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Abstract: We investigate the mapping of conformal correlators and of their anomalies

from configuration to momentum space for general dimensions, focusing on the anomalous

correlators TOO, TV V — involving the energy-momentum tensor (T ) with a vector (V ) or

a scalar operator (O) — and the 3-graviton vertex TTT . We compute the TOO, TV V and

TTT one-loop vertex functions in dimensional regularization for free field theories involving

conformal scalar, fermion and vector fields. Since there are only one or two independent

tensor structures solving all the conformal Ward identities for the TOO or TV V vertex

functions respectively, and three independent tensor structures for the TTT vertex, and

the coefficients of these tensors are known for free fields, it is possible to identify the

corresponding tensors in momentum space from the computation of the correlators for free

fields. This works in general d dimensions for TOO and TV V correlators, but only in 4

dimensions for TTT , since vector fields are conformal only in d = 4. In this way the general

solution of the Ward identities including anomalous ones for these correlators in (Euclidean)

position space, found by Osborn and Petkou is mapped to the ordinary diagrammatic one

in momentum space. We give simplified expressions of all these correlators in configuration

space which are explicitly Fourier integrable and provide a diagrammatic interpretation of

all the contact terms arising when two or more of the points coincide. We discuss how

the anomalies arise in each approach. We then outline a general algorithm for mapping

correlators from position to momentum space, and illustrate its application in the case of

the V V V and TOO vertices. The method implements an intermediate regularization —

similar to differential regularization — for the identification of the integrands in momentum
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space, and one extra regulator. The relation between the ordinary Feynman expansion and

the logarithmic one generated by this approach are briefly discussed.

Keywords: Conformal and W Symmetry, Field Theories in Higher Dimensions, Anoma-

lies in Field and String Theories
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1 Introduction

The analysis of correlation functions in d-dimensional quantum field theory possessing con-

formal invariance has found widespread interest over the years (see [19] for an overview).

Given the infinite dimensional character of the conformal algebra in 2-dimensions, con-

formal field theories (CFT’s) in 2-dimensions have received the most attention, although

4-dimensional conformal theories have also been studied (see for instance [31, 32]). In d

dimensional CFT’s the structure of generic conformal correlators is not entirely fixed just

by conformal symmetry, but for 2- and 3-point functions the situation is rather special and

these can be significantly constrained, up to a small number of constants.

In several recent works [3, 4, 21] certain correlation functions describing the interaction

between a gauge theory and gravity with massless fields in the internal loop and related

therefore to the axial and trace anomalies in these theories have been analyzed. The

interesting property that such anomalous amplitudes contain massless poles in 2-particle

intermediate states has been exposed in these investigations. In particular this has been

demonstrated in the TV V amplitude in massless QED and QCD, characterized by the

insertion of the energy momentum tensor (T) on 2-point functions of vector gauge currents

(V). This amplitude gives the leading order contribution to the interaction between a gauge

theory and gravity, mediated by the trace anomaly.

The complete evaluation of this amplitude in the Standard Model [12] confirms the

conclusion of [21], namely the presence of an effective massless scalar “dilaton-like” degree

of freedom in intermediate 2-particle states intimately connected with the trace anomaly, in

the sense that the non-zero residue of the pole is necessarily proportional to the coefficient of

the anomaly. The perturbative results of [3, 4, 21] are also in agreement with the anomaly-

induced gravitational effective action in 4 dimensions whose non-local form was found

in [30], and whose local covariant form necessarily implies effective massless scalar degree(s)
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of freedom [24–26]. This is the 4-dimensional analog of the anomaly-induced action in 2-

dimensional CFT’s coupled to a background metric generated by the 2-dimensional trace

anomaly and related to the central term in the infinite dimensional Virasoro algebra [28].

The anomaly-induced scalar in the 2-dimensional case is the Liouville mode of non-critical

string theory on the 2-dimensional world sheet of the string.

In even dimensions greater than 2 it is important to recognize that the anomaly-

induced effective action discussed in [24–26, 30] is determined only up to Weyl invariant

terms. The full quantum effective action is not determined by the trace anomaly alone,

and hence only when certain anomalous contributions to the TV V or other amplitudes

are isolated from their non-anomalous parts should any comparison with the anomaly-

induced effective action be made. The non-anomalous components are dependent upon

additional Weyl invariant terms in the quantum effective action and thus even in the

CFT limit need not agree with the anomaly-induced action, without contradicting its

validity for determining the anomalous terms [24]. On the other hand these additional Weyl

invariant terms for simple amplitudes such as TV V can be determined in principle by the

Ward identities of SO(d, 2) conformal invariance, together with those of gauge invariance

for the vector currents. Other triangle amplitudes in 4 dimensions such as the graviton-

fermion-antifermion vertex function, for which similar considerations should apply have

been investigated primarily for phenomenological reasons [14], although this amplitude is

anomaly-free.

From the CFT side some important information is available [10, 18, 27]. These results

concern the TOO — with O denoting a generic scalar — TV V and TTT vertices, which

are determined by applying the conformal Ward identities in Euclidean position space.

Some of the vertices, such as the TTT , for d = 4 are shown in the analysis of [18, 27] to be

expressible in terms of three linearly independent tensor structures. Imposing the conformal

Ward identities and identifying these tensor structures directly in momentum space turns

out the be technically quite involved. The main goal of the present work is to initiate

a systematic study enabling comparison of general results of 4-dimensional CFT’s based

on position space analysis such as [18, 27] with explicit realizations of anomalous 3-point

vertices in free field theory, most commonly expressed in momentum space. Recent results

of studies of three- and four- point functions in d = 3 in the context of the ADS4/CFT3

correspondence are contained in [9, 23, 29].

For general d dimensions and, specifically, in d = 4, rather than trying to identify these

tensor structures directly in momentum space, which is quite cumbersome, it is much sim-

pler to calculate explicitly the TTT correlator for specific free-field theories of scalars,

spinors, and vectors in one-loop Lagrangian perturbation theory, thereby identifying the

three linearly independent tensor structures a posteriori with the general CFT analysis

of [18, 27]. A similar method works for the TV V , V V V and TOO vertices for any dimen-

sion, while in the TTT case the contribution coming from the exchange of a spin 1 field in

the loop diagrams is conformally invariant only in d = 4.

While the imposition of the conformal Ward identities is technically simpler in position

space, the appearance of massless poles associated with anomalies is very much obscured.

Indeed conformal anomalies necessarily arise quite differently in momentum space and in
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Euclidean position space, where the only possibility for anomalous terms lies in appearance

of ultralocal divergences proportional to delta functions or derivatives thereof at cooinci-

dent spatial points. Thus a very careful regularization procedure is required to determine

these anomalous ultralocal contributions which are absent for any finite point separation.

The special strategy followed in determining these anomalous ultralocal contributions in

position space, developed in [27], merits some comments for its peculiarity. In [18, 27]

the Ward identities are solved in each case by combining a homogeneous solution — ob-

tained for separate (non-coincident) points of the correlator — with inhomogenous terms,

identified via a regularization of the same correlator in the coincidence limit and with

the inclusion of contact terms. The contact terms proportional to delta functions and

derivatives thereof determine the anomalies. Such a separation, based on homogeneous

and inhomogeneous terms in the Ward identities cannot be easily carried out in momen-

tum space. Moreover in the approach of [21] the origin of the conformal anomaly as an

infrared effect (rather than a result of any UV regularization procedure) following from

the imposition of all non-anomalous Ward identities and the spectral representation of the

amplitude was emphasized. In this approach massless anomaly poles at k2 = 0 play an

essential role. At first glance this appears to be quite different than the ultralocal delta

function terms obtained in the position space approach of [18, 27]. Thus the relationship

of the several approaches requires some clarification, and this is a principal motivation

for the present work. The eventual agreement of the two approaches may seem less sur-

prising if it is remembered that cooincident point singularities in Euclidean position space

become light cone singularities in Minkowski spacetime, and these lightcone singularities

are associated with the propagation of massless fields, which generally have long range

infrared effects.

Our work is composed of two main parts. In the first part, building on the results

of [18, 27], we compute the complete structure of the 3-point correlators in configuration

and in momentum space for a general CFT. In particular we generalize our previous

studies of the TV V correlator, formally studied by us in 4 dimensions [3, 4, 21] in QED

and QCD, to d dimensions and for any CFT. We also study the TTT vertex and perform a

complete investigation of this correlator by the same approach. The analysis is performed in

perturbation theory and the result is secured by a successful test of all the Ward identities

satisfied by this vertex, outlining their derivation and their perturbative implementation,

and using a symbolic manipulation program written by us. Both for the TV V and TTT

cases our computations have been performed under the most general (off-shell) conditions,

but the remarkable complexity of the general result allows us to present here, in a compact

form, only the expression for the 2-particle on-shell case. We give particular emphasis to

the discussion of the connection between the general approach of [27] and the perturbative

picture. In particular, we give a diagrammatic interpretation of the various contact terms

introduced by Osborn and Petkou in order to solve the Ward identities for generic positions

of the points of the correlators. This allows to close a gap between the bootstrap method

of [27], our previous investigations of the TV V [3, 4, 21], and the current study of the

TTT vertex. We show that the perturbative analysis in momentum space in dimensional

regularization is in complete agreement with their results.
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It should be remarked that, in general, the momentum space formulation of the cor-

relators of a CFT remains largely unexplored, since in many cases there is no Lagrangian

description which may justify such an effort, and the spacetime formulation remains the

only significant one. The use of symmetry principles to infer the general solution to confor-

mal Ward identities from some specific correlation functions computed in momentum space

perturbation theory, allows to collect information about a conformal theory even when a

Lagrangian formulation of the same correlators is not readily found or may not exist at all.

This brings us to the second part of our work, contained in section 8, where we discuss

a general and very efficient procedure to map to momentum space any massless correlator,

not necessarily related to a Lagrangian description. This part is motivated by the at-

tempt of transforming to momentum space any massless correlator given in position space,

independently from whether this is Fourier integrable or not.

The investigation of these correlators in momentum space reveals, in general, some

specific facts, such as the presence of single and multi-logarithmic integrands which, in

general, can’t be re-expressed in terms of ordinary master integrals, typical of the Feyn-

man expansion. To address these points, one has to formulate an alternative and general

approach to perform the transforms, not directly linked to the free-field realization, since in

this case such representation, as we have just mentioned, may not exist.

The method that we propose combines a d-dimensional version of differential regular-

ization, similar to the approach suggested in [18, 27]. In our case we use the standard

technique of “pulling out” derivatives (via partial integration) in very singular correlators

in such a way to make them Fourier integrable, i.e. expressible as integrals in momentum

space which are well-defined for non-coincident points. This is combined with the method of

uniqueness [22], here generalized to tensor structures, in order to formulate a complete and

self-consistent procedure. As in [18, 27] we need an extra regulator (ω), unrelated to the

dimensional regularization parameter (ϵ). Our approach is defined as a generic algorithm

which can handle rather straightforwardly any massless correlator written in configuration

space. The algorithm has been implemented in a symbolic manipulation program and can

handle correlators of any rank.

The aim of the method is to test the Fourier integrability of a given correlator, by

checking the cancellation of the singularities in the extra regulator directly in momentum

space, and to provide us with the direct expression of the transform. After a few non

trivial examples, we will show how to reproduce, by this method, some of the results of

the conformal correlators discussed in the first part, the V V V and the TOO being two

examples.

Given the large space and scope of this analysis, which is technically quite involved,

we will not attempt in this work to address the issue of the presence of anomaly poles in

the TTT correlator in analogy to what discussed in [3, 4, 21] for the TV V case. Although

this is an important motivation for initiating this study, demonstrating the existence of

the pole(s) requires additional analysis which we do not attempt in this paper. We expect

to address this final point in a related work making use of the technical framework and

building upon the results of the present study.
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I βa(I)× 2880π2 βb(I)× 2880π2 βc(I)× 2880π2

S 3
2 −1

2 −1

F 9 −11
2 −6

V 18 −31 −12

Table 1. Anomaly coefficients for a conformally coupled scalar, a Dirac Fermion and a vector
boson

2 Conformal correlators and the trace anomaly

2.1 Conventions and the trace anomaly equation

Before coming to a discussion of the main correlators investigated in our work we introduce

here our definitions and conventions which will be used throughout.

The basic trace anomaly equation for a conformal theory in d = 4 is [15, 16]

gµν(z) ⟨Tµν(z)⟩ =
∑

I=f,s,V

nI

[

βa(I)F (z) + βb(I)G(z) + βc(I)!R(z) + βd(I)R
2(z)

]

+
κ

4
nV F

aµν F a
µν(z) ≡ A(z, g) , (2.1)

whose coefficients βa, βb, βc and βd depend on the field content of the Lagrangian (fermion,

scalar, vector) and we have a multiplicity factor nI for each particle species.1 Actually the

coefficient of R2 must vanish identically

βd ≡ 0 (2.2)

since a non-zero R2 in this basis cannot be obtained from any effective action (local or

not) [2, 8, 24]. In addition, the value of βc is regularization dependent, corresponding

to the fact that it can be changed by the addition of an arbitrary local R2 term in the

effective action. In particular, the values for βc reported in table 1 hold in dimensional

regularization. Thus only βa, βb and κ correspond to true anomalies in trace of the stress

tensor. In dimensional regularization one finds

βc = −2

3
βa . (2.3)

In table 1 we list the values of the coefficients for the three theories of spin 0, 12 , 1 mentioned,

that we are going to consider extensively throughout the paper. A(z, g) contains the field-

strength of the background gauge field, F a
µν , and the invariants built out of the Riemann

tensor, Rα
βγδ, as well as the Ricci tensor Rαβ and the scalar curvature R. G and F in

eq. (2.1) are the Euler density and the square of the Weyl tensor respectively.

All our conventions are listend in appendix A.

Eq. (2.1) plays the role of a generating functional for the anomalous Ward identities

of any underlying Lagrangian field theory. These conditions are not necessarily linked

1Equivalent and more popular notations are c ≡ 16π2βa and a ≡ −16π2βb.
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to any Lagrangian, since the solution of these and of the other (non anomalous) Ward

identities — which typically define a certain correlator — are based on generic requirements

of conformal invariance. For our purposes, all these identities can be extracted from an

ordinary generating functional, defined in terms of a generic Lagrangian L which offers

a convenient device to identify such relations. For this reason we introduce the ordinary

definition of the energy-momentum tensor

Tµν(z) = − 2
√
gz

δ S
δgµν(z)

= gµα(z) gνβ(z)
2

√
gz

δS
δgαβ(z)

, (2.4)

in terms of the quantum action S, so that its quantum average is

⟨Tµν(z)⟩ = 2
√
gz

δW
δ gµν(z)

, (2.5)

(with det gµν(z) ≡ gz) where W is the Euclidean generating functional of the theory2

W =
1

N

∫

DΦ e−S , (2.6)

where N a normalization factor and Φ denotes all the quantum fields of the theory.

Inserting these definitions in (2.1) and multiplying both sides by
√
gz we obtain

2 gµν(z)
δW

δ gµν(z)
=

√
gz A(z, g) . (2.7)

From (2.1) and (2.7) we can extract an identity for the anomaly for correlators involving

n insertions of energy momentum tensors, by taking n functional derivatives with respect

to the metric of both sides of (2.7) and setting gµν = δµν at the end. In the same way, the

anomalous Ward identity for the TV V can be obtained by functional differentiation of the

same equation respect to the background gauge fields. In perturbation theory, however,

imposing the conservation Ward identity for the energy-momentum tensor and of the Ward

identity for the vector currents — whenever these are present — is sufficient to obtain the

corresponding anomalous Ward identity. In the case of the TV V , for instance, this is

a common practice, since only one term (F aµν(z)F a
µν(z)) can appear in the anomaly.

Therefore the anomaly condition comes as a necessary consequence of the other Ward

identities and can be checked at the end of the computation to correspond to the one

derived from eq. (2.1). Things are far more involved for vertices with multiple insertions of

gravitons, such as the TTT vertex, and a successful test of the anomalous Ward identity

is crucial in order to secure the correctness of the result of the computation.

2.2 Definition of the correlators and Ward identities for the TV V and TOO

vertices

We provide the basic definition of the correlators that we are going to investigate, in analogy

to [27]. We start from the TV V vertex and use the Euclidean convention. We recall

2
W depends, in general, from the background metric gµν(x), the gauge fields Aa(x) and scalar sources

J(x) In the equations below, only those dependences which are relevant for the case at hand will be explicitly

indicated.

– 6 –
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that in this case the functional average of the gauge current V is obtained by functional

differentiation of the generating functional with respect to the background gauge field Aa
µ

⟨V aµ(x)⟩ = − 1
√
gx

δW
δAa

µ(x)
. (2.8)

To construct the TV V correlator we can first perform a functional derivative with respect

to the metric followed by the flat space-time limit (gµν = δµν) and then insert the vector

currents by taking derivatives with respect to the gauge field source A

〈

Tµν(x1)V
aα(x2)V

bβ(x3)
〉

=

{

δ2

δAa
α(x2)δA

b
β(x3)

[

2
√
gx1

δW
δgµν(x1)

]

g=δ

}

A=0

=
〈

Tµν(x1)V
aα(x2)V

bβ(x3)
〉

A=0
+

〈

δTµν(x1)

δAa
α(x2)

V bβ(x3)

〉

A=0

+

〈

δTµν(x1)

δAb
β(x3)

V aα(x2)

〉

A=0

(2.9)

where Tµν is the energy-momentum tensor calculated in the presence of the background

source Aa
µ. The first term in the previous expression represents the insertion of the three

operators, while the last two are contact terms, with the topology of 2-point functions,

exploiting the linear dependence of the energy-momentum tensor from the source field A.

The construction of the TOO correlator is analogous. If the scalar operator O is

coupled to the source J we define

⟨O(x)⟩ = − 1
√
gx

δW
δJ(x)

(2.10)

and then the three point function is generated as

⟨Tµν(x1)O(x2)O(x3)⟩ =

{

δ2

δJ(x2)δJ(x3)

[

2
√
gx1

δW
δgµν(x1)

]

g=δ

}

J=0

= ⟨Tµν [J ](x1)O(x2)O(x3)⟩J=0 +

〈

δTµν [J ](x1)

δJ(x2)
O(x3)

〉

J=0

+

〈

δTµν [J ](x1)

δJ(x3)
O(x2)

〉

J=0

. (2.11)

The third correlator that we will analyze will be the V V V vertex, which is defined

by the third functional derivative of the generating functional with respect to the source

gauge field Aa
µ(x)

〈

V aµ(x1)V
b ν(x2)V

c ρ(x3)
〉

= −
δ3W|g=δ

δAa
µ(x1)δA

b
ν(x2)δA

c
ρ(x3)

∣

∣

∣

∣

A=0

. (2.12)

The V V V is anomaly free, as is the TV V for general (d ̸= 4) dimensions. To derive

the non-anomalous Ward identities for general dimensions we assume that the generating

functional W [g,A] is invariant under diffeomorphisms

W[g,A] = W[g′, A′] , (2.13)

– 7 –
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where g′ and A′ are transformed metric and gauge field under the general infinitesimal

coordinate transformation xµ → x′µ = xµ + ϵµ

δgµν = ∇µϵν +∇νϵµ , δAa
µ = ϵλ∇λA

a
µ +Aaλ∇µϵλ . (2.14)

Diffeomerphism invariance and gauge invariance give the relation

∇µ ⟨Tµν⟩+∇νAa
µ ⟨V aµ⟩+∇µ (A

a ν ⟨V aµ⟩) = 0 , (2.15)

∇µ ⟨V aµ⟩+ fabcAb
µ ⟨V cµ⟩ = 0 , (2.16)

while naive scale invariance gives the traceless condition

gµν ⟨Tµν⟩ = 0. (2.17)

This last Ward identity is naive, due to the appearance of an anomaly at quantum level,

after renormalization of the correlator for d = 4. It is however the correct identity in the

TV V, TOO and TTT cases away from d = 4. In this respect, the functional differentiation

of (2.15) and (2.17) allows to derive ordinary Ward identities for the various correlators.

In the TV V case we obtain the conservation equation

∂x1

µ

〈

Tµν(x1)V
aα(x2)V

bβ(x3)
〉

= ∂νx1
δd(x12)

〈

V aα(x1)V
bβ(x3)

〉

+ ∂νx1
δd(x31)

〈

V aα(x2)V
bβ(x1)

〉

−δνα∂x1

µ

(

δd(x12)
〈

V aµ(x1)V
bβ(x3)

〉)

− δνβ∂x1

µ

(

δd(x31)
〈

V aα(x2)V
b µ(x1)

〉)

(2.18)

and vector current Ward identities

∂x2

α

〈

Tµν(x1)V
aα(x2)V

bβ(x3)
〉

= 0 , ∂x3

β

〈

Tµν(x1)V
aα(x2)V

bβ(x3)
〉

= 0 , (2.19)

while the naive identity (2.17) gives the non-anomalous condition

δµν
〈

Tµν(x1)V
aα(x2)V

bβ(x3)
〉

= 0 (2.20)

for d ̸= 4.

2.3 Definitions for the TTT amplitude

For the multi-graviton vertices, it is convenient to define the corresponding correlation func-

tion as the n-th functional variation with respect to the metric of the generating functional

W evaluated in the flat-space limit

⟨Tµ1ν1(x1) . . . T
µnνn(xn)⟩ =

[

2
√
gx1

. . .
2

√
gxn

δnW
δgµ1ν1(x1) . . . δgµnνn(xn)

]
∣

∣

∣

∣

gµν=δµν

= 2n
δnW

δgµ1ν1(x1) . . . δgµnνn(xn)

∣

∣

∣

∣

gµν=δµν

, (2.21)

– 8 –
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so that it is explicitly symmetric with respect to the exchange of the metric tensors. As

we are going to deal with correlation functions evaluated in the flat-space limit all through

the paper we will omit to specify it from now on, so as to keep our notation easy. The

3-point function we are interested in studying is found by evaluating (2.21) for n = 3,

〈

Tµν(x1)T
ρσ(x2)T

αβ(x3)
〉

= 8

[

−
〈

δS
δgµν(x1)

δS
δgρσ(x2)

δS
δgαβ(x3)

〉

+

〈

δ2S
δgαβ(x3)δgµν(x1)

δS
δgρσ(x2)

〉

+

〈

δ2S
δgρσ(x2)δgµν(x1)

δS
δgαβ(x3)

〉

+

〈

δ2S
δgρσ(x2)δgαβ(x3)

δS
δgµν(x1)

〉

−
〈

δ3S
δgρσ(x2)δgαβ(x3)δgµν(x1)

〉]

, (2.22)

where the angle brackets denote the vacuum expectation value. Notice that the last term

is identically zero in dimensional regularization, being proportional to a massless tadpole.

The correlator
〈

δS
δgµν(x1)

δS
δgρσ(x2)

δS
δgαβ(x3)

〉

, (2.23)

has the diagrammatic representation of a triangle topology, while the contributions
〈

δ2S
δgρσ(x2)δgαβ(x3)

δS
δgµν(x1)

〉

,

〈

δ2S
δgαβ(x3)δgµν(x1)

δS
δgρσ(x2)

〉

,

〈

δ2S
δgρσ(x2)δgµν(x1)

δS
δgαβ(x3)

〉

(2.24)

are interpreted in the perturbative analysis as the “k”, “q” and “p” bubble respectively,

also termed “T-bubbles” in [3].

In the perturbative realization of these expressions we will also establish a connection

between these contributions and the extra terms generated at the 2-point coincidence limit

of the general 3-point vertices discussed in [27]. For a 3-point vertex the dependence in

configuration space is labelled as (x1, x2, x3) with an incoming momentum (k) at x1 and

two outgoing momenta q, p at x2 and x3 respectively. These conventions are summarized

by the transforms
∫

d4x1 d
4x2 d

4x3
〈

Tµν(x1)T
ρσ(x2)T

αβ(x3)
〉

e−i(k·x1−q·x2−p·x3) =

(2π)4 δ(4)(k − p− q)
〈

TµνT ρσTαβ
〉

(p, q) , (2.25)

and
∫

d4x2 d
4x3

〈

T ρσ(x2)T
αβ(x3)

〉

e−i(q·x2−p·x3) = (2π)4 δ(4)(p− q)
〈

T ρσTαβ
〉

(p) , (2.26)

for 3- and 2-point functions respectively.

2.4 General covariance Ward identities for the TTT

The requirement of general covariance for the generating functional W immediately leads

to the master Ward identity for the conservation of the energy momentum tensor given
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in (2.15) (of course we disregard background gauge fields here),

∇ν ⟨Tµν(x1)⟩ = ∇ν

(

2
√
gx1

δW
δgµν(x1)

)

= 0 , (2.27)

and expanding the covariant derivative we can write it as

2
√
gx1

(

∂ν
δW

δgµν(x1)
− Γλλν(x1)

δW
δgµν(x1)

+ Γµ
κν(x1)

δW
δgκν(x1)

+ Γνκν(x1)
δW

δgµκ(x1)

)

= 0,

(2.28)

where the first of the three Christoffel symbols is generated by differentiation of 1/
√
gx1

in

the definition of Tµν together with

Γααβ(x1) =
1

2
gαγ(x1) ∂β gαγ(x1) (2.29)

or, equivalently, as

2

(

∂ν
δW

δgµν(x1)
+ Γµ

κν(x1)
δW

δgκν(x1)

)

= 0 . (2.30)

By taking one and two functional derivatives of (2.30) with respect to gρσ(x2) and gρσ(x2)

and gαβ(x3) respectively, one gets, in curved space-time,

4

[

∂ν
δ2W

δgρσ(x2)δgµν(x1)
+
δΓµ

κν(x1)

δgρσ(x2)

δW
δgκν(x1)

+ Γµ
κν(x1)

δ2W
δgµν(x1)δgρσ(x2)

]

= 0 (2.31)

8

[

∂ν
δ3W

δgαβ(x3)δgρσ(x2)δgµν(x1)
+
δΓµ

κν(x1)

δgρσ(x2)

δ2W
δgαβ(x3)δgκν(x1)

+
δΓµ

κν(x1)

δgαβ(x3)

δ2W
δgρσ(x2)δgκν(x3)

+
δ2Γµ

κν(x1)

δgρσ(x2)δgαβ(x3)

δW
δgµν(x1)

+ Γµ
κν(x1)

δ3W
δgρσ(x2)δgαβ(x2)δgκν(x1)

]

= 0 , (2.32)

where δ(x1, x2) ≡ δ(x1 − x2) and so on.

As we are interested in the flat space-time limit, we must evaluate 2.31 and (2.32) by

letting the Christoffel symbols go to zero. Another simplification is obtained by noticing

that the Green’s functions
〈

δS
δgµν(x1)

〉

= − δW
δgµν(x1)

(2.33)

and
〈

δ2S
δgµν(x1)δgαβ(x3)

〉

(2.34)

are proportional to massless tadpoles, so that we can ignore them in the following expression

δ2W
δgαβ(x3)δgµν(z)

=

〈

δS
δgµν(x1)

δS
δgαβ(x3)

〉

−
〈

δ2S
δgαβ(x3)δgµν(x1)

〉

=

〈

δS
δgµν(x1)

δS
δgαβ(x3)

〉

.

(2.35)

So the Ward identity for the 2-point function in flat coordinate space-time is immediately

seen to be

∂ν ⟨Tµν(x1)T
ρσ(x2)⟩ = 0, (2.36)

– 10 –



J
H
E
P
0
8
(
2
0
1
2
)
1
4
7

where, due to the vanishing of (2.34), we have set

⟨Tµν(x1)T
ρσ(x2)⟩ ≡ 4

〈

δS
δgµν(x1)

δS
δgρσ(x2)

〉

. (2.37)

Obviously, its form in momentum space, exploiting (2.26), is

pµ ⟨TµνT ρσ⟩ (p) = 0 . (2.38)

The terms surviving in (2.32) are those in the first line. In order to make them explicit, we

evaluate the functional derivative of the Christoffel symbols using (A.3), (A.8) and (A.9),

finding

δΓµ
κν(x1)

δgρσ(x2)
=

1

2
δµα
[

− sρσκν∂α + sρσαν∂κ + sρσακ∂ν

]

δ(x1, x2) , (2.39)

where the s tensor is defined by eq. (A.9) in the appendix. Plugging this into (2.32) and

using (2.37), the second term becomes

8
δΓµ

κν(x1)

δgρσ(x2)

δ2W
δgαβ(x3)δgκν(x1)

=

[

δµρ
〈

T νσ(x1)T
αβ(x3)

〉

∂ν + δµσ
〈

T νρ(x1)T
αβ(x3)

〉

∂ν

−
〈

T ρσ(x1)T
αβ(x3)

〉

∂µ
]

δ(x1, x2) . (2.40)

A completely analogous relation holds for the exchanged term
(

gαβ(x3) ↔ gρσ(x2)
)

.

Finally, we can recast the Ward identity (2.32) in the form

∂ν
〈

Tµν(x1)T
ρσ(x2)T

αβ(x3)
〉

=
[

〈

T ρσ(x1)T
αβ(x3)

〉

∂µδ(x1, x2) +
〈

Tαβ(x1)T
ρσ(x2)

〉

∂µδ(x1, x3)

]

−
[

δµρ
〈

T νσ(x1)T
αβ(x3)

〉

+ δµσ
〈

T νρ(x1)T
αβ(x3)

〉

]

∂νδ(x1, x2)

−
[

δµα
〈

T νβ(x1)T
ρσ(x2)

〉

+ δµβ ⟨T να(x1)T ρσ(x2)⟩
]

∂νδ(x1, x3) , (2.41)

having used the definitions (2.21) and (2.22).

Fourier-transforming according to (2.25) and (2.26), we get the Ward identity in mo-

mentum space that we need, i.e.

kν
〈

TµνTαβT ρσ
〉

(p, q) = pµ
〈

TαβT ρσ
〉

(q) + qµ
〈

T ρσTαβ
〉

(p)

−pν

[

δµβ ⟨T ναT ρσ⟩ (q) + δµα
〈

T νβT ρσ
〉

(q)

]

−qν

[

δµσ
〈

T νρTαβ
〉

(p) + δµρ
〈

T νσTαβ
〉

(p)

]

. (2.42)

Similar Ward identities can be obtained when we contract with the momenta of the other

lines. These are going to be essential in order to test the correctness of the computation

once we turn to perturbation theory.
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2.5 The anomalous Ward identities for the TTT

The anomalous Ward identities for the 3-graviton vertex is obtained after a lengthy compu-

tation, performing two functional variations of (2.7) and taking the flat-space limit, thereby

obtaining

δµν
〈

TµνT ρσTαβ
〉

(p, q) = 4Aαβρσ(p, q)− 2
〈

TαβT ρσ
〉

(p)− 2
〈

T ρσTαβ
〉

(q)

= 4

[

βa

(

[

F
]αβρσ

(p, q)− 2

3

[√
g!R

]αβρσ
(p, q)

)

+βb
[

G
]αβρσ

(p, q)

]

−2
〈

TαβT ρσ
〉

(p)− 2
〈

T ρσTαβ
〉

(q) , (2.43)

where Aαβρσ(p, q) is generated by the anomaly. We remark, if not obvious, that all the

contractions with the metric tensor in the flat spacetime limit (δµν) should be understood

as being 4-dimensional. This is the case for all the anomaly equations. The various

contributions to the trace anomaly are given in terms of the functional derivatives of

quadratic invariants in appendix C. Analogous anomalous Ward identities can be obtained

by tracing the other two pairs of indices.

3 Inverse mappings: the correlators V V V , TOO and TV V in position

space using the Feynman expansion

Having by now defined all the fundamental (anomalous and regular) Ward identities which

allow to test the consistency of all the correlator which we are interested in, we now turn

to provide the expression of these correlators in position space using their realization in

free field theory.

We remind that an important result of [27] is the identification of the solution of the

Ward identities in terms of a set of constants and of certain linearly independent tensor

structures in (Euclidean) position space. Since these same tensor structures must occur in

direct computations of the same vertex functions in free field theories in momentum space,

we can use the one-loop computations of the vertex functions in momentum space to infer

what those tensor structures must be, and find the exact correspondence between CFT

amplitudes in position space and momentum space a posteriori, provided that we have

enough linearly independent vertex functions for different free theories to determine the

linear combinations uniquely. We call this procedure an “inverse mapping”, as it allows to

re-express the correlators of [27] in such a form that their Fourier integrability is explicit.

This result is obtained by pulling out derivatives of the corresponding diagrams in such

a way that integrability becomes trivial. More details on this procedure is contained in

section 8.

We start with the V V V vertex function. The two types of diagrams contributing to

the general conformal expression of the V V V in any dimensions are shown in figure (3).

In [27] the V V V , as all the other correlators, are fixed by general CFT requirements. It

– 12 –
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Figure 1. The fermion and the scalar sectors contributing to the conformal VVV vertex in any
dimension.

takes the form [27]

〈

V a
µ (x1)V

b
ν (x2)V

c
ρ (x3)

〉

=
fabc

(x212)
d/2−1 (x223)

d/2−1 (x231)
d/2−1

{

(a− 2b)X23µX31 ν X12 ρ

−b

[

1

x223
X23µ Iνρ(x23) +

1

x231
X31 ν Iµρ(x31) +

1

x212
X12 ρ Iµν(x12)

]}

, (3.1)

where fabc are the structure constants of the gauge group, Iµν(x) is the inversion operator

defined as

Iµν(x) = δµν − 2
xµxν

x2
(3.2)

and

xij ≡ xi − xj , Xij = −Xji ≡
xik
x2ik

−
xjk
x2jk

, i, j, k = 1, 2, 3 . (3.3)

The correlator is Fourier integrable, although this is not immediately evident from (3.1).

The simplest way to prove this point consists in showing that (3.1) can be reproduced in

d-dimensions by the combination of the scalar and the fermion sectors of a free field the-

ory. For this purpose we use two realizations of the vector current V a
µ , using scalar and

fermion fields

V a
µ = φ∗ta∂µφ− ∂µφ

∗taφ , V a
µ = ψ̄taγµψ . (3.4)

The diagrammatic expansion of this correlator consists of two triangle diagrams, the

direct and the exchanged, both in the scalar and fermion sectors. Using the Feynman rules

in coordinate space we obtain, after some manipulations
〈

V a
µ (x1)V

b
ν (x2)V

c
ρ (x3)

〉

fermion
=

−
cf fabc

(d− 2)3
∆µανβργ∂

α
12∂

β
23∂

γ
31

1

(x212)
d/2−1(x223)

d/2−1(x231)
d/2−1

, (3.5)

〈

V a
µ (x1)V

b
ν (x2)V

c
ρ (x3)

〉

scalar
=

cs fabc

(d− 2)2
(

∂12µ + ∂31µ
) (

∂23ν + ∂12ν
) (

∂31ρ + ∂23ρ
) 1

(x212)
d/2−1(x223)

d/2−1(x231)
d/2−1

(3.6)

where

∆µανβργ =
1

4
Tr [γµγαγνγβγργγ ] , (3.7)
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and cf , cs are normalization constants whose numerical values are irrelevant here. Written

in these forms, the two expressions are manifestly integrable. Tracing over the γ matrices

and applying the derivatives over all the denominators, we generate the result of [27] by

taking a linear combination of these two sectors

〈

V a
µ (x1)V

b
ν (x2)V

c
ρ (x3)

〉

=

(

a taµνρ + b tbµνρ

)

fabc

(x212)
d/2−1(x223)

d/2−1(x231)
d/2−1

(3.8)

where

taµνρ =
1

d(d− 2)2
(

∂12µ + ∂31µ
) (

∂23ν + ∂12ν
) (

∂31ρ + ∂23ρ
)

− 1

d
tbµνρ , (3.9)

tbµνρ = − 1

(d− 2)3
∆µανβργ∂

α
12∂

β
23∂

γ
31 . (3.10)

The equivalence between this expression and eq. (3.1) can be verified explicitly.

3.1 The TOO case

The next correlator that we are going to investigate extensively is the TOO. The structure

of this function in coordinate space — for non coincident points — is given by [27]

⟨Tµν(x1)O(x2)O(x3)⟩ =
a

(x212)
d/2 (x223)

η−d/2 (x231)
d/2

h1µν(X̂23) , (3.11)

where a is a constant, η the dimension of the scalar field O and where

X̂µ =
Xµ√
X2

, h1µν(X̂) = X̂µ X̂ν −
1

d
δµν .

In the short-distance limits of its external points this vertex is singular and needs regular-

ization. In [27] the authors, in their direct solutions of the Ward identites, introduce some

extra terms which are given by

[

Âµν(x12)−Aµν(x12) + Âµν(x31)−Aµν(x31)
] 1

(x223)
η
, (3.12)

where

Aµν(s) =
a

sd

(

sµsν
s2

− 1

d
δµν

)

, Âµν(s) =
a

d

(

∂µ∂ν
d− 2

1

sd−2
+
η − d+ 1

η
Sdδµνδ

d(s)

)

.

(3.13)

These are contact terms. In the expression above Sd denotes the volume of the d-dimensional

sphere, Sd = 2π
1

2 /Γ(d/2). The delta function term in Â reflects the arbitrariness typical

of any regularization scheme, and its coefficient is chosen to satisfy the Ward identities.
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3.1.1 Manifest integrability of the CFT result and comparisons with free field

theory

Expanding the previous expression and bringing it in the derivative form we obtain

⟨Tµν(x1)O(x2)O(x3)⟩ =
a

(d− 2)2

{

(∂12µ ∂
31
ν + ∂12ν ∂

31
µ ) +

d− 2

d
(∂12µν + ∂31µν)

}

1

(x212)
d/2−1(x223)

η−d/2+1(x231)
d/2−1

+a
x212x

2
23 + x231x

2
23 − (x223)

2

(x212)
d/2(x223)

η−d/2+1(x231)
d/2

δµν
d

+ a
η − d+ 1

dη
Sdδµν

δd(x12) + δd(x31)

(x223)
η

, (3.14)

where, from now on, we set ∂12µ ≡ ∂
∂x12µ

and ∂12µν ≡ ∂
∂x12µ

∂
∂x12 ν

.

Notice that the first term of the second line proportional to δµν is not manifestly

integrable. As we have already mentioned, one can use identities such as x212+x213−x223 =

2x12 · x13 in order to rewrite it in the form

x212 x
2
23 + x231 x

2
23 − (x223)

2

(x212)
d/2 (x223)

d/2 (x231)
d/2

=
2

(d− 2)2
∂12µ ∂

31µ 1

(x212)
d/2−1(x231)

d/2−1(x223)
η−d/2+1

(3.15)

which shows its integrability when η < d− 1.

In order to test the consistency of the result (3.11) obtained from the application of the

conformal Ward identities for the TOO, we can consider a particular scalar free field theory.

We suppose for instance that the scalar operator O is given by O = φ2 with dimensions

η = d− 2, whose energy-momentum tensor T is given by

Tµν = ∂µφ∂νφ− 1

2
δµν ∂αφ∂

αφ+
1

4

d− 2

d− 1

[

δµν∂
2 − ∂µ ∂ν

]

φ2 (3.16)

which is conserved and traceless in d dimensions.

Using the Feynman rules in coordinate space together with the expression of a scalar

propagator we obtain the Tφ2φ2 correlation function

〈

Tµν(x1)φ
2(x2)φ

2(x3)
〉

=

2a(d− 1)

d(d− 2)2

[

∂12µ ∂
31
ν + ∂12ν ∂

31
µ − δµν∂

12 · ∂31 − d− 2

2(d− 1)

(

− ∂12µν − ∂31µν + ∂12µ ∂
31
ν

+∂12ν ∂
31
µ + δµν

(

∂212 + ∂231 − 2∂12 · ∂31
)

)]

1

(x212)
d/2−1(x223)

d/2−1(x231)
d/2−1

−a
d− 1

d(d− 2)
Sdδµν

δd(x12) + δd(x31)

(x223)
d−2

. (3.17)

The equivalence of this expression with the solution given in (3.11) can be explicitly checked

by performing the derivative of (3.17) and expanding the result. We remark that (3.17)

is clearly integrable and does not require any intermediate regularization. The first term

in the previous expression comes from the triangle topology diagram while the last two,

proportional to the delta functions, are contact terms with two-point topology.
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3.2 The TV V case: integrability and free field theory realization

To identify the diagrammatic structure of the TV V correlator we can proceed with an

inverse mapping. In fact, we know from [27] that such solution is characterized by 2

constants when the 3 external coordinates (x1, x2, x3) are separated. This homogeneous

solution has to be modified by the additions of extra contact terms (A − Â) terms which

have the topology of 2-point functions.

The homogeneous solution is then modified further by the addition of a 1/ϵ counterterm

— in dimensional regularization — to regulate its ultraviolet behaviour. This regularization

procedure is crucial to obtaining the anomalous contribution. We will come to a discussion

of this point once we move completely to momentum space. Before that let us provide a

diagrammatic interpretation of the various contributions to this correlators, except for the

contribution coming from the counterterm, using the information that in any dimension

this can be constructed as a linear combination of two independent sectors, the fermion

and the scalar. Therefore we get

〈

Tµν(x1)V
a
α (x2)V

b
β (x3)

〉

=
∑

I=f,s

(

〈

Tµν(x1)V
a
α (x2)V

b
β (x3)

〉I

A=0
+

〈

δTµν(x1)

δAaα(x2)
V b
β (x3)

〉I

A=0

+

〈

δTµν(x1)

δAbβ(x3)
V a
α (x2)

〉I

A=0

)

(3.18)

where the sum is over the fermion (f) and scalar (s) sectors. In a diagrammatic expansion,

all the terms above have a diagrammatic interpretation, which will turn useful in order to

derive an integrable expression of this vertex.

Using the Feynman rules in configuration space one can obtain the following parame-

terization of the TV V vertex for fermions within the loop,

〈

Tµν(x1)V
a
α (x2)V

b
β (x3)

〉f

A=0
=

c δab

d(d− 2)3
Aµνξη∆ξρασβλ (∂

12
η + ∂31η ) ∂ρ12∂

σ
23∂

λ
31

× 1

(x212)
d/2−1(x223)

d/2−1(x231)
d/2−1

, (3.19)

where ∆µρασβλ is defined in eq. (3.7) and Aµνρσ in appendix D. This contribution alone is

not sufficient to satisfy all the inhomogeneous Ward identities and we must consider also

the contributions coming from the contact terms. In the framework of the analysis of [27],

in which the correlation functions are obtained exploiting the symmetries without any

reference to their perturbative structure, this is less evident. In fact in [27] the arbitrariness

in the regularization procedure is exploited in order to impose the Ward identities by

hand. This is achieved by introducing the differentially regulated expressions proportional

to A− Â, which will be given below. These terms exactly correspond to the contributions

proportional to 2-point functions discussed above, as we are going to show in a moment.
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The two contact terms identified by the diagrammatic expansion are given by
〈

δTµν(x1)

δAaα(x2)
V b
β (x3)

〉f

A=0

=
c δab

d(d− 2)2
Sdδ

d(x12)∆
(2)
µναβρσ∂

ρ
31

1

(x231)
d/2−1

∂σ31
1

(x231)
d/2−1

(3.20)
〈

δTµν(x1)

δAbβ(x3)
V a
α (x2)

〉f

A=0

=
c δab

d(d− 2)2
Sdδ

d(x31)∆
(2)
µνβαρσ∂

ρ
12

1

(x212)
d/2−1

∂σ31
1

(x212)
d/2−1

(3.21)

with

∆(2)
µναβρσ = δανδβσδµρ + δαµδβσδνρ + δανδβρδµσ + δαµδβρδνσ − δανδβµδρσ − δαµδβνδρσ

−2 δµν (δαρδβσ + δασδβρ − δαβδρσ) . (3.22)

In the scalar sector the TV V correlation function can be recast in the manifestly integrable

form as
〈

Tµν(x1)V
a
α (x2)V

b
β (x3)

〉s

A=0
= c δab

2(d− 1)

d(d− 2)3

[

∂12µ ∂
31
ν + ∂12ν ∂

31
µ − δµν∂

12 · ∂31

− d− 2

2(d− 1)

(

− ∂12µν − ∂31µν + ∂12µ ∂
31
ν + ∂12ν ∂

31
µ + δµν

(

∂212 + ∂231 − 2∂12 · ∂31
)

)]

×

×
(

∂12α + ∂23α
) (

∂31β + ∂23β
) 1

(x212)
d/2−1(x223)

d/2−1(x231)
d/2−1

. (3.23)

This contribution originates only from the triangle diagram. This term corresponds to
the expression given in [27] (for non coincident points) for the same correlator. The only
differences are in the ∂212 and ∂231 terms which are proportional to δµν , which vanish in the
non-coincident point limit and are given by

− c δab

d(d− 2)2
δµν

(

∂212 + ∂231
) (

∂12α + ∂23α
) (

∂31β + ∂23β
) 1

(x2
12)

d/2−1(x2
23)

d/2−1(x2
31)

d/2−1

=
2c δab

d(d− 2)
Sdδµν

[

∂23α
(

∂31β + ∂23β
) δd(x12)

(x2
23)

d/2−1(x2
31)

d/2−1
+ ∂23β

(

∂12α + ∂23α
) δd(x31)

(x2
12)

d/2−1(x2
23)

d/2−1

]

.

(3.24)

They have the topology of 2-point functions. These terms, together with those arising from

the triangle diagrams, correspond exactly to those identified as A−Â [27], which have been

introduced in order to satisfy the Ward identities (contact terms)
〈

δTµν(x1)

δAaα(x2)
V b
β (x3)

〉s

A=0

=
c δab(d− 1)

d(d− 2)2
Sdδ

d(x12)×

×
(

(∂23µ + ∂31µ )δνα + (∂23ν + ∂31ν )δµα − δµν(∂
23
α + ∂31α )

)

×

×(∂23β + ∂31β )
1

(x231)
d/2−1(x223)

d/2−1
(3.25)

〈

δTµν(x1)

δAbβ(x3)
V a
α (x2)

〉s

A=0

=
c δab(d− 1)

d(d− 2)2
Sdδ

d(x31)×

×
(

(∂23µ + ∂12µ )δνβ + (∂23ν + ∂12ν )δµβ − δµν(∂
23
α + ∂12β )

)

×

×(∂23α + ∂12α )
1

(x212)
d/2−1(x223)

d/2−1
. (3.26)
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This expression is in complete agreement with the solution given in [27], to which we refer

for further details

〈

Tµν(x1)V
a
α (x2)V

b
β (x3)

〉

=
δab

(x212)
d/2 (x231)

d/2 (x223)
d/2−1

Iασ(x12) Iβρ(x31) tµνρσ(X23)

−δab
[

Aµναρ(x12)− Âµναρ(x12)
] Iρβ(x23)

(x223)
d−1

−δab
[

Aµνσβ(x31)− Âµνσβ(x31)
] Iσα(x23)

(x223)
d−1

, (3.27)

which is expressed in terms of tensor structures whose coefficients, denoted as a, b, c and e

in [27], satisfy two constraint equation, and of contact terms A and Â which are given in [27].

For this reason, only 2 independent constants are left free to parameterize any conformal

correlator of this type in d dimensions. In the notation of [27] e = 0 and hence b = 0,

so that there is only one independent structure. A final comment concerns the issues of

renormalization. These expressions are unrenormalized. The issue of renormalization will

be addressed by discussing in parallel the position and the momentum space approaches,

that we will do starting from the next section. For this reason we turn to specific realizations

of theories containing scalars and fermions — which are conformal in any dimension —

and vectors, which are conformal for d = 4.

4 The TTT amplitude

4.1 The correlator

Now we are ready to turn to the analysis of the 3-graviton vertex. The general structure

of the < TTT > correlator in momentum space is [27]

〈

Tµν(x1)T
ρσ(x2)T

αβ(x3)
〉

=
1

(x212)
d/2 (x223)

d/2 (x231)
d/2

Iµνµ′ν′ Iρσρ′σ′

tµ
′ν′ρ′σ′αβ(X12)

(4.1)

Iµν,αβ(s) = Iµρ(s)Iνσ(s)ϵT
ρσ,αβ , s = x− y (4.2)

where

ϵT
µν,αβ =

1

2
(δµαδνβ + δµβδνα

)

−1

d
δµνδαβ (4.3)

is the projector onto the space of symmetric traceless tensors.

We perform the computation of the 3-graviton vertex TTT in free field theory, for d =

4, in all its 3 relevant sectors, the conformally coupled scalar, the fermion and the vector,

since in this case the general solution of the Ward identities, for any CFT, is parameterized

by 3 independent constants. This corresponds to the most general anomalous solution. For

d ̸= 4 the spin-1 sector is not conformally invariant and we can’t build the general expression

just by superposing the scalar and the fermion sectors. However, the combination of the

scalar and the fermion sectors corresponds to an anomaly-free special solution also for

generic d [18].
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q
→

p
→

k
→

k
→

q
→

p
→

k
→

q
→

p
→

q
→

p
→

k
→

Figure 2. One loop expansion of the 3-graviton vertex. Shown here are the general topologies, i.e.
the triangle and the self-energy type (T-bubble) contributions for the fermion case. The general
correlator for any CFT in d = 4 can be obtained by adding to these diagrams similar ones where
the fermion is replaced by a scalar and a photon in the loops. Ghost corrections follow the same
topologies.

As we have already mentioned above, the correctness of our results has been checked

first by a complete test of all the Ward identities for each case, which is already a nontrivial

test to pass, given the large complexity of the computations. At the same time we will

show that the counterterm introduced in [18, 27] in position space, which is extracted

from the general expression of the trace anomaly when d = 4, coincides with that required

in momentum space using dimensional regularization. The connection between the two

methods will be discussed thoroughly.

4.2 Inverse mapping for the TTT amplitude

As done before for the ⟨V V V ⟩, ⟨TOO⟩ and ⟨TV V ⟩ correlators, here we check the result (4.1)

building explicitly the correlator from the diagrammatic expansion in free field theory. This

allows to come up with an expression for this vertex which is manifestly integrable. We will

be using the Feynman rules obtained from the Lagrangian descriptions for scalars, fermions

and spin 1 in configuration space, given in section 5. We start testing the non-coincident

case, for which we can omit the contact terms. This corresponds to the “bulk” contribution

to the correlator, which involves only the triangle topology. We give the d-dimensional

expression for the scalar and the fermion cases, while — as already remarked — we have

to limit our analysis to d = 4 for the spin-1 vector. Moreover, in the vector case the gauge-

fixing and ghost parts of the amplitude have to cancel since the vertex is obviously gauge

invariant. This has been explicitly verified in the computation in momentum space (see

section 6.4). So, in performing our inverse mapping, we include in the interactions vertices

only the Maxwell Ṽ contributions, omitting ghosts and gauge-fixing terms. We have

〈

δS
δgµν(x1)

δS
δgρσ(x2)

δS
δgαβ(x3)

〉S

= CS
TTTV

µν
Tφφ(i ∂

12,−i ∂31)V ρσ
Tφφ(i ∂

23,−i ∂12)V αβ
Tφφ(i ∂

31,−i ∂23)

× 1

(x2
12)

d/2−1 (x2
23)

d/2−1 (x2
31)

d/2−1
, (4.4)
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〈

δS
δgµν(x1)

δS
δgρσ(x2)

δS
δgαβ(x3)

〉F

=

CF
TTT (−1)

(

Tr
[

V µν
T ψ̄ψ

(i∂12,−i∂31)iγ · ∂12V ρσ
T ψ̄ψ

(i∂23,−i∂12)iγ · ∂23V αβ
T ψ̄ψ

(i∂31,−i∂23)iγ · ∂31
]

+Tr
[

V µν
T ψ̄ψ

(i ∂31,−i ∂12) i γ · ∂31 V αβ
T ψ̄ψ

(i ∂23,−i ∂31) i γ · ∂12 V ρσ
T ψ̄ψ

(i ∂12,−i ∂23) i γ · ∂12
]

)

× 1

(x2
12)

d/2−1 (x2
23)

d/2−1 (x2
31)

d/2−1
, (4.5)

〈

δS
δgµν(x1)

δS
δgρσ(x2)

δS
δgαβ(x3)

〉V

=

CV
TTT (−1)3 Ṽ µνγδ

TAA (i ∂12,−i ∂31) Ṽ ρσζξ
TAA (i ∂23,−i ∂12) Ṽ αβχω

TAA (i ∂31,−i ∂23) × δγξ δδχδζω
x2
12 x

2
23 x

2
31

. (4.6)

Notice that this last term enters only for d = 4. Here and in the following, the dependences

of the vertices on the coordinates are obtained by replacing the momenta of (5) with

appropriate derivatives respect to the external position variables. For instance

V µν
Tφφ(p, q) → V µν

Tφφ(p̂, q̂) = V µν
Tφφ(i ∂

12,−i ∂23) (4.7)

with

p̂ → i ∂12 q̂ → −i ∂23 (4.8)

Explicitly

V µν
Tφφ(i ∂

12,−i ∂23) = =
1

2
(i ∂12α) (−i ∂23β)C

µναβ

+χ

(

δµν (i ∂12 − i ∂23)
2 − (i ∂µ12 − i ∂µ23) (i ∂

ν
12 − i ∂ν23)

)

. (4.9)

The replacements of p, q and l, by the operatorial expressions p̂, q̂ and l̂ in 2.3–2.5 are

specific for each vertex. In appendix E we provide some more details on this procedure.

Notice that we have chosen the coupling parameter for the scalar field in d dimensions at

the corresponding conformal value χ = (d− 2)/4(d− 1).

Expanding the derivatives contained in each vertex, the expression given in (4.1) is

recovered by setting

CS
TTT = − 8

S3
d (d− 2)3

, CF
TTT =

2d/2+1

S3
d (d− 2)3

, CV
TTT =

1

S3
4

. (4.10)

We compute next the contributions with the topology of 2-point functions, which are needed

to account for the behavior of the vertex in the short distance limit. In coordinate space

we can write them in a manifestly integrable form by pulling out derivatives in the same

way as for the triangle diagram. We replace the momenta with derivatives with respect to

the corresponding coordinates acting on propagators, obtaining very compact expressions

for the vertex. We offer a few more details on this computation in appendix E, quoting

here the result. In the scalar case we have
〈

δ2S
δgµν(x1)δgαβ(x3)

δS
δgρσ(x2)

〉S

=
CS

Q

2
V ρσ
Tφφ(i ∂

23,−i ∂12)V µναβ
TTφφ(i ∂

12,−i ∂23, i ∂23 − i ∂31)

× δ(d)(x31)

(x2
12)

d/2−1(x2
23)

d/2−1
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〈

δ2S
δgµν(x1)δgρσ(x2)

δS
δgαβ(x3)

〉S

=
CS

P

2
V αβ
Tφφ(i ∂

31,−i ∂23)V µναβ
TTφφ(i ∂

23,−i ∂31,−i ∂23 + i ∂12)

× δ(d)(x12)

(x2
23)

d/2−1(x2
31)

d/2−1

〈

δ2S
δgαβ(x3)δgρσ(x2)

δS
δgµν(x1)

〉S

=
CS

K

2
V µν
Tφφ(i ∂

12,−i ∂31)V αβρσ
TTφφ(i ∂

31,−i ∂12, i ∂12 − i ∂23)

× δ(d)(x23)

(x2
12)

d/2−1(x2
31)

d/2−1
. (4.11)

Notice that in the three contributions above, the p, q, and l dependence of the vertices

correspond to mappings into p̂, q̂ and l̂ which are specific for each T-bubble. Similarly, in

the fermion sector we obtain
〈

δ2S
δgµν(x1)δgαβ(x3)

δS
δgρσ(x2)

〉F

=

−CF
Q δ

(d)(x31) tr
[

V µναβ
TT ψ̄ψ

(i ∂12,−i ∂23) i γ · ∂12V ρσ
T ψ̄ψ

(i ∂23,−i ∂12) i γ · ∂23
]

× 1

(x223)
d/2−1(x212)

d/2−1
, (4.12)

and similar expressions for the k− and p-bubles. Finally, for the spin-1 vector field we

obtain
〈

δ2S
δgµν(x1)δgαβ(x3)

δS
δgρσ(x2)

〉V

=

CV
Q

2
δ(d)(x31) Ṽ

µνραβχ
TTAA (i ∂12,−i ∂23) Ṽ ρστω

TAA (i ∂23,−i ∂12)
δζτ δχω
x212 x

2
23

, (4.13)

and similarly for the other bubble-type contributions.

Notice that this expression is affected by terms proportional to derivatives of δ func-

tions. We refer to appendix E for more details on the specific structures of these terms in

momentum space, where we illustrate this point in a simple case. The complete structure

of the TTT vertex in position space is obtained by combining the triangle and the “K”,“P”

and “Q”-bubble topologies in the form

〈

Tµν(x1)T
ρσ(x2)T

αβ(x3)
〉

=
∑

I=S,F,V

8

[

−
〈

δS
δgµν(x1)

δS
δgσρ(x3)

δS
δgαβ(x2)

〉I

+

〈

δ2S
δgµν(x1) δgαβ(x3)

δS
δgρσ(x2)

〉I

+

〈

δ2S
δgµν(x1) δgρσ(x2)

δS
δgαβ(x3)

〉I

+

〈

δ2S
δgαβ(x3) δgρσ(x2)

δS
δgµν(x1)

〉I ]

.

(4.14)

This expression is in agreement with the form of the energy-momentum tensor three point

function given in [27]. The integrability of this result is manifest, due to the (d/2 − 1)

exponent of each propagator in position space, which corresponds, generically, to a 1/l2

behavior in momentum space. The vector terms, which exist in d = 4 are, obviously,

Fourier integrable.
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5 Moving to momentum space using Lagrangian realizations

At this point we use again the free field theory representation of these correlators to study

their expression in momentum space. This will allow us to perform a direct comparison

between position space and momentum space approaches for correlators affected by the

trace anomaly. We start by investigating the perturbative structure of these theories and

derive the corresponding vertices.

The actions for the scalar and the fermion field are respectively

Sscalar =
1

2

∫

d4x
√
g

[

gµν ∇µφ∇νφ− χRφ2
]

, (5.1)

Sfermion =
1

2

∫

d4xV Vα
ρ

[

ψ̄ γα (Dρ ψ)− (Dρ ψ̄) γ
α ψ

]

, (5.2)

where χ is the parameter corresponding to the “improvement term”, that we have chosen

to be 1/6 in the diagrammatic calculation so to deal with the classically conformal invariant

theory. Vα
ρ is the vielbein and V (=

√
g) its determinant, needed in such a way to embed

the fermion in the curved background, with its covariant derivative Dµ as

Dµ = ∂µ + Γµ = ∂µ +
1

2
Σαβ Vα

σ∇µ Vβσ . (5.3)

The Σαβ are the generators of the Lorentz group in the case of a spin 1/2-field.

The action S for the photon field is given by

Sphoton = SM + Sgf + Sgh , (5.4)

where the three contributions are the Maxwell action, the gauge fixing contribution and

the ghost action

SM =
1

4

∫

d4x
√
g FαβFαβ , (5.5)

Sgf =
1

2ξ

∫

d4x
√
g (∇αA

α)2 (5.6)

Sgh = −
∫

d4x
√
g ∂αc̄ ∂αc . (5.7)

We will be using Euclidean conventions for the generating functional, given by

W =
1

N

∫

DAµDc̄Dc e−SE [Aµ,c̄,c] . (5.8)

We will omit the “E” subscript from now on, as already done in (2.6), to keep our nota-

tion easy.

The energy-momentum tensor is defined in (2.4), which becomes, in the fermionic case,

Tµν = − 1

V
V αµ δS

δV α
ν
. (5.9)
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Figure 3. List of the vertices used in the Lagrangian mapping of the conformal correlators

This tensor is not symmetric in general, but its antisymmetric parts do not contribute to

our calculations, so that, for our purposes, we can adopt the symmetric definition

Tµν def
≡ − 1

2V

(

V αµ δ

δV α
ν
+ V αν δ

δV α
µ

)

S (5.10)

as well. The energy-momentum tensors for the scalar and the fermion are

Tµν
scalar = ∇µφ∇νφ− 1

2
gµν gαβ ∇αφ∇βφ+ χ

[

gµν!−∇µ∇ν +
1

2
gµν R−Rµν

]

φ2

(5.11)

Tµν
ferm =

1

4

[

gµρ Vα
ν + gνρ Vα

µ − 2 gµν Vα
ρ

][

ψ̄ γα (Dρ ψ)−
(

Dρ ψ̄
)

γα ψ

]

, (5.12)

while the energy-momentum tensor for the photon field is given by the sum of three terms

Tµν
QED = Tµν

M + Tµν
gf + Tµν

gh , (5.13)

with

Tµν
M = FµαF ν

α − 1

4
gµνFαβFαβ , (5.14)

Tµν
gf = −1

ξ

{

Aµ∇ν(∇ρA
ρ) +Aν∇µ(∇ρA

ρ)− gµν [Aρ∇ρ(∇σA
σ) +

1

2
(∇ρA

ρ)2]

}

, (5.15)

Tµν
gh = gµν∂ρc̄ ∂ρc− ∂µc̄ ∂νc− ∂ν c̄ ∂µc . (5.16)

The computation of the vertices can be done by taking (at most) two functional derivatives

of the action with respect to the metric, since the vacuum expectation values of the third

order derivatives correspond to massless tadpoles, which are zero in dimensional regular-

ization. Given the complexity of the result and to avoid any error, we have checked that all

the expressions obtained for the 1-loop vertices satisfy the corresponding Ward identities

derived in the previous sections. They are given in figure 3 and their explicit expressions

have been collected in appendix D.
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5.1 The interpretation of the counterterms: the TT case

In this section we begin a discussion of the structure of anomalous correlators in mo-

mentum space, starting, for simplicity, from the TT case in the conformal limit. In the

non-conformal case this correlator has been investigated in [5, 6] in the worldline approach.

This is a warm-up case before the more involved analysis of the 3-point functions that

we will discuss afterwards. As we are going to see, the interpretation of the anomaly

and of its origin, in the process of renormalization, can be different in position and in

momentum space. In fact, the anomaly can be attributed either to the specific structure

of the counterterm in dimensional regularization, which violates conformal invariance in d

dimensions, while being traceless in d = 4 or, alternatively, to the renormalized amplitude

in d=4. In this second case the anomaly emerges as a feature of the d = 4 renormalized

amplitude and, specifically, of its 4-dimensional trace.

In the TT case conformal symmetry fixes this correlator up to constant, and one

can proceed with the Fourier transform without resorting to a specific free field theory

realization. Using the inversion matrix in Euclidean space, we define the conformal energy-

momentum tensor two-point function as

〈

Tµν(x)Tαβ(y)
〉

=
CT

s2d
Iµν,αβ(s) , (5.17)

where Iµν,αβ(s) was defined in (4.2) and (4.3).

In order to move in the framework of differential regularization, we pull out some

derivatives and rewrite our correlator as

〈

Tµν(x)Tαβ(0)
〉

=
CT

4(d− 2)2d(d+ 1)
∆̂(d)µναβ 1

x2d−4
, (5.18)

where

∆̂(d)µναβ =
1

2

(

Θ̂µαΘ̂νβ + Θ̂µβΘ̂να
)

− 1

d− 1
Θ̂µνΘ̂αβ , with Θ̂µν = ∂µ∂ν − δµν !

(5.19)

∂µ ∆̂
(d)µναβ = 0 , δµν ∆̂

(d)µναβ = 0 . (5.20)

For reasons that will be discussed in section 8, this form of the TT correlator is Fourier-

integrable, although it is characterized by a UV divergence as x → y. To move to momen-

tum space we can split the 1/(x2)d−2 term into the product of two 1/(x2)d/2−1 factors and

apply straightforwardly the fundamental transform (c.f. eq. (8.1)), obtaining

〈

Tµν Tαβ
〉

(p) ≡
∫

ddx
〈

Tµν(x)Tαβ(0)
〉

e−i p·x

=
CT

4(d− 2)2d(d+ 1)

∫

ddx e−i p·x ∆̂(d)µναβ 1

(x2)d/2−1

1

(x2)d/2−1

=
(2π)dC(d/2− 1)2CT

4(d− 2)2d(d+ 1)
∆(d)µναβ(p)

∫

ddl
1

l2(l + p)2
. (5.21)
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We have also defined

Θµν(p) = δµν p2 − pµ pν (5.22)

∆(d)µναβ(p) =
1

2

(

Θµα(p)Θνβ(p) +Θµβ(p)Θνα(p)

)

− 1

d− 1
Θµν(p)Θαβ(p) (5.23)

as the momentum space counterparts of the two operators previously introduced. In our

notations ∆(4)µναβ is obtained from the expression above by setting d = 4. The tensor

indices, however, are still running from 0 to d− 1.

Notice that in d dimensions the TT correlator is anomaly-free (i.e. traceless)

δµν
〈

Tµν Tαβ
〉

(p) = δαβ
〈

Tµν Tαβ
〉

(p) = 0 . (5.24)

As we move to d = 4 the correlator in momentum space has a UV singularity, coming from

the 2-point integral

B0(p
2) =

1

π2

∫

ddl
1

l2 (l + p)2
=

[Γ(1− ϵ/2)]2 Γ(ϵ/2)

Γ(2− ϵ)

1

(π p2)ϵ/2

=
2

ϵ̄
+ 2 + ln

(

µ2

p2

)

+O(ϵ) , (5.25)

where ϵ = 4 − d and we have introduced the quantity 2
ϵ̄ = 2

ϵ − γ − lnπ, typical of the

modified minimal subtraction (MS) scheme. If we work in position space, renormalization

is enforced by adding a local (i.e. ∼ δ(x−y)) counterterm of the form c1/ϵ̄ ∆̂(4)µναβ δ(x−y).

The regulated correlator in d = 4 is then defined as

〈

Tµν(x)Tαβ(0)
〉

=
CT

4(d− 2)2d(d+ 1)
∆̂(d)µναβ 1

x2d−4
+

c1
ϵ̄
∆̂(4)µναβ δd(x− y) . (5.26)

Notice that the counterterm is traceless for d = 4 (i.e. contracting the indices with a 4-

dimensional metric) but not in general dimensions. Therefore, if we split the d-dimensional

metric (δ(d)µν ) as a direct sum (⊕) of a 4-dimensional (δµν ≡ δ(4)µν ) and of a (d−4)-dimensional

metrics acting on the subspaces M4 and Md−4 (i.e. Md = M4 ⊕Md−4) we obtain

δ(d)µν ∆̂
(4)µναβ = δ(4)µν ∆̂

(4)µναβ + δ(d−4)
µν ∆̂(4)µναβ = δ(d−4)

µν ∆̂(4)µναβ (5.27)

and using the relation

δ(4)µν ∆̂
(4)µναβ = 0 (5.28)

we find that the d-dimensional trace of ∆̂(4) is O(ϵ)

δ(d)µν ∆̂(4)µναβ = − ϵ
3
! Θ̂αβ . (5.29)

If we now use the relation δµν∆̂(d)µναβ = 0, it is clear that the trace of renormalized TT

correlator gives the correct anomaly. In particular, the trace operation cancels the 1/ϵ pole

of the counterterm

δ(d)µν

〈

Tµν(x)Tαβ(0)
〉

= c1
1

ϵ̄
δ(d−4)
µν ∆̂(4)µναβ δd(x− y)

=
c1
3

[

−1 +
ϵ

2
(γ + lnπ)

]

!Θ̂αβ δd(x− y) (5.30)
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which is finite as ϵ → 0 and reproduces the expected anomaly. The selection of the

counterterm is in agreement with the anomalous Ward identity of the 2-point function

in momentum space. This can be checked directly from eq. (2.1), by computing its first

functional derivative around flat space, which leaves !R as the only contribution to the

TT anomaly

δ(4)µν

〈

Tµν Tαβ
〉

(p) = 2βc
[

!R
]αβ

(p) = 2βc p
2Θαβ(p) . (5.31)

Below we will be omitting the subscript (4) when referring to a 4-dimensional kronecker

δµν , unless it is strictly necessary for clarity.

In the expression above, we have introduced the notation
[

!R
]αβ

(p) to indicate the

Fourier-transformed functional derivative of the box (!) of the scalar curvature evaluated

in the limit of flat spacetime. The last two equations allow us to fix the final structure of

the fully renormalized correlator in the form

〈

Tµν Tαβ
〉

ren
(p) =

〈

Tµν Tαβ
〉

bare
(p) + 6

βc
ϵ̄
∆(4)µναβ(p)

=
〈

Tµν Tαβ
〉

bare
(p)− 4

βa
ϵ̄
∆(4)µναβ(p) , (5.32)

where we have used in the last step eq. (2.3).

In position space, as clear from (5.30), the anomaly can be attributed to the countert-

erm. This approach allows to write down the solution of the Ward identities as an anomaly

free solution (for x ̸= y) superimposed to the inhomogenous terms, exactly as stated in

eq. (5.26). This procedure is general, and can be applied to any correlator.

It is instructive, for comparison, to comment on the same approach in dimensional

regularization working in momentum space. One can start from a field theory realization

of the same (unrenormalized) correlator obtaining

〈

Tµν Tαβ
〉

(p) =

{

1

2

[

Θµα(p)Θνβ(p) +Θµβ(p)Θνα(p)
]

− 1

3
Θµν(p)Θαβ(p)

}

C1(p)

+
1

3
Θµν(p)Θαβ(p)C2(p)

≡ ∆(4)µναβ(p)C1(p) +
1

3
Θµν(p)Θαβ(p)C2(p) , (5.33)

where the form factors are given, in the cases of a conformally coupled scalar, a Dirac

fermion and a photon, by

C1(p)

∣

∣

∣

∣

conf.scalar

=
16 + 15B0(p2)

14400π2
C2(p)

∣

∣

∣

∣

conf.scalar

= − 1

1440π2
, (5.34)

C1(p)

∣

∣

∣

∣

Dir.fermion

=
2 + 5B0(p2)

800π2
, C2(p)

∣

∣

∣

∣

Dir.fermion

= − 1

240π2
, (5.35)

C1(p)

∣

∣

∣

∣

photon

=
−11 + 10B0(p2)

800π2
, C2(p)

∣

∣

∣

∣

photon

= − 1

120π2
. (5.36)

Notice that the singularity of eq. (5.33) is contained in the expressions of C1(p) due to

the presence of the scalar 2-point function B0 which needs to be renormalized. The constant
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terms in these coefficients are due to the mass-independent renormalization of the correla-

tor, here performed in dimensional regularization, which, for each separate case, conformal

scalar, fermion and photon, can be absorbed into a redefined renormalization scale µ. The

two structures in the last line of (5.33) separately respect the energy-momentum conser-

vation Ward identity for the 2-point function 2.38, but only the first one, ∆(4)αβρσ(p), is

traceless in d = 4, while tracing the second we obtain the anomalous relation

δµν
1

3
Θµν(p)Θαβ(p) = p2Θαβ(p) . (5.37)

The singular contribution in eq. (5.33) can be eliminated by the ordinary renormalization

procedure, leaving a result that is finite and whose trace can be taken directly in 4 dimen-

sions. In this approach the anomaly can be attributed to the regularization procedure and

not directly to the counterterm, which is traceless (compare (5.27) for d = 4), while it is

the finite part of the correlator, going like C2(p), to be anomalous.

The complete TT correlation function and its positive spectral functions were calcu-

lated in both the tensor and scalar sectors for a scalar field of arbitrary mass and curvature

coupling ξ in 4-dimensions in [1]. In the case of general mass and ξ, conformal invariance

does not hold and the second tensor structure in (5.33) is always present. By taking ξ = 1/6

and the limit of zero mass, one can also see from the spectral function approach in [1] how

the trace anomaly appears.

As in the case of the chiral anomaly, a dispersive analysis shows that the spectral

density of an anomalous correlator is affected, under certain circumstances, by typical

contributions which amount to anomaly poles. Anomaly poles emerge from a collinear

configuration of a certain amplitude interpreted as a real space-time (on-shell) process.

Similar poles have been found in the TT case in 2-dimensions [7]. In higher dimensions

because of the kinematics explained in [11] one must go at least to triangle amplitudes at

least as complicated as TV V or TTT in order to find these pole terms.

We have stressed this point to emphasize that the approach followed in position space,

which consists in the addition of a contact counterterm to regulate the anomaly, is not

in contradiction with the ordinary diagrammatic picture. It simply doesn’t give the com-

plete kinematical understanding of the origin of the anomaly, which the spectral function

dispersive approach attributes to the existence of a collinear region in the (anomalous)

diagrams of the perturbative expansion. In the following, we will try to match these two

quite different descriptions by discussing more complex correlators.

6 The counterterm for the TV V in position and in momentum space

We now turn to the question of the renormalization of TV V correlator in d = 4 dimensions.

This can be performed either 1) by solving the renormalized Ward identities in position

space or 2) by a perturbative computation in momentum space of all the diagrams in

dimensional regularization. The two methods are obviously quite different and the goal of

this section is to test their correspondence, given the results of [27].

As already emphasized in section (5.1), the renormalized 3-point functions have to sat-

isfy the requirement of general covariance as well as renormalized anomalous Ward identi-
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ties. The solution of these identities can be directly found by rewriting them in momentum

space. For the ⟨TV V ⟩ case, the requirement of general covariance is also supplememented

with gauge current conservation. If we denote our counterterm byDµναβ(p, q), the algebraic

conditions satisfied by the counterterm are given by

(p+ q)µDµναβ(p, q) = qν Θαβ(p)− δνβ q
µΘµα(p) + pν Θαβ(q)− δνα p

µΘµβ(q) ,

pαDµναβ(p, q) = qβ Dµναβ(p, q) = 0 , (6.1)

with Θαβ(p) being the counterterm for the vector-vector 2-point function. In fact, the

equations above are just the divergent parts of the general covariance and gauge invariance

Ward identities for our three point function,

(p+ q)µ
〈

Tµν V
a
α V

b
β

〉

(p, q) = qν
〈

V a
α V

b
β

〉

(p)− δνβ q
µ
〈

V a
µ V

b
α

〉

(p) +

pν
〈

V a
α V

b
β

〉

(q)− δνα p
µ
〈

V a
µ V

b
β

〉

(q) ,

pα
〈

Tµν V
a
α V

b
β

〉

(p, q) = qβ
〈

Tµν V
a
α V

b
β

〉

(p, q) = 0 . (6.2)

To see how they arise, we introduce the counterterms for the two correlators at hand,

modulo two constants
〈

V a
α V

b
β

〉

ren
(p) =

〈

V a
α V

b
β

〉

bare
(p) +

1

ϵ
CV V Θαβ(p) ,

〈

Tµν V
a
α V

b
β

〉

ren
(p, q) =

〈

Tµν V
a
α V

b
β

〉

bare
(p, q) +

1

ϵ
CTV V Dµναβ(p, q) . (6.3)

Replacing them in (6.2) and equating the coefficients of the 1/ϵ terms we immediately

obtain (6.1) and the condition CV V = CTV V . These constraints are sufficient to state that

the counterterm is

Dµναβ(p, q) = δαβ (pµ qν + qµ pν) + p · q (δµβ δνα + δµα δνβ)

−(δβν pµ + δβµ pν) qα − (δµα qν + δαν qµ) pβ − δµν (p · q δαβ − qα pβ) . (6.4)

A consistency condition on this tensor, which is easily seen to be satisfied, is that the trace

anomaly constraint in d dimensions,

δµν Dµναβ(p, q) = (4− d) (p · q δαβ − qα pβ) ≡ ϵ (p · q δαβ − qα pβ) (6.5)

reproduces the anomaly.

It is instructive to see how the same operation can be performed diagrammatically. For

this purpose we just recall that the general form of the TV V amplitude can be expanded

in a basis of 13 tensor structures tµναβi (p, q) defined in [21]

Γµναβ(p, q) =
13
∑

i=1

Fi(k
2; p2, q2) tiµναβ(p, q) , (6.6)

where we have defined the tensors

uαβ(p, q) ≡ (p · q) δαβ − qα pβ , (6.7)

wαβ(p, q) ≡ p2 q2 δαβ + (p · q) pα qβ − q2 pα pβ − p2 qα qβ , (6.8)
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which are Bose symmetric,

uαβ(p, q) = uβα(q, p) , (6.9)

wαβ(p, q) = wβα(q, p) . (6.10)

Gauge invariance is respected due to the conditions

pα u
αβ(p, q) = qβ u

αβ(p, q) = 0 , (6.11)

pαw
αβ(p, q) = qβ w

αβ(p, q) = 0 . (6.12)

A complete perturbative analysis shows that the only tensor structure which is affected

by the renormalization procedure is t13, which coincides with the Dµναβ counterterm in-

troduced above. As discussed in [21] for QED and in [3, 4] for QED and QCD by direct

computations, renormalization of the TV V vertex affects only this tensor structure. Given

the complexity of the computations and the wide difference between the general CFT ap-

proach and the ordinary diagrammatic one, this agreement is obviously nontrivial. As in

the TT case, the anomaly is generated by the (d− 4)-dimensional part of the trace, which

simplifies with the 1/(d− 4) factor in front of the counterterm. In particular, all our previ-

ous comments concerning the renomalization of the TT case remain valid also here, since

in our approach the anomaly is computed after subtracting the infinities, by taking the 4-

dimensional trace of the renormalized TV V vertex. In particular, one can check that of the

13 structures ti only t1 has a non-vanishing trace, while the remaining ones are traceless.

As discussed in [21] for the fermion case, t1 carries all the information about the anomaly

and its corresponding form factor (F1) contains an anomaly pole. The extraction of this

additional information about the TV V correlator indeed requires a complete analysis of

the same in momentum space.

6.1 TV V on-shell in d = 4 and the anomaly poles

As we have mentioned, the complete TV V correlator can be obtained in any dimension as

a superposition of a scalar and of a fermion sectors. Obviously, this result holds for any

CFT, and the explicit evaluation that we provide is completely general. In the off-shell

case the fermion loop has been analyzed in [3, 21]. Explicit resuls for this sector can be

found in [3]. In this section we extend the computation to the scalar sector, focusing on

the on-shell case for the two external vectors, since the expressions in the general case are

far lengthier.

In the on-shell case the 13 structures ti simplify drastically. We use three structures A1,

A2 and D, with D being the counterterm discussed above, to describe the parameterization

of this vertex. In terms of the momenta of the two outgoing gauge bosons (p, q), with

p2 = q2 = 0 and p · q = k2/2 we have

Γab
µναβ(p, q)

f/s
= F ab

1 (p · q)f/sA1
µναβ(p, q) + F ab

2 (p · q)f/sA2
µναβ(p, q) + F ab

3 (p · q)f/sDµναβ(p, q)

(6.13)

with

A1
µναβ = (2p · q δµν − kµkν)uαβ(p, q) , (6.14)

A2
µναβ = −2uαβ(p, q) (2p · q δµν + 2(pµ pν + qµ qν)− 4 (pµ qν + qµ pν)) , (6.15)
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Figure 4. The fermion/scalar sectors in the TV V vertex.

with form factors given by

F ab
1 (p · q)f = δab

1

72π2 p · q , (6.16)

F ab
2 (p · q)f = δab

1

576π2 p · q , (6.17)

F ab
3 (p · q)f = −δab 1

288π2

[

12B0(2p · q, 0, 0) + 11

]

, (6.18)

for the fermion sector and

F ab
1 (p · q)s = δab

1

144π2 p · q , (6.19)

F ab
2 (p · q)s = −δab 1

576π2 p · q , (6.20)

F ab
3 (p · q)s = −δab 1

576π2

[

6B0(2p · q, 0, 0) + 7

]

, (6.21)

for the scalar sector. Notice that both the scalar (s) and the fermion (f) sectors have

anomaly poles. The anomaly is attributed to the tensor structure A1 which has a nonzero

trace. As we have clarified above, the anomaly is not attributed to D (i.e. t13), which is the

counterterm found in position space, but to the tensor structure A1, after renormalization.

The remaining structures A2 and D are, in fact, traceless in 4-dimensions. This structure

coincides with the form factor t1 of [21], which has a nonzero trace. As remarked before,

the dynamical origin of the trace anomaly has necessarily to be found in momentum space.

6.2 TV V in d dimension

These results can be generalized, with some extra effort, to d dimensions. By our inverse

mapping procedure the result of the computation in this case remains valid for any confor-

mal theory, since the two sectors, scalar and fermion, are sufficient to describe the general

solution of the Ward identities. The result can be given in a form which is quite similar to

those in (6.13). We obtain

Γab
µναβ(p, q)f = fab

1 (p · q)Cf
µναβ(p, q) + fab

2 (p · q)Dµναβ(p, q) ,

Γab
µναβ(p, q)s = sab1 (p · q)Cs

µναβ(p, q) + sab2 (p · q)Dµναβ(p, q) . (6.22)
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The form factors are found to be

fab
1 (p · q) =

1 δab

(2π)dp · q
d− 4

d(d− 1)(d− 2)
π2B0(2p · q, 0, 0)

fab
2 (p · q) = − 2 δab

(2π)d
d(d− 3) + 4

d(d− 1)(d− 2)
π2B0(2p · q, 0, 0) ,

sab1 (p · q) =
4δab

(2π)d
d− 4

d(d− 1)(d− 2)p · qπ
2B0(2p · q, 0, 0) ,

sab2 (p · q) = − 2 δab

(2π)d
1

d(d− 1)
π2B0(2p · q, 0, 0) , (6.23)

where the tensors in the basis are given by

Cf
µναβ(p, q) = (p · q δαβ − qα pβ) (d(pµ pν + qµ qν) + (d− 4)(pµ qν + qµ pν)

−2(d− 2)p · q δµν) ,
Cs
µναβ(p, q) = (p · q δαβ − qα pβ) (pµ qν + qµ pν − p · q δµν) ,

Dµναβ(p, q) = δαβ (pµ qν + qµ pν) + p · q (δµβ δνα + δµα δνβ)

−(δβν pµ + δβµ pν) qα − (δµα qν + δαν qµ) pβ − δµν (p · q δαβ − qα pβ) .

(6.24)

Notice that in this case all the structures (C, D) are traceless since there is no anomaly.

As a final observation, we remark that in the on-shell case, the only topology that survives

in the expansion of this correlator corresponds to a master integral of type B0 which

corresponds to a massless 2-point function. The other master integral which also heavily

appears in the perturbative expansion, C0, which corresponds to the scalar triangle diagram,

drops out in the on-shell limit.

6.3 Renormalization of the TTT

In this section we address the problem of the renormalization of the 3-graviton vertex and

compare the standard Lagrangian approach with the deductive method of [27], which is

developed for the analysis in d dimensions. Since our interest, for this vertex, is sharply

focused on the d = 4 case, we need to clarify a few points. Notice that one of the two

counterterms that appear at Lagrangian level, G, is a total divergence in 4 but not in d

dimensions. In particular, G generates a counterterm which is effectively a projector on

the extra (d − 4)-dimensional space and as such, gives a contribution which needs to be

included in order to perform a correct renormalization of the vertex. This has been verified

by an explicit computation in dimensional regularization.

We recall that in perturbation theory the one loop counterterm Lagrangian is

Scounter = −1

ϵ

∑

I=f,s,V

nI

∫

ddx
√
g

(

βa(I)F + βb(I)G

)

. (6.25)

We have used the 4-dimensional realization of F

F = RαβγδRαβγδ − 2RαβRαβ +
1

3
R2 (6.26)
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which is obtained from (A.6) with d → 4. G, obviously does not contribute to every

correlator. For instance, in the case of the TT , the counterterm is obtained by functional

differentiation twice of Scounter, but one can easily check (see eq. (B.12)) that the second

variation of G vanishes in the flat limit. Hence, the only counterterm is given by

Dαβρσ
F (x1, x2) = 4

δ2

δgαβ(x1)δgρσ(x2)

∫

ddw
√
g F . (6.27)

Its form in momentum space is given by

Dαβρσ
F (p) = 4∆(4)αβρσ(p) , (6.28)

and we recover the renormalized 2-point function in (5.32) just with its inclusion, i.e.

〈

Tαβ T ρσ
〉

ren
(p) =

〈

Tαβ T ρσ
〉

(p)− βa
ϵ̄
Dαβρσ

F (p) . (6.29)

In the case of the 3-graviton vertex the counterterm action (6.25) generates the vertices

− 1

ϵ

(

βaD
µνρσαβ
F (z, x, y) + βbD

µνρσαβ
G (z, x, y)

)

, (6.30)

where

Dµνρσαβ
F (x1, x2, x3) = 8

δ3

δgµν(x1)δgρσ(x2)δgαβ(x3)

∫

ddw
√
g F , (6.31)

Dµνρσαβ
G (z, x, y) = 8

δ3

δgµν(x1)δgρσ(x2)δgαβ(x3)

∫

ddw
√
g G . (6.32)

(6.32) and (6.31) are obtained by functionally deriving three times the general functional

I(a, b, c) ≡
∫

d4x
√
g
(

aRabcdRabcd + bRabRab + cR2
)

, (6.33)

with respect to the metric for appropriate a, b and c, i.e.

a = 1 , b = −2 , c =
1

3
,

a = 1 , b = −4 , c = 1 .

Some of the computations are, for convenience, reproduced in appendix B.

It is known that Dµναβρσ
G (p, q) is found to vanish identically in four dimensions. In

fact, its explicit form is

Dµναβρσ
G (p, q) = −240

(

Eµσαγκ,νρβδλ + Eµραγκ,νσβδλ + α↔ β
)

qγ qδ pκ pλ , (6.34)

where Eµσαγκ,νρβδλ is a projector onto completely antisymmetric tensors with five indices,

so that it would yield zero in four dimensions, reflecting the fact that the integral of the

Euler density is a topological invariant in such dimensions. We have explicitly checked by

an explicit computation that, given the structure of the counterterm Lagrangian in (6.25),

one needs necessarily to include the contribution from the G part of the functional, in
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the form given by DG, in order to remove all the divergences. This choice brings us to a

counterterm contribution which regulates TTT which is slightly different from the approach

followed in [27]. The two approaches, in fact, differ by a finite renormalization, since in

our case we reproduce the entire anomaly, including the local contribution (βc ̸= 0). The

fully renormalized 3-point correlator in momentum space can be written down as

〈

TµνT ρσTαβ
〉

ren
(p, q) =

〈

TµνT ρσTαβ
〉

bare
(p, q)−1

ϵ

(

βaD
µναβρσ
F (p, q)+βbD

µναβρσ
G (p, q)

)

(6.35)

and the goal is to proceed with an identification both of DF and DG from the diagrammatic

expansion in momentum space. The cancellation of all of the ultraviolet poles, for suitable

expressions of DF and DG, has been thoroughly checked from our explicit results. As we

have already discussed in the previous cases, after renormalization, we can take the trace

of (6.35) (in four dimensions) and obtain the entire trace anomaly.

In parallel, it is instructive to see how one can derive the analogue of (6.35), using our

expression of F , which is 4-dimensional, but following the same approach of [27], i.e. by

using the Ward identities. In this case we are bound to introduce the generic counterterms

to the TTT vertex

〈

TµνT ρσTαβ
〉

ren
(p, q)=

〈

TµνT ρσTαβ
〉

bare
(p, q)+

1

ϵ

(

CF Dµναβρσ
F (p, q)+CGDµναβρσ

G (p, q)

)

,

(6.36)

written in terms of arbitrary coefficients CF and CG. Notice that, for convenience, we

have formulated (6.36) in momentum space, but the 1/ϵ corrections are supported only at

the coincidence point (x1 = x2 = x3), for appropriate DF and DG, as one could check by

performing a transform of this expression.

With the addition of the new contact terms which guarantee the regularization of the

correlator, the new renormalized vertex must satisfy (2.41) and two similar identities which

follow exchanging indices and momenta properly.

One can check that Dµναβρσ
G (p, q) is transverse, as (6.34) shows clearly,

kνD
µναβρσ
G (p, q) = 0 , pαD

µναβρσ
G (p, q) = 0 qσD

µναβρσ
G (p, q) = 0 , (6.37)

so that by inserting the expressions (6.29) and (6.36) into these Ward identities and tak-

ing (6.37) into account, one obtains three conditions on the F-contribution to the coun-

terterm, the first being

CF kνD
µναβρσ
F (p, q) = −4βa

{

qµ∆(4) ρσαβ(p) + pµ∆(4)αβρσ(q)

−qν

[

δµρ∆(4) νσαβ(p) + δµσ∆(4) νραβ(p)

]

− pν

[

δµα∆(4) νβρσ(q) + δµβ∆(4) ναρσ(q)

]}

,

(6.38)

and the other two coming from a permutation of the indices and of the momenta. They

are seen to be satisfied if CF = −βa.
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−

1

ϵ F
−

1

ϵ G

Figure 5. TTT and its counterterms generated with the choice of the square of the Weyl (F )
tensor in 4 dimensions and the Euler density (G).

−

1

ϵ Fd

−

1

ϵ G

Figure 6. The contributions to the renormalized TTT vertex from the square of the Weyl tensor
in d-dimensions (F d) and the Euler density (G).

Exactly the same argument can be applied to the three anomalous trace identities in

d = 4 + ϵ dimensions in order to fix CG. Notice that, in this approach, the anomaly is

reproduced by taking the traces of Dµναβ
F (p, q) and Dµναβ

G (p, q) in d dimensions, obtaining

δµνD
µναβρσ
F (p, q) = −4 ϵ

(

[

F
]αβρσ

(p, q)− 2

3

[√
g!R

]αβρσ
(p, q)

)

−8

(

∆(4)αβρσ(p) +∆(4)αβρσ(q)

)

δµνD
µναβρσ
G (p, q) = −4 ϵ

[

G
]αβρσ

(p, q) . (6.39)

According to the previously established notation,
[

F
]αβρσ

(p, q) and
[

G
]αβρσ

(p, q) are the

Fourier-transformed second functional derivatives of the squared Weyl tensor and the Euler

density respectively. Requiring (2.43) to be satisfied by the renormalized 2 and 3-point

correlators we get

δµν

(

− βa Dµναβρσ
F (p, q) + CGDµναβρσ

G (p, q)

)

=

4 ϵ

[

βa

(

[

F
]αβρσ

(p, q)− 2

3

[√
g!R

]αβρσ
(p, q)

)

+βb
[

G
]αβρσ

(p, q)

]

− 8

(

∆(4)αβρσ(p) +∆(4)αβρσ(q)

)

, (6.40)

and other two similar equations, obtained by shuffling indices and momenta as for the

general covariance Ward identites.

In this way the conditions (6.29), (6.39), (6.39) and (2.3) allow us to obtain the rela-

tion CG = −βb, as expected. We have verified by direct computation for scalar, fermion

and vector fields that the approach followed in ref. [27] of solving the Ward identities by

adding contact terms to the homogenous expression of vertex (obtained for separate points)

matches precisely the renormalization procedure above in momentum space.

– 34 –



J
H
E
P
0
8
(
2
0
1
2
)
1
4
7

−

1

ϵ Fd

= −

1

ϵ F
−

Ffin

Figure 7. The relation between the counterterm generated by F d and the same obtained from F .
The difference is a finite renormalization (Ffin) generated by the

√
gR2 term in the counterterm

Lagrangian, which generates the local contirbution to the trace anomaly.

Notice that in [27] the choice of F is slightly different from ours, since the authors

essentially define a counterterm which at a Lagrangian level would be of the form

S̃counter = −1

ϵ

∫

d4x
√
g
(

βa F
d + βbG

)

(6.41)

based on the d-dimensional expression of the squared of the Weyl tensor (F d). Such a

choice does not generate a local anomaly contribution proportional to !R as d → 4. In

fact the authors choose to work with βc = 0 from the beginning, since the inclusion of the

local anomaly contribution amounts just to a finite renormalization with respect to (6.41).

Notice that in d dimensions, if we take the trace of the functional derivative in (B.12) for

a = 1, b = −4/(d− 2), c = 2/((d − 1)(d − 2)), which are the d-dimensional coefficients

appearing in F d, one can explicitly check that the contribution proportional to !R in the

anomalous trace cancels. For this purpose we can expand the integrand of (6.41) around

d = 4 (in ϵ = 4− d) up to O(ϵ), obtaining that the counterterm action can be separated in

a pole plus a finite part, i.e.

S̃counter = Scounter+Sfin. ren. = Scounter+βa

∫

d4x
√
g

(

Rαβ Rαβ −
5

18
R2

)

+O(ϵ) . (6.42)

Recalling the definition (2.5) and using (B.12), we see that the contribution of this finite

part to the vev of the energy-momentum tensor is

gµν ⟨Tµν ⟩fin.ren. = −βc!R . (6.43)

Comparing this with (2.1), we see that this extra contribution will cancel the local

anomaly.

So this approach is equivalent, for what concerns the anomaly, to supplying the action

of the theory with the finite renormalization usually met in the literature, i.e.

S(2)
fin. ren. ≡ −βc

12

∫

d4x
√
g R2 , (6.44)

which is known to cancel the local anomaly, due to the similar relation

gµν
2
√
g

δS2
fin. ren.

δgµν
= −βc!R , (6.45)

which holds in d = 4 as well.
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6.4 The renormalized on-shell 3-graviton vertex in 4 dimensions

In all of the three cases examined, the vertex Γµναβρσ(p, q) can be expanded on a basis

made up of thirteen tensors, if we go on shell on the two outgoing gravitons, which amounts

to contract the amplitude with polarization tensors which are transverse and traceless

esλκ(p) , (es)λλ = 0 , pλ esλκ = 0 , (6.46)

where the superscript denotes the helicity state.

It is easy to see that the contraction of the amplitude with the polarization tensors

with the properties (6.46) for the two outgoing gravitons is equivalent to the replacements

p2 → 0 , q2 → 0 , pα → 0 , pβ → 0 , qρ → 0 , qσ → 0 , (6.47)

so that we will give the amplitude in terms of tensors which are non-vanishing after this

limit is taken.

The expansion of our Green’s function for a theory with nS scalars, nF fermions and

nV vector bosons can be written in general as

〈

TµνT ρσTαβ
〉

(p, q)

∣

∣

∣

∣

On−Shell

=
∑

nI=nS ,nF ,nV

nI

13
∑

i=1

ΩI
i (s) t

µναβρσ
i (p, q) ,

s = k2 = (p+ q)2 = 2 p · q . (6.48)

The form factors for the three theories at hand are listed in table 2, modulo the three

overall factors, in the first row. The 13 tensors tµναβρσi (p, q) are listed below. They are

given by

tµναβρσ1 (p, q) =
(

pµpν + qµqν
)

pρpσqαqβ

tµναβρσ2 (p, q) =
(

pµqν + pνqµ
)

pρpσqαqβ

tµναβρσ3 (p, q) =
(

pµpν + qµqν
) (

pσqβδαρ + pσqαδβρ + pρqβδασ + pρqαδβσ
)

tµναβρσ4 (p, q) = pρpσ
(

qβqνδαµ + qβqµδαν + qαqνδβµ + qαqµδβν
)

+qαqβ
(

pνpσδµρ + pνpρδµσ + pµpσδνρ + pµpρδνσ
)

tµναβρσ5 (p, q) =
(

pµqν + qµpν
)

(

pρ
(

qαδβσ + qβδασ
)

+ pσ
(

qαδβρ + qβδαρ
)

)

tµναβρσ6 (p, q) = δµνpρpσqαqβ

tµναβρσ7 (p, q) = pρpσ
(

δµαδνβ + δµβδνα
)

+ qαqβ
(

δµρδνσ + δµσδνρ
)

−1

2

(

pµpρ
(

δασδνβ + δβσδνα
)

+ pνpρ
(

δασδµβ + δβσδµα
)

+pµpσ
(

δαρδνβ + δβρδνα
)

+ pνpσ
(

δαρδµβ + δβρδµα
)

+qµqα
(

δβσδνρ + δβρδνσ
)

+ qνqα
(

δβσδµρ + δβρδµσ
)

+qµqβ
(

δασδνρ + δαρδνσ
)

+ qνqβ
(

δασδµρ + δαρδµσ
)

)

tµναβρσ8 (p, q) =
(

pµpν + qµqν
) (

δασδβρ + δαρδβσ)
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i ΩS
i (s) ΩF

i (s) ΩV
i (s)

1 − 1
720π2 × 1

2 s − 1
240π2 × 1

s
1

1152π2 × 72
5 s

2 − 1
720π2 × 1

s − 1
240π2 × 1

3 s
1

1152π2 × 64
5 s

3 − 1
720π2 × 7+30B0(s)

120
1

240π2 × 13−30B0(s)
60

1
1152π2 × 82−120B0(s)

25

4 − 1
720π2 × 2+5B0(s)

10
1

240π2 × 7−70B0(s)
120

1
1152π2 × 2 (482+130B0(s))

25

5 1
720π2 × 1

6 − 1
240π2 × −1+10B0(s)

48 − 1
1152π2 × 79+50B0(s)

5

6 1
720π2 × 23+20B0(s)

20
1

240π2 × 33+70B0(s)
60 − 1

1152π2 × 104 (22+5B0(s))
25

7 − 1
720π2 × s (16+15B0(s))

20 − 1
240π2 × 3 s (2+5B0(s))

10 − 1
1152π2 × s (−11+10B0(s))

80

8 − 1
720π2 × s (47+30B0(s))

80 − 1
240π2 × 3 s (9+10B0(s))

40
1

1152π2 × s (2+5B0(s))
40

9 1
720π2 × s (2+5B0(s))

40 − 1
240π2 × 7s (1−10B0(s))

480 − 1
1152π2 × s (487+130B0(s))

50

10 1
720π2 × s (9+10B0(s))

20
1

240π2 × s (137+430B0(s))
480 − 1

1152π2 × s (883−230B0(s))
50

11 − 1
720π2 × s (7+5B0(s))

20 − 1
240π2 × 7 s (9+10B0(s))

240
1

1152π2 × s (467+130B0(s))
25

12 − 1
720π2 × s (121+90B0(s))

240 − 1
240π2 × s (97+130B0(s))

240
1

1152π2 × 2 s (299+35B0(s))
25

13 1
720π2 × 5 s2 (3+2B0(s))

32
1

240π2 × 5 s2 (9+10B0(s))
96 − s2 (13−B0(s))

1152π2

Table 2. Form factors for the vertex Γµναβρσ(p, q) in the on-shell limit.

tµναβρσ9 (p, q) = pρ
(

qµ(δασδβν + δανδβσ) + qν(δασδβµ + δαµδβσ)

)

+pσ
(

qµ(δαρδβν + δανδβρ) + qν(δαρδβµ + δαµδβρ)

)

+qα
(

pµ(δβσδνρ + δβρδνσ) + pν(δβσδµρ + δβρgµσ)

)

+qβ
(

pµ(δασδνρ + δαρδνσ) + pν(δασδµρ + δαρδµσ)

)

tµναβρσ10 (p, q) = pρ
(

qα(δβνδµσ + δβµδνσ) + qβ(δανδµσ + δαµδνσ)
)

+pσ
(

qα(δβνδµρ + δβµδνρ) + qβ(δανδµρ + δαµδνρ)

)

−p.q

(

δαρ(δβνδµσ + δβµδνσ) + δαν(δβσδµρ + δβρδµσ)

+δαµ(δβσδνρ + δβρδνσ) + δασ(δβνδµρ + δβµδνρ)

)

tµναβρσ11 (p, q) =
(

pνqµ + pµqν
) (

δασδβρ + δαρδβσ
)

tµναβρσ12 (p, q) = δµν
(

pρ
(

qβδασ + qαδβσ
)

+ pσ
(

qβδαρ + qαδβρ
)

)

tµναβρσ13 (p, q) = δµν
(

δασδβρ + δαρδβσ
)

.
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The correlator is affected by ultraviolet divergences coming from the two-point integrals

B0(s) (see eq. (5.25)). This is true in the off-shell case too, as all the other contributions

to the scalar coefficients of its tensor expansion are made up of the three invariants p2, q2

and p · q plus the scalar 3-point integral

C0(s, s1, s2) =
1

π2

∫

ddl
1

l2 (l + p1)2 (l + p2)2
, s = (p1 + p2)

2 , si = p2i , i = 1, 2 , (6.49)

which is finite for d = 4. In theMS scheme the renormalized two-point integral is defined as

BMS
0 (p2) = 2 + ln

(

µ2

p2

)

, (6.50)

which simply replaces the unrenormalized expression B0(p2) (5.25) given in table 2, after

using the renormalization procedure discussed above. We have checked that by taking the

trace of these 13 tensors one reproduces the Weyl, Euler and local contributions to the

trace anomaly satisfied by the vertex which in this on-shell case are given by

δµν
〈

TµνTαβTµν
〉

(p, q)

∣

∣

∣

∣

On−Shell

= 4

{

βa

(

[

F
]αβρσ

(p, q)− 2

3

[√
g!R

]αβρσ
(p, q)

)

+βb
[

G
]αβρσ

(p, q)

}
∣

∣

∣

∣

On−Shell

(6.51)

δαβ
〈

TµνTαβTµν
〉

(p, q)

∣

∣

∣

∣

On−Shell

= 4

{

βa

(

[

F
]µνρσ

(−k, q)− 2

3

[√
g!R

]µνρσ
(−k, q)

)

+βb
[

G
]µνρσ

(−k, q)− 1

2
⟨TµνT ρσ⟩ (k)

}
∣

∣

∣

∣

On−Shell

(6.52)

δρσ
〈

TµνTαβTµν
〉

(p, q)

∣

∣

∣

∣

On−Shell

= 4

{

βa

(

[

F
]µναβ

(−k, p)− 2

3

[√
g!R

]µναβ
(−k, p)

)

+βb
[

G
]µναβ

(−k, p)− 1

2

〈

TµνTαβ
〉

(k)

}
∣

∣

∣

∣

On−Shell

,(6.53)

with

[F ]αβρσ (p, q)

∣

∣

∣

∣

On−Shell

= 2pρpσqαqβ − p · q
(

pσqβδαρ − pρqβδασ − pσqαδβρ − pρqαδβσ
)

+(p · q)2
(

δασδβρ + δαρδβσ
)

(6.54)

[G]αβρσ (p, q)

∣

∣

∣

∣

On−Shell

= 2pρpσqαqβ − p · q
(

pσqβδαρ − pρqβδασ − pσqαδβρ − pρqαδβσ
)

+(p · q)2
(

δασδβρ + δαρδβσ
)

(6.55)

[
√
g!R]αβρσ (p, q)

∣

∣

∣

∣

On−Shell

=
1

2
p · q

(

pσqβδαρ + pρqβδασ + pσqαδβρ + pρqαδβσ
)

−3

2
(p · q)2

(

gασδβρ − δαρδβσ
)

. (6.56)

The on-shell limits of the two point functions appearing in the r.h.s. of (6.52) and (6.53)

are obtained from (5.33) replacing p → k and using (6.47) in (5.22).
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7 The Tφ2φ2 and V V V correlators in momentum space

A similar analysis allows to obtain the expression in momentum space of the Tφ2φ2, dis-

cussed before in position space. We give the complete d-dimensional off-shell expression.

It can be decomposed into four independent tensor structures

ΓTφ2φ2
µν (p, q) = F1(p, q)

(

pµpν −
p2

d
δµν

)

+ F1(q, p)

(

qµqν −
q2

d
δµν

)

+F2(p, q)

(

pµqν + pνqµ − 2 p · q
d

δµν

)

+ F3(p, q)
1

d
δµν (7.1)

where the first three tensors are traceless while the last one has a non-vanishing trace.
The three form factors are given by

F1(p, q) =
1

(2π)d
π2

2(d− 2)(p · q2 − p2q2)2

{

(d− 1)p · q(p · q + q2)(p+ q)2 B0((p+ q)2)

−B0(p
2)

[

p2((d− 1)p · q2 + 2 p · q q2 + q2) + (d− 2)p · q2(2 p · q + q2)

]

−B0(q
2)

[

q2 p · q((3d− 5)p · q + p2)− q4((d− 3)p2 − (d− 1)p · q) + (d− 2)p · q3
]

+(p · q + q2)(p+ q)2((d− 2)p · q2 + p2q2)C0(p2, (p+ q)2, q2)

}

,

F2(p, q) =
1

(2π)d
π2

2(d− 2)(p · q2 − p2q2)2

{

B0(p
2)

[

(d− 1)p2 p · q2 + (d− 2)p · q3 + p2q2 p · q
]

+B0(q
2)

[

(d− 1)q2 p · q2 + (d− 2)p · q3 + p2q2 p · q
]

−p · q B0((p+ q)2)

[

(d− 1)p · q(p2 + q2) + (d− 2)p2q2 + d p · q2
]

− (d− 2)p · q2 + p2q2

d− 1
C0(p2, (p+ q)2, q2)

[

(d− 1)p · q(p2 + q2) + (d− 2)p2q2 + d p · q2
]}

,

F3(p, q) =
1

(2π)d
π2
(

B0(p
2) + B0(q

2)
)

. (7.2)

Finally, we present here the expression of the conformal contributions to the V V V with

two external legs on mass-shell. This limit is achieved contracting with the two polarization

vectors (eα(p) , eβ(q)) and sending the invariants p2, q2 to zero. The fermion sector, for

instance gives

ΓV V Vferm

αβλ (p, q) =
1

(2π)d
fabc

(d− 2)(d− 1)

{

d(d− 3)δαβ(p− q)λ + 2(d− 2)2 (δβλqα − δαλpβ)

−d− 4

p · q (p− q)λpβqα

}

π2 B0(2p · q, 0, 0), (7.3)

while the scalar sector gives

ΓV V Vscalar

αβλ (p, q) = − 1

(2π)d
fabc

(d− 2)(d− 1)

{

δαβ(p− q)λ + (d− 2) (δβλqα − δαλpβ)

+
d− 4

2 p · q (p− q)λpβqα

}

π2 B0(2p · q, 0, 0). (7.4)
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8 Handling any massless correlator: a direct approach in d dimensions

In the previous sections we have tried to compare perturbative results in free field theory

with general ones coming from the requirement of conformal symmetry imposed on certain

correlators. We have also seen that in this case, working backward from the explicit field

theory representation of the lowest order realization of these correlators, one can match the

general solutions given by conformal field theory. This is the case of the V V V , TV V and

TOO correlators in general dimensions, while for the TTT the 4-dimensional solution of

the Ward identities is completely matched by a combination of scalar, vector and fermion

sectors. As we consider the same 3-graviton vertex in d-dimensions, the vector contribution

is not conformally invariant, and therefore the combination of the scalar and the fermion

sectors does not match the most general d-dimensional solution. This raises the issue if

there is, in general, a free field theory that can reproduce a given CFT correlator, and there

is no simple answer. The goal of CFT, in fact, is to bootstrap certain correlation functions

bypassing, if necessary, a Lagrangian formulation.

In fact, one of the main features of the standard CFT approach in the identification of

the correlators of a given conformal field theory is to work in position space with no refer-

ence to a Lagrangian. The finiteness of the Fourier transform is the necessary requirement

in order to proceed with the identification, if this turns out to exist, of the corresponding

field theory, since this can always be defined in momentum space.

Checking the finiteness (in momentum space) of a general solution given in position

space are not obvious steps, since a correlator in position space such as the TTT , once

expanded, contains several hundreds of terms, most of them characterized by a divergent

Fourier expression in momentum space. For this reason we are going here to illustrate

a very general algorithm that allows to compute correlators of such a complexity using

a direct approach. Our analysis will be formulated in general but illustrated with few

examples only up to correlators of rank-4. We will be choosing, as a test of our approach,

some of the correlators defined in the previous sections and for obvious reasons. These, in

fact, as we have seen, can be deduced from a Lagrangian formulation and therefore their

expressions in momentum space are well defined. Obviously, we need some intermediate

regularization of the integrands (in position space) of these correlators in order to proceed

with the definition of the Fourier transform of each individual term. This is obtained by

introducting a power-like regulator (ω) which is the analogous of the ϵ regulator of ordinary

dimensional regularization but, for the rest, completely unrelated to it.

The algorithm implements a sequence of integration by parts before proceeding with

the identification of the ω-regulated transforms. As a consistency condition, the correlators

that we investigate have finite Fourier expressions, as expected, and we check the direct

cancellation of all their Fourier singularities, which appear as poles (double and single)

in 1/ω.

The finite parts of the procedure, which correspond to the Fourier space integrands,

manifest specific logarithmic terms. These, in general, are a new feature of the momentum

space form of a given (position space) CFT correlator. They are expected to appear once

we rewrite any CFT correlation function from position to momentum space. Obviously,
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these log terms, in some cases, can be rewritten as ordinary (non-logarithmic) integrals, in

other cases not, and we can think of the log-integrals, in all these second cases, as of new

irreducible contributions.

In the correlators that we investigate, obviously, we know beforehand that they have

to be matched by free field theory. In this case, a brute force application of the algorithm

would produce log-integrals which are, therefore, reducible to ordinary (non logarithmic)

ones. When the ω singularities cancel, which indicates that it is possible to recollect the

terms in position space (and using integration by parts) in such a way that the Fourier

expression is manifestly finite, the logarithmic terms are absent. The use of the previous

(Fourier integrable) vertices allows to test this approach showing its consistency.

The steps. As we have already mentioned in the previous sections, given any correla-

tor, we can formulate a general procedure which allows us to transform its expression to

momentum space, with the following steps:

1) expansion of the correlator into its single tensor components;

2) rewriting of each component in terms of some “R-substitutions”, that we will define

below;

3) application of the dimensional shift d → d− 2ω which can be performed generically

in the expression resulting from point 2); and

4) implementation of the transform. The transform is implemented by eq. (8.1) for each

single difference xij = xi−xj . For correlators of higher orders, say of rank n (n > 3),

the transform is used n times.

As we are going to describe below, this method and the regularization imposed by the

dimensional shift allows to test quite straighforwardly the integrability of any correlator,

a point already emphasized in [27] where this regularization has been first introduced.

The transform can be applied in several independent ways. These features share some

similarities with the so called “method of uniqueness” (see for instance [22]) used for

massless integrals in momentum or in configuration space.

8.1 Pulling out derivatives

One of the main steps that we will follow in the computation of the transform of the x-space

expression of the correlators consists in the rewriting of a given x-space tensor in terms of

derivatives of other terms. We call this rule a “derivative relation.” It allows one to reduce

the degree of singularity of a given tensor structure, when the variables are coincident, in

the spirit of differential regularization. Differently from the standard approach given by

differential regularization, which is 4-dimensional, we will be working in d dimensions. We

will be using the term “integrable” to refer to expressions for which the Fourier transform

exists and that are well defined in d-dimensions, although they may be singular in d=4.
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Derivative relations, combined with the basic transform

1

(x2)α
=

1

4απd/2
Γ(d/2− α)

Γ(α)

∫

ddl
eil·x

(l2)d/2−α
≡ C(α)

∫

ddl
eil·x

(l2)d/2−α

C(α) =
1

4α πd/2
Γ(d/2− α)

Γ(α)
(8.1)

allow one to perform a direct mapping of these correlators to momentum space. We proceed

with a few examples to show how the lowering of the singularity takes place.

We start from tensors of rank-1. At this rank we use the relation

xµ

(x2)α
= − 1

2(α− 1)
∂µ

1

(x2)α−1

= − i

22α−1πd/2
Γ(d/2 + 1− α)

Γ(α)

∫

ddl eil·x
lµ

(l2)d/2−α+1
(8.2)

to extract the derivative, where in the last step we have used (8.1). Notice that by us-

ing (8.1) with α = d/2− 1 one can immediately obtain the equation

!
1

(x2)d/2−1
= − 4πd/2

Γ(d/2− 1)
δ(d)(x) (8.3)

which otherwise needs Gauss’ theorem to be derived.

Scalar 2-point functions describing loops in x-space are next in difficulty. As an illus-

tration, consider the generalized 2-point function

1

[(x− y)2]α[(x− y)2]β
. (8.4)

Using (8.1) separately for the 1/[(x − y)2]α and the 1/[(x − y)2]β factors, the Fourier

transform (FT ) of this expression is found to be

FT
[

1

[(x− y)2]α[(x− y)2]β

]

≡
∫

ddx ddy
e−i(p·x+q·y)

[(x− y)2]α[(x− y)2]β

= (2π)2d C(α)C(β)

∫

ddl
1

[l2]α[(l + p)2]β
. (8.5)

Uniqueness allows to reformulate the transform by combining the powers of the propagators

into a single factor

FT
[

1

[(x− y)2]α+β

]

= (2π)2d
C(α+ β)

(p2)d/2−α−β
, (8.6)

giving, for consistency, a functional relation for the integral in (8.5)

∫

ddl
1

[l2]α[(l + p)2]β
=

C(α+ β)

C(α)C(β)

1

(p2)d/2−α−β

= πd/2
Γ(d/2− α)Γ(d/2− β)Γ(α+ β − d/2)

Γ(α)Γ(β)Γ(d− α− β)

1

(p2)α+β−d/2
.

(8.7)

– 42 –



J
H
E
P
0
8
(
2
0
1
2
)
1
4
7

In the TT and TV V cases, x-space expressions such as xµ1 . . . xµn/(x2)α up to rank-4 are

common, and the use of derivative relations — before proceeding with their final transform

to momentum space — can be done in several ways. Also in this case, as for the scalar

functions, uniqueness shows that the result does not depend on the way we combine the

factors at the denominators with the corresponding numerators.

To deal with tensor expressions in position space we introduce some notation. We

denote by

Rn
µ1,...,µn(x,α) ≡

xµ1
, . . . xµn

(x2)α
, (8.8)

the ratio between a generic tensor monomial in the vector x and a power of x2. We do

so to denote in a compact way the tensor structures that appear in the expansion of any

correlator. We call these expressions “R-terms”.

After some differential and algebraic manipulation we can easily derive the first four

R-terms as

R1
µ(x,α) = − 1

2 (α− 1)
∂µ

1

(x2)α−1
,

R2
µν(x,α) =

1

4 (α− 2) (α− 1)
∂µ ∂ν

1

(x2)α−2
+

δµν
2 (α− 1)

1

(x2)α−1
,

R3
µνρ(x,α) = − 1

8(α− 3)(α− 2)(α− 1)
∂µ ∂ν ∂ρ

1

(x2)α−3

+
1

2(α− 1)

[

δµνR
1
ρ + δµρR

1
ν + δνρR

1
µ
]

(x,α− 1) ,

R4
µνρσ(x,α) =

1

16(α− 4)(α− 3)(α− 2)(α− 1)
∂µ ∂ν ∂ρ ∂σ

1

(x2)α−4

+
1

2(α− 1)

[

δµνR
2
ρσ + δρσR

2
µν + δµρR

2
νσ + δνσR

2
µρ

+δµσR
2
νρ + δνρR

2
µσ
]

(x,α− 1)

− 1

4(α− 2)(α− 1)
(δµνδρσ + δµρδνσ + δµσδνρ)

1

(x2)α−2
. (8.9)

The use of R-terms allows to extract immediately the leading singularities of the correlators,

as we show below. One can use several different forms of R-substitutions for a given tensor

component and the procedure is in fact not unique. For example, a second rank tensor can

be rewritten in R-form in several ways

(x− y)µ(x− y)ν
[(x− y)2]d+1

= R2
µν(x− y, d+ 1)

= R1
µ(x− y, d/2 + 1)R1

ν(x− y, d/2)

=
1

(x− y)2
R1

µ(x− y, d/2)R1
ν(x− y, d/2) . (8.10)

The derivative relations in the three cases shown above are obviously different, but the

transform is unique. One can also artificially rewrite the numerators at will by introducing

trivial identities in position space, without affecting the final expression of the mapping.

– 43 –



J
H
E
P
0
8
(
2
0
1
2
)
1
4
7

We will be using this method in order to extract some of the logarithmic integrals gener-

ated by this procedure. Obviously, this is possible only if we guarantee an intermediate

regularization. We implement it by a dimensional shift of the exponents of the propaga-

tors. The regulator will allow to smooth out the singularity of the correlators around the

value α = d/2, which is the critical value beyond which a function such as 1/[x2]α is not

integrable.

The structure of the singularities in x-space of the corresponding scalars and tensor

correlators can be identified using the basic transform. For instance, using (8.1) for α = d/2

one encounters a pole in the expression of the transform. For this reason we regulate

dimensionally in x-space such a singularity by shifting d → d − 2ω. At the same time

we compensate with a regularization scale µ to preserve the dimension of the redefined

correlator. A similar approach has been discussed in [17], in an attempt to relate differential

and dimensional regularization. In our case as in [27], however, ω is an independent

regulator which serves to test integrability in momentum space, and for this reason is

combined with a fundamental transform which is given by

µ2ω

[x2]d/2−ω
=

µ2ω

4d/2−ωπd/2
Γ(ω)

Γ(d/2− ω)

∫

ddl
eil·x

[l2]ω
(8.11)

that we can expand around ω ∼ 0 to obtain

µ2ω

[x2]d/2−ω
=

πd/2

Γ(d/2)
δ(d)(x)

[

1

ω
− γ + log 4 + ψ(d/2)

]

− 1

(4π)d/2 Γ(d/2)

∫

ddl eil·x log

(

l2

µ2

)

+O(ω) . (8.12)

The subtraction of this pole in d dimensions is obviously related to the need of redefining

correlators which are not integrable, in analogy with the approach followed in differential

regularization. The most popular example is 1/[x2]2, which has no transform for d = 4,

but is rewritten in the derivative form as [20]

1

x4
= !G(x2), (8.13)

where G(x2) is defined by

G(x2) =
log x2M2

x2
+ c , (8.14)

with c being a constant. This second approach can be easily generalized to d dimensions.

One can use derivative relations such as

1

[x2]α
=

1

2(α− 1)(2α− d)
!

1

[x2]α−1
(8.15)

which is correct as far as α ̸= d/2. For α = d/2 this relation misses the singularity at

x = 0, which is apparent from (8.3). For this reason, as far as α = d/2 − ω eq. (8.15)
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remains valid and it can be used together with (8.3) and an expansion in ω to give

µ2ω

[x2]d/2−ω
= − 1

2ω

µ2ω

d− 2− 2ω
!

1

[x2]d/2−1−ω

=
1

4− 2 d

(

1

ω
+

2

d− 2

)

!
1

[x2]d/2−1
− 1

2(d− 2)
!
log(µ2x2)

[x2]d/2−1

=
πd/2

Γ(d/2)

(

1

ω
+

2

d− 2

)

δ(d)(x)− 1

2(d− 2)
!
log(µ2x2)

(x2)d/2−1
. (8.16)

The d-dimensional version of differential regularization (DfR) can be obtained by requiring

the subtraction of all the terms in (8.16) which are proportional to δd(x), giving

1

[x2]d/2
DfR ≡ − 1

2(d− 2)
!
log(µ2x2)

(x2)d/2−1
. (8.17)

This procedure clearly agrees with the traditional version of differential regularization in

d = 4 [20]
1

x4
≡ −1

4
!
log(x2µ2)

x2
. (8.18)

Notice that this analysis shows that, according to (8.16), the logarithmic integral in (8.12)
is given by

∫

ddleil·x log

(

l2

µ2

)

= (2π)d
[

−γ + log 4 + ψ(d/2)− 2

d− 2

]

δ(d)(x) +
(4π)d/2

2(d− 2)
Γ(d/2)!

log(µ2x2)

[x2]d/2−1

=
(4π)d/2

2(d− 2)
Γ(d/2)!

log(µ̄2x2)

[x2]d/2−1
, (8.19)

having redefined the regularization scale properly

log µ̄2 = logµ2 + γ − log 4− ψ(d/2) +
2

d− 2
. (8.20)

Notice that a regulated (but singular) correlator can be mapped in several ways into mo-
mentum space, with identical results. For instance, we can take 1/[x2]d/2 and use on it
eq. (8.1) once

∫

ddx eik·x
1

[x2]d/2
→
∫

ddx eik·x
µ2ω

[x2]d/2−ω
=

1

4d/2−ω πd/2

Γ(ω)

Γ(d/2− ω)

∫

ddx ddl ei(k+l)·x µ2ω

[l2]ω

= 4ω πd/2 Γ(ω)

Γ(d/2− ω)

µ2ω

[k2]ω
, (8.21)

twice
∫

ddx
µ2ω

x2[x2]d/2−1−ω
=

1

4d/2−ωπd

Γ(d/2− 1)Γ(1 + ω)

Γ(d/2− 1− ω)

∫

ddx ddl1 d
dl2 e

i(k+l1+l2)·x µ2ω

[l21]
d/2−1[l22]

1+ω

= 4ω πd/2 Γ(ω)

Γ(d/2− ω)

µ2ω

[k2]ω
, (8.22)

(where in the last step (8.7) was used) or any number of times, obtaining the same

transform.
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As one can easily work out, the use of the dimensional regulator generates, after a

Laurent expansion in ω, some logarithmic integrals in momentum space. As we shall show,

if the 1/ω poles cancel, then these integrals can be avoided, in the sense that it will be

possible to rewrite the correlator in such a way that they are absent. This means that

in this case one has to go back and try to rewrite the correlator in such a way that it

takes a finite form already in position space. In this case the mapping of the correlators to

momentum space is similar to the usual Feynman expansion typical of perturbation theory.

The condition of Fourier transformability is in fact necessary in order to have, eventually,

a Lagrangian description of the correlator. On the other hand, if the same poles do not

cancel, then the logarithms are a significant aspect of the correlator which, for sure, can’t

be reproduced by a local field theory Lagrangian in any simple way, in particular not by a

free field theory. We have left to appendix F a few more examples on the correct handling

of these distributional identities.

8.2 Regularization of tensors

The regularization of other tensor contributions using this extension of differential regu-

larization can be handled in a similar and straightforward way. The use of the derivative

relations on the R-terms, that map the tensor structures into derivative of less singular

terms, combined at the last stage with the basic transform, allows to get full control of any

correlator and guarantee their consistent mappings into momentum space. We provide a

few examples to illustrate the procedure.

Consider for instance the tensor structure

tµ =
(x− y)µ

[(x− y)2]d/2+1
, (8.23)

whose R-form is, trivially,

tµ = R1
µ

(

x− y,
d

2
+ 1

)

= −1

d
∂µ

1

[(x− y)2]d/2
, (8.24)

where the derivative is intended with respect to x − y. Now we send d → d − 2ω in

the exponent of the denominator, since d/2 is a critical value for the integrability of the

exponent, introducing the proper mass scale. This allows us to use the basic transform (8.1),

getting

tµ(ω) = − i µ2ω

(d− 2ω) 4d/2−ω πd/2
Γ(ω)

Γ(d/2− ω)

∫

ddl
lµ

[l2]ω
eil·(x−y) . (8.25)

We can expand in ω obtaining

tµ(ω) =
i

d 2dπd/2 Γ(d/2)

[

−
(

1

ω
+

2

d
− γ + log 4 + ψ(d/2)

)
∫

ddl eil·(x−y) lµ

+

∫

ddl eil·(x−y) lµ log

(

l2

µ2

)]

+O(ω)

=
πd/2

dΓ(d/2)
∂µ

[

−
(

1

ω
+

4(d− 1)

d(d− 2)

)

δ(d)(x− y) +
Γ(d/2)

2(d− 2)πd/2
!
log(µ̄2(x− y)2)

[(x− y)2]d/2−1

]

,

(8.26)
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where in the last step we have used (8.19). Notice that the strength of the singularity

has increased from δ(x)/ω to ∂µδ(x)/ω, due to the higher power (d/2) of the denominator

in position space. It is clear that for finite correlators these singular contributions must

cancel. In general, the introduction of the regulator ω allows to perform algorithmically

all the computations of any lengthy expression leaving its implementation to a symbolic

manipulation program. Obviously, for finite correlators this approach might look redun-

dant, but it can be extremely useful in order to check the cancellation of all the multiple

and single pole singularities in a very efficient way. We will present more examples of this

approach in the next sections.

A more involved example is given by

tµν =
(x− y)µ(x− y)ν
[(x− y)2]d/2+1

(8.27)

to which corresponds the regulated expression

tµν(ω) =
µ2ω(x− y)µ(x− y)ν
[(x− y)2]d/2+1−ω

(8.28)

and a minimal R-form which is given by

tµν(ω) = µ2ω R2
µν

(

x− y,
d

2
+ 1− ω

)

. (8.29)

Using the list of replacements given in (8.9), the derivative form of tµν is given by

tµν(ω) =
µ2ω

(d− 2− 2ω) (d− 2ω)
∂µ ∂ν

1

[(x− y)2]d/2−ω−1
+

δµν
d+ 2− 2ω

µ2ω

[(x− y)2]d/2−ω

(8.30)

whose singularities are all contained in the second term, whose Fourier transform is given by

FT
[

δµν
d+ 2− 2ω

µ2ω

[(x− y)2]d/2−ω

]

=
1

ω

δµν
2d πd/2 (d+ 2)Γ(d/2)

+O(ω0) (8.31)

where we have omitted the regular terms. The procedure therefore allows to identify

quite straightforwardly the leading singularities of any tensor in x-space, giving, in this

specific case
(x− y)µ(x− y)ν
[(x− y)2]d/2+1−ω

∼ 1

ω

δµν
2d πd/2 (d+ 2)Γ(d/2)

. (8.32)

We can repeat the procedure for correlators of higher rank. The singularities, after per-

forming all the substitutions, are proportional to the non-derivative terms isolated by the

repeated replacement of eq. (8.9).

8.3 Regularization of 3-point functions

In the case of 3-point functions the analysis of the corresponding singularities can be

extracted quite simply. Let’s consider, for instance, the identity

FT
[

1

[(x− y)2]α1 [(z − x)2]α2 [(y − z)2]α3

]

≡
∫

ddx ddy ddz
e−i(k·z+p·x+q·y)

[(x− y)2]α1 [(z − x)2]α2 [(y − z)2]α3

= (2π)3d
3
∏

i=1

(

Γ(d/2− αi)

4αiπd/2Γ(αi)

)

δ(d)(k + p+ q)

∫

ddl

[l2]d/2−α1 [(l + p)2]d/2−α2 [(l − q)2]d/2−α3

,

(8.33)
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obtained using the fundamental transform (8.1), where all the physical momenta (k, p, q)

are treated as incoming. The convention for matching the momenta in (8.1) with the

couples of coordinate is

l1 ↔ x− y , l2 ↔ z − x , l3 ↔ y − z , (8.34)

and the shift l → l − q (which is always possible in a regularized expression) has been

performed at the end.

It is clear that the prefactor on the r.h.s. of this relation has poles for αi = d/2 + n,

with n ≥ 0. At the same time the loop integral is asymptotically divergent if d =
∑

i αi,

where it develops a logarithmic singularity. In dimensional regularization such a singularity

corresponds to a single pole in ϵ = d−
∑

i αi. One can be more specific by discussing further

examples of typical 3-point functions.

For instance, consider the tensor structure

Q1
αβµν =

(y − z)α (y − z)β (y − z)µ (y − z)ν
[(x− y)2]d/2+1 [(z − x)2]d/2−1 [(y − z)2]d/2+1

, (8.35)

which appears in the TV V correlator and can be reduced to its R-form in several ways.

We use a minimal substitution and have

Q1
αβµν =

1

[(x− y)2]d/2+1

1

[(z − x)2]d/2−1
R4

αβµν

(

y − z,
d

2
+ 1

)

(8.36)

and application of the derivative reductions in (8.9) gives

Q1
αβµν =

1

(d− 6) (d− 4) (d− 2) d

1

[(x− y)2]d/2+1

1

[(x− z)2]d/2−1

×
{

∂α ∂β ∂µ ∂ν
1

[(y − z)2]d/2−3
+ (d− 6) (d− 4)

δµν δαβ + δµα δνβ + δµβ δνα
[(y − z)2]d/2−1

+(d− 6) (δµν ∂α ∂β+δαβ ∂µ ∂ν+δµα ∂ν ∂β+δνβ ∂µ ∂α+δνα ∂µ ∂β+δµβ ∂ν ∂α)
1

[(y − z)2]d/2−2

}

.

(8.37)

Before moving to momentum space, a quick glance at this equation shows that its

transform does not exist. This appears obvious from the presence of the overall factor

1/([(x− y)2]d/2+1) which needs regularization. The mapping can be performed using the

rules defined above, which give, for instance, for the coefficient of δµν δαβ+δµα δνβ+δµβ δνα,

FT
[

1

d(d− 2)

µ2ω

[(x− y)2]d/2+1−ω[(z − x)2]d/2−1[(y − z)2]d/2−1

]

=
(2π)3dδ(d)(k+p+q)

d(d− 2)

41+ω

(4π)3d/2
Γ(ω − 1)

Γ(d/2− 1)2Γ(d/2− 1− ω)

∫

ddl
µ2ω

(l2)ω−1(l+p)2(l − q)2

=
δd(k+p+q)

d(d− 2)

4π3d/2

Γ(d/2− 1)3

[

− 1

ω

∫

ddl
l2

(l+p)2(l − q)2
+

∫

ddl
l2 log

(

l2/µ̄2
)

(l+p)2(l − q)2

]

+O(ω).

(8.38)
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In a similar way the Fourier transform of the first term is

FT
[

1

(d− 6) (d− 4) (d− 2) d

µ2ω

[(x− y)2]d/2+1−ω

1

[(z − x)2]d/2−1
∂µ ∂ν ∂α ∂β

1

[(y − z)2]d/2−3

]

=
(2π)3d δ(d)(k+p+q)

(d− 6) (d− 4) (d− 2) d

43+ω

(4π)3d/2
2Γ(ω − 1)

Γ(d/2− 3)Γ(d/2− 1)Γ(d/2 + 1− ω)

×
∫

ddl
(l − q)α (l − q)β (l − q)µ (l − q)ν

(l2)ω−1 (l + p)2 [(l − q)]3

=
δ(d)(k+p+q)

d (d− 2)

32π3d/2

Γ(d/2− 1)3

[

− 1

ω

∫

ddl
l2 (l − q)α (l − q)β (l − q)µ (l − q)ν

(l + p)2[(l − q)2]3

]

+

∫

ddl
log
(

l2/µ̄2
)

(l − q)α (l − q)β (l − q)µ (l − q)ν
(l + p)2[(l − q)2]3

+O(ω) , (8.39)

illustrating quite clearly how the general procedure can be implemented.

At this point we pause for some comments. The regularization can be performed by

sending d → d−2ω — with no distinction among the various terms — or, alternatively, one

can regulate only the non integrable terms. The two approaches, in a generic computation,

will differ only at O(ω) and as such they are equivalent. One can obviously check this by

an explicit computation.

Another important point concerns the possibility of performing an explicit compu-

tation of the logarithmic integrals. They are indeed calculable in terms of generalized

hypergeometric functions (for general ω), but the small ω expansion of these functions is

rather difficult to re-express as a combination of ordinary functions and polylogs. This is

due to the need of performing a double expansion (in ϵ and in ω) if we move to d = 4

and insist, as we should, on the use of dimensional regularization in the computation of

the momentum integrals. This difficulty is attributed to the absence of simple expansions

of hypergeometric functions (ordinary and generalized) about non integer (real) values of

their indices. However, if the 1/ω terms for a combination of terms similar to those shown

above cancel, there are some steps which can be taken in order to simplify this final part

of the computation.

8.4 Application to the V V V case

To illustrate the way to proceed in general, we reconsider the V V V case, that we know to

be integrable, but treated this time with the general algorithm. We expand the correlator

and perform the R-substitutions (8.9). The direct algorithm gives an expression which is

not immediately recognized as being integrable

fabc

{

(a− 2 b)

(d− 2)3
×
[

∂31µ
1

(x2
31)

d/2−1
∂12ν

1

(x2
12)

d/2−1
∂23ρ

1

(x2
23)

d/2−1

+ ∂12µ
1

(x2
12)

d/2−1
∂23ν

1

(x2
23)

d/2−1
∂31ρ

1

(x2
31)

d/2−1

]

+
a

d(d− 2)2
×
[

1

(x2
12)

d/2−1

(

∂31µ
1

(x2
31)

d/2−1
∂23ν ∂

23
ρ

1

(x2
23)

d/2−1
+∂23ν

1

(x2
23)

d/2−1
∂31µ ∂31ρ

1

(x2
31)

d/2−1

)

+
1

(x2
23)

d/2−1

(

∂31ρ
1

(x2
31)

d/2−1
∂12µ ∂12ν

1

(x2
12)

d/2−1
+∂12ν

1

(x2
12)

d/2−1
∂31µ ∂31ρ

1

(x2
31)

d/2−1

)
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+
1

(x2
31)

d/2−1

(

∂23ρ
1

(x2
23)

d/2−1
∂12µ ∂12ν

1

(x2
12)

d/2−1
+∂12µ

1

(x2
12)

d/2−1
∂23ν ∂

23
ρ

1

(x2
23)

d/2−1

)]

− 1

d− 2

(

b− a

d+ 2

)

×
[

1

(x2
31)

d/2−1

(

δµν
(x2

12)
d/2

∂23ρ
1

(x2
23)

d/2−1
+

δνρ
(x2

23)
d/2

∂12µ
1

(x2
12)

d/2−1

)

+
1

(x2
23)

d/2−1

(

δµν
(x2

12)
d/2

∂31ρ
1

(x2
31)

d/2−1
+

δµρ
(x2

31)
d/2

∂12ν
1

(x2
12)

d/2−1

)

+
1

(x2
12)

d/2−1

(

δµρ
(x2

31)
d/2

∂23ν
1

(x2
23)

d/2−1
+

δνρ
(x2

23)
d/2

∂31µ
1

(x2
31)

d/2−1

)]}

. (8.40)

The apparent non-integrability is due to terms of the form 1/(x2ij)
d/2 in the last addend.

For this reason, ignoring any further information, to test the approach we proceed with a

regularization of the non-integrable terms. The expression in momentum space is obtained

by sending d → d− 2ω in all the terms of the form 1/(x2ij)
d/2. Expanding in ω the result,

one can show that, as expected, the 1/ω terms cancel, proving its integrability. We fill in

few more details to clarify this point. A typical not manifestly integrable term in V V V is

1

(x231)
d/2−1

1

(x212)
d/2

∂23ρ
1

(x223)
d/2−1

+
1

(x223)
d/2−1

1

(x212)
d/2

∂31ρ
1

(x231)
d/2−1

(8.41)

which in momentum space after ω regularization gives (omitting an irrelevant constant)

µ2ω Γ(ω)

∫

ddl
2lρ − qρ

(l2)(l − q)2[(l + p)2]ω
. (8.42)

Expanding in ω, the residue at the pole is given by the integral
∫

ddl
2lρ − qρ

l2(l − q)2
(8.43)

which vanishes in dimensional regularization. The finite term is logarithmic and it is

given by
∫

ddl
log
(

(l + p)2/µ2
)

(2lρ − qρ)

l2(l − q)2
. (8.44)

The scale dependence also disappears, since the logµ2 term is also multiplied by the same

vanishing integral. Obviously, the nontrivial part of the computation is in the appearance

of a finite logarithmic integral which, due to the finiteness of the correlator, has to be

re-expressed in terms of other non-logarithmic contributions, i.e. of ordinary Feynman

integrals. There is no simple way to relate one single integral to an ordinary non-logarithmic

contribution unless one performs the entire computation and expresses the result in terms of

special polylogarithmic functions, using consistency. For correlators which are integrable,

however, it is possible to relate two log integrals to regular Feynman integrals. Single

log integrals, at least in this case, can also be evaluated explicitly, as we illustrate in an

appendix.

By applying the algorithm we get
〈

V a
µ V

b
ν V

c
ρ

〉

(p, q) = (2π)3d δ(d)(k + p+ q) i fabc

×
{

C(d/2− 1)3
[

a (6− 4d) + 2 b d

d(d− 2)3

(

2Jµνρ(p,−q) + (p+ q)µ Jνρ(p,−q) + pν Jµρ(p,−q)
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− qρ Jµν(p,−q)− pν qµ Jρ(p,−q)− pµ qρ Jν(p,−q)

)]

+
a

d(d− 2)2

(

− 2 (pµ + qµ)
(

pν Jρ(p,−q) + qρ Jν(p,−q)
)

+qρpν
(

2Jµ(p,−q) + (p− q)µ J(p,−q)
)

)

− C(d/2− 1)2

(4π)d/2 Γ(d/2) (d− 2)

(

a

d+ 2
− b

)[

δµν

(

2 ILρ(p, 0,−q)− qρ IL(p, 0,−q)

)

+ δµρ

(

2 ILν(−q, 0, p) + pν IL(−q, 0, p)

)

+ δνρ

(

2 ILµ(q, 0, k) + kµ IL(q, 0, k)

)]}

. (8.45)

The notations introduced for the momentum space integrals here and in the following point

are explained in appendix F. One can easily show the scale independence of the result,

which is related to the finiteness of the expressions and to the fact that the logarithmic

contributions, in this case, are an artifact of the approach. For this reason, when the scale

independence of the regulated expressions has been proved, then one can go back and try

to rewrite the correlator in such a way that it is manifestly integrable. Obviously this may

not be a straightforward thing to do, especially if the expression is given by hundreds of

terms in configuration space. If, even after proving the finiteness of the expression, one is

unable to rewrite it in an integrable form, one can always continue applying the algorithm

that we have presented, generating the logarithmic integrals. Pairs of log integrals can be

related to ordinary Feynman integrals by applying appropriate tricks. We have illustrated

in an appendix an example where we discuss the computation of the single log-integral

appearing in V V V as an example. In the TOO case one encounters both single and

double-log integrals. For non-conformal correlators these second type of integrals are,

in general, expected and turn out to be a characteristic feature of these correlators in

momentum space.

8.5 Direct methods for the TOO case and double logs

A similar analysis can be pursued in the TOO case. Also for this correlator we can apply

a direct approach in order to show the way to proceed in the test of its regularity. Using

our basic transform (8.33) and introducing the regulator ω to regulate the intermediate

singularities we can easily transform it to momentum space

FT
[

⟨Tµν(x1)O(x2), O(x3)⟩
]

≡ ⟨Tµν OO⟩ (p, q) = (2π)3d δ(d)(k + p+ q) a

×
{

C(d/2− 1)3

d (d− 2)2

[

− 4 (d− 1) Jµν(p,−q)−2 (d− 1)

(

(qν − pν) Jµ(p,−q)+(qµ − pµ) Jν(p,−q)

)

+

(

d (pµqν + pνqµ)− (d− 2) (pµpν + qµqν)

)

J(p,−q)

]

+
C(d/2− 1)2 C(d/2− ω)

d
δµν

(
∫

ddl
µ2ω

l2[(l + p)2]ω(l − q)2
+

∫

ddl
µ2ω

l2(l + p)2[(l − q)2]ω

)

−C(d/2− 1)C(d/2− ω)2

d
δµν

∫

ddl
(µ2ω)2

[l2]2[(l + p)2]ω[(l − q)2]ω

}

. (8.46)
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The expression above is affected by double and single poles in ω once we perform an expan-

sion in this parameter, which are expected to vanish in order to guarantee a finite result.

The coefficient of the double pole is easily seen to take the form

− δµν
a (2π2)d dC(d/2− 1)

Γ(d/2)2
I(0) , (8.47)

where the integral vanishes in dimensional regularization, being a massless tadpole.

The coefficient of the simple pole is instead given by

δµν
4d π5d/2C(d/2− 1)2

dΓ(d/2)

{

1

Γ(d/2− 2)Γ(d/2)2

[

2

(

γ − log 4− ψ(d/2)

)

I(0)

+

(

IL(p, 0, 0) + IL(−q, 0, 0)

)]

+
1

Γ(d/2− 1)2 Γ(d/2)

[

I(p) + I(q)

]}

. (8.48)

The first term of (8.48) vanishes as in the case of the double pole, while for the remaining

contributions we use the relation

IL(p, 0, 0) =

∫

ddl
log
(

(l+p)2

µ2

)

[l2]2
= − ∂

∂ω

∫

ddl
µ2ω

[l2]2 [(l + p)2]ω

∣

∣

∣

∣

ω=0

. (8.49)

It is easy to see that the contributions in the last line in (8.48) cancel after inserting the

explicit value for the 2-point function in (8.7).

The finite part of the expression is found to be, after removing some additional

tadpoles,

⟨Tµν OO⟩ (p, q) = (2π)3d δ(d)(k + p+ q) a

×
{

C(d/2− 1)3

d (d− 2)2

[

− 4 (d− 1) Jµν(p,−q)− 2 (d− 1)

(

(qν − pν) Jµ(p,−q) + (qµ − pµ) Jν(p,−q)

)

+

(

d (pµqν + pνqµ)− (d− 2) (pµpν + qµqν)

)

J(p,−q)

]

−δµν
[

C(d/2− 1)2

dπd/2 2d Γ(d/2)

(

(γ − log 4− ψ(d/2))
(

I(p) + I(−q)
)

+
(

IL(p, 0,−q) + IL(−q, 0, p)
)

)

+
C(d/2− 1)

3 d 22d+1 πd Γ(d/2)2

(

12 (γ − log 4− ψ(d/2))
(

IL(p, 0, 0) + IL(−q, 0, 0)
)

+3
(

ILL(p, p, 0, 0) + 2 ILL(p,−q, 0) + ILL(−q,−q, 0, 0)
)

)]}

(8.50)

where now also double logarithmic integrals have appeared. Using the relations (8.7)

and (8.49), the terms proportional to (γ − log 4− ψ(d/2)), which are just a remain of the

regularization procedure, cancel out, leaving us with the simplified result

⟨Tµν OO⟩ (p, q) = (2π)3d δ(d)(k + p+ q) a

×
{

C(d/2− 1)3

d (d− 2)2

[

− 4 (d− 1) Jµν(p,−q)− 2 (d− 1)

(

(qν − pν) Jµ(p,−q) + (qµ − pµ) Jν(p,−q)

)

+

(

d (pµqν + pνqµ)− (d− 2) (pµpν + qµqν)

)

J(p,−q)

]

−δµν
C(d/2− 1)

d (4π)d Γ(d/2)2

[

(4π)d/2 Γ(d/2)C(d/2− 1)

(

(

IL(p, 0,−q) + IL(−q, 0, p)
)

)

+(d− 4)
(

ILL(p, p, 0) + 2 ILL(p,−q, 0, 0) + ILL(−q,−q, 0, 0)
)

]}

. (8.51)

– 52 –



J
H
E
P
0
8
(
2
0
1
2
)
1
4
7

It is slightly lengthy but quite straightforward to show that (8.51) can be re-expressed

in terms of ordinary Feynman integrals. This can be obtained by reducing all the tensor

integrals (logarithmic and non-logarithmic) to scalar forms. After the reduction, one can

check directly that specific combinations of logarithmic integrals can be expressed in terms

of ordinary master integrals. In this case these relations hold since the integrands of the

logarithmic expansion (linear combinations thereof) are equivalent to non-logarithmic ones,

given the finiteness of the correlators. Obviously for a correlator which is not integrable

such a correspondence does not exist and the logarithmic integrals cannot be avoided. This

would be another signal, obviously, that the theory does not have a realization in terms of

a local Lagrangian, since a Lagrangian field theory has a diagrammatic description only in

terms of ordinary Feynman integrals.

We conclude this section with few more remarks concerning the treatment of correlators

with more general scaling dimensions (2∆). For instance one could consider correlators of

the generic form

⟨Oi(xi)Oj(xj)Ok(xk)⟩ =
λijk

((xi−xj)2)∆i+∆j−∆k((xj−xk)2)∆j+∆k−∆i((xk−xi)2)∆k+∆i−∆j
.

(8.52)

In this case their expression in momentum space can be found by applying Mellin-

Barnes methods. They can be reconducted to integrals in momentum space of the form

J(ν1, ν2, ν3) =

∫

ddl

(l2)ν1((l − k)2)ν2((l + p)2)ν3
(8.53)

ν1 = d/2−∆i −∆j +∆k ν2 = d/2−∆j −∆k +∆i ν3 = d/2−∆k −∆i +∆j

(8.54)

which can be expressed [13] in terms of generalized hypergeometric functions

F4[a, b, c, d;x, y] of two variables (x, y), the two ratios of the 3 external momenta. The

computation of these integrals with arbitrary exponents at the denominators is by now

standard lore in perturbation theory, with recursion relations which allow to relate shifts

in the exponents in a systematic way. The problem is more involved for correlators which

require an intermediate regularization in order to be transformed to momentum space. In

this case one can show, in general, that the pole structure (in 1/ω) of these can be worked

out closely, but the finite O(1) contributions involve derivatives of generalized hypergeo-

metric functions respect to their indices a, b, c, d. The latter can be re-expressed in terms of

poly-logarithmic functions, which are typical and common in ordinary perturbation theory,

only in some cases. The possibility to achieve this is essentially related to finding simple

expansions of the hypergeometric functions around non integer (and not just rational) in-

dicial points. For integrable correlators the analysis of Mellin-Barnes methods remains,

however, a significant option, which will probably deserve a closer look.

9 Perspectives: the integrated anomaly and the nonlocal action

Before coming to our conclusions, we offer here a brief discussion of the possible extensions

of our analysis in the context of the emergence of massless degrees of freedom in the
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computation of correlators of the form TV V and TTT , as predicted by Riegert’s Lagrangian

solution [30] of the anomaly equation. We recall that an action that formally solves the

anomaly equation takes the form

Sanom[g,A] =

1

8

∫

d4x
√
g

∫

d4x′
√

−g′
(

G− 2

3
!R

)

x

G4(x, x
′)

[

2b F + b′
(

G− 2

3
!R

)

+ 2c FµνF
µν

]

x′

(9.1)

where b, b′ and c are parameters. For the case of a single fermion in an abelian gauge

theory they are given by b = 1/320π2, b′ = −11/5760π2, and c = −e2/24π2. F is the

square of the Weyl tensor and G is the Euler density. The notation G4(x, x′) denotes the

Green’s function of the differential operator defined by

∆4 ≡ ∇µ

(

∇µ∇ν + 2Rµν − 2

3
Rgµν

)

∇ν = !
2 + 2Rµν∇µ∇ν +

1

3
(∇µR)∇µ − 2

3
!R. (9.2)

As shown in [21, 26] performing repeated variations of the “anomaly induced” action (9.1)

with respect to the background metric gµν and to the Aα gauge field, here taken as a

background, one can reproduce the anomalous contribution of correlators with multiple

insertions of the EMT or of gauge currents. This action does not reproduce the homoge-

neous contributions to the anomalous trace Ward identity, which require an independent

computation in order to be identified. The action can be reformulated in such a way that

its interactions become local [26], by introducing two auxiliary scalar fields. After some

manipulations, one can show that the quartic pole reduces to a single pole and the anomaly

induced action near a flat background takes the simpler form

Sanom[g,A] → − c

6

∫

d4x
√
g

∫

d4x′
√

−g′Rx!
−1
x,x′ [FαβF

αβ ]x′ . (9.3)

Notice that this action is valid to first order in metric variations around flat space. Its

local expression is given by

Sanom[g,A;ϕ,ψ′] =

∫

d4x
√
g

[

−ψ′
!ϕ− R

3
ψ′ +

c

2
FαβF

αβϕ

]

, (9.4)

with ψ′ and ϕ defined as in [21]. R, in the equations above, is the linearized version of the

Ricci scalar

R ≡ ∂xµ ∂
x
ν h

µν −!h, h = ηµν h
µν . (9.5)

eq. (9.4) shows the appearance of coupled massless degrees of freedom whose interpretation

has been offered in [21] using the approach of dispersion relations and to which we refer

for further details. This analysis, so far, has been limited to the TV V correlator and

can be obviously extended, with some effort, to the case of the TTT vertex whose explicit

computation has been discussed in this paper. In particular this analysis could test directly

if the pole structure present in the expression of the TTT vertex will match the prediction

of the same vertex once this is computed using (9.1) by functional differentiation respect to

the metric. This point is technically very involved since it requires a comparison between

the result of a direct computation in perturbative field theory of the TTT , as done in this

work, with the same correlator computed from Riegert’ s variational solution. We hope to

come back to discuss this point in a related work.
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10 Conclusions

In this work we have tried to close the gap between two analysis of several CFT correlators,

such as the TV V and TTT vertices, characterized by the presence of one, two and three

gravitons on the external lines. We have tried to map position space and momentum space

approaches, showing their interrelation. We have used free field theory realizations of the

general solutions of these correlators in order to establish their expression in momentum

space. These expressions, obviously, remain valid for any CFT. We have also drawn a

parallel between the approach to renormalization typical of standard perturbation theory

and the same approach based on the solution of the anomalous Ward identities, as discussed

in [18, 27]. As a nontrivial test of the equivalence of both methods in 4 dimensions, we have

verified that the counterterms predicted by the general analysis in position space coincide

with those obtained from momentum space in the Lagrangian predictions derived from

one-loop free field theory calculations.

In our approach, based on dimensional regularization, the anomaly is generated by

tracing in 4 dimensions the renormalized vertex, and in some cases, such as in the TV V

vertex, it can be thought as due to a single specific tensor structure. This is characterized

by the appearance of an anomaly pole. In the TTT case, the explicit expression of this

vertex that we have presented is the starting point for further analysis. For instance

it is a necessary intermediate step in demonstrating the correspondence between general

CFT calculations in d-dimensional Euclidean position space, perturbative calculations by

Feynman diagrams in momentum space, and the anomaly effective action of [24–26, 30].

This will remove a possible objection to the anomaly effective action raised in [18]) by

the consistent inclusion of all the terms required by conformal invariance, including the

non-anomalous ones for which the anomaly effective action is mute. The origin of an

effective massless degree of freedom (an effective “dilaton-like” field) coupled to gravity

in the Standard Model will then be made fully explicit. As we have mentioned, this

point has already been proven in the TV V case [3, 4, 21] and is expected on general

grounds of anomalous Ward identities and the associated non-trivial cohomology of Weyl

transformations [24].

We have also discussed a general algorithm that should prove useful to regulate and

map correlators from position space to momentum space, and we have illustrated how to

perform such a mapping in a systematic way with a number of examples. The method

can be applied in the analysis of more complex correlators, for which a manifest proof

of finiteness may not be available. The power of the approach has been shown by re-

analysing finite conformal correlators investigated in the first part, offering a complete test

of its consistency.
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A The computation of TTT

A.1 Definitions and conventions

The covariant derivatives of a contravariant vector Aµ and of a covariant one Bµ are

respectively

∇νA
µ ≡ ∂νA

µ + Γµ
νρA

ρ , (A.1)

∇νBµ ≡ ∂νBµ − ΓρνµBρ , (A.2)

with the Christoffel symbols defined as

Γαβγ(z) =
1

2
gακ(z) [−∂κgβγ(z) + ∂βgκγ(z) + ∂γgκβ(z)] . (A.3)

Our definition of the Riemann tensor is

Rλ
µκν = ∂νΓ

λ
µκ − ∂κΓ

λ
µν + ΓλνηΓ

η
µκ − ΓλκηΓ

η
µν . (A.4)

The Ricci tensor is defined by the contraction Rµν = Rλ
µλν and the scalar curvature by

R = gµνRµν .

The traceless part of the Riemann tensor in d dimension is the Weyl tensor,

Cαβγδ = Rαβγδ −
2

d− 2
(gαγ Rδβ + gαδ Rγβ − gβγ Rδα − gβδ Rγα)

+
2

(d− 1)(d− 2)
(gαγ gδβ + gαδ gγβ)R ,

(A.5)

and its square, F d, whose d = 4 realization, called simply F , appears in the trace anomaly

equation (2.1), is

F d ≡ CαβγδCαβγδ = RαβγδRαβγδ −
4

d− 2
RαβRαβ +

2

(d− 2)(d− 1)
R2 . (A.6)

The Euler density is instead

G = RαβγδRαβγδ − 4RαβRαβ +R2 . (A.7)

The functional variations with respect to the metric tensor are computed using the relations

δ
√
g = −1

2

√
g gαβ δg

αβ δ
√
g =

1

2

√
g gαβ δgαβ

δgµν = −gµαgνβ δg
αβ δgµν = −gµαgνβ δgαβ . (A.8)

The structure sαβγδ has been repeatedly used throughout the calculations: it comes from

− δgαβ(z)

δgγδ(x)

∣

∣

∣

∣

gµν=δµν

=
1

2

[

δαγδβδ + δαδδβγ
]

δ(4)(z − x) = sµναβ δ(4)(z − x) . (A.9)
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B Functional derivation of invariant integrals

In this appendix we briefly show how to evaluate the functional variation of the invariant

integral I(a, b, c)

I(a, b, c) ≡
∫

ddx
√
g K ≡

∫

ddx
√
g
(

aRαβγδRαβγδ + bRαβRαβ + cR2
)

, (B.1)

needed to compute the counterterms found in section 6.3.

Our index conventions for the Riemann and Ricci tensors are those in (A.4). We have

δ(RαβγδRαβγδ) = δ(gασg
βηgγζgδρRα

βγδR
σ
ηζρ)

= δ(gασg
βηgγζgδρ)Rα

βγδR
σ
ηζρ + gασg

βηgγζgδρδ(Rα
βγδR

σ
ηζρ)

= δ(gασg
βηgγζgδρ)Rα

βγδR
σ
ηζρ + 2 δ(Rα

βγδ)Rα
βγδ . (B.2)

Using (A.8) and (A.9) and the product rule for derivatives one easily finds out that the

variation can be written at first as

δI(a, b, c) =

∫

ddx
√
g

{[

1

2
gµνK − 2aRµαβγRν

αβγ − 2bRµαRν
α − 2cRRµν

]

δgµν

+2aRα
βγδδRα

βγδ + 2bRαβδRαβ + 2cRgαβδRαβ

}

. (B.3)

Exploiting the Palatini identities,

δRα
βγδ = (δΓαβγ);δ − (δΓa

βδ);γ ⇒ δRβδ = (δΓλβλ);δ − (δΓλβδ);λ , (B.4)

and the Bianchi identities we get

Rαβγδ;η +Rαβηγ;δ +Rαβδη;γ = 0 ⇒ Rβδ;η −Rβη;δ +Rγ
βδη;γ = 0

⇒ R;δ = 2Rα
δ;α ⇔

(

Rαβ − 1

2
gαβR

)

;β

= 0 . (B.5)

After an integration by parts and a reshuffling of indices we get

δI(a, b, c) =
∫

ddx
√
g

{[

1

2
gµνK − 2

(

aRµαβγRν
αβγ + bRµαRν

α + cRRµν
)

]

δgµν

+
[

4a gβδg
γη(δΓδαγ);η − (4a+ 2b) (δΓγαβ);γ + (4c+ 2b) (δΓλαλ);β − 4cgηδgγα(δΓ

γ
ηδ);β

]

Rαβ

}

.

(B.6)

The variations of the Christoffel symbols and of their covariant derivatives in terms of

covariant derivatives of the metric tensors variations are

δΓαβγ =
1

2
gαδ
[

− (δgβγ);δ + (δgβδ);γ + (δgγδ);β
]

,

(δΓαβγ);δ =
1

2
gαη
[

− (δgβγ);η;δ + (δgβη);γ;δ + (δgγη);β;δ
]

. (B.7)
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Now we use them to rewrite (B.6) as

δI(a, b, c) =

∫

ddx
√
g

{[

1

2
gµνK − 2

(

aRµαβγRν
αβγ + bRµαRν

α + cRRµν
)

]

δgµν

+

[

2a
[

− (δgαδ);β;γ + (δgαβ);γ;δ + (δgβδ);α;γ
]

−(2a+b)
[

− (δgαβ);δ;γ+(δgαδ);β;γ+(δgβδ);α;γ
]

+(2c+b)(δgγδ);α;β

−2c
[

− (δgγδ);α;β + (δgαδ);γ;β + (δgαγ);δ;β
]

]

gγδ Rαβ

}

. (B.8)

The presence of the factor gcdRab imposes two symmetry constraints on the terms in the

last contribution in square brackets. By adding and subtracting −(4a + 2b) (δgac);d;b we

obtain the expression

δI(a, b, c) =

∫

ddx
√
g

{[

1

2
gµνK − 2

(

aRµαβγRν
αβγ + bRµαRν

α + cRRµν
)

]

δgµν

+

[

(4a+ 2b)
[

(δgαγ);β;δ − (δgαγ);δ;β
]

+ (4a+ b)(δgαβ);γ;δ

+(4c+ b)(δgγδ);α;β − (4a+ 2b+ 4c)(δgαγ);δ;β

]

gγδRαβ

}

. (B.9)

The commutation of covariant derivatives allows us to write

gγδ
[

(δgαγ);β;δ − (δgαγ);δ;β
]

Rαβ = gγδ
[

− δgασR
σ
γδβ − δgγσR

σ
αβδ

]

Rαβ

= gγδ
[

− sµνασR
σ
γβδ − sµνcσR

σ
αβδ

]

Rαβ δgµν

= (−RµαRν
α +RµανβRαβ)δgµν . (B.10)

Inserting this back into (B.9) we get

δI(a, b, c) =
∫

ddx
√
g

{[

1

2
gµνK−2aRµαβγRν

αβγ+4aRµαRν
α−(4a+ 2b)RµανβRαβ−2cRRµν

]

δgµν

+

[

(4a+ b)(δgαβ);γ;δ + (4c+ b)(δgγδ);α;β − (4a+ 2b+ 4c)(δgαγ);δ;β

]

gγδRαβ

}

.

(B.11)

If the coefficients are a = c = 1 and b = −4, i.e. if the integrand is the Euler density, the

last three terms are zero.

All that is left to do is a double integration by parts for each one of the last three

terms, to factor out δgµν . This is easily performed and the final result can be written as

δ

δgµν
I(a, b, c) =

δ

δgµν

∫

ddx
√
g
(

aRαβγδRαβγδ + bRαβRαβ + cR2
)

=
√
g

{

1

2
gµνK−2aRµαβγRν

αβγ+4aRµαRν
α−(4a+2b)RµανβRαβ−2cRRµν

+(4a+b)!Rµν+(4c+b)gµνRαβ
;α;β−(4a+2b+4c)Rνβ

;β
;µ
}

. (B.12)
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C List of functional derivatives

We list here the contributions to the trace anomalies for three point function coming from

the elementary quadratic objects. They are given by

[

!R
]αβρσ

(p, q) =
[

gµν(∂µ∂ν − Γλµν∂λ)R
]αβρσ

(p, q)

= i2 (p+ q)2
[

R
]αβρσ

(p, q)−
{

i2 qαqβ − δµν
[

Γλµν
]αβ

(p) i qλ
}

Rρσ(q)

−
{

i2 pρpσ − δµν
[

Γλµν
]ρσ

(q) i pλ
}

Rαβ(p)

= (p+ q)2
{

− 1

2
δαβ
(

pρqσ + pσqρ + 2 pρpσ
)

− 1

2
δρσ
(

qαpβ + qβqα + 2 qαqβ
)

+
1

2
p · q δαβδρσ + 1

4

(

pρqβδασ + pρqαδβσ + pσqβδαρ + pσqαδβρ
)

+
1

2

[

(

qρpβδασ + qρpαδβσ + qσpβδαρ + qσpαδβρ
)

+δαρ
(

pβpσ + qβqσ
)

+ δασ
(

pβpρ + qβqρ
)

+ δβρ
(

pαpσ + qαqσ
)

+δβσ
(

pαpρ + qαqρ
)

−
(

δασδβρ + δαρδβσ
)(

p2 + q2 +
3

2
p · q

)

]}

+
1

2

(

p2δαβ − pαpβ
)(

p · q δρσ − (pρqσ + pσqρ)− 2 pρpσ
)

+
1

2

(

q2δρσ − qσqρ
)(

p · q δαβ − (pαqβ + pβqα)− 2 qαqβ
)

, (C.1)

with

[

Γλαβ
]ρσ

(l) =
1

2
δλκ i

[

sρσακ lβ + sρσβκ lα − sρσαβ lκ
]

,
[

Rαβ

]ρσ
(l) = −i lα [Γ

λ
λβ]

ρσ(l) + i lλ [Γ
λ
αβ]

ρσ(l) . (C.2)
[

RλµκνR
λµκν

]αβρσ
(p, q) = 2

[

Rλµκν

]αβ
(p)
[

Rλµκν
]ρσ

(q)

= p · q
[

p · q
(

δαρδβσ + δασδβρ
)

−
(

δαρpσqβ + δασpρqβ

+δβρpσqα + δβσpρqα
)]

+ 2 pρpσqαqβ ,
[

RµνR
µν
]αβρσ

(p, q) = 2
[

Rµν
]αβ

(p)
[

Rµν
]ρσ

(q)

=
1

4
p · q

(

δαρpβqσ + δασpβqρ + δβρpαqσ + δβσpαqρ
)

+
1

2
(p · q)2δαβδρσ + 1

4
p2q2

(

δαρδβσ + δασδβρ
)

−
[

1

4
p2
(

qαqρδβσ + qαqσδβρ + qβqρδασ + qβqσδαρ
)

+
1

2
δαβ
(

p · q (pρqσ + pσqρ)− q2pρpσ
)

+ (α,β, p) ↔ (ρ,σ, q)

]

,

[

R2
]αβρσ

(p, q) = 2 δµν
[

Rµν
]αβ

(p)δτω
[

Rτω
]ρσ

(q)

= 2
(

pαpβqρqσ − p2qρqσδαβ − q2pαpβδρσ + p2 q2δαβδρσ
)

, (C.3)

The dependence on the momenta is obviously determined by (2.25).
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D Vertices

We have shown in figure 3 a list of all the vertices which are needed for the momentum

space computation of the various correlators in d dimensions. We list them below: notice

that they are computed differentiating the first and second functional derivatives of the

action, because this allows to keep multi-graviton correlators symmetric (see 2.22).

V µν
Tφφ(p, q) =

1

2
pαqβC

µναβ + χ

(

δµν (p+ q)2 − (pµ + qµ) (pν + qν)

)

,

V µν
T ψ̄ψ

(p, q) =
1

8
Aµναλγα (pλ − qλ) ,

V µντω
TAA (p, q) =

1

2

[

p · qCµντω+Dµντω(p, q)+
1

ξ
Eµντω(p, q)

]

=

(

ṼTAA+
1

ξ
V̄TAA

)µντω

(p, q),

V µν
T c̄c(p, q) = −V µν

Tφφ(p, q)

∣

∣

∣

∣

χ=0

,

for the graviton (T )- to two scalars (φ), fermions, photons and ghost pairs. Quadrilinear

interactions involving 2 gravitons are far more involved and are given by the expressions

V µνρσ
TTφφ(p, q, l) =

1

2
p · qsµνρσ − 1

4
Gµνρσ(p, q) +

1

4
δρσpαqβC

µναβ

+χ

{[(

δµλδακδνβ + δµαδνκδβλ − δµκδνλδαβ − δµνδαλδβκ
)

sρσλκ

+
1

2
δρσ
(

δµαδνβ − δµνδαβ
)]

(pαqβ + pβqα + pαpβ + qαqβ)

+

[(

δµνδαβ − δµαδνβ
)

[

Γλαβ
]ρσ

(l)i (pλ + qλ)

+

(

δµαδνβ − 1

2
δµνδαβ

)

[

Rαβ

]ρσ
(l)

]}

,

V µνρσ
TT ψ̄ψ

(p, q) =
1

16

[

− 4 sµνρσ − 2 δµν sαλρσ + 2 δαµ sνλρσ + 2 δαν sµλρσ + δµλ sανρσ

+δνλ sαµρσ + δρσ Aµναλ

]

γα (pλ − qλ) ,

V µνρστω
TTAA (p, q, l) =

1

2

{[

Bαµρσβλγν +
1

4
Bµνρσαλγβ

]

Fαβγλ
τω(p, q)

+
1

ξ

(

Hµνρστω(p, q, l) + Iµνρστω(p, q, l)

)}

+
1

4
δρσ
[

p · qCµντω +Dµντω(p, q) +
1

ξ
Eµντω(p, q)

]

=
(

ṼTTAA(p, q) + V̄TTAA(p, q, l)
)µνρστω

,

V µνρσ
TT c̄c (p, q, l) = −V µνρσ

TTφφ(p, q, l)

∣

∣

∣

∣

χ=0

, (D.1)

describing interactions similar to those shown above in the trilinear case, but now with

the insertion of one extra graviton. We have simplified the notation by introducing, for

convenience, the tensor components
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Aµναλ = 2 δµν δαλ − δαµ δλν − δαν δλµ

Bαµρσβλγν = sαµρσ δβλ δγν + sβλρσ δαµ δγν + sγνρσ δαµ δβλ

Cµνρσ = δµρδνσ + δµσδνρ − δµνδρσ ,

Dµνρσ(p, q) = δµνpσqρ + δρσ
(

pµqν + pνqµ
)

− δµσpνqρ − δµρpσqν − δνσpµqρ − δνρpσqµ

Eµνρσ(p, q) = δµν
[

pρpσ + qρqσ + pρqσ
]

−
[

δνσpµpρ + δνρqµqσ + δµσpνpρ + δµρqνqσ
]

,

Fµνρστω(p, q) = −δτρδωµpσqν + δτρδωνpσqµ + δτσδωµpρqν − δτσδωνpρqµ + (τ, p) ↔ (ω, q)

Gµνρσ(p, q) = δµσ
[

pρqν + qρpν
]

+ δνσ
[

pρqµ + qρpµ
]

+ δµρ
[

pσqν + qσpν
]

+ δνρ
[

pσqµ + qσpµ
]

−δµν
[

pρqσ + qρpσ
]

Hµνρστω(p, q, l) =

[(

sµωρσ δνλ + sνλρσ δµω
)

pλ p
τ + δµω

(

sλτρσ lν + sλτρσ pν
)

pλ

+
1

2
δµω (p+ l)ν

(

− lτ δρσ + 2 lλ s
τλρσ

)

+ (µ ↔ ν)

]

+ (τ, p) ↔ (ω, q)

Iµνρστω(p, q, l) = δµν
{

1

2
δρσ lτ (p+ q + l)ω − sλτρσ

[

qω pλ + lλ (p+ q + l)ω
]

−sλωρσ
[

pτ pλ + qλ (q + l)τ
]}

− sµνρσ
(

pω pτ + qω pτ
)

+ (τ, p) ↔ (ω, q).

(D.2)

We have performed all our computations in the Feynman gauge (ξ = 1) The Euclidean

propagators of the fields in this case are

⟨φφ⟩ (p) =
1

p2
〈

ψ̄ ψ
〉

(p) =
p · γ
p2

.

⟨AµAν⟩ (p) =
δµν

p2
,

⟨c̄ c⟩ (p) = − 1

p2
. (D.3)

E Comments on the inverse mapping

In this appendix we offer some calculational details in the derivation of the expression of

the TTT correlator in position space. The remarks apply as well to any other correlator.

For example eq. (4.4) refers to the contribution coming from the triangle diagram

shown in figure 2. We assign the loop momentum l to flow from the upper external point

(x3) to the lower one (x2) on the right, the other two flows being determined by momentum

conservation. We denote the third external point as x1. For the scalar case, for instance,

the complete one-loop triangle diagram is

∫

ddl

(2π)d
V µν
Tφφ(l − q,−l − p)V ρσ

Tφφ(l,−l + q)V αβ
Tφφ(l + p,−l)

l2 (l − q)2 (l + p)2
(E.1)

The vertices are defined in eq. (D.1). The first argument in each vertex denotes the

momentum of the incoming particle, the second argument is the momentum of the outgoing
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one. A typical term appearing in the loop integral is then

I ≡
∫

ddl

(2π)d
lµ lν (l + p)ρ (l + p)σ(l − q)α (l − q)β

l2 (l − q)2 (l + p)2
. (E.2)

From (8.1) the propagators in configuration space are

1

l2 (l − q)2 (l + p)2
= C(1)3

∫

ddx12 d
dx23 d

dx31
ei [l·x23+(l−q)·x12+(l+p)·x31]

(x212)
d/2−1 (x223)

d/2−1 (x231)
d/2−1

, (E.3)

where C(α) has been defined in (8.1). It is straightforward to see that (E.2) is given by

∫

ddl

(2π)d
lµ lν (l + p)ρ (l + p)σ(l − q)α (l − q)β

l2 (l − q)2 (l + p)2
=

C(1)3
∫

ddl

(2π)d
ddx12 d

dx23 d
dx31

(−i)6 ∂µ23 ∂
ν
23 ∂

ρ
31 ∂

σ
31 ∂

α
12 ∂

β
12 e

i [l·x23+(l−q)·x12+(l+p)·x31]

(x212)
d/2−1 (x223)

d/2−1 (x231)
d/2−1

.

(E.4)

We can now integrate by parts moving the derivatives onto the propagators, getting

I = C(1)3
∫

ddl

(2π)d
ddx12 d

dx23 d
dx31 e

i [l·x23+(l−q)·x12+(l+p)·x31]

×i6 ∂µ23 ∂
ν
23 ∂

ρ
31 ∂

σ
31 ∂

α
12 ∂

β
12

1

(x212)
d/2−1 (x223)

d/2−1 (x231)
d/2−1

. (E.5)

The second line is immediately identified with the coordinate space Green’s function.

This can be done for each term of (E.1), justifying the rule quoted in section 4.2, that

we have used for all the inverse mappings of the paper. According to this the correlators in

coordinate space can be obtained replacing the momenta in the vertices with “i” times the

respective derivative which then act directly on the propagators after a partial integration.

The same arguments could be applied to the bubbles. Nevertheless, we have seen in 4.2

that derivatives of delta functions appear in the scalar case. These are generated by the

dependence of the V µνρσ
TTφφ(p, q, l) from the momentum l of the graviton bringing the pair of

indices ρσ (see eq. (D.1)). They are due to coupling of the scalar with derivatives of the

metric through the Ricci scalar R in the improvement term (see eq. (5.1)) and state that

the graviton feels the metric gradient. We discuss this below, showing how to inverse-map

the third bubble in figure 2, getting (4.11).

This bubble can be seen as the (x2 → x3) limit of the triangle and its diagrammatic

momentum-space expression at one-loop is

∫

ddl

(2π)d
V µν
Tφφ(l − q,−l − p)V αβρσ

TTφφ(l + p,−l + q,−q)

(l − q)2 (l + p)2
. (E.6)

As the two propagators are expressed by

1

(l + q)2 (l + p)2
= C(1)2

∫

ddx12 d
dx31

ei [(l−q)·x12+(l+p)·x31]

(x212)
d/2−1 (x231)

d/2−1
, (E.7)

the dependence of the second vertex on p cannot be ascribed to neither of them.
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Two typical terms encountered in (E.6) are

∫

ddl

(2π)d
(l + p)ρ (l + p)σ(l − q)α (l − q)β

(l − q)2 (l + p)2
,

∫

ddl

(2π)d
(l + p)ρ (l + p)σ(l − q)α pβ

(l − q)2 (l + p)2
. (E.8)

The first one is treated at once restricting the procedure used for the three point function

to the case of two propagators.

For the second one, the following relation is immediately checked:
∫

ddl

(2π)d
(l + p)ρ(l + p)σ(l − q)αpβ

(l − q)2(l + p)2
=

C(1)2
∫

ddl

(2π)d
ddx12d

dx23d
dx31δ

(d)(x23)
(−i)4∂ρ31∂

σ
31∂

α
12(∂31 − ∂23)βei[l·x23+(l−q)·x12+(l+p)·x31]

(x2
12)

d/2−1(x2
31)

d/2−1
.

(E.9)

Notice that an integration by parts brings in a derivative on the delta functions giving

C(1)2
∫

ddl

(2π)d
ddx12d

dx23d
dx31e

i[l·x23+(l−q)·x12+(l+p)·x31]

(i)4∂ρ31∂
σ
31∂

α
12(∂31 − ∂23)

β δd(x23)

(x212)
d/2−1(x231)

d/2−1
. (E.10)

This approach has been followed in all the derivations of the expressions given in (4.2).

The integration on l brings about a δ(d)(x12 + x23 + x31), so that it is natural to chose

the parameterization

x12 = x1 − x2 , x23 = x2 − x3 , x31 = x3 − x1 . (E.11)

A more inviolved example is the 4-particle vertex. For instance the

VTTφφ(i ∂31,−i ∂12, i (∂12 − ∂23)) is obtained from VTTφφ(p, q, l) with the functional

replacements

p → p̂ = i ∂31, q → q̂ = −i ∂12 l → l̂ = i (∂12 − ∂23) (E.12)

giving

V µνρσ
TTφφ(i ∂31,−i ∂12, i (∂12 − ∂23)) =

1

2
i ∂31 · (−i) ∂12s

µνρσ − 1

4
Gµνρσ(i ∂31,−i ∂12) +

1

4
δρσ i ∂31α (−i) ∂12 β C

µναβ

+χ

{[(

δµλ δακ δνβ + δµα δνκ δβλ − δµκ δνλ δαβ − δµν δαλ δβκ
)

sρσλκ

+
1

2
δρσ
(

δµαδνβ − δµνδαβ
)]

(i∂31α(−i)∂12β + i∂31β(−i)∂12α + i∂31αi∂31β + (−i)∂12α(−i)∂12β)

−
[(

δµα δνβ − δµν δαβ
)(

[

Γλαβ
]ρσ

(i (∂12 − ∂23))

)

(−i) (i ∂31λ + (−i) ∂12λ)

+
1

2

(

δµα δνβ − 1

2
δµν δαβ

)(

[

Rαβ
]ρσ

(i (∂12 − ∂23))

)]}

. (E.13)
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F Regularizations and distributional identities

We add few more comments and examples which illustrate the regularization that we have

applied in the computation of the various correlators.

The computation of the logarithmic integrals requires some care due to the distribu-

tional nature of some of these formulas. As an example we consider the integrals

H1 =

∫

ddl eil·x
µ2ω

[l2]1+ω
H2 =

∫

ddl eil·x
µ2ω

[l2]ω
H3 =

∫

ddl eil·x log

(

l2

µ2

)

(F.1)

We can relate them in the form

H3 = − ∂

∂ω
H2

∣

∣

∣

∣

ω=0

= !

(

∂

∂ω
H1

∣

∣

∣

∣

ω=0

)

(F.2)

In the two cases we get, using (8.1)

− ∂

∂ω
H2

∣

∣

∣

∣

ω=0

= −(4π)d/2 Γ(d/2)

(x2)d/2
(F.3)

and

∂

∂ω
H1

∣

∣

∣

∣

ω=0

=
2d−2πd/2Γ(d/2− 1)

[x2]d/2−1

(

log(x2µ2) + γ − log 4− ψ

(

d− 2

2

))

(F.4)

By redefining the regularization scale µ with eq. (8.20) we clearly obtain from (F.4)

∫

ddl
log(l2/µ2)eil·x

l2
= 2d−2πd/2Γ(d/2− 1)

log x2µ̄2

[x2]d/2−1
(F.5)

and

H3 = !

(

∂

∂ω
H1

∣

∣

∣

∣

ω=0

)

= 2d−2πd/2Γ(d/2− 1)!

(

log x2µ̄2

[x2]d/2−1

)

(F.6)

The use of H2 instead gives

H3 = − ∂

∂ω
H2

∣

∣

∣

∣

ω=0

= −2dπd/2Γ(d/2)

[x2]d/2
(F.7)

Notice that this second relation coincides with (F.6) away from the point x = 0, but differs

from it right on the singularity, since

!
log x2µ2

[x2]d/2−1
= −2 (d− 2)

(

πd/2

Γ(d/2)
log(x2µ2) δd(x) +

1

[x2]d/2

)

(F.8)

For this reason we take (F.6) as the regularized expression of H3, in agreement with the

standard approach of differential regularization.
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F.1 Evaluation of the single log integrals

The direct method discussed in the second part of the paper, though very general and

applicable to any correlator, introduces in momentum space some logarithmic integrals

which are more difficult to handle. They take the role of the ordinary master integrals of

perturbation theory. The scalar integrals needed for the tensor reduction of the logarithmic

contributions in the text are defined in (F.17). After a shift of the momentum in the

argument of the logarithm, a standard tensor reduction gives

ILµ(0, p1, p2) = CL1(p1, p2) p1µ + CL2(p1, p2) p2µ ,

CL1(p1, p2) =
(p12 − p1 · p2)p22 IL(0, p1, p2) + (p22 − p1 · p2) ILµ

µ(0, p1, p2)

2 (p1 · p2)2 − p12 p22
,

CL2(p1, p2) =
(p22 − p1 · p2)p12 IL(0, p1, p2) + (p12 − p1 · p2) ILµ

µ(0, p1, p2)

2 (p1 · p2)2 − p12 p22
. (F.9)

To complete the computation of the V V V correlator we need the explicit form of the

logarithmic integrals in terms of ordinary logarithmic and polylogarithmic functions. We

define

I ≡
∫

ddl
log
(

l2/µ2
)

(l + p1)2(l − p2)2
= − ∂

∂λ

∫

ddl
µ2λ

(l2)λ (l + p1)2 (l − p2)2 λ=0

. (F.10)

The logarithmic integral is identified from the term of O(λ) in the series expansion of the

previous expression. Because the coefficient in front of the parametric integral starts at

this order, we just need to know the zeroth order expansion of the integrand, which we

separate into two terms. The first one is integrable

I1 =

∫ 1

0
dt
t−ϵ(yt)1−ϵ−λ

A(t)1−ϵ
=

∫ 1

0
dt
t−ϵ(yt)1−ϵ

A(t)1−ϵ
+O(λ) ≡ I(0)1 +O(λ) , (F.11)

while the last term has a singularity in t = 0 which must be factored out and re-expressed

in terms of a pole in λ

I2 = −
∫ 1

0
dt
t−ϵ(x/t)1−ϵ−λ

A(t)1−ϵ
= −x1−ϵ−λ

λ

∫ 1

0
dt

1

A(t)1−ϵ
d

dt
tλ

= −x1−ϵ−λ

λ

[

1− (ϵ− 1)

∫ 1

0
dt

tλ

A(t)1−ϵ

(

1

t− t1
+

1

t− t2

)]

=
x1−ϵ

λ

{

− 1 + (ϵ− 1)

∫ 1

0
dt

1

A(t)1−ϵ

(

1

t− t1
+

1

t− t2

)]}

+x1−ϵ
[

log x+ (ϵ− 1)

∫ 1

0
dt
log (t/x)

A(t)1−ϵ

(

1

t− t1
+

1

t− t2

)]

+O(λ)

≡ 1

λ
I(−1)
2 + I(0)2 +O(λ),

(F.12)

where t1 and t2 are the two roots of A(t) = yt2 + (1 − x − y)t + x. We are now able to

write down the full λ-expansion of J(1, 1,λ) and to extract the logarithmic integral I

I = −π
2−ϵi1+2ϵ

(p23)
ϵ

Γ(1− ϵ)Γ(2− ϵ)Γ(ϵ)

Γ(2− 2ϵ)

1

ϵ− 1

{

I(0)1 + I(0)2

}

. (F.13)
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The previous expression can be expanded in d = 4− 2ϵ dimensions in which it manifests a

1/ϵ pole of ultraviolet origin

I =
π2−ϵi1+2ϵ

(p23)
ϵ

(

−1

ϵ
+ γ

)[

A(x, y) + ϵB(x, y)

]

+O(ϵ) , (F.14)

where A(x, y) and B(x, y) are defined from the ϵ-expansion of the two integrals I(0)1 and

I(0)2 as

A(x, y) = x log x+

∫ 1

0

dt

A(t)

[

yt− x log (t/x)

(

1

t− t1
+

1

t− t2

)]

, (F.15)

B(x, y) = −x log2 x+

∫ 1

0

dt

A(t)

[

yt (log (t− t1) + log (t− t2)− 2 log t)

−x log (t/x)

(

1

t− t1
+

1

t− t2

)

(log (t− t1) + log (t− t2)− log (x/y)− 1)

]

.

(F.16)

F.2 List of momentum space integrals

To set the stage for the explicit examples of three point functions treated in section 8, we

introduce here a systematic short-hand notation to denote the momentum-space integrals.

We define

Iµ1,...,µn(p) =

∫

ddl
lµ1

. . . lµn

l2 (l + p)2
,

Jµ1,...,µn(p1, p2) =

∫

ddl
lµ1

. . . lµn

l2 (l + p1)2(l + p2)2
,

ILµ1...µn(p1, p2, p3) =

∫

ddl
lµ1

. . . lµn log
(

(l + p1)2/µ2
)

(l + p2)2(l + p3)2
,

ILLµ1...µn(p1, p2, p3, p4) =

∫

ddl
lµ1

. . . lµn log
(

(l + p1)2/µ2
)

log
(

(l + p2)2/µ2
)

(l + p3)2(l + p4)2
.

(F.17)

For correlators which are finite, the double logarithmic contributions will appear in com-

binations that can be re-expressed in terms of ordinary Feynman integrals.
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