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Abstract

A NNLO analysis of certain logarithmic expansions, developed for precision studies of the evolution of
the QCD parton distributions (pdf) at the large hadron collider, is presented. We elaborate on their relations
to all the solutions of the DGLAP equations that have been hitherto obtained from Mellin space, to which
are equivalent. Exact expansions, equivalent to exact solutions of the equations, are constructed in the non-
singlet sector. The algorithmic features of our approach are also emphasized, since this method allows to
obtain numerical solutions of the evolution equations with the same accuracy of other methods, based on
Mellin space, and of brute force methods, which solve the equations by finite differences. The implemen-
tation of our analysis allows to compare with existing benchmarks for the evolution of the pdf’s, useful for
applications at the LHC, and to extend them significantly in a systematic fashion, especially when solutions
that retain logarithmic corrections only of a certain accuracy are searched for.
© 2006 Elsevier B.V. All rights reserved.

1. Introduction

Precision studies of some hadronic processes in the perturbative regime are going to be very
important in order to confirm the validity of the mechanism of mass generation in the Standard
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Model at the new collider, the LHC. This program involves a rather complex analysis of the
QCD background, with the corresponding radiative corrections taken into account to higher or-
ders. Studies of these corrections for specific processes have been performed by various groups,
at a level of accuracy which has reached the next-to-next-to-leading order (NNLO) in αs , the
QCD coupling constant. The quantification of the impact of these corrections requires the deter-
mination of the hard scattering of the partonic cross sections up to order α3

s , with the matrix of
the anomalous dimensions of the DGLAP kernels determined at the same perturbative order.

The study of the evolution of the parton distributions is critical for the success of this program
and may include both a NNLO analysis and, possibly, a resummation of the large logs which
may appear in certain kinematic regions of specific processes [1]. The questions that we address
in our work concern the types of approximations which are involved when we try to solve the
DGLAP equations to higher orders and the differences among the various methods proposed for
their solution.

The clarification of these issues is important, since a chosen method has a direct impact on
the structure of the evolution codes and on their phenomenological predictions. We address these
questions by going over a discussions of these methods and, in particular, we compare those
based in Mellin space and the analogous ones based in x-space. Mellin methods have been the
most popular and have been implemented up to NLO and, very recently, also at NNLO [2].
We remark that x-space methods based on logarithmic expansions have never been thoroughly
justified in the previous literature even at NLO, in the case of the QCD parton distributions (pdf’s)
[3–5].

We fill this gap and present exact proofs of the equivalence of these methods—in the case of
the evolution of the QCD pdf’s—extending a proof which had been outlined by Rossi [6] at LO
and by Da Luz Vieira and Storrow [7] at NLO in their study of the parton distributions of the
photon.

In more recent times, these studies on the pdf’s of the photon have triggered similar studies
also for the QCD pdf’s. The result of these efforts was the proposal of new expansions for the
quark and gluon parton distributions [3–5] which had to capture the logarithmic behaviour of
the solution up to NLO. Evidence of the consistency of the ansatz was, in part, based on a
comparative study of the generic structures of the logarithms that appear in the solution using
Mellin moments, since the same logarithms of the coupling could be reobtained by recursion
relations.

In this work we are going to clarify—using the exact solutions of the corresponding recursion
relations—the role of these previous expansions and present their generalizations. In particular
we will show that they can be extended to retain higher logarithmic corrections and how they
can be made exact. It is shown that by a suitable extension of this analysis, all that has been
known so far in moment space can be reobtained directly from x-space. In the photon case the
Da Luz Vieira–Storrow solution [7] can be now understood simply as a first truncated ansatz of
the general truncated solutions that we analize. However, the analysis presented here is limited
to the QCD pdf’s, while a similar study of the pdf’s of the photon will be discussed by us in a
forthcoming paper.

We introduce the notion of first, second, and so on, truncated solutions of the DGLAP, that
correct the LO behaviour, from which the nature of the expansions and the contributions retained
by the various approximations will appear quite clearly.

Our work is organized as follows. After defining our conventions, we bring in a simple exam-
ple that shows how a non-singlet LO solution of the DGLAP is obtained by an x-space ansatz.
Then we move to NLO and introduce the notion of truncated logarithmic solutions at this order,
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moving afterwards to define exact recursive solutions from x-space. In all these cases, we show
that these solutions contain exactly the same information of those obtained in Mellin space, to
which they turn out to be equivalent. The same analysis is then extended to NNLO. Our ap-
proach lays at the foundation of a numerical method—based on x-space—that solves the NNLO
DGLAP with great accuracy down to very small-x (10−5). The method, therefore, not only does
not suffer from the usual well-known inaccuracy of x-space based approaches at small-x val-
ues [8], but is, from our viewpoint, a complementary way to look at the evolution of the pdf’s
in an extremely simple fashion. We conclude with some comments concerning the timely issue
of defining benchmarks for the evolution of the pdf’s, obtained by comparing solutions extracted
by Mellin methods against those derived from our approach, in particular for those solutions
which retain accuracy of a given order in αs (O(αs) accurate solutions), relevant for precise
determination of certain NNLO observables at the LHC.

2. Definitions and conventions

Before we start our analysis it is convenient to define here our notations and conventions that
we will use in the rest of the paper.

We introduce the 3-loop evolution of the coupling via its β-function

(1)β(αs) ≡ ∂αs(Q
2)

∂ logQ2
,

and its three-loop expansion is

(2)β(αs) = − β0

4π
α2

s − β1

16π2
α3

s − β2

64π3
α4

s + O
(
α5

s

)
,

where

β0 = 11

3
NC − 4

3
Tf ,

β1 = 34

3
N2

C − 10

3
NCnf − 2CF nf ,

(3)β2 = 2857

54
N3

C + 2C2
F Tf − 205

9
CF NCTf − 1415

27
N2

CTf + 44

9
CF T 2

f + 158

27
NCT 2

f ,

are the coefficients of the beta function. In particular, β2 [9,10] and β3 [11] are in the MS scheme.
We have set

(4)NC = 3, CF = N2
C − 1

2NC

= 4

3
, Tf = TRnf = 1

2
nf ,

where NC is the number of colors, nf is the number of active flavors, that is fixed by the number
of quarks with mq � Q. One can obtain either an exact or an accurate (truncated) solution of this
equation. An exact solution includes higher order effects in αs , while a truncated solution retains
contributions only up to a given (fixed) order in a certain expansion parameter. The structure of
the NLO exact solution of the RGE for the coupling is well known and relates αs(μ

2
1) in terms

of αs(μ
2
2) via an implicit solution

(5)
1

as(μ
2
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= 1
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)
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{
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2
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}
,
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where as(μ
2) = αs(μ

2)/(4π). The truncated solution is obtained by expanding up to a given
order in a small variable

(6)αs

(
μ2

1

) = αs

(
μ2

2

) −
[
α2

s (μ
2
2)

4π
+ α3

s (μ
2
2)

(4π)2

(−β2
0L2 + β1L

)]
,

where the μ2
1 dependence is shifted into the factor L = ln(μ2

1/μ
2
2), and we have used a β-function

expanded up to NLO, involving β0 and β1. Exact solutions of the RGE for the running coupling
are not available (analytically) beyond NLO, while they can be obtained numerically. Truncated
solutions instead can be obtained quite easily, for instance expanding in terms of the logarithm
of a specific scale (Λ)

αs

(
Q2) = 4π

β0LΛ

{
1 − β1

β2
0

logLΛ

LΛ

+ 1

β3
0L2

Λ

[
β2

1

β0

(
log2 LΛ − logLΛ − 1

) + β2

]

(7)+ O

(
1

L3
Λ

)}
,

where

(8)LΛ = log
Q2

Λ2
MS

,

and where Λ
(nf )

MS
is calculated using the known value of αs(mZ) and imposing the continuity of

αs at the thresholds identified by the quark masses.

3. General issues

For an integro-differential equation of DGLAP type, which is defined in a perturbative fashion,
the kernel P(x) is known perturbatively up to the first few orders in αs , approximations which
are commonly known as LO, NLO, NNLO (see Ref. [17] for details).

The equation is of the form

(9)
∂f (x,Q2)

∂ lnQ2
= P

(
x,Q2) ⊗ f

(
x,Q2),

with

(10)a(x) ⊗ b(x) ≡
1∫

0

dy

y
a(y)b(x/y),

and the expansion of the kernel at LO, for instance, is given by

(11)P
(
x,Q2)LO =

(
αs(Q

2)

2π

)
P (0)(x).

In the case of QCD one equation is scalar, termed non-singlet, the other equation involves 2-
by-2 matrices, the singlet. In other cases, for instance in supersymmetric QCD, both the singlet
and the non-singlet equations have a matrix structure [12]. Except for the LO case, exact analytic
solutions of the singlet equations are not known. However, various methods are available in order
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to obtain a numerical solution with a good accuracy. These methods are of two types: brute force
approaches based in x-space and those based on the inversion of the Mellin moments.

A brute force method involves a numerical solution of the PDE based on finite differences
schemes. One can easily find a stability scheme in which the differential operator on the left-
hand side of the equation gets replaced by its finite difference expression. This method has the
advantage that it allows to obtain the so-called “exact” solution of the equation at a given order
(LO, NLO, NNLO). The only approximation involved in this numerical solution comes from
the perturbative expansion of the kernels. Solutions of this type are not accurate to the working
order of the expansion of the kernels, since they retain higher order terms in αs .1 A short-come
of brute force methods is the lack of an ansatz for the solution, which could instead be quite
useful in order to understand the role of the retained perturbative logarithms. The use of Mellin
inversion allows to extract, in the non-singlet case, the exact solution quite immediately up to
NNLO.

The Mellin moments are defined as

(12)a(N) =
1∫

0

a(x)xN−1 dx

and the basic advantage of working in moment space is to reduce the convolution product ⊗ into
an ordinary product. For instance, at leading order we obtain the LO DGLAP equation (9) in
moment space

(13)
∂f (N,αs)

∂αs

= − ( αs

2π
)P (0)(N)

β0
4π

α2
s

f (N,αs),

which is solved by

(14)f (N,αs) = f (N,α0)

(
αs

α0

)− 2P (0)(N)
β0 = f (N,α0) exp

{
−2P (0)(N)

β0
log

(
αs

α0

)}
,

where we have used the notation α ≡ α(Q2) and α0 ≡ α(Q2
0). At this point, to construct the

solution in x-space, we need to perform a numerical inversion of the moments, following a
contour in the complex plane. This method is widely used in the numerical construction of the
solutions and various optimization of this technique have been proposed [20]. We will show
below how one can find solutions of any desired accuracy by using a set of recursion relations
without the need of using numerical inversion of the Mellin moments.

3.1. The logarithmic ansatz in LO

To illustrate how the logarithmic expansion works and why it can reproduce the same solutions
obtained from moment space, it is convenient, for simplicity, to work at LO. We try, in the ansatz,
to organize the logarithmic behaviour of the solution in terms of αs and its logarithmic powers,

1 It is common, however, to refer to these solutions as to the “exact” ones, though they have no better status than
the accurate (truncated) ones. In principle, large cancellations between contributions of higher order in the perturbative
expansion of the kernels beyond NNLO, which are not available, and the known contributions, could take place at higher
orders and this possibility remains unaccounted for in these “exact” solution. The term “exact”, though being a misnomer,
is however wide spread in the context of perturbative applications and for this reason we will use it throughout our work.
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times some scale-invariant functions An(x), which depend only on Bjorken x. As we are going
to see, this re-arrangement of the scale dependent terms is rather general for evolution equations
in QCD. The number of the scale-invariant functions An is actually infinite, and they are obtained
recursively from a given initial condition.

The expansion that summarizes the logarithmic behaviour of the solution at LO is chosen of
the form

(15)f
(
x,Q2)LO =

∞∑
n=0

An(x)

n!
[

ln

(
αs(Q

2)

αs(Q
2
0)

)]n

.

To determine An(x) for every n we introduce the simplified notation

(16)L ≡ log
αs(Q

2)

αs(Q
2
0)

,

and insert our ansatz (15) into the DGLAP equation together with the LO expansion of the β-
function to get

(17)−
∞∑

n=0

An+1

n! Ln β0

4π
αs =

∞∑
n=0

Ln

n!
αs

2π
P (0) ⊗ An.

Equating term by term in powers of L we find the recursion relation

(18)An+1 = − 2

β0
P (0) ⊗ An.

At this point we need to show that these recursion relations can be solved in terms of some initial
condition and that they reproduce the exact LO solution in moment space. This can be done by
taking Mellin moments of the recursion relations and solving the chain of these relations in terms
of the initial condition A0(x). At LO the solution of (18) in moment space is simply given by

(19)An(N) =
(

− 2

β0
P (0)

)n

q
(
N,αs

(
Q2

0

))
,

having imposed the initial condition A0 = q(x,αs(Q
2
0)). At this point we plug in this solution

into (15) to obtain

(20)f
(
N,Q2) =

∞∑
n=0

An(N)

n! logn αs(Q
2)

αs(Q
2
0)

,

which clearly coincides with (14), after a simple expansion of the latter

(21)f (N,αs) = f (N,α0)

∞∑
n=0

{
1

n!
[
−2P (0)(N)

β0

]n

logn

(
αs

α0

)}
.

Notice that this non-singlet solution is an exact one. In the singlet case the same approach will
succeed at the same order and there is no need to introduce truncated solution at this order. As
expected, however, things will get more involved at higher orders, especially in the singlet case.

The strategy that we follow in order to construct solutions of the DGLAP equations is all
contained in this trivial example, and we can summarize our systematic search of logarithmic
solutions at any order as follows: we
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(1) define the logarithmic ansatz up to a certain perturbative order and we insert it into the
DGLAP equation, appropriately expanded at that order;

(2) derive recurrency relations for the scale invariant coefficients of the expansion;
(3) take the Mellin moments of the recurrency relations and solve them in terms of the moments

of the initial conditions;
(4) we show, finally, that the solution of the recursion relations, so obtained, is exactly the so-

lution of the original evolution equation firstly given in moment space. This approach is
sufficient to solve all the equations at any desired order of accuracy in the strong coupling,
as we are going to show in the following sections. Ultimately, the success of the logarith-
mic ansatz lays on the fact that the solution of the DGLAP equations in QCD resums only
logarithms of the coupling constant.

4. Truncated solution at NLO. Non-singlet

The extension of our procedure to NLO (non-singlet) is more involved, but also in this case
proofs of consistency of the logarithmic ansatz can be formulated. However, before starting our
technical analysis, we define the notion of “truncated solutions” of the DGLAP equations, ex-
panding our preliminary discussion of the previous sections. We start with some definitions.

A truncated solution retains only contributions up to a certain order in the expansion in the
coupling. We could define a 1st truncated solution, a 2nd truncated solution and so on. The
sequence of truncated solutions is expected to converge toward the exact solution of the DGLAP
as the number of truncates increases. This can be done at any order in the expansion of the
DGLAP kernels (NLO, NNLO, NNNLO, . . .). For instance, at NLO, we can build an exact
solution in moment space (this is true only in the non-singlet case) but we can also build the
sequence of truncated solutions. It is convenient to illustrate the kind of approximations which
are involved in order to obtain these solutions and for this reason we try to detail the derivations.

Let us consider the NLO non-singlet DGLAP equation, written directly in moment space

(22)
∂f (N,αs)

∂αs

= − ( αs

2π
)P (0)(N) + ( αs

2π
)2P (1)(N)

β0
4π

α2
s + β1

16π2 α3
s

f (N,αs),

and search for its exact solution, which is given by

(23)f (N,αs) = f (N,α0)

(
αs

α0

)− 2P (0)(N)
β0

(
4πβ0 + αsβ1

4πβ0 + α0β1

) 2P (0)(N)
β0

− 4P (1)(N)
β1

.

Notice that Eq. (22) is the exact NLO equation. In particular we have preserved the structure of
the right-hand side, that involves both the beta function and the NLO kernels and is given as a
ratio of two polynomials in αs

(24)
P NLO(x,αs)

βNLO(αs)
,

where

(25)P
(
x,Q2)NLO =

(
αs(Q

2)

2π

)
P (0)(x) +

(
αs(Q

2)

2π

)2

P (1)(x)

is the NLO kernel. The factorization of the LO solution from the NLO equation can be obtained
expanding the ratio P/β in αs , which allows the factorization of a 1/αs contribution. Equiva-
lently, one can redefine the integral of the solution in moment space by subtraction of the LO
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part

(26)

αs∫
α0

dα

(
P NLO(x,α)

βNLO(α)
− PLO(α)

βLO(α)

)
.

Denoting by b1 = β1/β0, the truncated differential equation can be written as

(27)
∂f (N,αs)

∂αs

= − 2

β0αs

[
P (0)(N) + αs(Q

2)

2π

(
P (1) − b1

2
P (0)

)]
f (N,αs),

which has the solution

(28)f (N,αs) =
[

αs

α0

]− 2P (0)

β0
exp

{
(αs − α0)

πβ0

(
b1

2
P (0) − P (1)

)}
f (N,α0).

Notice that this solution of the truncated equation, exactly as in the exact solution (23), contains
as a factor the LO solution and therefore can be rewritten in the form

(29)f (N,αs) = exp

{
(αs − α0)

πβ0

(
b1

2
P (0) − P (1)

)}
f LO(N,αs),

where f LO(N,αs) is given by

(30)f LO(N,αs) =
[

αs

α0

]− 2P (0)

β0
f (N,α0).

Eq. (29) exemplifies a typical mathematical encounter in the search of solutions of PDE’s of a
certain accuracy: if we allow a perturbative expansion of the defining equation arrested at a given
order, the solution, however, is still affected by higher order terms in the expansion parameter
(in our case αs ). To identify the expansion which converges to (29) proceeds as follows. We start
from the 1st truncated solution.

Expanding (29) to first order around the LO solution we obtain

(31)f (N,αs) = f LO(N,αs)

{
1 + (αs − α0)

πβ0

(
b1

2
P (0) − P (1)

)}
,

which is the expression of the 1st truncated solution, accurate at order αs . One can already see
from (31) that the ansatz which we are looking for should involve a double expansion in two
values of the coupling constant: αs and α0. This point will be made more clear below. For this
reason we are naturally lead to study the logarithmic expansion

(32)f
(
x,Q2)NLO =

∞∑
n=0

An(x)

n!
[

ln

(
αs

α0

)]n

+ αs

∞∑
n=0

Bn(x)

n!
[

ln

(
αs

α0

)]n

,

which is the obvious generalization of the analogous LO expansion (15).
Inserting this ansatz in the NLO DGLAP equation, we derive the following recurs ion relations

for An and Bn

An+1 = − 2

β0
P (0)(x) ⊗ An(x),

(33)Bn+1 = −Bn(x) − β1
An+1(x) − 2

P (0)(x) ⊗ Bn(x) − 1
P (1)(x) ⊗ An(x),
4πβ0 β0 πβ0
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together with the initial condition

(34)f
(
x,Q2

0

) = A0 + αs

(
Q2

0

)
B0.

At this point we need to prove that the recursion relations (33) reproduce in moment
space (31). To do so we rewrite the recursion relations in Mellin-space

An+1(N) = − 2

β0
P (0)(N)An(N),

(35)Bn+1(N) = −Bn(N) − β1

4πβ0
An+1(N) − 2

β0
P (0)(N)Bn(N) − 1

πβ0
P (1)(N)An(N),

and search for their solution over n. After solving these relations with respect to A0 and B0, it
is simple to realize that our ansatz (32) exactly reproduces the truncated solution (31) only if the
condition B0 = 0 is satisfied. In fact, denoting by

R0 = − 2

β0
P (0)(N),

(36)R1 =
(

b1

2πβ0
P (0) − 1

πβ0
P (1)

)
,

the recursive coefficients, we can rewrite the recursion relations as

An+1 = R0An,

(37)Bn+1 = (R0 − 1)Bn + R1An.

Then, observing that

An = Rn
0A0,

B1 = (R0 − 1)B0 + R1A0,

B2 = (R0 − 1)2B0 + R1A0(2R0 − 1),

B3 = (R0 − 1)3B0 + R1A0
[
(2R0 − 1)(R0 − 1) + R2

0

]
,

(38)
...

we identify the structure of the nth iterate in close form

(39)Bn = (R0 − 1)nB0 + R1A0
[
Rn

0 − (R0 − 1)n
]
.

Substituting the expressions for An and Bn so obtained in terms of A0 and B0 in the initial ansatz,
and summing the logarithms (a procedure that we call “exponentiation”) we obtain

∞∑
n=0

An(N)

n! Ln = A0

(
αs

α0

)R0

,

∞∑
n=0

αs

Bn(N)

n! Ln =
∞∑

n=0

αs

1

n!
{
(R0 − 1)nB0 + R1A0

[
Rn

0 − (R0 − 1)n
]}

(40)= αsB0

(
αs

α0

)R0−1

+ αsR1A0

(
αs

α0

)R0

− αsR1A0

(
αs

α0

)R0−1

,

expression that can be rewritten as
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f (N,αs) = A0

(
αs

α0

)R0

+ αsB0

(
αs

α0

)R0−1

+ αsR1A0

(
αs

α0

)R0

(41)− αsR1A0

(
αs

α0

)R0−1

.

This expression after a simple rearrangement becomes

(42)f (N,αs) =
(

αs

α0

)R0[
1 + (αs − α0)R1

]
f

(
N,Q2

0

) −
(

αs

α0

)R0

(αs − α0)(R1α0B0).

This solution in moment space exactly coincides with the truncated solution (31) if we impose
the condition B0 = 0. It is clear that the solution gets organized in the form of a double expansion
in the two variables αs and α0. While αs appears explicitely in the ansatz (32), α0 appears only
after the logarithmic summation and the factorization of the leading order solution. An obvious
question to ask is how should we modify our ansatz if we want to reproduce the exact solution
of the truncated DGLAP equation in moment space, given by Eq. (28). The answer comes from
a simple extension of our recursive method.

4.1. Higher order truncated solutions

We start by expanding the solution of the truncated equation (29), whose exponential factor
is approximated by its double expansion in αs and α0 to second order, thereby identifying the
approximate solution

f (N,αs) = exp

{
(αs − α0)

πβ0

(
b1

2
P (0) − P (1)

)}
f LO(N,αs)

�
(

αs

α0

)R0
[

1 − R1(α0 − αs) + 1

2
R2

1(α0 − αs)
2

(43)+ R1
(
α2

0 − α2
s

) b1

8π

]
f (N,α0).

To generate this solution with the recursive method it is sufficient to introduce the higher order
(2nd order) ansatz

(44)f̃ (x,αs) =
+∞∑
n=0

Ln

n!
[
An(x) + αsBn(x) + α2

s Cn(x)
]
,

where we have included some new coefficients Cn(x) that will take care of the higher order terms
we aim to include. Inserted into the NLO DGLAP equation, this ansatz generates an appropriate
chain of recursion relations

An+1(x) = − 2

β0
P (0)(x) ⊗ An(x),

Bn+1(x) = −Bn(x) − 2

β0
P (0)(x) ⊗ Bn(x) − b1

(4π)
An+1(x) − 1

πβ0
P (1)(x) ⊗ An(x),

Cn+1(x) = −2Cn(x) − 2

β0
P (0)(x) ⊗ Cn(x) − b1

(4π)
Bn+1(x) − b1

(4π)
Bn(x)

(45)− 1

πβ0
P (1)(x) ⊗ Bn(x),
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that we solve by going to Mellin space and obtain

An = Rn
0A0,

Bn = R1
[
Rn

0 − (R0 − 1)n
]
A0,

Cn =
[

1

2
(R0 − 2)n − (R0 − 1)n

]
R2

1A0 + 1

2
R2

1Rn
0A0

(46)+ 1

8π
R1b1(R0 − 2)nA0 − 1

8π
R1R

n
0b1A0,

where the initial conditions are f̃ (N,α0) = A0 and B0 = C0 = 0. It is a trivial exercise to show
that the solution of the recursion relation, inserted into (44), coincides with (43), after exponen-
tiation.

Capturing more and more logs of the truncated logarithmic equation at this point is as easy as
never before. We can consider, for instance, a higher order ansatz accurate to O(α3

s ) for the NLO
non-singlet solution

(47)f̃ (x,αs) =
∞∑

n=0

Ln

n!
[
An(x) + αsBn(x) + α2

s Cn(x) + α3
s Dn(x)

]
,

that generates four independent recursion relations. The relations for An+1, Bn+1, Cn+1 are, for
this extension, the same as in the previous case and are listed in (46). Hence, we are left with an
additional relation for the Dn+1 coefficient which reads

Dn+1(x) = −3Dn(x) − 2

β0
P (0) ⊗ Dn(x) − b1

(4π)
Cn+1(x)

(48)− b1

(2π)
Cn(x) − 1

πβ0
P (1) ⊗ Cn(x).

These are solved in Mellin space with respect to A0, B0, C0, D0 (with the condition B0 = C0 =
D0 = 0). We obtain

An = Rn
0A0,

Bn = R1
[
Rn

0 − (R0 − 1)n
]
A0,

Cn =
[

1

2
(R0 − 2)n − (R0 − 1)n

]
R2

1A0 + 1

2
R2

1Rn
0A0

+ 1

8π
R1b1(R0 − 2)nA0 − 1

8π
R1R

n
0b1A0,

Dn =
[
−1

6
(R0 − 3)n + 1

2
(R0 − 2)n − 1

2
(R0 − 1)n + 1

6
Rn

0

]
R3

1A0

×
[
− 1

8π
(R0 − 3)nb1 + 1

8π
(R0 − 2)nb1 + 1

8π
(R0 − 1)nb1 − 1

8π
Rn

0b1

]
R2

1A0

(49)×
[
− 1

48π2
(R0 − 3)nb2

1 + 1

48π2
Rn

0b2
1

]
R1A0.

Exponentiating we have



264 A. Cafarella et al. / Nuclear Physics B 748 (2006) 253–308
f̃ (x,αs) =
{

1 + αs

(
1 − α0

αs

)
R1

}
A0

(
αs

α0

)R0

+ α2
s

{[
1

2

(
α2

0

α2
s

− 2
α0

αs

+ 1

)
R2

1

+ b1

8π

α2
0

α2
s

R1 − b1

8π
R1

]}
A0

(
αs

α0

)R0

+ α3
s

{(
−1

6

α3
0

α3
s

+ 1

2

α2
0

α2
s

− 1

2

α0

αs

+ 1

6

)
R3

1

+
(

− b1

8π

α3
0

α3
s

+ b1

8π

α2
0

α2
s

+ b1

8π

α0

αs

− b1

8π

)
R2

1

(50)+
(

b2
1

48π2

α3
0

α3
s

+ b2
1

48π2

)
R1

}
A0

(
αs

α0

)R0

,

which is the solution of the truncated equation computed with an O(α3
s ) accuracy.

5. Non-singlet truncated solutions at NNLO

The generalization of the method that takes to the truncated solutions at NNLO is more in-
volved, but to show the equivalence of these solutions to those in Mellin space one proceeds
as for the lower orders. As we have already pointed out, one has first to expand the ratio P/β

at a certain order in αs , then solve the equation in moment space—solution that will bring in
automatically higher powers of αs—and then reconstruct this solution via iterates.

At NNLO the kernels are given by

(51)P
(
x,Q2)NNLO =

(
αs(Q

2)

2π

)
P (0)(x) +

(
αs(Q

2)

2π

)2

P (1)(x) +
(

αs(Q
2)

2π

)3

P (2)(x),

and the equation in Mellin-space is given by

(52)
∂f (N,αs)

∂αs

= P NNLO(N)

βNNLO
f (N,αs).

We search for solutions of this equation of a given accuracy in αs and for this purpose we trun-
cate the evolution integral of the ratio P/β to O(α2

s ). This is the first order at which the P (2)

component of the kernels appear. As we are going to see, this will generate the first truncate
for the NNLO case. Therefore, while the first truncate at NLO is of O(αs), the first truncate at
NNLO is of O(α2

s ). We obtain

(53)INNLO =
αs∫

α0

dα

(
PNNLO(x,α)

βNNLO(α)
− PLO(α)

βLO(α)

)
≈ −R1α0 − 1

2
R2α

2
0 + R1αs + 1

2
R2α

2
s .

At this retained accuracy of the evolution integral, the exact solution of the corresponding
(truncated) DGLAP equation can be found, in moment space, as in (73)

f (N,αs) = f (N,α0)

(
αs

α0

)−2 P (0)

β0
{

1 + (αs − α0)

[
−P (1)

πβ0
+ P (0)β1

2πβ2
0

]

+ α2
s

[
P (1)2

2π2β2
0

− P (2)

4π2β0
− P (0)P (1)β1

2π2β2
0

+ P (1)β1

8π2β2
0

+ P (0)2
β2

1

8π2β4
0

− P (0)β2
1

16π2β3
0

+ P (0)β2

16π2β2

]
+ α2

0

[
P (1)2

2π2β2
+ P (2)

4π2β
− P (0)P (1)β1

2π2β2
− P (1)β1

8π2β2
+ P (0)2

β2
1

8π2β4

0 0 0 0 0 0
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(54)+ P (0)β2
1

16π2β3
0

− P (0)β2

16π2β2
0

]
+ α0αs

[
−P (1)2

π2β2
0

+ P (0)P (1)β1

π2β3
0

− P (0)2
β2

1

4π2β4
0

]}
.

At this order this solution coincides with the exact NNLO solution of the DGLAP equation,
obtained from an exact evaluation of the integral (53), followed by a double expansion in the
couplings. Therefore, similarly to (43), the solution is organized effectively as a double expansion
in αs and α0. This approach remains valid also in the singlet case, when the equations assume
a matrix form. As we have already pointed out above, all the known solutions of the singlet
equations in moment space are obtained after a truncation of the corresponding PDE, having
retained a given accuracy of the ratio P/β . For this reason, and to compare with the previous
literature, it is convenient to rewrite (54) in a form that parallels the analogous singlet result [13].
It is not difficult to perform the match of our result with that previous one, which takes the form
[2,13,14]

f (N,αs) = U(N,αs)fLO(N,αs,α0)U
−1(N,α0)

(55)=
[

1 +
+∞∑
κ=1

Uκ(N)ακ
s

]
fLO(N,αs,α0)

[
1 +

+∞∑
κ=1

Uκ(N)ακ
0

]−1

,

which becomes, after some manipulations

f (N,αs) =
(

αs

α0

)− 2
β0

P (0)[
1 + (αs − α0)U1(N) + α2

s U2(N) − αsα0U
2
1 (N)

(56)+ α2
0

(
U2

1 (N) − U2(N)
)]

f (N,α0),

where the functions Ui(N) are defined as

U1(N) = 1

πβ0

[
b1P

(0)(N)

2
− P (1)(N)

]
≡ R1(N),

U2(N) = 1

2

[
R2

1(N) − R2(N)
]
,

R2(N) =
[
P (2)(N)

2π2β0
+ b1

4π
R1(N) + b2

(4π)2
R0(N)

]
,

(57)R0(N) = − 2

β0
P (0)(N),

where β1/β0 = b1, β2/β0 = b2.
We intend to show rigorously that this solution is generated by a simple logarithmic ansatz

arrested at a specific order. For this purpose we simplify (56) obtaining

f
(
N,Q2) =

(
αs

α0

)R0(N)[
1 − R1(N)α0 + 1

2
R2

1(N)α2
0 + 1

2
R2(N)α2

0 + R1(N)αs

(58)− R2
1(N)αsα0 + 1

2
R2

1(N)α2
s − 1

2
R2(N)α2

s

]
f

(
N,Q2

0

)
,

and the ansatz that captures its logarithmic behaviour can be easily found and is given by
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f
(
x,Q2)NNLO =

∞∑
n=0

An(x)

n!
[

ln

(
αs(Q

2)

αs(Q
2
0)

)]n

+ αs

(
Q2) ∞∑

n=0

Bn(x)

n!
[

ln

(
αs(Q

2)

αs(Q
2
0)

)]n

(59)+ α2
s

(
Q2) ∞∑

n=0

Cn(x)

n!
[

ln

(
αs(Q

2)

αs(Q
2
0)

)]n

.

Setting the initial conditions as

(60)f
(
x,Q2

0

) = A0(x) + α0B0(x) + α2
0C0(x),

and introducing the 3-loop expansion of the β-function, we derive the following recursion rela-
tions

An+1(x) = − 2

β0
P (0)(x) ⊗ An(x),

Bn+1(x) = −Bn(x) − β1

4πβ0
An+1(x) − 2

β0
P (0)(x) ⊗ Bn(x) − 1

πβ0
P (1)(x) ⊗ An(x),

Cn+1(x) = −2Cn(x) − β1

4πβ0
Bn(x) − β1

4πβ0
Bn+1(x) − β2

16π2β0
An+1(x)

− 2

β0
P (0)(x) ⊗ Cn(x) − 1

πβ0
P (1)(x) ⊗ Bn(x)

(61)− 1

2π2β0
P (2)(x) ⊗ An(x).

We need to show that the solution of the NNLO recursion relations reproduces (56) in Mellin-
space, once we have chosen appropriate initial conditions for A0(N), B0(N) and C0(N).2

At NLO we have already seen that B0(N) has to vanish for any N , i.e. B0(x) = 0, and we
try to impose the same condition on C0(N). In this case we obtain the recursion relation for the
moments

Cn+1(N) = −2Cn(N) − β1

4πβ0
Bn(N) − β1

4πβ0
Bn+1(N) − β2

16π2β0
An+1(N)

(62)− 2

β0
P (0)(N)Cn(N) − 1

πβ0
P (1)(N)Bn(N) − 1

2π2β0
P (2)(N)An(N),

which combined with the relations for An(N) and Bn(N) give

Cn =
{
−R2

1(R0 − 1)n − 1

2
R2R

n
0 + 1

2

[
(R0 − 2)nR2

1 + (R0 − 2)nR2 + R2
1Rn

0

]}
A0,

Bn = [
Rn

0 − (R0 − 1)n
]
R1A0,

(63)An = Rn
0A0,

where the N dependence in the coefficients Ri has been suppressed for simplicity. The solution
is determined exactly as in (37) and (39) and can be easily brought to the form

(64)f
(
N,Q2) = 1

2

(
αs

α0

)R0(N)[
2 − 2R1(αs − α0) + R2

1(αs − α0)
2 + R2

(
α2

0 − α2
s

)]
A0,

2 It can be shown that the infinite set of recursion relations have internal symmetries and different choices of initial
conditions can bring to the same solution. The choice that we make in our analysis is the simplest one.
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which is the result quoted in Eq. (58) with A0 = f (N,α0). We have therefore identified the
correct logarithmic expansion at NNLO that solves in x-space the DGLAP equation with an
accuracy of order α2

s .

6. Generalizations to all orders: exact solutions of truncated equations built recursively

We have seen that the order of approximation in αs of the truncated solutions is in direct
correspondence with the order of the approximation used in the computation of the integral on the
right-hand side of the evolution equation (26). This issues is particularly important in the singlet
case, as we are going to investigate next, since any singlet solution involves a truncation. We have
also seen that all the known solutions obtained in moment space can be easily reobtained from
a logarithmic ansatz and therefore there is complete equivalence between the two approaches.
We will also seen that the structure of the ansatz is insensitive to whether the equations that we
intend to solve are of matrix forms or are scalar equations, since the ansatz and the recursion
relations are linear in the unknown matrix coefficients (for the singlet) and generate in both cases
the same recursion relations.

We pause here and try to describe the patterns that we have investigated in some generality.
We work at a generic order NmLO, with m = 1 denoting the NLO, m = 2 the NNLO and so
on. We have already seen that one can factorize the LO solution, having defined the evolution
integral

(65)INmLO(αs,α0) =
αs∫

α0

dα

(
PNmLO(x,α)

βNmLO(α)
− PLO(α)

βLO(α)

)
,

and the exact solution can be formally written as

(66)f (N,αs) = f LO(N,αs) × eINmLO(αs ,α0).

A Taylor expansion of the integrand in the (65) around αs = 0 at order κ = (m − 1) gives, in
moment space,(

PNmLO(N,αs)

βNmLO(αs)
− PLO(αs)

βLO(αs)

)

≈ R1
(
P (0),P (1),N

) + R2
(
P (0),P (1),P (2),N

)
αs + R3

(
P (0),P (1),P (3),N

)
α2

s

(67)+ · · · + Rκ+1
(
P (0),P (1), . . . ,P (m),N

)
ακ

s ,

which at NNLO becomes

(68)

(
PNNLO(N,αs)

βNNLO(αs)
− PLO(αs)

βLO(αs)

)
≈ R1

(
P (0),P (1),N

) + R2
(
P (0),P (1),P (2),N

)
αs.

Thus, integrating between αs and α0 we, obtain the following expression for INmLO(αs,α0) at
O(ακ

s )

I
(κ)
NmLO(αs,α0) = −R1α0 − 1

2
R2α

2
0 − · · · − 1

κ
Rκακ

0 + R1αs + 1

2
R2α

2
s

(69)+ · · · + 1

κ
Rκακ

s ,



268 A. Cafarella et al. / Nuclear Physics B 748 (2006) 253–308
where the (P (0),P (1), . . . ,P (m),N) dependence in the Rκ coefficients has been omitted. To
summarize: in order to solve the κ-truncated version of the NmLO DGLAP equation

(70)
∂f (N,αs)

∂αs

= PNmLO(N,αs)

βNmLO(αs)
f (N,αs),

which is obtained by a Taylor expansion—around αs = 0—of the ratio PNmLO(N,αs)/

βNmLO(αs), we need to solve the equation

(71)
∂f (N,αs)

∂αs

= 1

αs

[
R0 + αsR1 + α2

s R2 + · · · + ακ
s Rκ

]
f (N,αs),

where the coefficients Rκ have a dependence on P (0) and P (1) in the NLO case, and on P (0),
P (1) and P (2) in the NNLO case. Eq. (71) admits an exact solution of the form

f (N,αs) =
(

αs

α0

)R0

exp

{
R1(αs − α0) + 1

2
R2

(
α2

s − α2
0

) + · · ·

(72)+ 1

κ
Rκ

(
ακ

s − ακ
0

)}
f (N,α0),

having factorized the LO solution.
At this stage, the Taylor expansion of the exponential around (αs,α0) = (0,0) generates an

expanded solution of the form

fNmLO(N,αs) ≈ fLO(N,α0)e
I

(κ)

NmLO

(73)= fLO(N,α0)

(
1 + I

(κ)
NmLO + 1

2!
(
I

(κ)
NmLO

)2 + · · ·
)

,

which can be also written as

fLO(N,α0)

(
1 + I

(κ)
NmLO + 1

2!
(
I

(κ)
NmLO

)2 + · · ·
)

= f LO(N,αs)
[
c0 + αs

(
c1,0 + c1,1α0 + c1,2α

2
0 + · · · + c1,κ−1α

κ−1
0 + c1,κακ

0

)
(74)+ α2

s

(
c2,0 + c2,1α0 + c2,2α

2
0 + · · · + c2,κακ

0

) + · · · + cκ,0α
κ
s + · · ·],

where the coefficients cij are defined in moment space. The κ th truncated solution of the equation
above

(75)fNmLO(N,αs)
∣∣
O(ακ

s )
= f LO(N,αs)

(
i+j�κ∑
i,j=0

αi
sα

j

0ci,j

)
,

is therefore accurate to O(ακ
s ), and clearly does not retain all the powers of the coupling constant

which are, instead, part of (73). However, as far as we are interested in an accurate solution of
order κ , we can reobtain exactly the same expression from x-space using the ansatz

fNmLO(x,αs)
∣∣
O(ακ′

s )

(76)=
∞∑

n=0

(
A0

n(x) + αsA
1
n(x) + α2

s A
2
n(x) + · · · + ακ ′

s Aκ ′
n (x)

)[
ln

(
αs(Q

2)

αs(Q
2
0)

)]n

,

which can be correctly defined to be a truncated solution of order κ ′ of the (κ)-truncated equa-
tion. Since we have truncated the evolution integral at order κ , this is also the maximum order
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at which the truncated logarithmic expansion (76) coincides with the exact solution of the full
equation. This corresponds to the choice κ ′ = κ . Notice, however, that the number of coefficients
Aκ ′

n that one introduces in the ansatz is unrelated to κ and can be larger than this specific value.
This implies that we obtain an improved accuracy as we let κ ′ in (76) grow.

If we choose the accuracy of the evolution integral to be κ , while sending the index κ ′ in the
logarithmic expansion of (76) to infinity, then the ansatz that accompanies this choice becomes

(77)fNmLO(N,αs) =
∞∑

n=0

( ∞∑
l=0

αl
sA

l
n(x)

)[
ln

(
αs(Q

2)

αs(Q
2
0)

)]n

,

and converges to the exact solution of the (order κ) truncated equation (73). Obviously, this exact
solution starts to differ from the exact solution of the exact DGLAP equation at O(ακ+1

s ). Also
in this case, as before, one should notice that the double expansion in αs and α0 of the exact
solution of the (κ)-truncated equation can be reobtained after using our exponentiation, and not
before. We remark, if not obvious, that the recursion relations, in this case, need to be solved at
the chosen order κ ′, as widely shown in the examples discussed before.

We remark that, as done for the LO, we could also factorize the NLO solution and determine
the NmLO solution using the integral

(78)INmLO =
αs∫

α0

dα

(
PNmLO(x,α)

βNmLO(α)
− PNLO(α)

βNLO(α)

)
,

and then restart the previous procedure. Obviously, the two approaches imply a resummation of
the logarithmic behaviour of the pdf’s in the two cases.

It is convenient to summarize what we have achieved up to now. A truncation of the evolution
integral introduces an approximation in the search for solutions, which is controlled by the accu-
racy (κ) in the expansion of the same integral. The exact solution of the corresponding truncated
equation, as we have seen from the previous examples, involves all the powers of αs and α0 and,
obviously, a further expansion around the point αs = α0 = 0 is needed in order to identify a set
of truncated solutions which can be reobtained by a logarithmic ansatz. This is possible because
of the property of analiticity of the solution. Therefore two types of truncations are involved in
the approximation of the solutions: (1) truncation of the equation and (2) truncation (κ ′) of the
corresponding solution. In the non-singlet case, which is particularly simple, one can therefore
identify a wide choice of solutions (by varying κ and κ ′) that retain higher order effects in quite
different fashions. Previous studies of the evolution using an ansatz à la Rossi–Storrow [6,7],
borrowed from the pdf’s of the photon, were therefore quite limited in accuracy. Our general-
ized procedure is the logical step forward in order to equate the accuracy of solutions obtained
in moment space to those in x-space, without having to rely on purely numerical brute force
methods.3

6.1. Recursion relations beyond NNLO and for all κ’s

In the actual numerical implementations, if we intend to use a generic truncate of the non-
singlet equation (the result is actually true also for the singlet), it is convenient to work with

3 In [2] a flag variable called IMODEV allows to switch among the exact solution (IMODEV = 1), the exact solution

of the O(α2
s ) truncated equation (IMODEV = 2). A third option (IMODEV = 0) involves at NLO and at NNLO O(αs)

and O(α2
s ), respectively, truncated ansatz that, in our cases, are reconstructed logarithmically.
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implementations of the recursion relations that are valid at any order. In fact it is not practical to
rederive them at each new order κ ′ of approximation. Next we are going to show how to do it,
identifying generic relations that are easier to implement numerically.

The expression to all orders of the DGLAP kernels is given by

P(N,αs) =
∞∑
l=0

(
αs

2π

)l+1

P (l)(N),

(79)
∂αs

∂ lnQ2
= −

∞∑
i=0

αi+2
s

βi

(4π)i+1
,

and the equation in Mellin-space in Mellin space is given by

(80)
∂f (N,αs)

∂αs

= −
∑∞

l=0(
αs

2π
)l+1P (l)(N)∑∞

i=0 αi+2
s

βi

(4π)i+1

f (N,αs),

whose exact solution can be formally written as

(81)f (N,αs) =
(

αs

α0

)− 2
β0

P (0)

eF(αs ,α0,P
(0),P (1),P (2),...,β0,β1,...)f (N,α0),

where F is obtained from the evolution integral and whose specific form is not relevant at this
point.

We will use the notation ( 	P , 	β) to indicate the sequence of components of the kernels and the
coefficients of the β-function (P (0),P (1),P (2), . . . , β0, β1, . . .).

Then, the Taylor expansion around αs = α0 of the solution is formally given by

(82)eF(αs ,α0, 	P , 	β) =
∞∑

n=0

Φn

(
∂F , ∂2F , . . . , ∂nF

)∣∣
αs=α0

(αs − α0)
n 1

n!
for an appropriate Φn(∂F , ∂2F , . . . , ∂nF). Φn is a function that depends over all the partial
derivative obtained by the Taylor expansion. Since it is calculated for αs = α0, it has a paramet-
ric dependence only on α0, and we can perform a further expansion around the value α0 = 0
obtaining

(83)eF(αs ,α0, 	P , 	β) =
∞∑

m=0

αm
0

m!
∂m

∂α0
m

[ ∞∑
n=0

Φn(α0, 	P , 	β)(αs − α0)
n 1

n!

]
α0=0

.

This expression can always be arranged and simplified as follows

eF(αs ,α0, 	P , 	β)

=
∞∑

n=0

[
αn

s

n! Φn(0, 	P , 	β) +
(

−n
αn−1

s

n! Φn(0, 	P , 	β) + αn
s

n! ∂Φn(α0, 	P , 	β)

∣∣∣∣
α0=0

)
α0

+
(

1

2

(n − 1)nαn−2
s

n! Φn(0, 	P , 	β) − n
αn−1

s

n! ∂Φn(α0, 	P , 	β)

∣∣∣∣
α0=0

+ 1

2
αn

s ∂2Φn(α0, 	P , 	β)

∣∣∣∣
)

α2
0 + (· · ·)α3

0 + · · ·
]

α0=0
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= [(
1 + αsξ

(0)
1 ( 	P , 	β) + · · · + αn

s ξ (0)
n ( 	P , 	β)

)
+ α0

(
ξ

(1)
0 ( 	P , 	β) + αsξ

(1)
1 ( 	P , 	β) + α2

s ξ
(1)
2 ( 	P , 	β) + · · · + αn

s ξ (1)
n ( 	P , 	β)

)
+ α2

0

(
ξ

(2)
0 ( 	P , 	β) + αsξ

(2)
1 ( 	P , 	β) + α2

s ξ
(2)
2 ( 	P , 	β) + · · · + αn

s ξ (2)
n ( 	P , 	β)

)
...

+ αm
0

(
ξ

(m)
0 ( 	P , 	β) + αsξ

(m)
1 ( 	P , 	β) + α2

s ξ
(m)
2 ( 	P , 	β) + · · ·

+ αn
s ξ (m)

n ( 	P , 	β)
)]

(84)=
∞∑

n=0

∞∑
m=0

αm
0 αn

s ξ (m)
n ( 	P , 	β),

where we are formally absorbing all the dependence on both the kernels 	P and the β-function 	β ,
coming from the functions ∂mΦn calculated at the point α0 = 0, in the coefficients ξ

(m)
n . Finally,

we can reorganize the solution to all orders as

(85)f (N,αs) =
(

αs

α0

)− 2
β0

P (0)

f (N,α0)

∞∑
n=0

∞∑
m=0

αm
0 αn

s ξ (m)
n ( 	P , 	β).

With the help of the general notation

(86)

	PNLO = (
P (0),P (1)

)
, 	PNNLO = (

P (0),P (1),P (2)
)
,

	βNLO = (β0, β1), 	βNNLO = (β0, β1, β2),

we can try to indentify, by a formal reasoning, the exact solution up to a fixed—but generic—
perturbative order of the expansion of the kernels.

To obtain the NLO/NNLO exact solution it is sufficient to take as null the components
(P (2),P (3), . . .) and (β2, β3, . . .) for the NLO and (P (3), . . .) and (β3, . . .) for the NNLO case.
Since Eq. (85) contains all the powers of α0αs up to αm

0 αn
s (i.e. it is a polynomial expression

of order αn+m), if we aim at an accuracy of order ακ
s , we have to arrange the exact expanded

solution as

(87)f (N,αs) =
(

αs

α0

)− 2
β0

P (0)

f (N,α0)

κ∑
n=0

∞∑
j=0

α
j

0α
n−j
s ξ

(j)
n ( 	P , 	β) + O

(
ακ

s

)
,

with O(ακ
s ) indicating all the higher-order terms containing powers of the type α0α

κ
s + · · · +

ακ
0 ακ

s . Hence, the index κ represents the order at which we truncate the solution.
As a natural generalization of the cases discussed in the previous sections, we introduce the

higher-order ansatz (κ-truncated solution)

(88)f̃ (N,αs) =
∞∑

n=0

[
κ∑

m=0

Om
n (N)

n! αm
s

]
logn

(
αs

α0

)

that reproduces the exact solution (87) expanded at order κ .
In fact, inserting this last ansatz in (80) we generate a generic chain of recursion relations of

the form
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O0
n+1(N) = F 0(O0

n

(
P (0), β0

))
,

O1
n+1(N) = F 1(O0

n,O0
n+1,O

1
n, 	P , 	β)

,

O2
n+1(N) = F 2(O0

n,O1
n,O2

n,O0
n+1,O

1
n+1,

	P , 	β)
,

...

(89)Oκ
n+1(N) = Fκ

(
O0

n, . . . ,Oκ
n ,O0

n+1, . . . ,O
κ−1
n+1 , 	P , 	β)

.

A deeper look at the explicit structure of (89), for the NLO non-singlet case, reveals the
following structures for the generic iterates

O0
n+1(N) = − 2

β0

[
P (0)(N)O0

n(N)
]
,

Oκ
n+1(N) = − 2

β0

[
P (0)Oκ

n

]
(N) − 1

πβ0

[
P (1)(N)Oκ−1

n (N)
]

(90)− β1

4πβ0
Oκ−1

n+1 (N) − κOκ
n (N) − (κ − 1)

β1

4πβ0
Oκ−1

n (N),

at NLO, while for the NNLO case we obtain

O0
n+1(N) = − 2

β0

[
P (0)(N)O0

n(N)
]
,

O1
n+1(N) = − 2

β0

[
P (0)(N)O1

n(N)
] − 1

πβ0

[
P (1)(N)O0

n(N)
]

− β1

4πβ0
O0

n+1(N) − O1
n(N),

Oκ
n+1(N) = − 2

β0

[
P (0)(N)Oκ

n (N)
] − 1

πβ0

[
P (1)(N)Oκ−1

n (N)
]

− 1

2π2β0

[
P (2)(N)Oκ−2

n (N)
] − β1

4πβ0
Oκ−1

n+1 (N) − β2

16π2β0
Oκ−2

n+1 (N)

(91)− κOκ
n (N) − (κ − 1)

β1

4πβ0
Oκ−1

n (N) − (κ − 2)
β2

16π2β0
Oκ−2

n (N).

Hence, one is able to determine the structure of the κ th recursion relation when the κ = 0 and
κ = 1 cases are known. This property is very useful from the computational point of view.4

Passing to the resolution of the recursion relations in moment space, we get the formal expan-
sion of each Oκ

n (N) in terms of the initial condition O0
0 (N), which reads

(92)f̃ (N,α0) = O0
0 (N) + /0α0 + /0α2

0 + · · · + /0ακ
0 .

Here we have set to zero all the higher order terms, as a natural generalization of B0 = C0 = 0 . . . ,
according to what has been discussed above.

These relations can be solved as we have shown in previous examples, and the generic struc-
ture of their solution can be identified. If we define R0 = − 2

β0
P (0), the expressions of all the

4 The relations (90) and (91) hold also in the NLO/NNLO singlet case and can be generalized to any perturbative order
in the expansion of the kernels.



A. Cafarella et al. / Nuclear Physics B 748 (2006) 253–308 273
Oκ
n (N) in terms of f̃ (N,α0) ≡ f̃0 become

O0
n(N) = Rn

0 f̃0,

O1
n(N) = G1(Rn

0 , (R0 − 1)n, 	P , 	β)
f̃0,

O2
n(N) = G2(Rn

0 , (R0 − 1)n, (R0 − 2)n, 	P , 	β)
f̃0,

...

(93)Oκ
n (N) = Gκ

(
Rn

0 , (R0 − 1)n, (R0 − 2)n, . . . , (R0 − κ)n, 	P , 	β)
f̃0,

and in particular, by an explicit calculation of Oκ
n (N), one can work out the structure of these

special functions Gm. For instance, we get for m = κ the expression

(94)Gκ
(
Rn

0 , (R0 − 1)n, (R0 − 2)n, . . . , (R0 − κ)n, 	P , 	β) =
κ∑

j=0

(R0 − j)nξ (j)
κ ( 	P , 	β),

for suitable coefficients ξ
(j)
κ . Substituting the Om

n (N) functions with m = 0, . . . , κ in the higher-
order ansatz (88) and performing our exponentiation, we get an expression of the form

f̃ (N,αs) = G0
((

αs

α0

)R0
)

+ αsG
1
((

αs

α0

)R0

,

(
αs

α0

)R0−1)

+ α2
s G

2
((

αs

α0

)R0

,

(
αs

α0

)R0−1

,

(
αs

α0

)R0−2)

(95)+ · · · + ακ
s Gκ

((
αs

α0

)R0

,

(
αs

α0

)R0−1

,

(
αs

α0

)R0−2

, . . . ,

(
αs

α0

)R0−κ)
,

which can be written as follows by the use of Eq. (94)

(96)f̃ (N,αs) =
(

αs

α0

)R0

f̃ (N,α0)

κ∑
m=0

m∑
j=0

α
m−j
s α

j

0ξ
(j)
m ( 	P , 	β).

This is the exact solution expanded up to O(ακ
s ) in accuracy.

7. The search for the exact non-singlet NLO solution

We have shown in the previous sections how to construct exact solutions of truncated equa-
tions using logarithmic expansions. We have also shown the equivalence of these approaches
with the Mellin method, since the recursion relations for the unknown coefficient functions of
the expansions can be solved to all orders and so reproduce the solution in Mellin space of the
truncated equation. The question that we want to address in this section is whether we can search
for exact solutions of the exact (untruncated) equations as well. These solutions are known ex-
actly in the non-singlet case up to NLO. It is not difficult also to obtain the exact NNLO solution
in Mellin space, and we will reconstruct the same solutions using modified recursion relations.
The expansions that we will be using at NLO are logarithmic and solve the untruncated equa-
tion. The NNLO case, instead, will be treated in a following section, where, again, we will use
recursion relations to build the exact solution but with a non-logarithmic ansatz.5

5 In PEGASUS [2] the NNLO non-singlet solution is built by truncation in Mellin space of the evolution equation,
while the NLO solution is implemented as an exact solution.
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The exact NLO non-singlet solution has been given in Eq. (23). The identification of an ex-
pansion that allows to reconstruct in moment space Eq. (23) follows quite naturally once the
typical properties of the convolution product ⊗ are identified. For this purpose we define the
series of convolution products

(97)eFAPA(x)⊗ ≡
∞∑

n=0

Fn
A

n!
(
PA(x)⊗)n

that acts on a given initial function as

eFAPA(x)⊗φ(x) =
(

δ(1 − x) ⊗ +FAPA(x) ⊗ + 1

2!F
2
APA ⊗ PA ⊗ +· · ·

)
φ(x)

(98)= φ(x) + FA(PA ⊗ φ) + 1

2!F
2
A(PA ⊗ PA⊗)φ(x) + · · · .

The functions FA and FB are parametrically dependent on any other variable except the vari-
able x. The proof of the associativity, distributivity and commutativity of the ⊗ product is easily
obtained after mapping these products in Mellin space. For instance, for generic functions a(x)

b(x) and c(x) for which the ⊗ product is a regular function one has

(99)M
[
(a ⊗ b) ⊗ c

]
(N) =M

[
a ⊗ (b ⊗ c)

]
(N) = a(N)B(N)C(N),

where M denotes the Mellin transform and N is the moment variable. Also one obtains

(100)eFAPA(x)⊗eFBPB(x)⊗φ(x) = e(FAPA(x)+FBPB(x))⊗φ(x),

and

(101)M
[
eMa(x)⊗φ

]
(N) = eMa(N)φ(N),

with M x-independent, since both left-hand side and right-hand side of (100) can be mapped to
the same function in Mellin space. Notice that the role of the identity in ⊗-space is taken by the
function δ(1 − x). We will also use the notation

(102)

( ∞∑
n=0

A′
n(x)Fn

A

)
⊗
φ(x) ≡ (

A0(x) ⊗ +FAA1(x) ⊗ +· · ·)φ(x),

where the A′
n(x) and the An(x) capture the operatorial and the functional expansion, respec-

tively, and are trivially related

(103)A′
n(x) ⊗ φ(x) = An(x).

To identify the x-space ansatz we rewrite (23) as

f (N,α) = f (N,α0)e
a(N)Leb(N)M

(104)= f (N,α0)

( ∞∑
n=0

a(N)n

n! Ln

)( ∞∑
m=0

b(N)m

m! Mm

)
,

where we have introduced the notations
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L = log
αs

α0
,

M = log
4πβ0 + αsβ1

4πβ0 + α0β1
,

a(N) = −2P (0)(N)

β0
,

(105)b(N) = 2P (0)(N)

β0
− 4P (1)(N)

β1
.

Our ansatz for the exact solution in x-space is chosen of the form

f
(
x,Q2) =

( ∞∑
n=0

A′
n(x)

n! Ln

)
⊗

( ∞∑
m=0

B ′
m(x)

m! Mm

)
⊗
f

(
x,Q2

0

)

=
∞∑

s=0

s∑
n=0

LnMs−n A′
n(x) ⊗ B ′

s−n(x)

n!(s − n)! ⊗ f
(
x,Q2

0

)

(106)=
∞∑

s=0

s∑
n=0

Cs
n(x)

n!(s − n)!L
nMs−n,

where in the first step we have turned the product of two series into a single series of a combined
exponent s = n + m, and in the last step we have introduced the functions

(107)Cs
n(x) = A′

n(x) ⊗ B ′
s−n(x) ⊗ f

(
x,Q2

0

)
(n � s).

Setting Q = Q0 in (106) we get the initial condition A′
0(x) = B ′

0(x) = δ(1 − x) or, equivalently,

(108)f
(
x,Q2

0

) = C0
0(x).

Inserting the ansatz (106) into the NLO DGLAP equation, with the expressions of the kernel and
beta function included at the corresponding order, we obtain the identity

∞∑
s=0

s∑
n=0

{(
− β0

4π
α − β1

16π2
α2

)
Cs+1

n+1 − β1

16π2
α2Cs+1

n

}
LnMs−n

n!(s − n)!

(109)=
∞∑

s=0

s∑
n=0

{
α

2π
P (0) ⊗ Cs

n + α2

4π2
P (1) ⊗ Cs

n

}
LnMs−n

n!(s − n)! .

Equating term by term the coefficients of α and α2, we find from this identity the new exact
recursion relations

(110)Cs+1
n+1 = − 2

β0
P (0) ⊗ Cs

n,

(111)Cs+1
n = −Cs+1

n+1 − 4

β1
P (1) ⊗ Cs

n,

or, equivalently,



276 A. Cafarella et al. / Nuclear Physics B 748 (2006) 253–308
(112)Cs
n = − 2

β0
P (0) ⊗ Cs−1

n−1,

(113)Cs
n = −Cs

n+1 − 4

β1
P (1) ⊗ Cs−1

n .

Notice that although the coefficients Cs
n are convolution products of two functions, the recursion

relations do not let these products appear explicitely. These relations just written down allow to
compute all the coefficients Cs

n (n � s) up to a chosen s starting from C0
0 , which is given by the

initial conditions. In particular Eq. (112) allows us to move along the diagonal arrow according
to the diagram reproduced in Table 1; Eq. (113) instead allows us to compute a coefficient in the
table once we know the coefficients at its right and the coefficient above it (horizontal and vertical
arrows). To compute Cs

n there is a certain freedom, as illustrated in the diagram. For instance, to
determine Cs

s we can only use (112), and for the coefficients Cs
0 we can only use (113). For all

the other coefficients one can prove that using (112) or (113) brings to the same determination
of the coefficients, and in our numerical studies we have chosen to implement (112), being this
relation less time consuming since it involves P (0) instead of P (1).

The recursion relations defining the iterated solution can be solved as follows. From the first
relation (112), keeping the s-index fixed, we have

(114)Cs
n = − 2

β0
P (0) ⊗ Cs−1

n−1 ⇒ Cs
n =

[
− 2

β0
P (0)

]n

⊗ Cs−n−1
0 ,

then, since the second relation (113) also holds for n = 0, we can write (using Eq. (114))

Cs
n = −Cs

n+1 − 4

β1
P (1) ⊗ Cs−1

n ⇒ Cs
0 =

[
2

β0
P (0) − 4

β1
P (1)

]
⊗ Cs−1

0

(115)⇒ Cs
0 =

[
2

β0
P (0) − 4

β1
P (1)

]s

⊗ C0
0 .

Finally, inserting the above relation in (114) we can write

(116)Cs
n =

[
2

β0
P (0)

]n

⊗
[

2

β0
P (0) − 4

β1
P (1)

]s−n

⊗ C0
0 ,

which is the solution we have been searching for. The last step in the proof consists in taking the
Mellin transform of this operatorial solution and summing the corresponding series

f (N,αs) =
∞∑

s=0

s∑
n=0

Cs
n(N)

n!(s − n)!L
nMs−n

(117)=
∞∑

s=0

s∑
n=0

LnMs−n

n!(s − n)!
[

2

β0
P (0)

]n[ 2

β0
P (0) − 4

β1
P (1)

]s−n

C0
0(N),

that after summation gives

f (N,αs) = e
− 2

β0
P (0)(N) log(

αs
α0

)
exp

{[
2

β0
P (0)(N) − 4

β1
P (1)(N)

]

(118)× log

(
4πβ0 + αsβ1

4πβ0 + α0β1

)}
C0

0(N),
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which is exactly the expression in Eq. (104). Hence, it is obvious that the exact solution of the
DGLAP equation (22) can be written in x-space as

f
(
x,αs

(
Q2)) = e

− log(
αs
α0

) 2
β0

P (0)(x)⊗

(119)× exp

{
log

(
4πβ0 + αsβ1

4πβ0 + α0β1

)[
2

β0
P (0)(x) − 4

β1
P (1)(x)

]
⊗

}
C0

0(x),

therefore proving that the ansatz (106) reproduces the exact solution of the NLO DGLAP equa-
tion from x-space.

A second version of the same ansatz for the NLO exact solution can be built using a factoriza-
tion of the NLO DGLAP equation. This strategy is analogous to the method of factorization for
ordinary PDE’s. For this purpose we define a modified LO DGLAP equation, involving βNLO

(120)
∂f̃LO(x,αs)

∂αs

=
(

αs

2πβNLO

)
P (0)(x) ⊗ f̃LO(x,αs),

whose solution is given by

f̃LO(x,α) = e
M( 2P (0)

β0
)⊗

fLO(x,α),

(121)fLO(x,α) = e
L( −2P (0)

β0
)⊗

f (x,α0),

where we have introduced the ordinary LO solution fLO, expressed in terms of a typical initial
condition f (x,α0), and the NLO recursion relations can be obtained from the expansion

(122)fNLO(x,α) =
( ∞∑

n=0

Bn(x)

n! Mn

)
⊗
f̃LO(x,α).

Inserting this relation into (22) we obtain the recursion relations

Bn+1 =
(

− 4

β1
P (1)

)
⊗ Bn,

(123)B0(x) = δ(1 − x),

which is solved in moment space by

Bn(N) =
(

− 4

β1
P (1)

)n

B0(N),

(124)B0(N) = 1.

The solution Eq. (122) can be re-expressed in the form

fNLO(x,α) = e
M(− 1

4β1
P (1))⊗

e
M( 2P (0)

β0
)⊗

e
L( −2P (0)

β0
)⊗

f (x,α0)

(125)= e
M(− 1

4β1
P (1)+ 2P (0)

β0
)⊗

e
L( −2P (0)

β0
)⊗

f (x,α0)

which agrees with (104) once a(N) and b(N) have been defined as in (105).
We have therefore proved that the exact NLO solution of the DGLAP equation can be de-

scribed by an exact ansatz. Since the ansatz is built by inspection, it is obvious that one needs to
know the solution in moment space in order to reconstruct the coefficients. Though the recursive
scheme used to construct the solution in x-space is more complex compared to the recursion
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Table 1
Schematic representation of the procedure followed to compute each coefficient Cs

n

C0
0↓ ↘

C1
0 ← C1

1↓ ↘ ↘
C2

0 ← C2
1 C2

2↓ ↘ ↘ ↘
C3

0 ← C3
1 C3

2 C3
3↓ ↘ ↘ ↘ ↘

· · · · · · · · · · · · · · ·

relations for the truncated solution, its numerical implementation is still very stable and very
precise, reaching the same level of accuracy of the traditional methods based on the inversion of
the Mellin moments.

8. Finding the exact non-singlet NNLO solution

To identify the NNLO exact solution we proceed similarly to the NLO case and start from the
DGLAP equation in moment space at the corresponding perturbative order

(126)
∂f (N,αs)

∂αs

= − ( αs

2π
)P (0)(N) + ( αs

2π
)2P (1)(N) + ( αs

2π
)3P (2)(N)

β0
4π

α2
s + β1

16π2 α3
s + β2

64π3 α4
s

f (N,αs).

After a separation of variables, all the new logarithmic/non-logarithmic and dependences come
from the integral

(127)

αs(Q
2)∫

αs(Q
2
0)

dα
P NNLO(αs)

βNNLO(α)
,

and the solution of (126) is

f (N,α) = f (N,α0)e
a(N)Leb(N)Mec(N)Q

(128)= f (N,α0)

( ∞∑
n=0

a(N)n

n! Ln

)( ∞∑
m=0

b(N)m

m! Mm

)( ∞∑
p=0

c(N)p

p! Qp

)
,

where we have defined

(129)L= log
α

α0
,

(130)M= log
16π2β0 + 4παβ1 + α2β2

16π2β0 + 4πα0β1 + α2
0β2

,

(131)Q = 1√
4β0β2 − β2

1

arctan
2π(α − α0)

√
4β0β2 − β2

1

2π(8πβ0 + (α + α0)β1) + αα0β2
,

(132)a(N) = −2P (0)(N)
,

β0
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(133)b(N) = P (0)(N)

β0
− 4P (2)(N)

β2
,

(134)c(N) = 2β1

β0
P (0)(N) − 8P (1)(N) + 8β1

β2
P (2)(N).

Notice that for nf = 6 the solution has a branch point since 4β0β2 −β2
1 < 0. If we increase nf as

we step up in the factorization scale then, for nf = 6, Q is replaced by its analytic continuation

(135)Q= 1√
β2

1 − 4β0β2

arctanh
2π(α − α0)

√
β2

1 − 4β0β2

2π(8πβ0 + (α + α0)β1) + αα0β2
.

Eq. (128) incorporates all the non-trivial dependence on the coupling constant αs (now deter-
mined at 3-loop level) into L, M and Q.

As a side remark we emphasize that it is also possible to obtain various NNLO exact recursion
relations using the formalism of the convolution series introduced above. For this purpose it is
convenient to define suitable operatorial expressions, for instance

E1 ≡ e

∫ αs
α0

dα
P NLO(x,α)

βNNLO(α) ⊗ ,

(136)E2 ≡ e

∫ αs
α0

dα( α
2π

)3 P (2)(x,α)

βNNLO(α) ⊗ ,

which are manipulated under the prescription that the integral in α is evaluated before that any
convolution product acts on the initial conditions. The re-arrangement of these operatorial ex-
pressions is therefore quite simple and one can use simple identities such as

J0 =
αs∫

α0

dα

(
α

2π

)
P (0)(x,α)

βNNLO(α)⊗
= 2

β1

β0
QP

(0)
⊗ − 2

β0
LP

(0)
⊗ + 1

β0
MP

(0)
⊗ ,

J1 =
αs∫

α0

dα

(
α

2π

)2
P (1)(x,α)

βNNLO(α)⊗
= −8QP (1)⊗,

J2 =
αs∫

α0

dα

(
α

2π

)3
P (2)(x,α)

βNNLO(α)⊗
=

(
− 4

β2
M+ 8

β1

β2
Q

)
P (2)⊗,

JNNLO =
αs∫

α0

dα
P NLO(x,α)

βNNLO(α) ⊗

(137)=Q
(

2
β1

β0
P (0) ⊗ −8P (1)⊗

)
− 2

β0
LP (0) ⊗ + 1

β0
MP (0)⊗,

to build the NNLO exact solution using a suitable recursive algorithm. For instace, using (136)
one can build an intermediate solution of the equation

(138)
∂f̃NLO(x,αs)

∂αs

= P NLO

βNNLO
f̃NLO(x,αs)
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given by

(139)f̃NLO = E1f (x,α0),

and then constructs with a second recursion the exact solution

(140)f (x,αs) = E2f̃NLO.

A straightforward approach, however, remains the one described in the previous section, that we
are going now to extend to NNLO. In this case, in the choice of the recursion relations, one is
bound to equate 3 independent logarithmic powers of L, M and Q that appear in the symmetric
ansatz

f
(
x,Q2) =

( ∞∑
n=0

A′
n(x)

n! Ln

)
⊗

( ∞∑
m=0

B ′
m(x)

m! Mm

)
⊗

( ∞∑
p=0

C′
p(x)

p! Qp

)
⊗
f

(
x,Q2

0

)

=
∞∑

s=0

s∑
t=0

t∑
n=0

A′
n(x) ⊗ B ′

t−n(x) ⊗ C′
s−t (x)

n!(t − n)!(s − t)! ⊗ f
(
x,Q2

0

)
LnMt−nQs−t

(141)=
∞∑

s=0

s∑
t=0

t∑
n=0

Ds
t,n(x)

n!(t − n)!(s − t)!L
nMt−nQs−t ,

and where

(142)Ds
t,n(x) = A′

n(x) ⊗ B ′
t−n(x) ⊗ C′

s−t (x) ⊗ f
(
x,Q2

0

)
.

The ansatz is clearly identified quite simply by inspection, once the structure of the solution in
moment space (128) is known explicitely. In (141) we have at a first step re-arranged the product
of the three series into a single series with a given total exponent s = n + m + p, and we have
introduced an index t = n + m. The triple-indexed function Ds

t,n(x) can be defined also as an
ordinary product

(143)Ds
t,n(x) = An(x) ⊗ Bt−n(x) ⊗ Cs−t (x) (n � t � s),

where we have absorbed the ⊗ operator into the definition of A, B and C,

(144)A(x)B(x)C(x) = A′(x) ⊗ [(
B ′(x) ⊗ (

C′(x) ⊗ f
(
x,Q2

0

)))]
.

Setting Q = Q0 in (141) we get the initial condition

(145)f
(
x,Q2

0

) = D0
0,0(x).

Inserting the ansatz (141) into the 3-loop DGLAP equation together with the beta function de-
termined at the same order and equating the coefficients of α, α2 and α3, we find the recursion
relations satisfied by the unknown coefficients Ds

t,n(x)

(146)Ds+1
t+1,n+1 = − 2

β0
P (0) ⊗ Ds

t,n,

(147)Ds+1
t+1,n = −1

2
Ds+1

t+1,n+1 − 4

β2
P (2) ⊗ Ds

t,n,

(148)Ds+1
t,n = −2β1

(
Ds+1

t+1,n + Ds+1
t+1,n+1

) − 8P (1) ⊗ Ds
t,n,
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Table 2
Schematic representation of the procedure followed to compute each coefficient Ds

t,n for s = 4. The underlined coeffi-
cients are computed via Eq. (149)

D4
4,4

D4
3,3 D4

4,3

D4
2,2 D4

3,2 D4
4,2

D4
1,1 D4

2,1 D4
3,1 D4

4,1

↙ ↙ ↙ ↙ ↓
D4

0,0 ←− D4
1,0 ←− D4

2,0 ←− D4
3,0 ←− D4

4,0

or equivalently

(149)Ds
t,n = − 2

β0
P (0) ⊗ Ds−1

t−1,n−1,

(150)Ds
t,n = −1

2
Ds

t,n+1 − 4

β2
P (2) ⊗ Ds−1

t−1,n,

(151)Ds
t,n = −2β1

(
Ds

t+1,n + Ds
t+1,n+1

) − 8P (1) ⊗ Ds−1
t,n .

In the computation of a given coefficient Ds
t,n, if more than one recursion relation is allowed to

determine that specific coefficient, we will choose to implement the less time consuming path,
i.e. in the order (149), (151) and (150). At a fixed integer s we proceed as follows: we

(1) compute all the coefficients Ds
t,n with n �= 0 using (149);

(2) compute the coefficient Ds
s,0 using (150);

(3) compute the coefficient Ds
t,0 with t �= s using (151), in decreasing order in t .

This computational strategy is exemplified in the diagram in Table 2 for s = 4, where the various
paths are highlighted.

Following a procedure similar to the one used for the NLO case, we can solve the recursion
relations for the NNLO ansatz with the initial conditions D0

0,0(x). Solving the relations (149)–
(151), we obtain the chain conditions

(152)Ds
t,n = − 2

β0
P (0) ⊗ Ds−1

t−1,n−1 ⇒ Ds
t,n =

[
− 2

β0
P (0)

]n

⊗ Ds−n
t−n,0.

Then, from the second relation we get the additional ones

(153)

Ds
t,n = −1

2
Ds

t,n+1 − 4

β2
P (2) ⊗ Ds−1

t−1,n ⇒ Ds−n
t−n,0 =

[
P (0)

β0
− 4P (2)

β2

]t−n

⊗ Ds−t−2n
0,0 .

From the last relation we also obtain the relations

Ds
t,n = −2β1

(
Ds

t+1,n + Ds
t+1,n+1

) − 8P (1) ⊗ Ds−1
t,n

(154)⇒ Ds−t−2n
0,0 =

[
−8P (1) + 2β1

P (0) + 8β1
P (2)

]s−t−2n

⊗ D0
0,0,
β0 β2
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which solve the recursion relations in x-space in terms of the initial condition D0
0,0. Finally, the

explicit expression of the Ds
t,n coefficient will be given by

Ds
t,n(x) =

[
− 2

β0
P (0)

]n

⊗
[
P (0)

β0
− 4P (2)

β2

]t−n

(155)⊗
[
−8P (1) + 2β1

β0
P (0) + 8

β1

β2
P (2)

]s−t−2n

⊗ D0
0,0(x).

The solution of the NNLO DGLAP equation reproduced by (141) in Mellin space will then be
written in the form

f (N,αs) =
∞∑

s=0

s∑
t=0

t∑
n=0

Ds
t,n(N)

n!(t − n)!(s − t)!L
nMt−nQs−t

=
∞∑

s=0

s∑
t=0

t∑
n=0

LnMt−nQs−t

n!(t − n)!(s − t)!
[
− 2

β0
P (0)

]n[
P (0)(N)

β0
− 4P (2)(N)

β2

]t−n

(156)×
[
−8P (1)(N) + 2β1

β0
P (0)(N) + 8

β1

β2
P (2)(N)

]s−t−2n

D0
0,0(N),

which is equivalent to

f (N,αs) = e
[− 2

β0
P (0)] log (

αs
α0

)
exp

{[
P (0)(N)

β0
− 4P (2)(N)

β2

]

× log
16π2β0 + 4παsβ1 + α2

s β2

16π2β0 + 4πα0β1 + α2
0β2

}

× exp

{[
2β1

β0
P (0)(N) − 8P (1)(N) + 8β1

β2
P (2)(N)

]

(157)

×
(

1√
4β0β2 − β2

1

arctan
2π(αs − α0)

√
4β0β2 − β2

1

2π(8πβ0 + (αs + α0)β1) + αsα0β2

)}
D0

0,0(N),

and it reproduces the result in (128). In x-space the above solution can be simply written as

f
(
x,αs

(
Q2))

= e
[log(

αs
α0

)− 2
β0

P (0)]⊗
exp

{
log

(
16π2β0 + 4παsβ1 + α2

s β2

16π2β0 + 4πα0β1 + α2
0β2

)[
P (0)(N)

β0
− 4P (2)(N)

β2

]
⊗

}

× exp

{(
1√

4β0β2 − β2
1

arctan
2π(αs − α0)

√
4β0β2 − β2

1

2π(8πβ0 + (αs + α0)β1) + αsα0β2

)

(158)×
[

2β1

β0
P (0)(N) − 8P (1)(N) + 8β1

β2
P (2)(N)

]
⊗

}
D0

0,0(x).

We have shown how to obtain exact NNLO solutions of the non-singlet equations using recursion
relations. It is clear that the solution shown above conceals all the logarithms of the coupling con-
stant into more complicated functions of αs and therefore it performs an intrinsic resummation of
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all these contributions, as obvious, being the exact solution of the non-singlet equation at NNLO.
A numerical implementation of the recursion relations associated to these new functions of the
coupling constants, in this case, is no different from the previous cases, when only functions of
the form log(α/α0) have been considered, but with a faster convergence rate.

9. Truncated solutions at LO and NNLO in the singlet case

The proof of the existence of a valid logarithmic ansatz that reproduces the truncated solu-
tion of the singlet DGLAP equation at NLO is far more involved compared to the non-singlet
case. Before we proceed with this discussion, it is important to clarify some points regarding
some known results concerning these equations in moment space. First of all, as we have widely
remarked before, there are no exact solutions of the singlet equations in moment space beyond
those known at LO, due to the matrix structure of the equations. Therefore, it is no surprise
that there is no logarithmic ansatz that cannot do better than to reproduce the truncated solu-
tion, since only these ones are available analytically in moment space. If we knew the structure
of the exact solution in moment space we could construct an ansatz that would generate by re-
cursion relations all the moments of that solution, following the same strategy outlined for the
non-singlet equation. Therefore, inverting numerically the equations for the moments has no ad-
vantage whatsoever compared to the numerical implementation of the logarithmic series using
the algorithm that we have developed here. However, we can arbitrarily improve the logarithmic
series in order to capture higher order contributions in the truncated solution, a feature that can
be very appealing for phenomenological purposes.

The proof that a suitable logarithmic ansatz reproduces the truncated solution of the moments
of the singlet pdf’s at NLO goes as follows.

9.1. The exact solution at LO

We start from the singlet matrix equation

(159)

∂

∂ logQ2

(
q(+)(x,Q2)

g(x,Q2)

)
=

(
Pqq(x,αs(Q

2)) Pqg(x,αs(Q
2))

Pgq(x,αs(Q
2)) Pgg(x,αs(Q

2))

)
⊗

(
q(+)(x,Q2)

g(x,Q2)

)
,

whose well known LO solution in Mellin space can be easily identified

(160)	f (N,αs) = L̂(αs,α0,N) 	f (N,α0),

and where L̂(αs,α0,N) = ( αs

α0
)R̂0(N) is the evolution operator.

Diagonalizing the R̂0 operator, in the equation above, we can write the evolution operator
L̂(αs,α0,N) as

(161)L̂(αs,α0,N) = e+
(

αs

α0

)r+
+ e−

(
αs

α0

)r−
,

where r± are the eigenvalues of the matrix R̂0 = (−2/β0)P̂0 and e+ and e− are projectors [15,16]
defined as

(162)e± = 1

r± − r∓
[R̂0 − r∓Î ].
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Since the e± are projection operators, the following properties hold

(163)e+e+ = e+, e−e− = e−, e+e− = e−e+ = 0, e+ + e− = 1.

Hence it is not difficult to see that

(164)R̂0(N) = e+r+ + e−r−.

It is important to note that one can write a solution of the singlet DGLAP equation in a closed
exponential form only at LO.

It is quite straightforward to reproduce this exact matrix solution at LO using a logarithmic
expansion and the associated recursion relations. These are obtained from the ansatz (here written
directly in moment space)

(165)	f (N,αs) =
∞∑

n=0

	An(N)

n!
[

ln

(
αs

α0

)]n

,

subject to the initial condition

(166)	f (N,α0) = 	A0(N).

Then the recursion relations become

(167)	An+1(N) = − 2

β0
P̂ (0)(N) 	An(N) ≡ R̂0(N) 	An(N),

and can be solved as

	An = [
R̂0(N)

]n 	A0(N)

(168)= (
e+rn+ + e−rn−

) 	f (N,α0),

having used Eq. (163). Inserting this expression into Eq. (165) we easily obtain the relations

(169)	f (N,αs) =
∞∑

n=0

[R̂0(N)]n
n!

[
ln

(
αs

α0

)]n

	A0(N) =
(

αs

α0

)R̂0(N)

	f (N,α0),

in agreement with Eq. (160).

9.2. The standard NLO solution from moment space

Moving to NLO, one can build a truncated solution in moment space of Eq. (159) by a series
expansion around the lowest order solution.

We start from the truncated version of the vector equation (159)

(170)
∂ 	f (N,αs)

∂αs

= − 2

β0αs

[
P̂ (0) + αs

2π

(
P̂ (1) − b1

2
P̂ (0)

)]
	f (N,αs),

that we re-express in the form

∂ 	f (N,αs)

∂αs

= − 1

αs

[
−R̂0 + αs

(
P̂ (1)

πβ0
+ R̂0b1

4π

)]
	f (N,αs)

(171)= 1

αs

[R̂0 + αsR̂1] 	f (N,αs),
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and with the R̂1 operator defined as

(172)R̂1(N) = − 1

π

(
b1

4
R̂0(N) + P̂ (1)(N)

β0

)
.

We use [15,16] a truncated vector solution of (171)—accurate at O(αs)—of the form

	f (N,αs) = Û (αs,N)L̂(αs,α0,N)Û−1(α0,N) 	f (N,α0)

(173)= [
1 + αsÛ1(N)

]
L̂(αs,α0,N)

[
1 + α0Û1(N)

]−1 	f (N,α0),

where we have expanded in powers of αs the operators Û (αs,N) and Û−1(α0,N). Inserting
(173) in Eq. (171), we obtain the commutation relations involving the operators Û1, R̂0 and R̂1

(174)[R̂0, Û1] = Û1 − R̂1,

which appear in the solution in Mellin space [15,16]. Then, using the properties of the projection
operators

(175)Û1 = e+Û1e+ + e+Û1e− + e−Û1e+ + e−Û1e−,

and inserting this relation in the commutator (174) we easily derive the relation

(176)Û1 = [e+R̂1e+ + e−R̂1e−] − e+R̂1e−
r+ − r− − 1

− e−R̂1e+
r− − r+ − 1

.

Finally, expanding the term [1 + α0Û1]−1 in Eq. (173) we arrive at the solution [15,16]

(177)	f (N,αs) = [L̂ + αsÛ1L̂ − α0L̂Û1] 	f (N,α0),

where the (αs,α0,N) dependence has been dropped. Such solution can be put in a more readable
form as

	f (N,αs) =
{(

αs

α0

)r+[
e+ + (

αs − α0
)
e+R̂1e+

(178)+
(

α0 − αs

(
αs

α0

)r−−r+)
e+R̂1e−

r+ − r− − 1

]
+ (+ ↔ −)

}
	f (N,α0),

which can be called the standard NLO solution, having been introduced in the literature about
20 years ago [16]. It is obvious that this solution is a (first) truncated solution of the NLO singlet
DGLAP equation, with the equation truncated at the same order.

9.3. Reobtaining the standard NLO solution using the logarithmic expansion

Having worked out the well-known NLO singlet solution in moment space, our aim is to
show that the same solution can be reconstructed using a logarithmic ansatz. This fills a gap in
the previous literature on this types of ansatze for the QCD pdf’s. To facilitate our duty, we stress
once more that the type of recursion relations obtained in the non-singlet and singlet cases are
similar. In fact the matrix structure of the equations does not play any role in the derivation due
to the linearity of the ansatz in the (vector) coefficient functions that appear in it.

Our NLO singlet ansatz has the form

(179)	f (
x,Q2)NLO =

∞∑ 	An(x)

n!
[

ln

(
αs

α0

)]n

+ αs

∞∑ 	Bn(x)

n!
[

ln

(
αs

α0

)]n

,

n=0 n=0
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with An and Bn now being vectors involving the singlet components. The recursion relations are

	An+1(N) = R̂0(N) 	An(N),

(180)	Bn+1(N) = − 	Bn(N) − b1

4π
	An+1(N) + R̂0(N)Bn(N) − 1

πβ0
P̂ (1)(N) 	An(N),

subjected to the initial condition

(181)	f (N,α0) = 	A0(N) + α0 	B0(N).

The solution of (180) in moment space can be easily found and is given by

(182)	An+1(N) = [
e+(r+)n + e−(r−)n

] 	A0(N),

while we can re-arrange the 	Bn+1(N) relation into the form

(183)	Bn+1(N) = (R̂0 − 1) 	Bn(N) + R̂1R̂
n
0

	A0(N).

The last step to follow in order to construct the truncated solution involves a projection of the
recursion relations (183) in the basis of the projectors ê±. In this basis we separate the equations
as

	Bn+1 = (e+r+ + e−r− − 1)
[ 	B++

n + 	B+−
n + 	B−+

n + 	B−−
n

]
(184)+ [

R̂++
1 + R̂+−

1 + R̂−+
1 + R̂−−

1

](
e+rn+ + e−rn−

) 	A0,

where we have used the notation

(185)e± 	Bn(N)e± = 	B±±
n .

Then, using

	B++
n+1 = (r+ − 1) 	B++

n + R̂++
1 rn+ 	A0,

	B+−
n+1 = (r+ − 1) 	B+−

n + R̂+−
1 rn− 	A0,

	B−+
n+1 = (r− − 1) 	B−+

n + R̂−+
1 rn+ 	A0,

(186)	B−−
n+1 = (r− − 1) 	B−−

n + R̂−−
1 rn− 	A0,

it is an easy task to verify that the solutions of the recursion relations at NLO are given by

	B++
n = [

rn+ − (r+ − 1)n
]
R̂++

1
	A0,

	B−−
n = [

rn− − (r− − 1)n
]
R̂−−

1
	A0,

	B+−
n = [−rn− + (r+ − 1)n

] R̂+−
1

r+ − r− − 1
	A0,

(187)	B−+
n = [−rn+ + (r− − 1)n

] R̂−+
1

r− − r+ − 1
	A0,

where we have expressed the nth iterate in terms of the initial conditions, and we have taken
	B0 = 	0. Summing over all the projections, we arrive at the following expression for the NLO
truncated solution of the singlet parton distributions

(188)	f (N,αs) =
∞∑ Ln

n!
[ 	A++

n + 	A−−
n + αs

( 	B++
n + 	B−−

n + 	B−+
n + 	B+−

n

)]
,

n=0
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which can be easily exponentiated to give

	f (N,αs) = e+ 	A0

(
αs

α0

)r+
+ e− 	A0

(
αs

α0

)r−
+ αs

{
e+R̂1e+

(
αs

α0

)r+

− e+R̂1e+
(

αs

α0

)(r+−1)

+ e−R̂1e−
(

αs

α0

)r−
− e−R̂1e−

(
αs

α0

)(r−−1)

+ 1

(r+ − r− − 1)

[
−e+R̂1e−

(
αs

α0

)r−
+ e+R̂1e−

(
αs

α0

)(r+−1)]

(189)+ 1

(r− − r+ − 1)

[
−e−R̂1e+

(
αs

α0

)r+
+ e−R̂1e+

(
αs

α0

)(r−−1)]}
	A0.

Finally, organizing the various pieces we obtain exactly the solution in Eq. (178). We have there-
fore shown that the logarithmic ansatz coincides with the solution of the singlet DGLAP equation
at NLO known from the previous literature and reported in the previous section. It is intuitively
obvious that we can build with this approach truncated solutions of higher orders improving on
the standard solution (178) known from moment space, and we can do this with any accuracy.
However, before discussing this point in one of the following sections, we want to show how the
same strategy works at NNLO.

9.4. Truncated solution at NNLO

At this point, to complete our investigation, we need to discuss the generalization of the proce-
dure illustrated above to the NNLO case. As usual, we start from a truncated version of Eq. (159),
that at NNLO can be written as

(190)
∂ 	f (N,αs)

∂αs

= 1

αs

[
R̂0 + αsR̂1 + α2

s R̂2
] 	f (N,αs),

where

(191)R̂2 = − 1

π

( ˆP (2)

2πβ0
+ R̂1b1

4
+ R̂0b2

16π

)
,

whose solution is expected to be of the form [13]

	f (N,αs) = [
1 + αsÛ1(N) + α2

s Û2(N)
]
L̂(αs,α0,N)

(192)× [
1 + α0Û1(N) + α2

0Û2(N)
]−1 	f (N,α0),

where

[R̂0, Û1] = Û1 − R̂1,

(193)[R̂0, Û2] = −R̂2 − R̂1Û1 + 2Û2.

Using the projectors in the ± subspaces, one can remove the commutators, obtaining

Û++
2 = 1

2

[
R̂++

1 R̂++
1 + R̂++

2 − R̂+−
1 R̂−+

1

r− − r+ − 1

]
,

Û−−
2 = 1

[
R̂−−

1 R̂−−
1 + R̂−−

2 − R̂−+
1 R̂+−

1
]
,

2 r+ − r− − 1
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Û+−
2 = 1

r+ − r− − 2

[
−R̂+−

1 R̂−−
1 − R̂+−

2 + R̂++
1 R̂+−

1

r+ − r− − 1

]
,

(194)Û−+
2 = 1

r− − r+ − 2

[
−R̂−+

1 R̂++
1 − R̂−+

2 + R̂−−
1 R̂−+

1

r− − r+ − 1

]
,

and the formal solution from Mellin space can be simplified to

(195)

	f (N,αs) = [
L̂ + αsÛ1L̂ − α0L̂Û1 + α2

s Û2L̂ − αsα0Û1L̂Û1 + α2
0L̂

(
Û2

1 − Û2
)] 	f (N,α0).

At this point we introduce our (1st truncated) logarithmic ansatz that is expected to repro-
duce (195). Now it includes also an infinite set of new coefficients 	Cn, similar to the non-singlet
NNLO case

(196)	f (N,αs) =
∞∑

n=0

Ln

n!
[ 	An + αs

	Bn + α2
s

	Cn

]
.

Inserting the NNLO logarithmic ansatz into (190), we obtain in moment space the recursion
relations

	An+1 = R̂0 	An,

	Bn+1 = (R̂0 − 1) 	Bn + R̂1R̂
n
0

	A0,

(197)

	Cn+1 = (R̂0 − 2) 	Cn − b1

4π
( 	Bn + 	Bn+1) +

[
b1

4π
R̂0 + R̂1

]
	Bn +

[
R̂2 + b1

4π
R̂1

]
R̂n

0
	A0,

whose solution has to coincide with (195). Also in this case, as before, we use the e± projectors
and notice that the structure of the recursion relations for the coefficients An and Bn remain the
same as in NLO. Therefore, the solutions of the recursion relations for 	An and 	Bn are still given
by (182) and (187). We then have to find only an explicit solution of the relations for the new
coefficients 	Cn+1(N).

These relations can be solved in terms of 	A0, 	B0 and 	C0 with the help of (187). Finally, taking
	B0 = 0 and 	C0 = 0 after a lengthy computation we obtain the explicit solutions for the projected
components

	C++
n = −1

2

R̂+−
1 R̂−+

1

(r+ − r− − 1)(r− − r+ − 1)

[
2(r− − 1)n − (r+ − 2)n − (r+ − 2)nr+ − rn+

+ rn+1+ + r−
(
(r+ − 2)n − rn+

)] 	A0 + 1

2
R̂++

1 R̂++
1

[
rn+ − 2(r+ − 1)n

+ (r+ − 2)n
] 	A0 + 1

2
R̂++

2

[
rn+ − (r+ − 2)n

] 	A0,

	C−−
n = −1

2

R̂−+
1 R̂+−

1

(r+ − r− − 1)(r− − r+ − 1)

[
2(r+ − 1)n − (r− − 2)n − (r− − 2)nr− − rn+

+ rn+1+ + r+
(
(r− − 2)n − rn−

)] 	A0 + 1

2
R̂−−

1 R̂−−
1

[
rn− − 2(r− − 1)n

+ (r− − 2)n
] 	A0 + 1

R̂−−
2

[
rn− − (r− − 2)n

] 	A0,

2
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	C+−
n = 1

2 + r2− + r−(3 − 2r+) − 3r+ + r2+

[
R̂+−

2

(
rn− − (r+ − 2)n

)
(1 + r− − r+)

− R̂+−
1 R̂−−

1

(
2(r− − 1)n + (r− − 1)nr− − rn+1− − (r+ − 2)n + rn−(r+ − 1)

− (r− − 1)nr+
) + R̂++

1 R̂+−
1

(
rn− + (r+ − 2)n + r−(r+ − 2)n

− 2(r+ − 1)n − r−(r+ − 1)n − r+(r+ − 2)n + r+(r+ − 1)n
)] 	A0,

	C−+
n = 1

2 + r2− + 3r+ + r2+ − r−(3 + 2r+)

[
R̂−+

2 (r− − r+ − 1)
(
(r− − 2)n − rn+

)
− R̂−−

1 R̂−+
1

(−(r− − 2)n + 2(r− − 1)n + (
(r− − 2)n − (r− − 1)n

)
r−

− (r− − 2)nr+ + (r− − 1)nr+ − rn+
) + R̂−+

1 R̂++
1

(
(r− − 2)n − 2(r+ − 1)n

(198)+ r−(r+ − 1)n − (r+ − 1)nr+ + rn+ − r−rn+ + rn+1+
)] 	A0.

Re-inserting these solutions into the NNLO ansatz (196) and after exponentiation one can show
explicitely that the logarithmic solution so obtained coincides with (195). Details can be found in
Appendix A. In the practical implementations of these solutions, there are two obvious strategies
that can be followed. One consists in the implementation of the recursion relations as we have
done in various cases above: a sufficiently large number of iterates will converge to the truncated
solution (195). This is obtained by implementing Eqs. (197) and incorporating them into (196).
A second method consists in the direct computation of (195) in x-space which becomes

	f (x,αs) = [
L̂ + αsÛ1 ⊗ L̂ − α0L̂ ⊗ Û1 + α2

s Û2 ⊗ L̂ − αsα0Û1 ⊗ L̂ ⊗ Û1

(199)+ α2
0L̂ ⊗ (Û1 ⊗ Û1 − Û2)

] ⊗ 	f (x,α0),

and with L̂ now replaced by its operatorial (⊗) form

(200)L̂ → eLnR0⊗ =
( ∞∑

n=0

Rn
0

n! Ln

)
⊗
.

An implementation of (199) would reduce its numerical evaluation to that of a sequence of LO
solutions built around “artificial” initial conditions given by Û1 ⊗ f (x,α0), Û1 ⊗ Û1 ⊗ f (x,α0)

and so on.

10. Higher order logarithmic approximation of the NNLO singlet solution

The procedure studied in the previous section can be generalized and applied to obtain so-
lutions that retain higher order logarithmic contributions in the NLO/NNLO singlet cases. The
same procedure is also the one that has been implemented in all the existing codes for the singlet:
one has to truncate the equation and then try to reach the exact solution by a sufficiently high
number of iterates. On the other hand, x-space (non-brute force) implementations are, from this
respect, still lagging since they are only based on the Rossi–Storrow formulation [3,5], which we
have analized thoroughly and largely extended in this work.

Therefore, the only way at our disposal to reach from x-space the exact solution is by using
higher order truncates. This is of practical relevance since our algorithm allows to perform sepa-
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rate checks between truncated solutions of arbitrary high orders built either from Mellin or from
x-space.6 We recall, if not obvious, that in the analysis of hadronic processes the two criteria of
using either truncated or exact solutions are both acceptable.

To summarize: since in the singlet case is not possible to write down a solution of the DGLAP
equation in a closed exponential form because of the non-commutativity of the operators R̂i ,
the best thing we can do is to arrange the singlet DGLAP equation in the truncated form, as
in Eqs. (171) and (190). The truncated vector solutions (195) and (177) are equivalent to those
obtained using the vector recursion relations at NLO/NNLO.

Now, working at NNLO, we will show how the basic NNLO solution can be improved and
the higher truncates identified. Clearly, it is important to show explicitely that these truncates,
generated after solving the recursion relations, can be rewritten exactly in the form previously
known from Mellin space. We are going to show here that this is in fact the case, although
some of the explicit expressions for the higher order coefficient functions Cn,Dn’s will be given
explicitely only in part. The expressions are in fact slightly lengthy.7 Therefore, here we will just
outline the procedure and illustrate the proof up to the second truncate of the NNLO singlet only
for the sake of clarity.

The exact singlet NNLO equation in Mellin space is given by

∂ 	f (N,αs)

∂αs

= − ( αs

2π
)P̂ (0)(N) + ( αs

2π
)2P̂ (1)(N) + ( αs

2π
)3P̂ (2)(N)

β0
4π

α2
s + β1

16π2 α3
s + β2

64π3 α4
s

	f (N,αs)

(201)= P̂ NNLO(N,αs)

βNNLO(αs)
	f (N,αs),

where we have introduced the singlet kernels. After a Taylor expansion of P̂ NNLO(N,αs)/

βNNLO(αs) up to α3
s it becomes

(202)
∂ 	f (N,αs)

∂αs

= 1

αs

[
R̂0 − b2

(4π)2
R̂1 + αsR̂1 + α2

s R̂2 − b1

4π
α3

s R̂2

]
	f (N,αs),

which is the truncated equation of order α3
s . The R̂i (i = 0,1,2) operators are listed below

R̂0 = − 2

β0
P̂ (0),

R̂1 = − P̂ (1)

πβ0
+ b1

2πβ0
P̂ (0),

(203)R̂2 = − P̂ (2)

2π2β0
+ b1

4π2β0
P̂ (1) +

[
− b2

1

8π2β0
+ b2

8π2β0

]
P̂ (0).

The formal solution of this equation can be written as [14,20]

6 The current benchmarks available at NNLO are limited to exact solutions and do not involve comparisons between
truncated solutions.

7 They will be included in a file that will be made available in the same distribution of our code, which is in preparation.
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	f (N,αs) = Tα

[
exp

{ αs∫
α0

dα′
s

1

α′
s

(
R̂0 − b2

(4π)2
R̂1 + α′

sR̂1

+ α′
s

2
R̂2 − b1

4π
α′

s
3
R̂2

)}]
	f (N,α0)

(204)= Û (N,αs)L̂(αs,α0)Û
−1(N,α0) 	f (N,α0),

where the Tα operator acts on the exponential similarly to a time-ordered product, but this time
in the space of the couplings. Again, expanding the Û (N,αs) and Û−1(N,α0) operators in the
formal solution around αs = 0 and α0 = 0, we have

	f (N,αs) = [
L̂ + αsÛ1L̂ − α0L̂Û1 + α2

s Û2L̂ − αsα0Û1L̂Û1 + α2
0L̂

(
Û2

1 − Û2
)
.

+ α3
s Û3L̂ + αsα

2
0Û1L̂

(
Û2

1 − Û2
) − α2

s α0Û2L̂Û1

(205)− α3
0L̂

(
Û3

1 − Û1Û2 − Û2Û1 + Û3
)] 	f (N,α0).

Inserting the expanded solution into Eq. (205) and equating the various power of αs we arrive at
the following chain of commutation relations

[R̂0, Û1] = Û1 − R̂1,

[R̂0, Û2] = −R̂2 − R̂1Û1 + 2Û2,

(206)[R̂0, Û3] = b2

(4π)2
R̂1 + b1

(4π)
R̂2 − R̂1Û2 − R̂2Û1 + 3Û3.

Removing the commutators by the e± projectors one obtains

Û++
1 = R̂++

1 ,

Û−−
1 = R̂−−

1 ,

Û+−
1 = − R̂+−

1

r+ − r− − 1
,

Û−+
1 = − R̂−+

1

r− − r+ − 1
,

Û++
2 = 1

2

[
R̂++

1 R̂++
1 + R̂++

2 − R̂+−
1 R̂−+

1

r− − r+ − 1

]
,

Û−−
2 = 1

2

[
R̂−−

1 R̂−−
1 + R̂−−

2 − R̂−+
1 R̂+−

1

r+ − r− − 1

]
,

Û+−
2 = 1

r+ − r− − 2

[
−R̂+−

1 R̂−−
1 − R̂+−

2 + R̂++
1 R̂+−

1

r+ − r− − 1

]
,

Û−+
2 = 1

r− − r+ − 2

[
−R̂−+

1 R̂++
1 − R̂−+

2 + R̂−−
1 R̂−+

1

r− − r+ − 1

]
,

Û++
3 = 1

3

[
− b1

(4π)
R̂++

1 − b2

(4π)2
R̂++

2 + R̂+−
1 Û−+

2 + R̂++
1 Û++

2

+ R̂+−
2 Û−+

1 + R̂++
2 Û++

1

]
,
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Û−−
3 = 1

3

[
− b1

(4π)
R̂−−

1 − b2

(4π)2
R̂−−

2 + R̂−+
1 Û+−

2 + R̂−−
1 Û−−

2

+ R̂−+
2 Û+−

1 + R̂−−
2 Û−−

1

]
,

Û+−
3 = 1

r+ − r− − 3

[
− b1

(4π)
R̂+−

1 − b2

(4π)2
R̂+−

2 − R̂+−
1 Û−−

2

− R̂++
1 Û+−

2 − R̂+−
2 Û−−

1 − R̂++
2 Û+−

1

]
,

Û−+
3 = 1

r− − r+ − 3

[
− b1

(4π)
R̂−+

1 − b2

(4π)2
R̂−+

2 − R̂−+
1 Û++

2

(207)− R̂−−
1 Û−+

2 − R̂−+
2 Û++

1 − R̂−−
2 Û−+

1

]
.

As one can see, the Û3 operator is expressed in terms of the kernels P (0), P̂ (1) and P̂ (2). One can
prove that by imposing a higher order ansatz in Mellin space of the form

(208)	̃
f (N,αs) =

∞∑
n=0

Ln

n!
[ 	An(N) + αs

	Bn(N) + α2
s

	Cn(N) + α3
s

	Dn(N)
]
,

the solution (205) is generated. The vector recursion relations in this case become

	An+1 = − 2

β0
P̂ (0) 	An,

	Bn+1 = − 	Bn − 1

πβ0
P̂ (1) 	An − β1

πβ0

	An+1 − 2

β0
P̂ (0) 	Bn,

	Cn+1 = − 1

2π2β0
P̂ (2) 	An − β2

(4π)2β0

	An+1 − 1

πβ0
P̂ (1) 	Bn,

− β1

4πβ0

	Bn − β1

4πβ0

	Bn+1 − 2

β0
P̂ (0) 	Cn − 2 	Cn,

	Dn+1 = − 1

2π2β0
P̂ (2) 	Bn − β2

(4π)2β0

	Bn − β2

(4π)2β0

	Bn+1 − 1

πβ0
P̂ (1) 	Cn

(209)− β1

2πβ0

	Cn − β1

(4π)β0

	Cn+1 − 2

β0
P̂ (0) 	Dn − 3 	Dn.

Applying the properties of the e± operators, we project out the 	A±
n+1, 	B±

n+1, . . . components of

these relations, and imposing the initial conditions 	B0 = 	C0 = 	D0 = 0 together with

(210)	f (N,α0) = 	A0,

we obtain the explicit form of 	̃
f (N,αs). In order to construct the 	̃

f (N,αs) solution, the four
± projections of 	Dn+1 must be solved with respect to 	A0(N), since the other projections 	A±

n ,
	B±
n , 	C±

n are already known. A direct computation shows that the structure of the solution can be
organized as follows in terms of the components of Ri

	D++
n (N) = W1

(
R̂++3

1 , r+, r−,N, 	A0
) + W2

(
R̂+−

1 R̂−+
1 R̂++

1 , r+, r−,N, 	A0
)

+ W3
(
R̂+−R̂−−R̂−+, r+, r−,N, 	A0

) + W4
(
R̂++R̂+−R̂−+, r+, r−,N, 	A0

)

1 1 1 1 1 1
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+ W5
(
R̂++

1 R̂++
2 , r+, r−,N, 	A0

) + W6
(
R̂++

2 R̂++
1 , r+, r−,N, 	A0

)
+ W7

(
R̂+−

1 R̂−+
2 , r+, r−,N, 	A0

) + W8
(
R̂+−

2 R̂−+
1 , r+, r−,N, 	A0

)
+ W9

(
R̂++

1 , r+, r−,N, 	A0
) + W10

(
R̂++

2 , r+, r−,N, 	A0
)
,

	D−−
n (N) = W1

(
R̂−−3

1 , r+, r−,N, 	A0
) + W2

(
R̂−+

1 R̂+−
1 R̂−−

1 , r+, r−,N, 	A0
)

+ W3
(
R̂−+

1 R̂++
1 R̂+−

1 , r+, r−,N, 	A0
) + W4

(
R̂−−

1 R̂−+
1 R̂+−

1 , r+, r−,N, 	A0
)

+ W5
(
R̂−−

1 R̂−−
2 , r+, r−,N, 	A0

) + W6
(
R̂−−

2 R̂−−
1 , r+, r−,N, 	A0

)
+ W7

(
R̂−+

1 R̂+−
2 , r+, r−,N, 	A0

) + W8
(
R̂−+

2 R̂+−
1 , r+, r−,N, 	A0

)
+ W9

(
R̂−−

1 , r+, r−,N, 	A0
) + W10

(
R̂−−

2 , r+, r−,N, 	A0
)
,

	D+−
n (N) = Z1

(
R̂++

1 R̂+−
1 R̂−−

1 , r+, r−,N, 	A0
) + Z2

(
R̂++

1 R̂++
1 R̂+−

1 , r+, r−,N, 	A0
)

+ Z3
(
R̂+−

1 R̂−−
1 R̂−−

1 , r+, r−,N, 	A0
) + Z4

(
R̂+−

1 R̂−+
1 R̂+−

1 , r+, r−,N, 	A0
)

+ Z5
(
R̂+−

1 R̂−−
2 , r+, r−,N, 	A0

) + Z6
(
R̂+−

2 R̂−−
1 , r+, r−,N, 	A0

)
+ Z7

(
R̂++

1 R̂+−
2 , r+, r−,N, 	A0

) + Z8
(
R̂++

2 R̂+−
1 , r+, r−,N, 	A0

)
+ Z9

(
R̂+−

1 , r+, r−,N, 	A0
) + Z10

(
R̂+−

2 , r+, r−,N, 	A0
)
,

	D−+
n (N) = Z1

(
R̂−−

1 R̂−+
1 R̂++

1 , r+, r−,N, 	A0
) + Z2

(
R̂−−

1 R̂−−
1 R̂−+

1 , r+, r−,N, 	A0
)

+ Z3
(
R̂−+

1 R̂++
1 R̂++

1 , r+, r−,N, 	A0
) + Z4

(
R̂−+

1 R̂+−
1 R̂−+

1 , r+, r−,N, 	A0
)

+ Z5
(
R̂−+

1 R̂++
2 , r+, r−,N, 	A0

) + Z6
(
R̂−+

2 R̂++
1 , r+, r−,N, 	A0

)
+ Z7

(
R̂−−

1 R̂−+
2 , r+, r−,N, 	A0

) + Z8
(
R̂−−

2 R̂−+
1 , r+, r−,N, 	A0

)
(211)+ Z9

(
R̂−+

1 , r+, r−,N, 	A0
) + Z10

(
R̂−+

2 , r+, r−,N, 	A0
)
,

where we used the notation R̂++3
1 = R̂++

1 R̂++
1 R̂++

1 . The expressions of the functions W and Z’s
can be extracted by a symbolic manipulation of the coefficients 	D++

n . We have included one of
the projections for completeness in an appendix for the interested reader.

In x-space, the structure of the (2nd) truncated (or α3
s ) NNLO solution can be expressed as a

sequence of convolution products of the form

	f NNLO
O(α3

s )
(x,αs) = [

L̂(x) + αsÛ1(x) ⊗ L̂(x) − α0L̂(x) ⊗ Û1(x) + α2
s Û2(x) ⊗ L̂(x)

− αsα0Û1(x) ⊗ L̂(x) ⊗ Û1(x) + α2
0L̂(x) ⊗ (

Û1(x) ⊗ Û1(x) − Û2(x)
)

+ α3
s Û3(x) ⊗ L̂(x) + αsα

2
0Û1(x) ⊗ L̂(x) ⊗ (

Û1(x) ⊗ Û1(x) − Û2(x)
)

− α2
s α0Û2(x) ⊗ L̂(x) ⊗ Û1(x) − α3

0L̂(x) ⊗ (
Û1(x) ⊗ Û1(x) ⊗ Û1(x)

(212)− Û1(x) ⊗ Û2(x) − Û2(x) ⊗ Û1(x) + Û3(x)
)] ⊗ 	f (x,α0),

and is reproduced by the α3
s logarithmic expansion

(213)	̃
f (x,αs) =

∞∑
n=0

Ln

n!
[ 	An(x) + αs

	Bn(x) + α2
s

	Cn(x) + α3
s

	Dn(x)
]
,

with the initial condition

(214)	f (x,α0) = 	A0(x).
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The study of higher order truncates is performed numerically with the implementation of the
generalized recursion relations (91) given in the previous sections.

11. Comparison with existing programs

In this section we present a numerical test of our solution algorithm. For this aim, we com-
pare the results of a computer program that implements our method with the results of QCD-
Pegasus [2], a PDF evolution program based on Mellin-space inversion, which has been used by
the QCD Working Group to set some benchmark results [18,19]. In the following, we refer to
these results as to the benchmark.

In the tables we are going to show in this paper, we set the renormalization and factorization
scales to be equal, and we adopt the fixed flavor number scheme. The final evolution scale is
μ2

F = 104 GeV2. We limit ourselves to this case because it is enough to test the reliability of our
method. A more lengthy and detailed analysis, which will take into account many other cases
with renormalization scale dependence and variable flavor number scheme, will be presented
elsewhere.

As in the published benchmarks, we start the evolution at μ2
F,0 = 2 GeV2, where the test input

distributions, regardless of the perturbative order, are parametrized by the following toy model

xuv(x) = 5.107200x0.8(1 − x)3,

xdv(x) = 3.064320x0.8(1 − x)4,

xg(x) = 1.700000x−0.1(1 − x)5,

xd̄(x) = 0.1939875x−0.1(1 − x)6,

xū(x) = (1 − x)xd̄(x),

(215)xs(x) = xs̄(x) = 0.2x(ū + d̄)(x)

and the running coupling has the value

(216)αs

(
μ2

R,0 = 2 GeV2) = 0.35.

We remind that qv = q − q̄ , q+ = q + q̄ , L± = d̄ ± ū. Our results are obtained using the exact
solution method for the non-singlet and the LO singlet, and the κ th truncate method for the NLO
and NNLO singlet, with κ = 10. In each entry in the tables, the first number is our result and the
second is the difference between our results and the benchmark.

In Table 3 we compare our results at leading order with the results reported in Table 2 of
Ref. [18]. The agreement is excellent for any value of x for the non-singlet (xuv and xdv);
regarding the singlet (xg column), the agreement is excellent except at very high x: we have
a sizeable difference at x = 0.9. In Table 4 we analyze the next-to-leading order evolution; the
results for the proposed benchmarks are reported in Table 3 of [18]. The agreement is very good
for any value of x for the non-singlet; for the singlet the agreement is good, except at very high x

(x = 0.9).
Moving to the NNLO case (Table 5, the benchmarks are shown in Table 14 of [19]), some

comments are in order. We do not solve the non-singlet equation as in PEGASUS, since (126)
admits an exact solution (128), which in PEGASUS is obtained only by iteration of truncated
solutions. Our implementation is based on the exact solution presented in this work. The dis-
crepancy between our results and PEGASUS are of the order of few percent, and they become
large in the gluon case at x = 0.9, as for the lower orders. Another comments should be made
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e is the difference between our result and the benchmark.

xc+ xg

10+1 4.7914 × 10+1 1.3162 × 10+3

10+1 0.0000 × 10+1 0.0000 × 10+3

10+1 2.3685 × 10+1 6.0008 × 10+2

10+1 0.0000 × 10+1 0.0000 × 10+2

10+1 1.1042 × 10+1 2.5419 × 10+2

10+1 0.0000 × 10+1 0.0000 × 10+2

10+0 4.7530 × 10+0 9.7371 × 10+1

10+0 0.0000 × 10+0 0.0000 × 10+1

10+0 1.8089 × 10+0 3.2078 × 10+1

10+0 0.0000 × 10+0 0.0000 × 10+1

10−1 5.3247 × 10−1 8.0546 × 10+0

10−1 0.0000 × 10−1 0.0000 × 10+0

10−1 5.8864 × 10−2 8.8766 × 10−1

10−1 0.0000 × 10−2 0.0000 × 10−1

10−2 4.1380 × 10−3 8.2676 × 10−2

10−2 +0.0001 × 10−3 0.0000 × 10−2

10−4 2.6481 × 10−4 7.9242 × 10−3

10−4 0.0000 × 10−4 +0.0002 × 10−3

10−5 6.5593 × 10−6 3.7301 × 10−4

10−5 +0.0044 × 10−6 −0.0010 × 10−4

10−9 3.2577 × 10−9 1.3887 × 10−6

10−8 −1.6316 × 10−9 +0.2969 × 10−6
Table 3
Comparison between our and the benchmark results at LO. In each entry, the first number is our result and the second on
The benchmark values are reported in Table 2 of [18]

LO, nf = 4, μ2
F

= μ2
R

= 104 GeV2

x xuv xdv xL− 2xL+ xs+
10−7 5.7722 × 10−5 3.4343 × 10−5 7.6527 × 10−7 9.9465 × 10+1 4.8642 ×

0.0000 × 10−5 0.0000 × 10−5 0.0000 × 10−7 0.0000 × 10+1 0.0000 ×
10−6 3.3373 × 10−4 1.9800 × 10−4 5.0137 × 10−6 5.0259 × 10+1 2.4263 ×

0.0000 × 10−4 0.0000 × 10−4 0.0000 × 10−6 0.0000 × 10+1 0.0000 ×
10−5 1.8724 × 10−3 1.1065 × 10−3 3.1696 × 10−5 2.4378 × 10+1 1.1501 ×

0.0000 × 10−3 0.0000 × 10−3 0.0000 × 10−5 0.0000 × 10+1 0.0000 ×
10−4 1.0057 × 10−2 5.9076 × 10−3 1.9071 × 10−4 1.1323 × 10+1 5.1164 ×

0.0000 × 10−2 0.0000 × 10−3 0.0000 × 10−4 0.0000 × 10+1 0.0000 ×
10−3 5.0392 × 10−2 2.9296 × 10−2 1.0618 × 10−3 5.0324 × 10+0 2.0918 ×

0.0000 × 10−2 0.0000 × 10−2 0.0000 × 10−3 0.0000 × 10+0 0.0000 ×
10−2 2.1955 × 10−1 1.2433 × 10−1 4.9731 × 10−3 2.0433 × 10+0 7.2814 ×

0.0000 × 10−1 0.0000 × 10−1 0.0000 × 10−3 0.0000 × 10+0 0.0000 ×
0.1 5.7267 × 10−1 2.8413 × 10−1 1.0470 × 10−2 4.0832 × 10−1 1.1698 ×

0.0000 × 10−1 0.0000 × 10−1 0.0000 × 10−2 0.0000 × 10−1 0.0000 ×
0.3 3.7925 × 10−1 1.4186 × 10−1 3.3029 × 10−3 4.0165 × 10−2 1.0516 ×

0.0000 × 10−1 0.0000 × 10−1 0.0000 × 10−3 0.0000 × 10−2 0.0000 ×
0.5 1.3476 × 10−1 3.5364 × 10−2 4.2815 × 10−4 2.8624 × 10−3 7.3137 ×

0.0000 × 10−1 0.0000 × 10−2 0.0000 × 10−4 0.0000 × 10−3 −0.0001 ×
0.7 2.3123 × 10−2 3.5943 × 10−3 1.5868 × 10−5 6.8970 × 10−5 1.7730 ×

0.0000 × 10−2 0.0000 × 10−3 0.0000 × 10−5 +0.0009 × 10−5 +0.0005 ×
0.9 4.3443 × 10−4 2.2287 × 10−5 1.1042 × 10−8 3.3030 × 10−8 8.5607 ×

0.0000 × 10−4 0.0000 × 10−5 0.0000 × 10−8 −0.3263 × 10−8 −0.1631 ×
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xc+ xg

× 10+1 6.6750 × 10+1 1.1517 × 10+3

× 10+1 +0.0555 × 10+1 +0.0034 × 10+3

× 10+1 3.3021 × 10+1 5.4048 × 10+2

× 10+1 +0.0250 × 10+1 +0.0137 × 10+2

× 10+1 1.5335 × 10+1 2.3578 × 10+2

× 10+1 +0.0104 × 10+1 +0.0050 × 10+2

× 10+0 6.5156 × 10+0 9.3026 × 10+1

× 10+0 +0.0387 × 10+0 +0.0154 × 10+1

× 10+0 2.4001 × 10+0 3.1540 × 10+1

× 10+0 +0.0123 × 10+0 +0.0038 × 10+1

× 10−1 6.5540 × 10−1 8.1120 × 10+0

× 10−1 +0.0294 × 10−1 +0.0054 × 10+0

× 10−1 6.0619 × 10−2 8.9872 × 10−1

× 10−1 +0.0268 × 10−2 +0.0005 × 10−1

× 10−3 3.4066 × 10−3 8.3415 × 10−2

× 10−3 +0.0176 × 10−3 −0.0036 × 10−2

× 10−4 1.7068 × 10−4 8.0412 × 10−3

× 10−4 +0.0113 × 10−4 −0.0061 × 10−3

× 10−5 2.8201 × 10−6 3.8654 × 10−4

× 10−5 +0.0394 × 10−6 −0.0067 × 10−4

× 10−9 −2.6084 × 10−9 1.8308 × 10−6

× 10−9 −2.3681 × 10−9 +0.6181 × 10−6
Table 4
Same as in Table 3 in the NLO case. The benchmark values are reported in Table 3 of [18]

NLO, nf = 4, μ2
F

= μ2
R

= 104 GeV2

x xuv xdv xL− 2xL+ xs+
10−7 1.0620 × 10−4 6.2353 × 10−5 4.2455 × 10−6 1.3710 × 10+2 6.746

+0.0004 × 10−4 +0.0025 × 10−5 +0.0015 × 10−6 +0.0112 × 10+2 +0.055

10−6 5.4196 × 10−4 3.1730 × 10−4 1.9247 × 10−5 6.8896 × 10+1 3.359
+0.0019 × 10−4 +0.0011 × 10−4 +0.0006 × 10−5 +0.0500 × 10+1 +0.025

10−5 2.6878 × 10−3 1.5682 × 10−3 8.3598 × 10−5 3.2936 × 10+1 1.578
+0.0008 × 10−3 +0.0005 × 10−3 +0.0023 × 10−5 +0.0208 × 10+1 +0.010

10−4 1.2844 × 10−2 7.4576 × 10−3 3.4919 × 10−4 1.4824 × 10+1 6.874
+0.0003 × 10−2 +0.0018 × 10−3 +0.0008 × 10−4 +0.0078 × 10+1 +0.038

10−3 5.7937 × 10−2 3.3343 × 10−2 1.4164 × 10−3 6.1899 × 10+0 2.678
+0.0011 × 10−2 +0.0006 × 10−2 +0.0002 × 10−3 +0.0251 × 10+0 +0.012

10−2 2.3029 × 10−1 1.2930 × 10−1 5.3258 × 10−3 2.2587 × 10+0 8.451
+0.0003 × 10−1 +0.0002 × 10−1 +0.0007 × 10−3 +0.0060 × 10+0 +0.029

0.1 5.5456 × 10−1 2.7338 × 10−1 1.0012 × 10−2 3.9392 × 10−1 1.151
+0.0004 × 10−1 +0.0002 × 10−1 +0.0001 × 10−2 +0.0056 × 10−1 +0.002

0.3 3.5395 × 10−1 1.3158 × 10−1 3.0363 × 10−3 3.5884 × 10−2 9.221
+0.0002 × 10−1 0.0000 × 10−1 +0.0001 × 10−3 +0.0036 × 10−2 +0.018

0.5 1.2271 × 10−1 3.1968 × 10−2 3.8266 × 10−4 2.4149 × 10−3 5.853
0.0000 × 10−1 +0.0001 × 10−2 +0.0001 × 10−4 +0.0023 × 10−3 +0.011

0.7 2.0429 × 10−2 3.1474 × 10−3 1.3701 × 10−5 5.3703 × 10−5 1.243
0.0000 × 10−2 +0.0001 × 10−3 0.0000 × 10−5 +0.0081 × 10−5 +0.003

0.9 3.6097 × 10−4 1.8317 × 10−5 8.9176 × 10−9 1.6196 × 10−8 1.671
+0.0001 × 10−4 0.0000 × 10−5 −0.0054 × 10−9 −0.4724 × 10−8 −2.367
9
6

2
0

8
3

4
9

3
4

8
8

7
8

0
0

9
5

2
9

7
3
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+ xc+ xg

.9844 × 10+1 6.9127 × 10+1 1.0519 × 10+3

.4967 × 10+1 +0.4966 × 10+1 +0.0543 × 10+3

.5043 × 10+1 3.4474 × 10+1 5.1093 × 10+2

.1646 × 10+1 +0.1646 × 10+1 +0.1969 × 10+2

.6509 × 10+1 1.6057 × 10+1 2.2899 × 10+2

.0450 × 10+1 +0.0450 × 10+1 +0.0602 × 10+2

.1661 × 10+0 6.8085 × 10+0 9.2125 × 10+1

.0991 × 10+0 +0.0988 × 10+0 +0.1457 × 10+1

.7684 × 10+0 2.4913 × 10+0 3.1592 × 10+1

.0210 × 10+0 +0.0209 × 10+0 +0.0243 × 10+1

.6094 × 10−1 6.7224 × 10−1 8.1503 × 10+0

.0592 × 10−1 +0.0601 × 10−1 +0.0122 × 10+0

.1453 × 10−1 6.0520 × 10−2 8.9909 × 10−1

.0067 × 10−1 +0.0747 × 10−2 −0.0654 × 10−1

.8758 × 10−3 3.1421 × 10−3 8.3041 × 10−2

.1722 × 10−3 −0.1640 × 10−3 −0.1145 × 10−2

.8155 × 10−4 7.4120 × 10−5 7.9784 × 10−3

.9810 × 10−4 −0.9758 × 10−4 −0.1342 × 10−3

.1500 × 10−6 −1.5545 × 10−5 3.8226 × 10−4

.9084 × 10−5 −1.9075 × 10−5 −0.0722 × 10−4

.2776 × 10−7 −3.3190 × 10−7 1.9280 × 10−6

.3487 × 10−7 −3.3487 × 10−7 +0.7144 × 10−6
Table 5
Same as in Table 3 in the NNLO case. The benchmark values are reported in Table 14 of [19]

NNLO, nf = 4, μ2
F

= μ2
R

= 104 GeV2

x xuv xdv xL− 2xL+ xsv xs

10−7 1.4069 × 10−4 9.0435 × 10−5 5.5759 × 10−6 1.4184 × 10+2 1.9569 × 10−5 6
−0.1218 × 10−4 −0.1201 × 10−4 −0.1259 × 10−6 +0.0994 × 10+2 −1.1868 × 10−5 +0

10−6 6.5756 × 10−4 4.0826 × 10−4 2.4722 × 10−5 7.1794 × 10+1 5.8862 × 10−5 3
−0.3420 × 10−4 −0.3458 × 10−4 −0.0688 × 10−5 +0.3295 × 10+1 −3.5417 × 10−5 +0

10−5 3.0260 × 10−3 1.8199 × 10−3 1.0393 × 10−4 3.4373 × 10+1 1.4230 × 10−4 1
−0.0721 × 10−3 −0.0775 × 10−3 −0.0326 × 10−4 +0.0902 × 10+1 −0.8560 × 10−4 +0

10−4 1.3656 × 10−2 8.0052 × 10−3 4.1299 × 10−4 1.5403 × 10+1 2.2837 × 10−4 7
−0.0066 × 10−2 −0.0967 × 10−3 −0.1259 × 10−4 +0.0199 × 10+1 −1.3807 × 10−4 +0

10−3 5.9360 × 10−2 3.4135 × 10−2 1.5650 × 10−3 6.3657 × 10+0 8.9572 × 10−5 2
+0.0200 × 10−2 +0.0085 × 10−2 −0.0358 × 10−3 +0.0427 × 10+0 −0.5522 × 10−4 +0

10−2 2.3139 × 10−1 1.2958 × 10−1 5.5064 × 10−3 2.2868 × 10+0 −3.5702 × 10−4 8
+0.0061 × 10−1 +0.0039 × 10−1 −0.0624 × 10−3 +0.0116 × 10+0 +2.1611 × 10−4 +0

0.1 5.5125 × 10−1 2.7142 × 10−1 9.9834 × 10−3 3.9119 × 10−1 −1.9045 × 10−4 1
−0.0052 × 10−1 −0.0023 × 10−1 −0.0040 × 10−2 +0.0100 × 10−1 +1.1582 × 10−4 +0

0.3 3.5017 × 10−1 1.3005 × 10−1 3.0025 × 10−3 3.4975 × 10−2 −1.9830 × 10−5 8
−0.0054 × 10−1 −0.0020 × 10−1 −0.0073 × 10−3 −0.0383 × 10−2 +1.2061 × 10−5 −0

0.5 1.2099 × 10−1 3.1485 × 10−2 3.7667 × 10−4 2.1876 × 10−3 −1.6924 × 10−6 4
−0.0018 × 10−1 −0.0043 × 10−2 −0.0075 × 10−4 −0.1991 × 10−3 +1.0291 × 10−6 −0

0.7 2.0052 × 10−2 3.0849 × 10−3 1.3411 × 10−5 1.5984 × 10−5 −6.2854 × 10−8 −6
−0.0025 × 10−2 −0.0037 × 10−3 −0.0023 × 10−5 −3.8260 × 10−5 +0.3821 × 10−7 −1

0.9 3.5078 × 10−4 1.7767 × 10−5 8.6326 × 10−9 −6.4293 × 10−7 −9.1828×10−11 −3
−0.0033 × 10−4 −0.0016 × 10−5 −0.0184 × 10−9 −6.6986 × 10−7 +0.5579×10−10 −3
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for the sea asymmetry of the s quark, which is non-vanishing at NNLO. In this case we have a
sizeable relative discrepancy for any value of x (reported in the column xsv), but it is evident that
this asymmetry is quite small, especially if compared with the column xs+, whose entries are
several orders of magnitude larger. This means that xs and xs̄ should be comparable and their
difference therefore pretty small. We have to notice that xsv cannot be computed directly by a
single evolution equation. Indeed, it is computed by a difference between very close numbers, a
procedure that amplifies the relative error.

12. Conclusions

We have shown that logarithmic expansions identified in x-space and implemented in this
space carry the same information as the solution of evolution equations in Mellin space. This has
been obtained by the introduction of new and generalized expansions that we expect to be very
useful in order to establish benchmarks for the evolution of the pdf’s at the LHC. Our analysis
has been presented up to NNLO. We have also shown how exact expansions can be derived.
We have presented analytical proofs of the equivalence and clarified the role of previous similar
analysis which were quite limited in their reach. The numerical implementation of our results
will be illustrated in a forthcoming paper where various comparisons between our approach
and other approaches will be analized thoroughly. There are in fact several issues which are
still unclear in this area and concern the role of the NNLO effects in the evolution and in the
hard scatterings, the role of the theoretical errors in the determination of the pdf’s, whether they
dominate over the NNLO effects or not, and the impact of the choices of various truncations in the
determination of the numerical solution of the pdf’s, along the lines of our work. Similar analysis
can be performed by other methods, but we think that it is important, in the search for precise
determination of cross sections at the LHC, to state clearly which algorithm is implemented and
what accuracy is retained, with a particular attention to the issues connected to the resummation
of the perturbative expansion [21]. Our work, here, has been limited to a (fixed order) NNLO
analysis. We hope that our analysis has shown conclusively that x-space approaches have a very
solid base and provide a simple view on the structure of the solutions of the DGLAP equations,
valid to all orders. We have also shown a numerical comparison of our results against those
obtained using PEGASUS, for a specific setting. The overall agreement, as we have seen, is
very good down to very small x-values. We will return on this and other related points in future
work.
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Appendix A. Derivation of the recursion relations at NNLO

As an illustration we have included here a derivation of the recursion relations for the first
truncated ansatz of O(α2

s ) that appears at NNLO.
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Inserting the NNLO truncated ansatz for the solution into the DGLAP equation we get at the
left-hand side of the defining equation

∞∑
n=1

{
An(x)

n! nLn−1 β(αs)

αs

+ αs

Bn(x)

n! nLn−1 β(αs)

αs

+ α2
s

Cn(x)

n! nLn−1 β(αs)

αs

}

(A.1)+
∞∑

n=0

{
β(αs)

Bn(x)

n! Ln + 2αsβ(αs)
Cn(x)

n! Ln

}
.

Note that the first sum starts at n = 1, because the n = 0 term in (A.1) does not have a Q2

dependence. Sending n → n + 1 in the first sum, using the three-loop expansion of the beta
function (2) and neglecting all the terms of order α4

s or higher, the previous formula becomes

∞∑
n=0

{
An+1(x)

n! Ln

(
− β0

4π
αs − β1

16π2
α2

s − β2

64π3
α3

s

)

+ Bn+1(x)

n! Ln

(
− β0

4π
α2

s − β1

16π2
α3

s

)
+ Cn+1(x)

n! Ln

(
− β0

4π
α3

s

)

(A.2)+ Bn(x)

n! Ln

(
− β0

4π
α2

s − β1

16π2
α3

s

)
+ 2

Cn(x)

n! Ln

(
− β0

4π
α3

s

)}
.

At this point we use the NNLO expansion of the kernels. We get at the right-hand-side of the
defining equation

∞∑
n=0

Ln

n!
{

αs

2π

[
P (0) ⊗ An

]
(x) + α2

s

4π2

[
P (1) ⊗ An

]
(x)

+ α3
s

8π3

[
P (2) ⊗ An

]
(x) + α2

s

2π

[
P (0) ⊗ Bn

]
(x)

(A.3)+ α3
s

4π2

[
P (1) ⊗ Bn

]
(x) + α3

s

2π

[
P (0) ⊗ Cn

]
(x)

}
.

Equating (A.2) and (A.3) term by term and grouping the terms proportional respectively to αs ,
α2

s and α3
s we get the three desired recursion relations (62). Setting Q = Q0 in (59) we get

(A.4)f
(
x,Q2

0

) = A0(x) + αs

(
Q2

0

)
B0(x) + (

αs

(
Q2))2

C0(x).

We have seen that the initial conditions should be chosen as

(A.5)B0(x) = C0(x) = 0, f
(
x,Q2

0

) = A0(x)

in order to reproduce the moments of the truncated solution of the DGLAP equation.

Appendix B. NNLO singlet truncated solution

Putting all the projections of the coefficients 	Cn into the NNLO singlet ansatz we get

	f (N,αs) =
∞∑

n=0

Ln

n!
[ 	A++

n + 	A−−
n + αs

( 	B++
n + 	B−−

n + 	B−+
n + 	B+−

n

)
(B.1)+ α2

s

( 	C++
n + 	C−−

n + 	C−+
n + 	C+−

n

)]
,
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and exponentiating

	f (N,αs) = e+ 	A0

(
αs

α0

)r+
+ e− 	A0

(
as

α0

)r−
+ αs

{
e+R̂1e+

(
αs

α0

)r+

− e+R̂1e+
(

αs

α0

)(r+−1)

+ e−R̂1e−
(

αs

α0

)r−
− e−R̂1e−

(
αs

α0

)(r−−1)

+ 1

(r+ − r− − 1)

[
−e+R̂1e−

(
αs

α0

)r−
+ e+R̂1e−

(
αs

α0

)(r+−1)]

+ 1

(r− − r+ − 1)

[
−e−R̂1e+

(
αs

α0

)r+
+ e−R̂1e+

(
αs

α0

)(r−−1)]}
	A0

+ α2
s

{(
αs

α0

)r+[
1

2α2
s

(
e+R̂1e+R̂1e+(α0 − αs)

2 − e+R̂2e+
(
α2

0 − α2
s

))

+ αsα0
e+R̂1e−R̂1e+

α2
s ((r− − r+)2 − 1)

(
αs

α0

)r−−r+

+ e+R̂1e−R̂1e+
((r− − r+ − 1)α2

0 + (r+ − r− − 1)α2
s )

2α2
s ((r− − r+)2 − 1)

]}
	A0

+ α2
s

{(
αs

α0

)r−[
1

2α2
s

(
e−R̂1e−R̂1e−(α0 − αs)

2 − e−R̂2e−
(
α2

0 − α2
s

))

+ αsα0
e−R̂1e+R̂1e−

α2
s ((r− − r+)2 − 1)

(
αs

α0

)r+−r−

+ e−R̂1e+R̂1e−
((r+ − r− − 1)α2

0 + (r− − r+ − 1)α2
s )

2α2
s ((r− − r+)2 − 1)

]}
	A0

+ α2
s

{(
αs

α0

)r+[
e+R̂1e−R̂1e−α2

0

α2
s (1 + r− − r+)(2 + r− − r+)

+ (e+R̂1e+R̂1e− − e+R̂2e−)α2
0

α2
s (2 + r− − r+)

+ e+R̂1e+R̂1e−α0

αs(1 + r− − r+)

]

+
(

αs

α0

)r−[
e+R̂1e+R̂1e−

(1 + r− − r+)(2 + r− − r+)
+ (e+R̂2e− + e+R̂1e−R̂1e−)

(2 + r− − r+)

− e+R̂1e−R̂1e−α0

αs(1 + r− − r+)

]}
	A0 + α2

s

{(
αs

α0

)r−[
e−R̂1e+R̂1e+α2

0

(r− − r+ − 1)(r− − r+ − 2)α2
s

+ (e−R̂2e+ − e−R̂1e−R̂1e+)α2
0

(r− − r+ − 2)α2
s

+ e−R̂1e−R̂1e+α0

(r− − r+ − 1)αs

]

+
(

αs

α0

)r+[
e−R̂1e−R̂1e+

(r− − r+ − 1)(r− − r+ − 2)
− (e−R̂1e+R̂1e+ + e−R̂2e+)

(r− − r+ − 2)

(B.2)+ e−R̂1e+R̂1e+α0

(r− − r+ − 1)αs

]}
	A0.
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This expression is equivalent to that obtained from Eq. (195). Projecting over all the ± com-
ponents we can write

	q(N,αs)
++ =

(
αs

α0

)r+{
e+ + (αs − α0)e+R̂1e+

+ α2
s

1

2

[
e+R̂1e+R̂1e+ + e+R̂2e+ − e+R̂1e−R̂1e+

(r− − r+ − 1)

]

− αsα0

[
e+R̂1e+R̂1e+ + e+R̂1e−R̂1e+

(r+ − r− − 1)(r− − r+ − 1)

(
αs

α0

)r−−r+]

+ α2
0

[
1

2
e+R̂1e+R̂1e+ + e+R̂1e−R̂1e+

(r+ − r− − 1)(r− − r+ − 1)

(B.3)− 1

2
e+R̂2e+ + 1

2

e+R̂1e−R̂1e+
(r− − r+ − 1)

]}
	q(N,α0),

	q(N,αs)
−− =

(
αs

α0

)r−{
e− + (αs − α0)e−R̂1e−

+ α2
s

1

2

[
e−R̂1e−R̂1e− + e−R̂2e− − e−R̂1e+R̂1e−

(r+ − r− − 1)

]

− αsα0

[
e−R̂1e−R̂1e− + e−R̂1e+R̂1e−

(r− − r+ − 1)(r+ − r− − 1)

(
αs

α0

)r+−r−]

+ α2
0

[
1

2
e−R̂1e−R̂1e− + e−R̂1e+R̂1e−

(r− − r+ − 1)(r+ − r− − 1)

(B.4)− 1

2
e−R̂2e− + 1

2

e−R̂1e+R̂1e−
(r+ − r− − 1)

]}
	q(N,α0),

	q(N,αs)
+− =

{
−αs

e+R̂1e−
(r+ − r− − 1)

(
αs

α0

)r−
+ α0

e+R̂1e−
(r+ − r− − 1)

(
αs

α0

)r+

+ α2
s

(r+ − r− − 2)

[
−e+R̂1e−R̂1e− − e+R̂2e− + e+R̂1e+R̂1e−

(r+ − r− − 1)

](
αs

α0

)r−

− αsα0

[
− e+R̂1e+R̂1e−

(r+ − r− − 1)

(
αs

α0

)r+
− e+R̂1e−R̂1e−

(r+ − r− − 1)

(
αs

α0

)r−]

+ α2
0

(
αs

α0

)r+[(
− e+R̂1e+R̂1e−

(r+ − r− − 1)
− e+R̂1e−R̂1e−

(r+ − r− − 1)

)
−

(
− e+R̂1e−R̂1e−

(r+ − r− − 2)

(B.5)− e+R̂2e−
(r+ − r− − 2)

+ e+R̂1e+R̂1e−
(r+ − r− − 2)(r+ − r− − 1)

)]}
	q(N,α0),

	q(N,αs)
−+ =

{
−αs

e−R̂1e+
(r− − r+ − 1)

(
αs

α0

)r+
+ α0

e−R̂1e+
(r− − r+ − 1)

(
αs

α0

)r−

+ α2
s

(r− − r+ − 2)

[
−e−R̂1e+R̂1e+ − e−R̂2e+ + e−R̂1e−R̂1e+

(r− − r+ − 1)

](
αs

α0

)r+

− αsα0

[
− e−R̂1e−R̂1e+

(
αs

)r−
− e−R̂1e+R̂1e+

(
αs

)r+]

(r− − r+ − 1) α0 (r− − r+ − 1) α0
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+ α2
0

(
αs

α0

)r−[(
− e−R̂1e−R̂1e+

(r− − r+ − 1)
− e−R̂1e+R̂1e+

(r− − r+ − 1)

)
−

(
− e−R̂1e+R̂1e+

(r− − r+ − 2)

(B.6)− e−R̂2e+
(r− − r+ − 2)

+ e−R̂1e−R̂1e+
(r− − r+ − 2)(r− − r+ − 1)

)]}
	q(N,α0).

Using 	A0 = 	f (N,α0) = 	q(N,α0) we obtain

	q(N,αs)
++ =

∞∑
n=0

Ln

n!
[ 	A++

n + αs
	B++
n + α2

s
	C++
n

]
,

	q(N,αs)
−− =

∞∑
n=0

Ln

n!
[ 	A−−

n + αs
	B−−
n + α2

s
	C−−
n

]
,

	q(N,αs)
+− =

∞∑
n=0

Ln

n!
[
αs

	B+−
n + α2

s
	C+−
n

]
,

(B.7)	q(N,αs)
−+ =

∞∑
n=0

Ln

n!
[
αs

	B−+
n + α2

s
	C−+
n

]
.

For example we can check the first of the relations above, gives
∞∑

n=0

Ln

n!
[ 	A++

n + αs
	B++
n + α2

s
	C++
n

]

=
(

αs

α0

)r+{
e+ + (αs − α0)e+R̂1e+

} 	f (N,α0)

+
{(

αs

α0

)r+[
1

2

(
e+R̂1e+R̂1e+(α0 − αs)

2 − e+R̂2e+
(
α2

0 − α2
s

))

+ αsα0
e+R̂1e−R̂1e+
(r− − r+)2 − 1

(
αs

α0

)r−−r+

(B.8)+ e+R̂1e−R̂1e+
((r− − r+ − 1)α2

0 + (r+ − r− − 1)α2
s )

2((r− − r+)2 − 1)

]}
	f (N,α0).

Factorizing (αs/α0)
r+ and expanding the power of αs the previous expression becomes

	f (N,αs)
++ =

(
αs

α0

)r+
ba

{
e+ + (αs − α0)e+R̂1e+

+ 1

2
α2

s

[
e+R̂1e+R̂1e+ + e+R̂2e+ − e+R̂1e−R̂1e+

(r− − r+ − 1)

]

+ 1

2
α2

0

[
− e+R̂1e−R̂1e+

(r+ − r− − 1)
+ e+R̂1e+R̂1e+ − e+R̂2e+

]

− αsα0

[
e+R̂1e+R̂1e+

(B.9)+ e+R̂1e−R̂1e+
(r+ − r− − 1)(r− − r+ − 1)

(
αs

α0

)r−−r+]}
	f (N,α0)

which agrees with the left-hand side of Eq. (B.3).
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Appendix C. Calculation of �D++
n

An explicit calculation of the vector coefficient 	D++
n of the κ = 4 (4th truncated) solution of

the NNLO singlet equation has been done in this section. Since the expressions of the coefficients
	D+−

n , 	D−+
n and 	D−−

n have a structure similar to 	D++
n , we omit them and give only the explicit

form of this one

	D++
n = (−3 + r+)n

(
4b2R̂

++
1 − 32π2R̂++3

1 + 16b1πR̂++
2 − 5b2R̂

++
1 r−2

+ 40π2R̂++3
1 r−2 − 20b1πR̂++

2 r−2 + b2R̂
++
1 r−4 − 8π2R̂++3

1 r−4

+ 4b1πR̂++
2 r−4 + 96π2R̂++3

1

(−2 + r+
−3 + r+

)n

− 120π2R̂++3
1 r−2

(−2 + r+
−3 + r+

)n

+ 24π2R̂++3
1 r−4

(−2 + r+
−3 + r+

)n

− 96π2R̂++3
1

(−1 + r+
−3 + r+

)n

+ 120π2R̂++3
1 r−2

(−1 + r+
−3 + r+

)n

− 24π2R̂++3
1 r−4

(−1 + r+
−3 + r+

)n

+ 10b2R̂
++
1 r−r+ − 80π2R̂++3

1 r−r+ + 40b1πR̂++
2 r−r+ − 4b2R̂

++
1 r−3r+

+ 32π2R̂++3
1 r−3r+ − 16b1πR̂++

2 r−3r+ + 240π2R̂++3
1 r−

(−2 + r+
−3 + r+

)n

r+

− 96π2R̂++3
1 r−3

(−2 + r+
−3 + r+

)n

r+ − 240π2R̂++3
1 r−

(−1 + r+
−3 + r+

)n

r+

+ 96π2R̂++3
1 r−3

(−1 + r+
−3 + r+

)n

r+ − 5b2R̂
++
1 r+2 + 40π2R̂++3

1 r+2

− 20b1πR̂++
2 r+2 + 6b2R̂

++
1 r−2r+2 − 48π2R̂++3

1 r−2r+2 + 24b1πR̂++
2 r−2r+2

− 120π2R̂++3
1

(−2 + r+
−3 + r+

)n

r+2 + 144π2R̂++3
1 r−2

(−2 + r+
−3 + r+

)n

r+2

+ 120π2R̂++3
1

(−1 + r+
−3 + r+

)n

r+2 − 144π2R̂++3
1 r−2

(−1 + r+
−3 + r+

)n

r+2

− 4b2R̂
++
1 r−r+3 + 32π2R̂++3

1 r−r+3 − 16b1πR̂++
2 r−r+3

− 96π2R̂++3
1 r−

(−2 + r+
−3 + r+

)n

r+3 + 96π2R̂++3
1 r−

(−1 + r+
−3 + r+

)n

r+3

+ b2R̂
++
1 r+4 − 8π2R̂++3

1 r+4 + 4b1πR̂++
2 r+4 + 24π2R̂++3

1

(−2 + r+
−3 + r+

)n

r+4

− 24π2R̂++3
1

(−1 + r+
−3 + r+

)n

r+4 − 4b2R̂
++
1

(
r+

−3 + r+

)n

+ 32π2R̂++3
1

(
r+

−3 + r+

)n

− 16b1πR̂++
2

(
r+

−3 + r+

)n

+ 5b2R̂
++
1 r−2

(
r+

−3 + r+

)n

− 40π2R̂++3
1 r−2

(
r+

−3 + r+

)n

+ 20b1πR̂++
2 r−2

(
r+

)n

− b2R̂
++
1 r−4

(
r+

)n
−3 + r+ −3 + r+
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+ 8π2R̂++3
1 r−4

(
r+

−3 + r+

)n

− 4b1πR̂++
2 r−4

(
r+

−3 + r+

)n

− 10b2R̂
++
1 r−r+

(
r+

−3 + r+

)n

+ 80π2R̂++3
1 r−r+

(
r+

−3 + r+

)n

− 40b1πR̂++
2 r−r+

(
r+

−3 + r+

)n

+ 4b2R̂
++
1 r−3r+

(
r+

−3 + r+

)n

− 32π2R̂++3
1 r−3r+

(
r+

−3 + r+

)n

+ 16b1πR̂++
2 r−3r+

(
r+

−3 + r+

)n

+ 5b2R̂
++
1 r+2

(
r+

−3 + r+

)n

− 40π2R̂++3
1 r+2

(
r+

−3 + r+

)n

+ 20b1πR̂++
2 r+2

(
r+

−3 + r+

)n

− 6b2R̂
++
1 r−2r+2

(
r+

−3 + r+

)n

+ 48π2R̂++3
1 r−2r+2

(
r+

−3 + r+

)n

− 24b1πR̂++
2 r−2r+2

(
r+

−3 + r+

)n

+ 4b2R̂
++
1 r−r+3

(
r+

−3 + r+

)n

− 32π2R̂++3
1 r−r+3

(
r+

−3 + r+

)n

+ 16b1πR̂++
2 r−r+3

(
r+

−3 + r+

)n

− b2R̂
++
1 r+4

(
r+

−3 + r+

)n

+ 8π2R̂++3
1 r+4

(
r+

−3 + r+

)n

− 4b1πR̂++
2 r+4

(
r+

−3 + r+

)n

+ 16π2(−2 + r− + r−2 − r+ − 2r−r+ + r+2)(−2 + r− + 3

(−2 + r−
−3 + r+

)n

−
(

r+
−3 + r+

)n

− r−
(

r+
−3 + r+

)n

+ r+
(

−1 +
(

r+
−3 + r+

)n))
R̂+−

1 R̂−+
2

− 8π2
(

−2 + 3

(−2 + r+
−3 + r+

)n

−
(

r+
−3 + r+

)n)(
4 + r−4 − 4r−3r+ − 5r+2 + r+4

+ r−2(−5 + 6r+2) + r−
(
10r+ − 4r+3))R̂++

1 R̂++
2 + 32π2R̂+−

2 R̂−+
1

− 16π2r−R̂+−
2 R̂−+

1 − 32π2r−2R̂+−
2 R̂−+

1 + 16π2r−3R̂+−
2 R̂−+

1

− 96π2
(−1 + r−

−3 + r+

)n

R̂+−
2 R̂−+

1 − 48π2r−
(−1 + r−

−3 + r+

)n

R̂+−
2 R̂−+

1

+ 48π2r−2
(−1 + r−

−3 + r+

)n

R̂+−
2 R̂−+

1 + 16π2r+R̂+−
2 R̂−+

1 + 64π2r−r+R̂+−
2 R̂−+

1

− 48π2r−2r+R̂+−
2 R̂−+

1 + 48π2
(−1 + r−

−3 + r+

)n

r+R̂+−
2 R̂−+

1

− 96π2r−
(−1 + r−

−3 + r+

)n

r+R̂+−
2 R̂−+

1 − 32π2r+2R̂+−
2 R̂−+

1

+ 48π2r−r+2R̂+−
2 R̂−+

1 + 48π2
(−1 + r−

)n

r+2tR̂+−
2 R̂−+

1
−3 + r+
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− 16π2r+3R̂+−
2 R̂−+

1 + 64π2
(

r+
−3 + r+

)n

R̂+−
2 R̂−+

1

+ 64π2r−
(

r+
−3 + r+

)n

R̂+−
2 R̂−+

1 − 16π2r−2
(

r+
−3 + r+

)n

R̂+−
2 R̂−+

1

− 16π2r−3
(

r+
−3 + r+

)n

R̂+−
2 R̂−+

1 − 64π2r+
(

r+
−3 + r+

)n

R̂+−
2 R̂−+

1

+ 32π2r−r+
(

r+
−3 + r+

)n

R̂+−
2 R̂−+

1 + 48π2r−2r+
(

r+
−3 + r+

)n

R̂+−
2 R̂−+

1

− 16π2r+2
(

r+
−3 + r+

)n

R̂+−
2 R̂−+

1 − 48π2r−r+2
(

r+
−3 + r+

)n

R̂+−
2 R̂−+

1

+ 16π2r+3
(

r+
−3 + r+

)n

R̂+−
2 R̂−+

1 + 32π2R̂++
2 R̂++

1 − 40π2r−2R̂++
2 R̂++

1

+ 8π2r−4R̂++
2 R̂++

1 − 96π2
(−1 + r+

−3 + r+

)n

R̂++
2 R̂++

1

+ 120π2r−2
(−1 + r+

−3 + r+

)n

R̂++
2 R̂++

1 − 24π2r−4
(−1 + r+

−3 + r+

)n

R̂++
2 R̂++

1

+ 80π2r−r+R̂++
2 R̂++

1 − 32π2r−3r+R̂++
2 R̂++

1

− 240π2r−
(−1 + r+

−3 + r+

)n

r+R̂++
2 R̂++

1 + 96π2r−3
(−1 + r+

−3 + r+

)n

r+R̂++
2 R̂++

1

− 40π2r+2R̂++
2 R̂++

1 + 48π2r−2r+2R̂++
2 R̂++

1

+ 120π2
(−1 + r+

−3 + r+

)n

r+2R̂++
2 R̂++

1 − 144π2r−2
(−1 + r+

−3 + r+

)n

r+2R̂++
2 R̂++

1

− 32π2r−r+3R̂++
2 R̂++

1 + 96π2r−
(−1 + r+

−3 + r+

)n

r+3R̂++
2 R̂++

1

+ 8π2r+4R̂++
2 R̂++

1 − 24π2
(−1 + r+

−3 + r+

)n

r+4R̂++
2 R̂++

1

+ 64π2
(

r+
−3 + r+

)n

R̂++
2 R̂++

1 − 80π2r−2
(

r+
−3 + r+

)n

R̂++
2 R̂++

1

+ 16π2r−4
(

r+
−3 + r+

)n

R̂++
2 R̂++

1 + 160π2r−r+
(

r+
−3 + r+

)n

R̂++
2 R̂++

1

− 64π2r−3r+
(

r+
−3 + r+

)n

R̂++
2 R̂++

1 − 80π2r+2
(

r+
−3 + r+

)n

R̂++
2 R̂++

1

+ 96π2r−2r+2
(

r+
−3 + r+

)n

R̂++
2 R̂++

1 − 64π2r−r+3
(

r+
−3 + r+

)n

R̂++
2 R̂++

1

+ 16π2r+4
(

r+
−3 + r+

)n

R̂++
2 R̂++

1 − 32π2R̂+−
1 R̂−−

1 R̂−+
1

+ 48π2r−R̂+−
1 R̂−−

1 R̂−+
1 − 16π2r−2R̂+−

1 R̂−−
1 R̂−+

1

+ 96π2
(−2 + r−

)n

R̂+−
1 R̂−−

1 R̂−+
1 − 48π2r−

(−2 + r−
)n

R̂+−
1 R̂−−

1 R̂−+
1
−3 + r+ −3 + r+
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− 48π2r−2
(−2 + r−

−3 + r+

)n

R̂+−
1 R̂−−

1 R̂−+
1 − 96π2

(−1 + r−
−3 + r+

)n

R̂+−
1 R̂−−

1 R̂−+
1

− 48π2r−
(−1 + r−

−3 + r+

)n

R̂+−
1 R̂−−

1 R̂−+
1 + 48π2r−2

(−1 + r−
−3 + r+

)n

R̂+−
1 R̂−−

1 R̂−+
1

− 48π2r+R̂+−
1 R̂−−

1 R̂−+
1 − 32π2r−r+R̂+−

1 R̂−−
1 R̂−+

1

+ 48π2
(−2 + r−

−3 + r+

)n

r+R̂+−
1 R̂−−

1 R̂−+
1 + 96π2r−

(−2 + r−
−3 + r+

)n

r+R̂+−
1 R̂−−

1 R̂−+
1

+ 48π2
(−1 + r−

−3 + r+

)n

r+R̂+−
1 R̂−−

1 R̂−+
1 − 96π2r−

(−1 + r−
−3 + r+

)n

r+R̂+−
1 R̂−−

1 R̂−+
1

− 16π2r+2R̂+−
1 R̂−−

1 R̂−+
1 − 48π2

(−2 + r−
−3 + r+

)n

r2+R̂+−
1 R̂−−

1 R̂−+
1

+ 48π2
(−1 + r−

−3 + r+

)n

r+2R̂+−
1 R̂−−

1 R̂−+
1 + 32π2

(
r+

−3 + r+

)n

R̂+−
1 R̂−−

1 R̂−+
1

+ 48π2r−
(

r+
−3 + r+

)n

R̂+−
1 R̂−−

1 R̂−+
1 + 16π2r−2

(
r+

−3 + r+

)n

R̂+−
1 R̂−−

1 R̂−+
1

− 48π2r+
(

r+
−3 + r+

)n

R̂+−
1 R̂−−

1 R̂−+
1 − 32π2r−r+

(
r+

−3 + r+

)n

R̂+−
1 R̂−−

1 R̂−+
1

+ 16π2r+2
(

r+
−3 + r+

)n

R̂+−
1 R̂−−

1 R̂−+
1 − 32π2R̂+−

1 R̂−+
1 R̂++

1

+ 32π2r−R̂+−
1 R̂−+

1 R̂++
1 + 8π2r−2R̂+−

1 R̂−+
1 R̂++

1 − 8π2r−3R̂+−
1 R̂−+

1 R̂++
1

+ 96π2
(−2 + r−

−3 + r+

)n

R̂+−
1 R̂−+

1 R̂++
1 + 48π2r−

(−2 + r−
−3 + r+

)n

R̂+−
1 R̂−+

1 R̂++
1

− 96π2
(−1 + r+

−3 + r+

)n

R̂+−
1 R̂−+

1 R̂++
1 − 96π2r−

(−1 + r+
−3 + r+

)n

R̂+−
1 R̂−+

1 R̂++
1

+ 24π2r−2
(−1 + r+

−3 + r+

)n

R̂+−
1 R̂−+

1 R̂++
1 + 24π2r−3

(−1 + r+
−3 + r+

)n

R̂+−
1 R̂−+

1 R̂++
1

− 32π2r+R̂+−
1 R̂−+

1 R̂++
1 − 16π2r−r+R̂+−

1 R̂−+
1 R̂++

1

+ 24π2r−2r+R̂+−
1 R̂−+

1 R̂++
1 − 48π2

(−2 + r−
−3 + r+

)n

r+R̂+−
1 R̂−+

1 R̂++
1

+ 96π2
(−1 + r+

−3 + r+

)n

r+R̂+−
1 R̂−+

1 R̂++
1 − 48π2r−

(−1 + r+
−3 + r+

)n

r+R̂+−
1 R̂−+

1 R̂++
1

− 72π2r−2
(−1 + r+

−3 + r+

)n

r+R̂+−
1 R̂−+

1 R̂++
1 + 8π2r+2R̂+−

1 R̂−+
1 R̂++

1

− 24π2r−r+2R̂+−
1 R̂−+

1 R̂++
1 + 24π2

(−1 + r+
−3 + r+

)n

r2+R̂+−
1 R̂−+

1 R̂++
1

+ 72π2r−
(−1 + r+

−3 + r+

)n

r+2R̂+−
1 R̂−+

1 R̂++
1 + 8π2r+3R̂+−

1 R̂−+
1 R̂++

1

− 24π2
(−1 + r+

)n

r+3R̂+−
1 R̂−+

1 R̂++
1 + 32π2

(
r+

)n

R̂+−
1 R̂−+

1 R̂++
1
−3 + r+ −3 + r+
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+ 16π2r−
(

r+
−3 + r+

)n

R̂+−
1 R̂−+

1 R̂++
1 − 32π2r−2

(
r+

−3 + r+

)n

R̂+−
1 R̂−+

1 R̂++
1

− 16π2r−3
(

r+
−3 + r+

)n

R̂+−
1 R̂−+

1 R̂++
1 − 16π2r+

(
r+

−3 + r+

)n

R̂+−
1 R̂−+

1 R̂++
1

+ 64π2r−r+
(

r+
−3 + r+

)n

R̂+−
1 R̂−+

1 R̂++
1

+ 48π2r−2r+
(

r+
−3 + r+

)n

R̂+−
1 R̂−+

1 R̂++
1

− 32π2r+2
(

r+
−3 + r+

)n

R̂+−
1 R̂−+

1 R̂++
1

− 48π2r−r+2
(

r+
−3 + r+

)n

R̂+−
1 R̂−+

1 R̂++
1

+ 16π2r+3
(

r+
−3 + r+

)n

R̂+−
1 R̂−+

1 R̂++
1 − 32π2R̂++

1 R̂+−
1 R̂−+

1

+ 16π2r−R̂++
1 R̂+−

1 R̂−+
1 + 32π2r−2R̂++

1 R̂+−
1 R̂−+

1 − 16π2r−3R̂++
1 R̂+−

1 R̂−+
1

− 96π2
(−1 + r−

−3 + r+

)n

R̂++
1 R̂+−

1 R̂−+
1 + 48π2r−

(−1 + r−
−3 + r+

)n

R̂++
1 R̂+−

1 R̂−+
1

+ 96π2
(−2 + r+

−3 + r+

)n

R̂++
1 R̂+−

1 R̂−+
1 − 96π2r−

(−2 + r+
−3 + r+

)n

R̂++
1 R̂+−

1 R̂−+
1

− 24π2r−2
(−2 + r+

−3 + r+

)n

R̂++
1 R̂+−

1 R̂−+
1 + 24π2r−3

(−2 + r+
−3 + r+

)n

R̂++
1 R̂+−

1 R̂−+
1

− 16π2r+R̂++
1 R̂+−

1 R̂−+
1 − 64π2r−r+R̂++

1 R̂+−
1 R̂−+

1

+ 48π2r−2r+R̂++
1 R̂+−

1 R̂−+
1 − 48π2

(−1 + r−
−3 + r+

)n

r+R̂++
1 R̂+−

1 R̂−+
1

+ 96π2
(−2 + r+

−3 + r+

)n

r+R̂++
1 R̂+−

1 R̂−+
1 + 48π2r−

(−2 + r+
−3 + r+

)n

r+R̂++
1 R̂+−

1 R̂−+
1

− 72π2r−2
(−2 + r+

−3 + r+

)n

r+R̂++
1 R̂+−

1 R̂−+
1 + 32π2r+2R̂++

1 R̂+−
1 R̂−+

1

− 48π2r−r+2R̂++
1 R̂+−

1 R̂−+
1 − 24π2

(−2 + r+
−3 + r+

)n

r+2R̂++
1 R̂+−

1 R̂−+
1

+ 72π2r−
(−2 + r+

−3 + r+

)n

r+2R̂++
1 R̂+−

1 R̂−+
1 + 16π2r+3R̂++

1 R̂+−
1 R̂−+

1

− 24π2
(−2 + r+

−3 + r+

)n

r+3R̂++
1 R̂+−

1 R̂−+
1 + 32π2

(
r+

−3 + r+

)n

R̂++
1 R̂+−

1 R̂−+
1

+ 32π2r−
(

r+
−3 + r+

)n

R̂++
1 R̂+−

1 R̂−+
1 − 8π2r−2

(
r+

−3 + r+

)n

R̂++
1 R̂+−

1 R̂−+
1

− 8π2r−3
(

r+
)n

R̂++
1 R̂+−

1 R̂−+
1 − 32π2r+

(
r+

)n

R̂++
1 R̂+−

1 R̂−+
1
−3 + r+ −3 + r+
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+ 16π2r−r+
(

r+
−3 + r+

)n

R̂++
1 R̂+−

1 R̂−+
1 24π2r−2r+

(
r+

−3 + r+

)n

R̂++
1 R̂+−

1 R̂−+
1

− 8π2r+2
(

r+
−3 + r+

)n

R̂++
1 R̂+−

1 R̂−+
1 − 24π2r−r+2

(
r+

−3 + r+

)n

R̂++
1 R̂+−

1 R̂−+
1

+ 8π2r+3
(

r+
−3 + r+

)n

R̂++
1 R̂+−

1 R̂−+
1

)
	A0

[
48π2(4 + r−4 − 4r−3r+ − 5r+2

(C.1)+ r+4 + r−2(−5 + 6r+2) + r−
(
10r+ − 4r+3))]−1

.
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