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Leading twist amplitudes for exclusive neutrino interactions in the deeply virtual limit
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Neutrino scattering on nucleons in the regime of deeply virtual kinematics is studied both in the charged
and the neutral electroweak sectors using a formalism developed by Blümlein, Robaschik, Geyer, and
collaborators for the analysis of the virtual Compton amplitude in the generalized Bjorken region. We
discuss the structure of the leading twist amplitudes of the process.
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I. INTRODUCTION AND MOTIVATIONS

Exclusive processes mediated by the weak force are an
area of investigation which may gather wide interest in the
forthcoming years due to the various experimental pro-
posals to detect neutrino oscillations at intermediate energy
using neutrino factories and superbeams [1]. These pro-
posals require a study of the neutrino-nucleon interaction
over a wide range of energy starting from the elastic/
quasielastic domain up to the deep inelastic scattering
(DIS) region. However, the discussion of the neutrino-
nucleon interaction has, so far, been confined either to
the DIS region or to the form factor/nucleon resonance
region, while the intermediate energy region, at this time,
remains unexplored also theoretically. From our viewpoint,
the presence of such a gap in our knowledge well justifies
any attempt to improve the current situation.

Together with Amore, we have pointed out [2] that
exclusive processes of deeply virtual Compton scattering
(DVCS) type could be relevant also in the theoretical study
of the exclusive neutrino/nucleon interaction. Thanks to
the presence of an on-shell photon emitted in the final state,
this particle could be tagged together with the recoiling
nucleon in a large underground detector in order to trigger
on the process and exclude contamination from other back-
grounds. A simple variant of this process, where the initial
particle is a generic weakly interacting one, can probably
be used to set exclusion limits on the mass of light dark
matter, as suggested by various cosmological models [3]
(see also [4]), in a suitable experimental environment.

With these motivations, a study of the �N ! �N� pro-
cess has been performed in [2]. The process is mediated by
a neutral current and is particularly clean since there is no
Bethe-Heitler contribution. It has been termed deeply vir-
tual neutrino scattering or DVNS and requires in its par-
tonic description the electroweak analogue of the
‘‘nonforward parton distributions,’’ previously introduced
in the study of DVCS.

In this work we extend that analysis and provide, in part,
a generalization of those results to the charged current
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case. Our treatment here is purposely short. The method
that we use for the study of the charged processes is based
on the formalism of the nonlocal operator product expan-
sion and the technique of the harmonic polynomials, which
allows to classify the various contributions to the interac-
tion in terms of operators of a definite geometrical twist
[5]. We present here a classification of the leading twist
amplitudes of the charged process while a detailed phe-
nomenological analysis useful for future experimental
searches will be given elsewhere.

II. THE GENERALIZED BJORKEN REGION
AND DVCS

Figure 1 illustrates the process that we are going to
study, where a neutrino of momentum l scatters off a
nucleon of momentum P1 via a neutral or a charged current
interaction; from the final state a photon and a nucleon
emerge, of momenta q2 and P2, respectively, while the
momenta of the final lepton is l0. We recall that Compton
scattering has been investigated in the near past by several
groups, since the original works [6–8]. A previous study of
the virtual Compton process in the generalized Bjorken
region, of which DVCS is just a particular case, can be
found in [9]. From the hadronic side, the description of the
interaction proceeds via new constructs of the parton
model termed generalized parton distributions (GPD) or
also nonforward parton distributions. The kinematics for
the study of GPD’s is characterized by a deep virtuality of
the exchanged photon in the initial interaction (�� p!
�� p� �) (Q2 � 2 GeV2), with the final state photon
kept on-shell; large energy of the hadronic system (W2 >
6 GeV2) above the resonance domain and small momen-
tum transfers jtj< 1 GeV2. In the electroweak case, pho-
ton emission can occur from the final state electron (in the
case of charged current interactions) and provides an addi-
tional contribution to the virtual Compton amplitude. We
choose symmetric defining momenta and use as indepen-
dent variables the average of the hadron and gauge bosons
momenta

P1;2 � �P�
�

2
q1;2 � q�

�

2
; (1)

with � � P2 	 P1 being the momentum transfer. Clearly,
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FIG. 1. Leading hand-bag diagrams for the process.
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�P 
 � � 0; �P2 � M2 	
�2

4
(2)

and M is the nucleon mass. There are two scaling variables
which are identified in the process, since three scalar
products can grow large in the generalized Bjorken limit:
q2, � 
 q, �P 
 q.

The momentum transfer �2 is a small parameter in the
process. Momentum asymmetries between the initial and
the final state nucleon are measured by two scaling pa-
rameters, � and �, related to ratios of the former invariants,

� � 	
q2

2 �P 
 q
� �

� 
 q

2 �P 
 q
; (3)

where � is a variable of Bjorken type, expressed in terms of
average momenta rather than nucleon and gauge bosons
momenta. The standard Bjorken variable x � 	q21=�2P1 

q1� is trivially related to � in the t � 0 limit and in the
DVCS case � � 	�.

Notice also that the parameter � measures the ratio
between the plus component of the momentum transfer
and the average momentum.
�, therefore, parametrizes the large component of the

momentum transfer �, which can be generically described
as

� � 	2� �P	 �?; (4)

where all the components of �? are O�
���������
j�2j

p
�.
III. BETHE-HEITLER CONTRIBUTIONS

Prior to embarking on the discussion of the virtual
Compton contribution, we quote the result for the Bethe-
Heitler (BH) subprocess, which makes its first appearance
in the charged current case, since a real photon can be
radiated off the leg of the final state lepton. The amplitude
of the BH contribution for a W� exchange is as follows:
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TW
�

BH � 	jej
g

2
���
2

p
g���
2

p u�l0�
�
��

�l6 	 �6 �

�l	��2 � i�
���1	 �5�

�

� u�l�
D���q1�

�2 	M2
W � i�

����q2�U�P2�

�

�
�Fu1 ��

2� 	 Fd1 ��
2���� � �Fu2 ��

2�

	 Fd2 ��
2��i

 �!�!

2M

�
U�P1�; (5)

where � is the polarization vector of the photon and

TW
	

BH � jej
g

2
���
2

p
g���
2

p v�l�
�
��

�l6 	�6 �

�l	��2 � i�
���1	 �5�

�

� v�l0�
D���q1�

�2 	M2
W � i�

����q2�U�P2�

�

�
�Fu1 ��

2� 	 Fd1 ��
2���� � �Fu2 ��

2�

	 Fd2 ��
2��i

 �!�!

2M

�
U�P1�; (6)

for the W	 case, with D���q1�=��
2 	M2

W � i�� being the
propagator of the W’s and F1;2 the usual nucleon form
factors (see also [2]).
IV. STRUCTURE OF THE COMPTON AMPLITUDE
FOR CHARGED AND NEUTRAL CURRENTS

Moving to the Compton amplitude for charged and
neutral currents, this can be expressed in terms of the
correlator of currents,

T�� � i
Z
d4xeiqxhP2jT�J

�
� �x=2�J

W�;Z0
� �	x=2��jP1i; (7)

where for the charged and neutral currents we have the
following expressions:
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J�Z0�	x=2� �
g

2 cos%W
 u�	x=2��

��gZuV � gZuA�
5� u�	x=2� �  d�	x=2��

��gZdV � gZdA�
5� d�	x=2�;

J�W
�
�	x=2� �

g

2
���
2

p  u�	x=2����1	 �5�U�
ud d�	x=2�; J�W

	
�	x=2� �

g

2
���
2

p  d�	x=2����1	 �5�Udu u�	x=2�;

J�;��x=2� �  d�x=2��
�
�
	
1

3
e
�
 d�x=2� �  u�x=2��

�
�
2

3
e
�
 u�x=2�: (8)
Here we have chosen a simple representation of the flavor
mixing matrix U�

ud � Uud � Udu � cos%C, where %C is
the Cabibbo angle.

The coefficients gZV and gZA are

gZuV � 1
2 �

4
3sin

2%W gZuA � 	1
2

gZdV � 	1
2 �

2
3sin

2%W gZdA � 1
2;

(9)

and

gu �
2
3; gd �

1
3 (10)

are the absolute values of the charges of the up and down
quarks in units of the electron charge. A short computation
gives

hP2jT�J
�
� �x=2�J

Z0
� �	x=2��jP1i

� hP2j u�x=2�gu��S�x����gZuV � gZuA�
5� u�	x=2�

	  d�x=2�gd��S�x����gZdV � gZdA�
5� d�	x=2�

�  u�x=2����g
Z
uV � gZuA�

5�S�	x�gu�� u�x=2�

	  d�x=2����gZdV � gZdA�
5�S�	x�gd�� d�x=2�jP1i;

(11)
hP2jT�J
�
� �x=2�JW

�

� �	x=2��jP1i

� hP2j u�	x=2����1	 �5�UudS�	x����	gd�

�  d�x=2� �  u�x=2����gu�S�x����1	 �5�

�Uud d�	x=2�jP1i; (12)
hP2jT�J
�
� �x=2�JW

	

� �	x=2��jP1i

� hP2j 	  d�x=2�gd��S�x����1	 �5�Udu u�	x=2�

�  d�	x=2����1	 �5�S�	x�Udu u�x=2�jP1i;

(13)
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where all the factors g=2
���
2

p
and g=2 cos%W , for simplicity,

have been suppressed and we have defined

Su�x� � Sd�x� �
ix6

2,2�x2 	 i��2
: (14)
Using the following identities,

���!�� � S�!�-�- � i��!�-�5�-;

���!���5 � S�!�-�-�5 	 i��!�-�-;

S�!�- � �g�!g�- � g�!g�- 	 g��g!-�;

(15)
we rewrite the correlators as

TZ0
�� � i

Z
d4x

eiqxx!

2,2�x2 	 i��2
hP2j�guguV�S�!�-O

-
u

	 i��!�-O
5-
u � 	 guguA�S�!�- ~O5-

u 	 i��!�- ~O-
u �

	 gdgdV�S�!�-O
-
d 	 i��!�-O

5-
d �

� gdgdA�S�!�- ~O5-
d 	 i��!�- ~O-

d ��jP1i; (16)
TW
�

�� � i
Z
d4x

eiqxx!Uud

2,2�x2 	 i��2
hP2j�iS�!�-� ~O

-
ud �O5-

ud �

� ��!�-�O
-
ud �

~O5-
ud ��jP1i; (17)
TW
	

�� � i
Z
d4x

eiqxx!Udu

2,2�x2 	 i��2
hP2j�	iS�!�-� ~O

-
du �O5-

du �

	 ��!�-�O
-
du �

~O5-
du ��jP1i: (18)
We have suppressed the x dependence of the operators in
the former equations. The relevant operators are denoted
by
-3
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~O-
a �x=2;	x=2� �  a�x=2��

- a�	x=2� �  a�	x=2��
- a�x=2�;

~O5-
a �x=2;	x=2� �  a�x=2��

5�- a�	x=2� 	  a�	x=2��
5�- a�x=2�;

O-
a �x=2;	x=2� �  a�x=2��- a�	x=2� 	  a�	x=2��- a�x=2�;

O5-
a �x=2;	x=2� �  a�x=2��5�- a�	x=2� �  a�	x=2��5�- a�x=2�;

(19)

~O-
ud�x=2;	x=2� � gu u�x=2��- d�	x=2� � gd u�	x=2��- d�x=2�;

~O5-
ud �x=2;	x=2� � gu u�x=2��

5�- d�	x=2� 	 gd u�	x=2��
5�- d�x=2�;

O-
ud�x=2;	x=2� � gu u�x=2��- d�	x=2� 	 gd u�	x=2��- d�x=2�;

O5-
ud �x=2;	x=2� � gu u�x=2��5�- d�	x=2� � gd u�	x=2��5�- d�x=2�;

(20)
and similar ones with u$ d interchanged.
We use isospin symmetry to relate flavor nondiagonal

operators �Ôff0 � to flavor diagonal ones �Ôff�:

hpjÔud�x�jni � hpjÔud�x�1	jni � hpj�Ôud�x�; 1	�jni

� hpjÔuu�x�jpi 	 hpjÔdd�x�jpi;

hpjÔud�x�jni � hnjÔdd�x�jni 	 hnjÔuu�x�jni;

hnjÔdu�x�jpi � hpjÔuu�x�jpi 	 hpjÔdd�x�jpi;

hnjÔdu�x�jpi � hnjÔdd�x�jni 	 hnjÔuu�x�jni;

(21)

where
1� � 1x � 1y (22)

are isospin raising/lowering operators expressed in terms
of Pauli matrices.

V. PARAMETRIZATION OF NONFORWARD
MATRIX ELEMENTS

The extraction of the leading twist contribution to the
hand-bag diagram is performed using the geometrical twist
expansion, as developed in [10–12], adapted to our case.
We set the twist-2 expansions on the light cone (with x2 �
0) and we choose the light-cone gauge to remove the gauge
link,

hP2j a�	kx��� a�kx�jP1i
twist-2

�
Z
Dze	ik�x
Pz�Fa����z1; z2; Pi 
 Pjx2; Pi 
 Pj�

�U�P2���� 	 ikP�z x6 �U�P1�

�
Z
Dze	ik�x
Pz�Ga����z1; z2; Pi 
 Pjx

2; Pi 
 Pj�

�U�P2�

�
�i �!�!�

M
	 ikP�z

�i !-x!�-�

M

�
U�P1�;

(23)
with 0< k< 1 a scalar parameter, with

Pz � P1z1 � P2z2; (24)

and
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hP2j a�	kx��
5�� a�kx�jP1i

twist-2

�
Z
Dze	ik�x
Pz�F5a����z1; z2; Pi 
 Pjx

2; Pi 
 Pj�

�U�P2���5�� 	 ikP�z �5x6 �U�P1�

�
Z
Dze	ik�x
Pz�G5a����z1; z2; Pi 
 Pjx2; Pi 
 Pj�

�U�P2��
5

�
�i �!�!�

M
	 ikP�z

�i !-x!�-�

M

�
U�P1�:

(25)

The index ��� in the expressions of the distribution func-
tions F;G has been introduced in order to distinguish them
from the parametrization given in [9,10], which is related
to linear combinations of electromagnetic correlators. In
the expressions above a is a flavor index and we have
introduced both a vector (Dirac) and a Pauli-type form
factor contribution with nucleon wave functions [U�P�].
The product Pi 
 Pj denotes all the possible products of the
two momenta P1 and P2, and the measure of integration is
defined by [10]

Dz � 1
2dz1dz2%�1	 z1�%�1� z1�%�1	 z2�%�1� z2�: (26)

In our parametrization of the correlators, we are omitting
the so-called ‘‘trace terms’’ (see Ref. [9]), since these terms
vanish on-shell. In order to arrive at a partonic interpreta-
tion, one introduces variables z� and z	 conjugated to 2 �P
and � and defined as

z� � 1=2�z1 � z2�; z	 � 1=2�z2 	 z1�;

Dz � dz�dz	%�1� z� � z	�%�1� z� 	 z	�

� %�1	 z� � z	�%�1	 z� 	 z	�:

(27)

In terms of these new variables Pz � 2 �Pz� � �z	, which
will be used below.

At this stage, we can proceed to calculate the hadronic
tensor by performing the x-space integrations. This will be
illustrated in the case of the W� current, the others being
similar. We define
-4
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Z
dx4

eiqxx!

2,2�x2 	 i��2
hP2jS�!�- ~Oa-jP1i � ~Sa��;

Z
dx4

eiqxx!

2,2�x2 	 i��2
hP2jS�!�-O

5a-jP1i � S5a��;

Z
dx4

eiqxx!

2,2�x2 	 i��2
hP2j��!�-O

a-jP1i � "a��;

Z
dx4

eiqxx!

2,2�x2 	 i��2
hP2j��!�- ~O5a-jP1i � ~"5a��;

(28)
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and introduce the variables

Q!
1 �z� � q! � 1

2P
!
z ; Q!

2 �z� � q! 	 1
2P

!
z ; (29)

where �z� is now meant to denote both variables �z�; z	�.
The presence of a new variable Q2, compared to [10], is
related to the fact that we are parametrizing each single
bilinear covariant rather than linear combinations of them,
as in the electromagnetic case.

After some rearrangements we get
~Sa�� � gu
Z
Dz

Fa����z�

�Q2
1 � i��

�
�	g��q6 � q��� � q���� � �Pz��� � Pz���� 	

q6

�Q2
1 � i��

�Pz�Pz� � Pz�q� � Pz�q�

	 g���Pz 
 q��
	
� gd

Z
Dz

Fa����z�

�Q2
2 � i��

�
�	g��q6 � q��� � q���� 	 �Pz��� � Pz����

�
q6

�Q2
2 � i��

�	Pz�Pz� � Pz�q� � Pz�q� 	 g���Pz 
 q��
	
� gu

Z
Dz

Ga����z�

�Q2
1 � i��

�

��
	g��

i !-q!�-

M
� q�

i �-�-

M
� q�

i �-�-

M

�
�

�
Pz�

i �-�-

M
� Pz�

i �-�-

M

�

	
i !-q!�-

M�Q2
1 � i��

�Pz�Pz� � Pz�q� � Pz�q� 	 g���Pz 
 q��
	
� gd

Z
Dz

Ga����z�

�Q2
2 � i��

�

��
	g��

i !-q!�-

M
� q�

i �-�-

M
� q�

i �-�-

M

�
	

�
Pz�

i �-�-

M
� Pz�

i �-�-

M

�

�
i !-q!�-

M�Q2
2 � i��

�	Pz�Pz� � Pz�q� � Pz�q� 	 g���Pz 
 q��
	
; (30)

with an analogous expression for S5a��, that we omit, since it can be recovered by performing the substitutions

�� ! �5��  �� ! �5 ��; Fa���; Ga��� ! F5a���; G5a��� (31)

in (30).
Similarly, for "a�� we get

"a�� � gu
Z
DzFa����z�

�
1

�Q2
1 � i��

��!�-

�
q!�- 	

P-z q!q6

�Q2
1 � i��

�	
	 gd

Z
DzFa����z�

�
1

�Q2
2 � i��

��!�-

�
q!�-

�
P-z q!q6

�Q2
2 � i��

�	
� gu

Z
DzGa����z�

�
1

�Q2
1 � i��

��!�-

�
q!
i -���

M
	
P-z q!�i 8�q8���

M�Q2
1 � i��

�	
	 gd

Z
DzGa����z�

�

�
1

�Q2
2 � i��

��!�-

�
q!
i -���

M
�
P-z q!�i 8�q8���

M�Q2
2 � i��

�	
:

(32)

The expression of ~"5a�� can be obtained in a similar way.
To compute the TZ0

�� tensor, we need to include the following operators, which are related to the previous ones by
gu; gd ! 1:

Z
dx4

eiqxx!

2,2�x2 	 i��2
hP2jS�!�-O

a-jP1i � Sa��;
Z
dx4

eiqxx!

2,2�x2 	 i��2
hP2jS�!�- ~O5a-jP1i � ~S5a��;

Z
dx4

eiqxx!

2,2�x2 	 i��2
hP2j��!�- ~Oa-jP1i � ~"a��;

Z
dx4

eiqxx!

2,2�x2 	 i��2
hP2j��!�-O5a-jP1i � "5a��:

(33)
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In this case a simple manipulation of (30) gives

Sa�� �
Z
Dz

Fa����z�

�Q2
1 � i��

�
�	g��q6 � q��� � q���� � �Pz��� � Pz���� 	

q6

�Q2
1 � i��

�Pz�Pz� � Pz�q� � Pz�q�

	 g���Pz 
 q��
	
	

Z
Dz

Fa����z�

�Q2
2 � i��

�
�	g��q6 � q��� � q���� 	 �Pz��� � Pz���� �

q6

�Q2
2 � i��

�	Pz�Pz�

� Pz�q� � Pz�q� 	 g���Pz 
 q��
	
�

Z
Dz

Ga����z�

�Q2
1 � i��

��
	g��

i !-q!�-

M
� q�

i �-�-

M
� q�

i �-�-

M

�

�

�
Pz�

i �-�-

M
� Pz�

i �-�-

M

�
	
i !-q!�-

M�Q2
1 � i��

�Pz�Pz� � Pz�q� � Pz�q� 	 g���Pz 
 q��
	
	

Z
Dz

Ga����z�

�Q2
2 � i��

�

��
	g��

i !-q!�-

M
� q�

i �-�-

M
� q�

i �-�-

M

�
	

�
Pz�

i �-�-

M
� Pz�

i �-�-

M

�

�
i !-q!�-

M�Q2
2 � i��

�	Pz�Pz� � Pz�q� � Pz�q� 	 g���Pz 
 q��
	
: (34)

The expression of ~S5a�� is obtained from (34) by the replacements (31).
For the ~"a�� case, a rearrangement of (32) gives

~"a�� �
Z
DzFa����z�

�
1

�Q2
1 � i��

��!�-

�
q!�- 	

P-z q!q6

�Q2
1 � i��

�	
�

Z
DzFa����z�

�
1

�Q2
2 � i��

��!�-

�
q!�- �

P-z q!q6

�Q2
2 � i��

�	

�
Z
DzGa����z�

�
1

�Q2
1 � i��

��!�-

�
q!
i -���

M
	
P-z q!�i 8�q8���

M�Q2
1 � i��

�	

�
Z
DzGa����z�

�
1

�Q2
2 � i��

��!�-

�
q!
i -���

M
�
P-z q!�i 8�q8���

M�Q2
2 � i��

�	
: (35)
Also in this case, the expression of the "5a�� tensor is
obtained by the replacements (31).
VI. THE PARTONIC INTERPRETATION

At a first sight, the functions F���; G���; F5���; G5��� do
not have a simple partonic interpretation. To progress in
this direction it is useful to perform the expansions of the
propagators,

1

Q2
1 � i�

�
1

2� �P 
 q�

1

�z� 	 �� �z	 � i��
;

1

Q2
2 � i�

� 	
1

2� �P 
 q�

1

�z� � �� �z	 	 i��
;

(36)

which are valid only in the asymptotic limit. In this limit
only the large kinematical invariants and their (finite) ratios
are kept. In this expansion the physical scaling variable �
appears quite naturally and one is led to introduce a new
linear combination,

t � z� � �z	; (37)

to obtain
053002
1

Q2
1 � i�

�
1

2� �P 
 q�

1

�t	 �� i��
;

1

Q2
2 � i�

� 	
1

2� �P 
 q�

1

�t� �	 i��
:

(38)

Analogously, we rewrite Pz using the variables ft; z	g

Pz � 2 �Pt� ,z	; (39)

in terms of a new 4-vector, denoted by ,, which is a direct
measure of the exchange of transverse momentum with
respect to �P:

, � �� 2� �P: (40)

This quantity is strictly related to �?, as given in (4). The
dominant (large) components of the process are related to
the collinear contributions, and in our calculation the con-
tributions proportional to the vector , will be neglected.
This, of course, introduces a violation of the transversality
of the process of O��?=2 �P 
 q�.

Adopting the new variables ft; z	g and the conjugate
ones f �P;,g, the relevant integrals that we need to ‘‘reduce’’
to a single (partonic) variable are contained in the expres-
sions
-6
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HQ1
��� �

Z
dz�dz	

H�z�; z	�

�Q2
1 � i��

�
1

2 �P 
 q

Z
Dz

H�t� �z	; z	�
�t	 �� i��

H�
Q1
��� �

Z
dz�dz	

H�z�; z	�

�Q2
1 � i��

�2 �P�z� � ��z	� �
1

2 �P 
 q

Z
Dz

H�t� �z	; z	�
�t	 �� i��

�2 �P�t� ,�z	�

H��
Q1

��� �
Z
dz�dz	

H�z�; z	�

�Q2
1 � i��2

�P�z P�z � q�P�z � q�P�z 	 g��q 
 Pz�

�
1

�2 �P 
 q�2
Z
Dz

H�t� �z	; z	�

�t	 �� i��2
�4 �P� �P�t2 � �2q� �P� � 2q� �P��t	 g���q 
 Pz� � ,�,�z2	

� �q�,� � q�,��z	 � �2 �P�,� � 2 �P�,��tz	�:

(41)
Here H�z�; z	� is a generic symbol for any of the func-
tions. We have similar expressions for the integrals de-
pending on the momenta Q2.

The integration over the z	 variable in the integrals
shown above is performed by introducing a suitable spec-
tral representation of the function H�t;��z	; z	�. As
shown in [10], we can classify these representations by
the n � 0; 1; . . . ; powers of the variable z	,

ĥ n�t=1; �� �
Z
dz	z

n
	ĥ

�
t
1
� �z	; z	

�
: (42)

With the help of this relation, one obtains

Ĥ n�t; �� �
1

tn
Z
dz	z

n
	H�t� �z	; z	�

�
1

tn
Z 1

0

d1
1
1nĥn�t=1; ��

�
Z sign�t�

t

d8
8
8	nĥn�8; ��: (43)

The result of this manipulation is to generate single-valued
distribution amplitudes from double-valued ones. In the
053002
single-valued distributions ĥn�t; ��, the new scaling varia-
bles t and � have a partonic interpretation. � measures the
asymmetry between the momenta of the initial and final
states, while it can be checked that the support of the
variable t is the interval �	1; 1�. The twist-2 part of the
Compton amplitude is related only to the n � 0 moment of
z	. Before performing the z	 integration in each integral
of Eq. (41) using Eq. (43)—a typical example isH��

Q1
���—

we reduce such integrals to the sum of two terms using the
identity

Z 1

	1
dt

tm

�t� �� i��2
Ĥn�t; �� �

Z 1

	1
dt

tm	1

�t� �� i��

�

�
Ĥn�t; ��

	
1

tn
ĥn�t; ��

�
: (44)

As shown in [9], after the z	 integration, the integrals in
(41) can be rewritten in the form
HQ1
��� �

1

2 �P 
 q

Z 1

	1
dt

Ĥ0�t; ��
�t	 �� i��

; H�
Q1
��� �

2 �P�

2 �P 
 q

Z 1

	1
dt

tĤ0�t; ��
�t	 �� i��

�O�,��;

H��
Q1

��� �
1

�2 �P 
 q�2
Z 1

	1
dt

�2Ĥ0�t; �� 	 ĥ0�t; ���
�t	 �� i��

4 �P� �P�t�
1

�2 �P 
 q�2
Z 1

	1
dt

�Ĥ0�t; �� 	 ĥ0�t; ���
�t	 �� i��

� f�2q� �P� � 2q� �P� 	 g��2q 
 �P�g �O�,�,��; (45)
where, again, we are neglecting contributions from the
terms proportional to ,�, subleading in the deeply virtual
limit. The quantities that actually have a strict partonic
interpretation are the ĥa0�t; �� functions, as argued in
Ref. [13]. The identification of the leading twist contribu-
tions is performed exactly as in [10]. We use a suitable
form of the polarization vectors (for the gauge bosons) to
generate the helicity components of the amplitudes and
perform the asymptotic (DVCS) limit in order to identify
the leading terms. Terms of O�1=

�������������
2 �P 
 q

p
� are suppressed

and are not kept into account. Below we will show only the
tensor structures which survive after this limit.
VII. ORGANIZING THE COMPTON AMPLITUDES

In order to give a more compact expression for the
amplitudes of our processes, we define

gT�� � 	g�� �
q� �P�

�q 
 �P�
�
q� �P�

�q 
 �P�
;

!�t� �
gu

�t	 �� i��
	

gd
�t� �	 i��

;

-�t� �
gu

�t	 �� i��
�

gd
�t� �	 i��

:

(46)
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Calculating all the integrals in Eqs. (30), (32), (34), and (35), we rewrite the expressions of the amplitudes as follows:

TW
�

�� � iUudU�P2��i�~S
u
�� � S5u��� � "u�� � ~"5u�� 	 i�~Sd�� � S5d��� 	 "d�� 	 ~"5d���U�P1�;

TW
	

�� � 	iUduU�P2��i�~S
u
�� � S5u��� � "u�� � ~"5u�� 	 i�~Sd�� � S5d��� 	 "d�� 	 ~"5d���gu!gdU�P1�;

TZ0
�� � iU�P2��guguV�S

u
�� 	 i"5u��� 	 guguA�~S

5u
�� 	 i~"u��� 	 gdgdV�S

d
�� 	 i"5d��� � gdgdA�~S

5d
�� 	 i~"d����U�P1�;

(47)

where, suppressing all the subleading terms in the tensor structures, we get

U�P2�~S
a��U�P1� �

Z 1

	1
dt!�t�

gT��

2 �P 
 q

�
U�P2�q6 U�P1�f̂

a
0�t; �� �U�P2�

�
i
 !-q!�-

M

�
U�P1�ĝa0�t; ��

�

�
Z 1

	1
dt-�t�

�P� �P�

� �P 
 q�2

�
U�P2�q6 U�P1�tf̂

a
0�t; �� �U�P2�

�
i
 !-q!�-

M

�
U�P1�tĝ

a
0�t; ��

�
; (48)

while for the "a�� expression we obtain

U�P2�"a��U�P1� � ��!�-
2q! �P-
�2 �P 
 q�2

Z 1

	1
dt-�t�

�
U�P2�q6 U�P1�f̂

a
0�t; �� �U�P2�

�
i
 !-q!�-

M

�
U�P1�ĝa0�t; ��

�
: (49)

Passing to the Sa�� and ~"a�� tensors, which appear in the Z0 neutral current exchange, we get the following formulas:

U�P2�S
a��U�P1� �

Z 1

	1
dt
�

1

t	 �� i�
�

1

t� �	 i�

��
gT��

2 �P 
 q

�
U�P2�q6 U�P1�f̂

a
0�t; �� �U�P2�

�

�
i
 !-q!�-

M

�
U�P1�ĝa0�t; ��

�	
�

Z 1

	1
dt
�

1

t	 �� i�
	

1

t� �	 i�

�



�P� �P�

� �P 
 q�2

�

�
U�P2�q6 U�P1�tf̂

a
0�t; �� �U�P2�

�
i
 !-q!�-

M

�
U�P1�tĝ

a
0�t; ��

�
; (50)

U�P2�~"a��U�P1� �
Z 1

	1
dt
�

1

t	 �� i�
	

1

t� �	 i�

�
��!�-

2q! �P-
�2 �P 
 q�2

��
U�P2�q6 U�P1�f̂

a
0�t; �� �U�P2�

�

�
i
 !-q!�-

M

�
U�P1�ĝa0�t; ��

�	
: (51)
Obviously the ~Sa5��, Sa5��, ~"a5��, and "a5�� expressions
are obtained by the substitution (31).

At this stage, to square the amplitude, we need to
calculate the following quantity, separately for the two
charged processes:

T2 � jTDVNSj
2 � TDVNST

�
BH � TBHT

�
DVNS � jTBHj

2;

(52)

which simplifies in the neutral case, since it reduces
jTDVNSj

2 [2]. Equations (47)–(51) and their axial counter-
parts are our final result and provide a description of the
deeply virtual amplitude in the electroweak sector for
charged and neutral currents. The result can be expressed
in terms of a small set of parton distribution functions
which can be easily related to generalized parton distribu-
tions, as in standard DVCS.

VIII. CONCLUSIONS

We have presented an application/extension of a
method, which has been formulated in the past for the
053002
identification of the leading twist contributions to the
parton amplitude in the generalized Bjorken region, to
the electroweak case. We have considered the special
case of a deeply virtual kinematics. We have focused our
attention on processes initiated by neutrinos. From the
theoretical and experimental viewpoints, the study of these
processes is of interest, since very little is known of the
neutrino interaction at intermediate energy in these more
complex kinematical domains.
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