln

∣∣∣∣
xj+1 − ξ

xj − ξ

∣∣∣∣

]
+

+
n−1∑

j=0

H(xj+1)
[
1 +

(
ξ − xj

xj+1 − xj

)
ln

∣∣∣∣
xj+1 − ξ

xj − ξ

∣∣∣∣

]
−

−
n−1∑

j=0

H(ξ) ln
∣∣∣∣
xj+1 − ξ

xj − ξ

∣∣∣∣ − H(xn) + H(ξ) . (C.4)

Now, moving to the integral in the interval (ξ, 1), we introduce a similar grid of equally
spaced points (ξ = y0, . . . , yn+1 = 1) and define the integral

J2 =
∫ 1

ξ
dz

H(z) − H(ξ)
z − ξ

=
n∑

j=0

∫ yj+1

yj

dy
H(y) − H(ξ)

y − ξ
. (C.5)

As above, after isolating the singularity we obtain

J2 =
n∑

j=1

∫ yj+1

yj

{
H(yj)

[
1 − y − yj

yj+1 − yj

]
+ H(yj+1)

[
y − yj

yj+1 − yj

]}
dy

y − ξ
+

+H(y1) + H(ξ)
∫ y1

ξ

[
y1 − y

y1 − ξ

]
dy −

∫ 1

ξ
dy

H(ξ)
y − ξ

. (C.6)
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Again, performing the integrations we obtain

J2 =
n∑

j=1

H(yj)
[
−1 +

(
yj+1 − ξ

yj+1 − yj

)
ln

∣∣∣∣
yj+1 − ξ

yj − ξ

∣∣∣∣

]
+

+
n∑

j=1

H(yj+1)
[
1 +

(
ξ − yj

yj+1 − yj

)
ln

∣∣∣∣
yj+1 − ξ

yj − ξ

∣∣∣∣

]
−

−
n∑

j=1

H(ξ) ln
∣∣∣∣
yj+1 − ξ

yj − ξ

∣∣∣∣ + H(y1) −H(ξ) . (C.7)

Collecting our results, at the end we obtain

P.V.

∫ 1

−1

H(z)dz

z − ξ
= J1 + J2 + H(ξ) ln

∣∣∣∣
ξ − 1
ξ + 1

∣∣∣∣ . (C.8)

We can use the same strategy for the integrals of “+” type defined as follows

P.V.

∫ 1

−1

H(z)dz

z + ξ
=

∫ −ξ

−1
dz

H(z) − H(−ξ)
z + ξ

+
∫ 1

−ξ
dz

H(z) − H(−ξ)
z + ξ

+ H(−ξ) ln
∣∣∣∣
ξ + 1
ξ − 1

∣∣∣∣ .

(C.9)
This time we call our final integrals X1 and X2. They are given by the expressions

X1 =
n−1∑

j=0

H(xj)
[
−1 +

(
xj+1 + ξ

xj+1 − xj

)
ln

∣∣∣∣
xj+1 + ξ

xj + ξ

∣∣∣∣

]
+

+
n−1∑

j=0

H(xj+1)
[
1 +

(
−ξ − xj

xj+1 − xj

)
ln

∣∣∣∣
xj+1 + ξ

xj + ξ

∣∣∣∣

]
−

−
n−1∑

j=0

H(−ξ) ln
∣∣∣∣
xj+1 + ξ

xj + ξ

∣∣∣∣ − H(xn) + H(−ξ) , (C.10)

with a discretization supported in the (−1 = x0, . . . , xn+1 = ξ) grid, and

X2 =
n∑

j=1

H(yj)
[
−1 +

(
yj+1 + ξ

yj+1 − yj

)
ln

∣∣∣∣
yj+1 + ξ

yj + ξ

∣∣∣∣

]
+

+
n∑

j=1

H(yj+1)
[
1 +

(
−ξ − yj

yj+1 − yj

)
ln

∣∣∣∣
yj+1 + ξ

yj + ξ

∣∣∣∣

]
−

−
n∑

j=1

H(−ξ) ln
∣∣∣∣
yj+1 + ξ

yj + ξ

∣∣∣∣ + H(y1) − H(−ξ) , (C.11)

on the (−ξ = y0, . . . , yn+1 = 1) grid. As a final result for the “+” integral we get

P.V.

∫ 1

−1

H(z)dz

z + ξ
= X1 + X2 + H(−ξ) ln

∣∣∣∣
ξ + 1
ξ − 1

∣∣∣∣ . (C.12)
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D. Expressions of the squared amplitude

In this section we will present the full expression of the functions A1 and A2 which appear
in the squared amplitude

A1(z, z′x, t, Q2) = g̃4Q2
[
4g2

d[Ẽ
′
d(4H̃dM

2 + Ẽdt)x2 + 4H̃ ′
dM

2(4H̃d(x − 1) + Ẽdx
2)] +

+ 4gdgu

[
(4Ẽ′

uH̃dM
2 + +4Ẽ′

dH̃uM2 + Ẽ′
uẼdt + Ẽ′

dẼut)x2

+ 4H̃ ′
uM2(4H̃d(x − 1) + Ẽdx

2) +

+ 4H̃ ′
dM

2(4H̃u(x − 1) + Ẽux2)
]

+

+ DvUvgdgu

[
4E′

uEdt + 4E′
dEut − 4E′

uEdtx − 4E′
dEutx +

+ 4E′
uEdM

2x2 + 4E′
dEuM2x2 + 4E′

uHdM
2x2 +

+ 4E′
dHuM2x2 + E′

uEdtx
2 + E′

dEutx2 +

+ 4H ′
uM2(4Hd(x − 1) + Edx

2) +

+ 4H ′
dM

2(4Hu(x − 1) + Eux2)
]

+

+ g2
u

[
4E′

uEutU2
v − 4E′

uEutU2
v x + 16Ẽ′

uH̃uM2x2 + 4Ẽ′
uẼutx2 +

+ 4E′
uEuM2U2

v x2 + 4E′
uHuM2U2

v x2 + E′
uEutU2

v x2 +

+ 16H̃ ′
uM2(4H̃u(x − 1) + Ẽux2) +

+ 4H ′
uM2U2

v (4Hu(x − 1) + Eux2)
]

+

+ D2
vg

2
d

[
4H ′

dM
2(4Hd(x − 1) + Edx

2) +

+ E′
d(4HdM

2x2 + Ed(t (x − 2)2 + 4M2x2))]
]

(D.1)

and for A2(z, z′, x, t) we get a similar result

A2(z, z′, x, t, Q2) = 4g̃4Q2
[
gdgu

[
4E′

uEdt + 4E′
dEut − 16DvH̃

′
uH̃dM

2Uv − 16DvH̃
′
dH̃uM2Uv −

− 4E′
uEdtx − 4E′

dEutx + 16DvH̃uH̃dM
2Uvx +

+ 16DvH̃
′
dH̃uM2Uvx + 4E′

uEdM
2x2 + 4E′

dEuM2x2 +

+ 4E′
uHdM

2x2 + 4E′
dHuM2x2 + E′

uEdtx
2 + E′

dEutx2 +

+ 4DvẼuH̃ ′
dM

2Uvx
2 + 4DvẼdH̃

′
uM2Uvx

2 +

+ 4DvẼ
′
uH̃dM

2Uvx
2 + 4DvẼ

′
dH̃uM2Uvx

2 + DvẼ′
uẼdtUvx

2 +

+ DvẼ
′
dẼutUvx

2 + 4H ′
uM2(4Hd(x − 1) + Edx

2) +

+ 4H ′
dM

2(4Hu(x − 1) + Eux2)
]

+

+ g2
d

[
4H ′

dM
2(4Hd(x − 1) + Edx

2) + D2
v(Ẽ

′
d(4H̃dM

2 + Ẽdt)x2 +

+ 4H̃ ′
dM

2(4H̃d(x − 1) + Ẽdx
2)) +

+ E′
d(4HdM

2x2 + Ed(t(x − 2)2 + 4M2x2))
]

+

+ g2
u

[
4H ′

uM2(4Hu(x − 1) + Eux2) +

+ U2
v (Ẽ′

u(4H̃uM2 + Ẽut)x2 + 4H̃ ′
uM2(4H̃u(x − 1) + Ẽux2)) +

+ E′
u(4HuM2x2 + Eu(t(x − 2)2 + 4M2x2))

]]
. (D.2)
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