
Nuclear Physics B 826 (2010) 87–147

www.elsevier.com/locate/nuclphysb

Axions from intersecting branes and decoupled chiral
fermions at the Large Hadron Collider

Claudio Corianò ∗, Marco Guzzi

Dipartimento di Fisica, Università del Salento, and INFN, Sezione di Lecce, Via Arnesano, 73100 Lecce, Italy

Received 29 May 2009; accepted 29 September 2009

Available online 3 October 2009

Abstract

We present a study of a class of effective actions which show typical axion-like interactions, and of their
possible effects at the Large Hadron Collider. One important feature of these models is the presence of
one pseudoscalar which is a generalization of the Peccei–Quinn axion. This can be very light and very
weakly coupled, with a mass which is unrelated to its couplings to the gauge fields, described by Wess–
Zumino interactions. We discuss two independent realizations of these models, one derived from the theory
of intersecting branes and the second one obtained by decoupling one chiral fermion per generation (one
right-handed neutrino) from an anomaly-free mother theory. The key features of this second realization are
illustrated using a simple example. Charge assignments of intersecting branes can be easily reproduced by
the chiral decoupling approach, which remains more general at the level of the solution of its anomaly equa-
tions. Using considerations based on its lifetime, we show that in brane models the axion can be dark matter
only if its mass is ultralight (∼10−4 eV), while in the case of fermion decoupling it can reach the GeV re-
gion, due to the absence of fermion couplings between the heavy Higgs and the light fermion spectrum. For
a GeV axion derived from brane models we present a detailed discussion of its production rates at the LHC.
© 2009 Elsevier B.V. All rights reserved.

PACS: 14.80.Va; 12.60.Cn; 11.25.Wx

1. Introduction

The study of possible signatures of string/brane theory at lower energy has achieved a signif-
icant strength with the development, in the last few years, of several extensions of the Standard
Model (SM) formulated in scenarios with intersecting branes and large extra dimensions [1–6],
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which are characterized by quite distinct features compared to other constructions, such as those
based on more traditional anomaly-free supersymmetric formulations. The latter include spe-
cific theories like the MSSM but also its further variants such as its next-to-minimal (nMSSM,
NMSSM) extensions, eventually with the inclusion of a gauge structure enlarged by an extra
anomaly-free U(1) gauge symmetry (USSM) [7] (see [8] for an overview).

On the other hand, since anomalous U(1)’s are naturally produced in geometrical compact-
ifications and are an important aspect of brane models, the search for possible signatures of
string theory has necessarily to take into consideration the peculiarities of these anomalous ex-
tensions, which are characterized by anomalous extra neutral currents, contact interactions of
Chern–Simons form at trilinear gauge level [9–11] and several axions of Stückelberg type. Su-
persymmetric extensions of these classes of models have also been investigated recently [12,13].

One of the most demanding feature of these formulations, in regard to possible experimental
searches, is to clarify the role of gauge anomalies on a substantial sector of collider phenomenol-
ogy, from precision measurements of leptoproduction to double prompt-photon production [14],
just to mention a few processes. These and many more are all affected by the new anomalous
trilinear gauge vertices [15] which appear in these models, although their studies are expected to
be quite difficult experimentally.

In fact, the limited accuracy of hadron colliders might reduce the expectations in regard to the
possible experimental identification of subtle effects due to the mechanism(s) which underline
the cancellation of the gauge anomalies. Nevertheless, the presence of an axion-like particle in the
spectra of these theories is an important feature of intersecting brane models, which represents
a serious departure from the typical anomaly-free formulations – both for supersymmetric and
non-supersymmetric models – and provides a natural justification for a light pseudoscalar state.

The higher perturbative order at which these effects start to appear in the perturbative expan-
sion and the limitations of the parton model description seem to indicate that the analysis of
anomalous effects are more likely to be the goal of a linear collider rather than that of the LHC,
nevertheless the signatures of new physics are manifold and are not limited to collider physics,
but have remarkable implications also in astroparticle physics and cosmology.

Among the aspects that can be addressed within these new formulations are those related to
the flavour sector and the connection between these constructions and the traditional solutions
of the strong CP-problem, previously addressed with the help of global U(1) symmetries, such
as in the invisible axion model [16–20]. We recall that studies of the flavour sector of the SM
in the presence of gauged anomalous U(1)’s are not new, having been used in the past in a va-
riety of cases, for example in the construction of realistic scenarios for neutrino mixing [21]. At
the same time, the study of axion-like particles is at the center of new important proposals for
their detection which are now under an intense investigation at DESY [22,23]. Other interesting
proposals consider the possible implications of axion-like particles in the propagation of gamma
rays [24]. We believe that these motivations are sufficient to justify generalized searches of pseu-
doscalars as a possible solution of the dark matter problem. At the same time anomalous gauge
interactions, in combination with quantum gravitational effects, show puzzling features, due to
the presence of phantom fields [25,26] in the local formulation of the trace anomaly [27] which
deserve a closer look.

1.1. An axion with independent gauge couplings and mass

An axion-like particle is characterized by the usual pseudoscalar couplings to the gauge fields
(the bF F̃ term, where b is an axion) but has a mass which is unrelated to its coupling. Differ-
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ent mass ranges for the axion have quite different implications at a phenomenological level. For
instance, for a very light axion (≈10−4–10−6 eV), as for the PQ case, the pseudoscalar can mix
with the photon and can generate, in the presence of background galactic magnetic fields, the
usual phenomena of birefringence and dichroism for light propagation [28], with important ef-
fects at astrophysical level [24,29] and other experimental signatures [22,23]. The optical activity
of the intergalactic medium due to the presence of background axions, also in this generalized
case, is essentially caused by the bF F̃ coupling in the equations of motion of the Lagrangian
[30,31].

In the invisible axion model astrophysical arguments bound the mass of the axion (and its in-
teraction to the gauge fields) requiring its suppression by a large scale f . All the axion couplings
and the axion mass

(1)m ≈ (6 × 10−6 eV
)1012

f
GeV

are inversely proportional to f , where f is arbitrary (f ≈ 109 GeV experimentally) and makes
the axion, indeed, very light. In general, a very light axion, being a quasi-Goldstone mode of
a global symmetry, is produced copiously at the center of the sun and escapes after its produc-
tion, with a mean free path which is larger than the radius of the sun. The failure by existing
ground-based helioscopes to detect this particle in a detector of Sikivie type [32–34] has been
used to bound its mass and its interaction with the gauge fields. The bound can be evaded if the
axion has a mass larger than the temperature at the center of the sun, since in this case would
not be produced at its center, mass which is not allowed for the invisible axion according to cur-
rent constraints. For a very light axion interesting effects are allowed, such as its non-relativistic
decoupling, since its average momentum at the QCD phase transition is not of the order of the as-
sociated temperature, which is in the GeV range, but of the Hubble expansion rate (3×10−9 eV),
and the formation of Bose–Einstein condensates [35].

As we have mentioned, the gauging of the axionic symmetries can lift the typical constraints
of the invisible axion model, allowing a wider parameter space, which is the main motivation
for our study. In principle, in the extensions that we consider, this pseudoscalar can be very
light, while its gauge interactions can be suppressed by a scale which is given by the mass of
the lightest extra Z′ present in the neutral sector of these models. For this reason, these types of
pseudoscalars are naturally associated to the neutral current sector, with new implications at the
level of the trilinear gauge interactions.

So far, two models have been developed in which the structure of the effective action allows a
physical axion: the MLSOM (the Minimal Low-Scale Orientifold Model) [36] and the USSM-A
[13,37], the first being a non-supersymmetric model, the second a supersymmetric one. In the
first model, motivated by a construction based on intersecting branes, the scalar sector involves
beside the Stückelberg axions, 2 Higgs doublets. At the same time, the gauge structure of the
Standard Model is corrected by the presence of extra neutral currents due to the extra U(1).

To date, a detailed analysis of these models is contained in [38], worked out for a single
extra U(1). In the supersymmetric case the presence of a physical axion is guaranteed if the
superpotential allows extra superfields which are singlet respect to the Standard Model but are
charged under the anomalous U(1)’s. The field content of the superpotential of the nMSSM is
sufficient to have a physical axion in the spectrum [13,37].
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1.2. Gauged axions

The gauging of axionic symmetries is realized in the low energy effective Lagrangians by
introducing (shifting) axions, one for each anomalous U(1) present in the gauge structure of a
given model. These are accompanied by Wess–Zumino terms in order to restore the gauge in-
variance of the theory due to the chiral anomalies present in these constructions. These axions
(Stückelberg axions) are not all physical fields. In fact, the only physical axion, called the “axi-
Higgs” in [36], is identified in the CP-odd sector of the scalars by a joint analysis of the potential
and of the bilinear mixing terms (Bi∂bi) generated by the Stückelberg mass terms which are
present for each anomalous U(1). We are going to summarize below the scalar of the scalar
potentials which allow a physical axion in the spectrum, either massless or massive. Since the
mass of this particle is expected to obtain small non-perturbative corrections due to the instanton
vacuum, as for the invisible axion, these small corrections are described by extra terms in the
scalar potential which are allowed by the symmetry. These terms make the physical axion part
of the scalar potential, but their size remains, in the class of theories that we analyze, essentially
unspecified. In supersymmetric models they are expected to correspond to non-holomorphic cor-
rections to the superpotential [37] which involve directly the axion/axino superfield. The size of
these corrections depends on the way the fundamental symmetry is broken, and the appearance
of the axion in the scalar potential just parameterizes our ignorance of the fundamental mecha-
nism which is responsible for these corrections. For this reason, we focus our analysis on several
mass windows for this particle, although the most relevant mass range for collider studies is the
GeV region.

1.3. Organization of this work

The analysis presented in this work concerns the phenomenology of the axi-Higgs in anoma-
lous Abelian models with a single anomalous extra U(1) and in the non-supersymmetric case.
The construction, therefore, is the one typical of the MLSOM, formulated in the context of in-
tersecting branes. A similar analysis can be performed in the supersymmetric case, although it
is more complex and will be presented elsewhere. Our analysis, however, is not limited to mod-
els of intersecting branes, but to the entire class of effective actions which are characterized by
axion-like interactions at low energy, independently from their high energy completion. Typical
charge embeddings of brane constructions, as we are going to show, can nevertheless be obtained
in our approach starting from an anomaly-free spectrum and decoupling some chiral fermions.
Some differences between the two realization remain, at phenomenological level, since the cor-
responding axion, in the case of decoupled fermions, does not couple to the light fermions which
are part of the low-energy spectrum.

Our motivations for working within this more general framework has been motivated by sce-
narios where a heavy fermion, for instance a right-handed neutrino, decouples from the low
energy spectrum leaving one Stückelberg axion (the phase of a Higgs field) in the effective La-
grangian. We will come to discuss these points in more detail in one of the sections below. The
different completions of these Lagrangians start differing at the level of operators whose mass
dimensions is larger than 5, the five-dimensional ones being the Wess–Zumino terms.

After reviewing briefly these models in order to make our analysis self-contained, we illus-
trate how their anomalous content can be obtained by requiring that only some of the anomaly
equations are satisfied, taking as a starting point an anomaly-free chiral spectrum and decoupling
some chiral fermions. Typical brane models such as the Madrid model [4] are obtained for a
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particular choice of the free charges allowed by the decoupling of the heavy chiral fermions and
are just particular solutions of the anomaly equations. We then move towards a phenomenologi-
cal analysis of the axi-Higgs in the MLSOM, selecting the GeV mass range for the axion. This
region is the most promising one for collider studies of this particle, although in this range, as we
are going to show, it is not long-lived. A GeV axion can be long lived, but must have suppressed
couplings to the fermions of the low-energy spectrum, and one way of getting this Lagrangian is
via the mechanism of decoupling of heavy fermions (and of the radial excitations of the associ-
ated Higgs field) from the low energy theory. We show, using a simple toy model, how this can
occur.

Production and decay rates for this particle are studied for all the mass windows in the
MLSOM for typical LHC searches. We give in Appendices A–H a summary of the scalar sector
of the Lagrangian and the determination of coefficients of the Wess–Zumino terms. We have
also included a section where we present a discussion and a comparison of the effective action
of intersecting brane models versus the analogous one obtained by decoupling a chiral fermion,
illustrating briefly the origin of the various operators left in the low energy formulation, with the
axion interpreted as the phase of a second Higgs sector, partially decoupled from the 2 Higgs
doublets included in the electroweak sector.

2. The model: overview of its general structure

We analyze a class of models characterized by a gauge structure of the form SU(3)×SU(2)×
U(1)Y × U(1)B , defined in [38], where the U(1)B gauge symmetry is anomalous and the corre-
sponding gauge boson (B) undergoes mixing with the rest of the gauge bosons of the Standard
Model. Details can be found in [38,39]; here we just summarise the main features of this
construction for which we will define rather general charge assignments. As we have already
stressed, the reason for keeping our analysis quite general is motivated by the observation that
effective actions of intersecting brane models are not uniquely identified. Various completions
can generate the same low energy signatures, at least up to operators of dimension 5, which,
for anomalous gauge theories, are the Wess–Zumino terms. These points will be illustrated in a
section below, where we will solve the basic equations that characterize the charge assignments
of the anomalous model, under some assumptions on the fermion spectrum which are essential
in order to make our analysis concrete.

2.1. The structure of the effective action

The effective action has the structure given by

(2)S = S0 + SYuk + San + SWZ + SCS

where S0 is the classical action which is given in Appendices A–H. It contains the usual gauge
degrees of freedom of the Standard Model plus the extra anomalous gauge boson B which is al-
ready massive, before electroweak symmetry breaking, via a Stückelberg mass term. The scalar
potential is the maximal one permitted by the symmetry and allows electroweak symmetry break-
ing. The structure of the Yukawa sector SYuk is very close to that of the Standard Model. In one
of the sections below we identify the fundamental physical degrees of freedom of this sector af-
ter electroweak symmetry breaking, which, in our analysis, is based on the choice of the largest
potential allowed by the symmetry. The model is a canonical gauge theory with dimension-4
operators plus dimension-5 counterterms of Wess–Zumino type.
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In Eq. (2) the anomalous contributions coming from the 1-loop triangle diagrams involving
Abelian and non-Abelian gauge interactions are summarized by the expression

San = 1

2! 〈TBWWBWW〉 + 1

2! 〈TBGGBGG〉 + 1

3! 〈TBBBBBB〉

(3)+ 1

2! 〈TBYYBYY〉 + 1

2! 〈TYBBYBB〉,
where the symbols 〈 〉 denote integration. For instance, the anomalous contributions in configu-
ration space are given explicitly by

(4)〈TBWWBWW〉 ≡
∫

dx dy dzT
λμν,ij
BWW (z, x, y)Bλ(z)W

μ
i (x)Wν

j (y)

and so on, where TBWW denotes the anomalous triangle diagram with one B field and two W ’s
external gauge lines. The gluons are denoted by G.

In the same notations the Wess–Zumino (WZ) counterterms are given by

SWZ = CBB

M
〈bFB ∧ FB〉 + CYY

M
〈bFY ∧ FY 〉 + CYB

M
〈bFY ∧ FB〉

(5)+ F

M

〈
b Tr
[
FW ∧ FW

]〉+ D

M

〈
b Tr
[
FG ∧ FG

]〉
,

while the gauge dependent CS Abelian and non-Abelian counterterms [10] needed to cancel the
mixed anomalies involving a B line with any other gauge interaction of the SM take the form

SCS = +d1〈BY ∧ FY 〉 + d2〈YB ∧ FB〉
(6)+ c1

〈
εμνρσ BμCSU(2)

νρσ

〉+ c2
〈
εμνρσ BμCSU(3)

νρσ

〉
,

with the non-Abelian CS forms given by

(7)CSU(2)
μνρ = 1

6

[
Wi

μ

(
FW

i,νρ + 1

3
g2ε

ijkWj
ν Wk

ρ

)
+ cyclic

]
,

(8)CSU(3)
μνρ = 1

6

[
Ga

μ

(
FG

a,νρ + 1

3
g3f

abcGb
νG

c
ρ

)
+ cyclic

]
.

The only constraint which fixes the coefficients in front of the WZ counterterms is gauge in-
variance. Specifically, the anomalous variation of San is compensated by the variation of SWZ.
Imposing this condition one discovers that the scale of the WZ counterterms (M) becomes the
Stückelberg mass term MSt ≡ M1. This is found in the defining phase of the model, in which the
realization of the gauge symmetry is in the Stückelberg form. Obviously, in this phase only the
B gauge boson is massive (in a Stückelberg phase). The breaking of the electroweak symmetry,
triggered by the Higgs potential and the transition to the mass eigenstates determines a rotation
of the Stückelberg axion b into a physical axion χ plus some Nambu–Goldstone modes. This
rotation brings in a redefinition of the suppression scale M , which now coincides with the mass
of the extra Z′ gauge boson, as shown in Appendices A–H.

2.2. The scalar potentials and their axion-dependent phases

In previous studies it has been shown that anomalous Abelian models, realized in the case
of potentials with 2 Higgs doublets, both in the non-supersymmetric and in the supersymmetric
cases, are characterized by the presence of an axion-like particle in the spectrum. In the context
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of the 2 Higgs doublets model shown in detail in [36,38] the presence of PQ-breaking terms in
the scalar potential allows the axion to become massive. The PQ symmetric contribution is given
by

VPQ(Hu,Hd) =
∑

a=u,d

(
μ2

aH
†
a Ha + λaa

(
H †

a Ha

)2)− 2λud

(
H †

uHu

)(
H

†
d Hd

)

(9)+ 2λ′
ud

∣∣HT
u τ2Hd

∣∣2,
which is a pure Higgs scalar potential, while in the PQ-breaking terms we introduce a dependence
on the axion field b by means of explicit phases

V/P/Q(Hu,Hd, b) = b1
(
H †

uHde
−i�qB b

M1
)+ λ1

(
H †

uHde
−i�qB b

M1
)2

+ λ2
(
H †

uHu

)(
H †

uHde
−i�qB b

M1
)

(10)+ λ3
(
H

†
d Hd

)(
H †

uHde
−i�qB b

M1
)+ h.c.

where �qB = qB
u −qB

d , b1 has mass squared dimension, while λ1, λ2, λ3 are dimensionless cou-
plings. In the scalar potential we can isolate three sectors, namely, two neutral and one charged
sector, which are described by the quadratic expansion of the potential around its minimum

VCP-even(Hu,Hd) + VCP-odd(Hu,Hd, b) + V±(Hu,Hd)

(11)= (H−
u ,H−

d

)
N1

(
H+

u

H+
d

)
+ (ReH 0

u ,ReH 0
d

)
N2

(
ReH 0

u

ReH 0
d

)

(12)+ (ImH 0
u , ImH 0

d , a′
I

)
N3

⎛
⎝ ImH 0

u

ImH 0
d

b

⎞
⎠ .

• The charged sector

In the charged sector we find a zero eigenvalue of the mass matrix, corresponding to the Gold-
stone mode G+ and the non-zero eigenvalue

(13)m2
H+ = 4λ′

udv2 − 2

(
2b

v2 sin 2β
+ 2λ1 + tanβλ2 + cotβλ3

)
v2,

corresponding to the charged Higgs mass. The two vevs of the Higgs sector are defined by vd =
v cosβ; vu = v sinβ , with v2 = v2

u + v2
d . The rotation matrix into the physical eigenstates is

(14)

(
H+

u

H+
d

)
=
(

sinβ − cosβ

cosβ sinβ

)(
G+
H+

)
.

• The CP-even sector

In the neutral sector both a CP-even and a CP-odd subsectors are present. The CP-even sector
is described by N2 which can be diagonalized by an appropriate rotation matrix in terms of
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CP-even mass eigenstates (h0,H 0) as

(15)

(
ReH 0

u

ReH 0
d

)
=
(

sinα − cosα

cosα sinα

)(
h0

H 0

)
,

with

(16)tanα = N2(1,1) − N2(2,2) − √
Δ

2N2(1,2)

and

(17)Δ = (N2(1,1)
)2 − 2N2(2,2)N2(1,1) + 4

(
N2(1,2)

)2 + (N2(2,2)
)2

.

The definition of these matrix elements is left to Appendices A–H. The eigenvalues correspond-
ing to the physical neutral Higgs fields are given by

m2
h0 = 1

2

(
N2(1,1) + N2(2,2) − √

Δ
)
,

(18)m2
H 0 = 1

2

(
N2(1,1) + N2(2,2) + √

Δ
)
.

We refer to [36] for a more detailed discussion of the scalar sector of the model with more than
one extra U(1).

• The CP-odd sector

The symmetric matrix describing the mixing of the CP-odd Higgs sector with the axion field b

is given by N3. After the diagonalization we can construct the orthogonal matrix Oχ that rotates
the Stückelberg field and the CP-odd phases of the two Higgs doublets into the mass eigenstates
(χ,G0

1,G
0
2)

(19)

⎛
⎜⎝

ImH 0
u

ImH 0
d

b

⎞
⎟⎠= Oχ

⎛
⎜⎝

χ

G0
1

G0
2

⎞
⎟⎠ .

The mass matrix of this sector exhibits two zero eigenvalues corresponding to the Goldstone
modes G0

1, G0
2 and a mass eigenvalue, that corresponds to the physical axion field χ , with a

value

(20)m2
χ = −1

2
cχv2

[
1 +

(
qB
u − qB

d

M1

v sin 2β

2

)2]
= −1

2
cχv2

[
1 + (qB

u − qB
d )2

M2
1

v2
uv

2
d

v2

]
,

with the coefficient

(21)cχ = 4

(
4λ1 + λ3 cotβ + b1

v2

2

sin 2β
+ λ2 tanβ

)
.

The mass of this state is positive if cχ < 0. The Goldstone bosons (GZ,GZ′) are obtained by
orthonormalizing (G0

1,G
0
2) that span a two-dimensional space. Notice that, in general, the mass

of the axi-Higgs is the result of two effects: the presence of the Higgs vevs and the presence of
the Stückelberg mass via the PQ-breaking potential. In the particular case of a charge assignment
such that qB

u = qB , in the PQ-breaking potential the dependence on the axion field disappears
d
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(V/P /Q(Hu,Hd, b) → V/P /Q(Hu,Hd)) and the rotation matrix simplifies to

(22)

⎛
⎜⎝

ImH 0
u

ImH 0
u

b

⎞
⎟⎠=

(− cosβ sinβ 0
sinβ cosβ 0

0 0 1

)⎛⎜⎝
A0

G0
1

G0
2

⎞
⎟⎠ .

For this particular assignment of the Higgs charges the Z and Z′ bosons are still massive, as can
be seen from Eqs. (181), (182). A brief counting of the physical degrees of freedom shows, also
in this case, that we expect only one physical particle in the CP-odd sector. Then, in this particular
case, it is easily found that the model doesn’t exhibit Higgs-axion mixing because the physical
degree of freedom A0, as identified by the scalar potential, is a combination of the imaginary
parts of the two Higgs ImH 0

u , ImH 0
u , while the axion is only part of the Goldstones modes GZ

and GZ′ , identified by an inspection of the derivative couplings.

3. Axions from the decoupling of a chiral fermion

Other realizations of these effective models are obtained by studying the decoupling of a
chiral fermion from an original anomaly-free theory, due to large Yukawa couplings [40]. The
remnant axion, in this particular realization, is the surviving massless phase of a heavy Higgs.
We will illustrate briefly this approach sketching the derivation, though in the case of a simple
model, in a section below. Obviously, in these types of completions of the anomalous theory,
the challenge of the construction would consist in the identification of a pattern of sequential
breaking of the underlying anomaly-free theory in order to generate suitable axion-like Wess–
Zumino interactions, which are not part of our simple example.

For instance, considerable motivations for this reasoning comes from unified models based on
an anomaly-free fermion spectrum assigned to special representations of the gauge symmetry.
Specifically, one could consider the 16 of SO(10) in which find accommodation the fermions
of an entire generation of the Standard Model plus a right-handed neutrino. The decoupling
of a right-handed neutrino could leave a remnant pseudoscalar in the spectrum with axion-like
couplings. While the explicit realization of this construction and the (sequential) breaking of the
original GUT towards the spectrum of the Standard Model is rather complex, the implications of
these assumptions can be grasped by a simple model.

To illustrate these points, we introduce a simple toy model and show step by step that a specific
form of the decoupling can generate a certain dynamics at low energy which is completely de-
scribed by an effective action with Stückelberg and a Higgs–Stückelberg phases, Wess–Zumino
interactions and higher-dimensional operators suppressed by the Stückelberg mass. It should
be mentioned that in our example, the low energy gauge boson B , which has anomalous ef-
fective interactions, would be massive in the Stückelberg form. We recall that the study of the
Stückelberg construction has been discussed recently in several works [41,42] (see also [43]) for
non-anomalous theories, with its possible experimental signatures.

The model requires two Higgs fields, here assumed to be two complex scalars, and a potential
characterized by a first breaking of the anomaly-free gauge symmetry at a certain scale (vφ),
followed by a second breaking at a lower scale vH (vH � vφ). The heavy Higgs is assumed
to decouple (partially) after the first breaking. Specifically, the decoupling involves the radial
fluctuations (ρ) of the field φ, and all the interactions which are characterized by operators which
are suppressed by a certain power of ρ/vφ . We expand the heavy Higgs φ as

(23)φ ∼
(

vφ + ρ√
)

eiθ
2
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with θ denoting a massless phase that may be rendered massive during the process of decoupling
of the radial excitation by some small tilting, as it occurs for the ordinary Peccei–Quinn axion
(PQ). The (almost massless) phase remains in the low energy theory. The Stückelberg axion is
identified from θ in a certain way, that will be specified below. Also we assume, for simplicity,
that only one chiral fermion becomes heavy in the course of decoupling of the heavy Higgs, and
is integrated out of the low energy spectrum. As we have already stressed, our approach can be
made more realistic, but we expect that the crucial steps that bring to its specific effective action
at low energy can be part of a more complete theory.

The Yukawa couplings, expanded around the vacuum of the heavy Higgs, show the presence
of a complex phase (θ ) that we try to remove by a chiral redefinition of the integration measure
before we integrate out the heavy fermion. It is this chiral redefinition of the fermionic measure
which induces, by Fujikawa’s approach, typical Wess–Zumino terms in the low energy effective
theory. This theory, obviously, admits a derivative expansion in terms of the large scale vφ , which
can be systematically captured by a derivative expansion in 1/vφ , or equivalently, the Stückelberg
mass, since the two scales are related (M1 ∼ gBvφ).

3.1. Partial integration

To be specific, we consider a model with 2 fermions and a gauge symmetry of the form
U(1)A × U(1)B , where A is vector like and B is the anomalous gauge boson. We define the
Lagrangian

L = −1

4
FA

μνF
Aμν − 1

4
FB

μνF
Bμν +

2∑
i=1

(
ψ̄

(i)
L /Dψ

(i)
L + ψ̄

(i)
R /Dψ

(i)
R

)
(24)+ λψ̄

(1)
L φψ

(1)
R + λψ̄

(1)
R φ∗ψ(1)

L + |DμH |2 + |Dμφ|2 − V (φ,H)

where we have neglected the Yukawa coupling of the light fermion(s) ψ
(2)
L , ψ

(2)
R , which are

proportional to the vev of the light Higgs vH . For simplicity we may consider a simple scalar
potential function of the two Higgs φ and H , such as V (φ,H), that as we have mentioned, admits
vacua which are widely separated. While this would induce a hierarchy between the two vevs,
and could be the real difficulty in the realization of this scenario, one possible way out would
be to consider V (φ,H) to be the sum of two separate potentials. Since the phase of the heavy
Higgs survives in the low energy theory as a pseudo-Goldstone mode, it may acquire a mass if
the potential in which it appears is tilted.

Table 1
Charge assignments for the A–B toy model.

Field U(1)A U(1)B

ψ
(1)
L

q
(1)
AL

q
(1)
BL

ψ
(1)
R

q
(1)
AR

q
(1)
BR

ψ
(2)
L

q
(2)
AL

q
(2)
BL

ψ
(2)
R

q
(2)
AR

q
(2)
BR

H qH
A

qH
B

φ q
φ
A

q
φ
B
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We show in Table 1 the charge assignments of the model. We define

DμH = (∂μ + iqH
B gBBμ

)
H,

(25)Dμφ = (∂μ + iq
φ
BgBBμ

)
φ,

(26)Dμψ
(i)
L = (∂μ + iq

(i)
ALgAAμ + iqBLgBBμ

)
ψ

(i)
L .

Under a gauge transformation we have ψ → ψ ′

ψ
′ (i)
L = e−iq

(i)
L gBθψ

(i)
L ,

(27)ψ
′ (i)
R = e−iq

(i)
R gBθψ

(i)
R

with δBμ = B ′
μ − Bμ = −∂μθ .

We assume that the charge assignments are such that the model is anomaly-free. Notice also
that B , in this realization, becomes massive via a first breaking at the large scale vφ and then its
mass gets corrected by the second breaking, characterized by the scale vH .

We parameterize the fluctuations of the field φ around the first vacuum in the form

(28)φ = vφ + ρ√
2

e−iq
φ
BgBθ

from which we obtain the first contribution to the mass of the B gauge boson in the form M1 =
q

φ
BgBvφ . As we are going to show next, this mass can be taken to be the Stückelberg mass of a

reduced Higgs system if we neglect the radial excitations. In fact we have

(29)|Dμφ|2 = 1

2
(∂μφ)2 +

(
vφ + ρ√

2

)2(
q

φ
BgB

)2
(−∂μθ + Bμ)2,

and we isolate from the phase θ of this exact relation a dimensionful field b which will be taking
the role of a Stückelberg mass term as

(30)θ = b

q
φ
BgBvφ

.

We can expand (29) in the form

(31)|Dμφ|2 = 1

2
(∂μ − M1Bμ)2 + O(ρ/v),

with M1 ≡ q
φ
BgBvφ , defined to be the Stückelberg mass. The decoupling of the radial excitations

of the very heavy Higgs from the low energy Lagrangian generates a Stückelberg mass term on
the rhs of (31), whose phase θ is at this stage massless. Notice that after the second symmetry
breaking, the mass of the B gauge boson will acquire an additional contribution proportional to
gBqH

B vH , in analogy to the first breaking, that is

(32)MB =
√

M2
1 + (gBqH

B vH

)2
.

Notice also that after the first radial decoupling of the heavy Higgs φ, the Yukawa mass terms
are affected by a phase dependence that can be eliminated from the effective Lagrangian via an
anomalous transformation. To illustrate this point consider the expansion of the Yukawa term
around the vacuum of the heavy Higgs

(33)λψ̄
(1)
L φψ

(1)
R = λ

1√ (vφ + ρ)ψ̄
(1)
L ψ

(1)
R e−iq

φ
BgBθ
2
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which is affected by a phase that we will try to remove in the course of the elimination of the
heavy degrees of freedom of the mother theory. Notice that in this case we do not take a large
Yukawa coupling (λ), as in previous analysis [44,45], since the large fermion mass of ψ(1) is
instead obtained via the large vev of the heavy Higgs, vφ . For this reason, having defined the
Stückelberg mass M1 in terms of the same vev, after neglecting the radial contributions we obtain

(34)λψ̄
(1)
L φψ

(1)
R = κM1ψ̄

(1)
L ψ

(1)
R e−iq

φ
BgBθ , κ = λ√

2
q

φ
BgB.

Before performing the partial integration on the heavy fermion ψ(1), it is convenient to define
a change of variables in the functional integral, in order to remove the phase-dependence on θ

present in the Yukawa couplings. For this reason, let’s consider the part of the partition func-
tion directly related to the heavy fermion ψ(1), which is involved in the procedure of partial
integration. This is given by

(35)Z (1)(A,B) =
∫

Dψ
(1)
L Dψ̄

(1)
L Dψ

(1)
R Dψ̄

(1)
R ei

∫
d4x L(1)

where

(36)L(1) = ψ
(1)
L /Dψ

(1)
L + ψ̄

(1)
R /Dψ

(1)
R + κM1ψ̄

(1)
L ψ

(1)
R e−iq

φ
BgBθ + h.c.

and we have neglected the contributions proportional to the radial excitation of the heavy Higgs.
At this point we try to remove the phase θ from the Yukawa couplings by performing a field
redefinition in the functional integral of the heavy fermion. We set

ψ
(1)
BL = e−iq

(1)
BLgBθψ

′ (1)
BL ,

(37)ψ
(1)
BR = e−iq

(1)
BRgBθψ

′ (1)
BR ,

where from gauge invariance we have

(38)q
(1)
BR + q

φ
B − q

(1)
BL = 0.

The field redefinition induces in the integration measures two Jacobeans

Dψ
(1)
L Dψ̄

(1)
L = JLDψ

′ (1)
L Dψ̄

′ (1)
L ,

(39)Dψ
(1)
R Dψ̄

(1)
R = JR Dψ

′ (1)
L Dψ̄

′ (1)
R

which are computed using Fujikawa’s approach (see for instance [46]). We obtain

JL = e
−iq

(1)
BL

1
32π2 〈θF∧F 〉L,

(40)JR = e
−iq

(1)
BR

1
32π2 〈θF∧F 〉R .

In this case FμνL,R = [Dμ,Dν]L,R contains both gauge fields (A,B) and the corresponding
gauge charges of the heavy (L,R) fermions such as, for instance,

(41)FμνL,R = iq
(1)
AL,RFA

μν + iq
(1)
BL,RFB

μν.

The structure of the effective action after the field redefinition takes the form

(42)Z (1)(A,B) =
∫

Dψ
′ (1)
L Dψ̄

′ (1)
L Dψ

′ (1)
R Dψ̄

′ (1)
R ei

∫
d4x L′ (1)+LWZ
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where

(43)

L′ (1) = ψ
′ (1)
L

(
/D − iq

(1)
BL/∂θ

)
ψ

′ (1)
L + ψ̄

′ (1)
R

(
/D − iq

(1)
BL/∂θ

)
ψ

′ (1)
R + κM1ψ̄

′ (1)
L ψ

′ (1)
R + h.c.

with the Wess–Zumino (WZ) Lagrangian obtained from the expansion of the θF ∧ F terms.
These are suppressed by the Stückelberg mass term M1 (θ = b/M1).

At this point we can perform the Grassmann integration over the heavy fermion, which triv-
ially gives the functional determinant of an operator, P, explicitly given by

(44)P = v′
φ

⎛
⎜⎝

/D−iq
(1)
BLgB/∂θ

v′
φ

1

1
/D−iq

(1)
BRgB/∂θ

v′
φ

⎞
⎟⎠ ,

where v′
φ ≡ vφ/

√
2. The remaining terms in the total partition function of the model can be

obtained from the functional integral

(45)Zeff ∼
∫

Dψ
(2)
L Dψ̄

(2)
L Dψ

(2)
R Dψ̄

(2)
R DH Db Dθ ei

∫
d4x Leff

where

(46)Leff = L′ (2) + LWZ + Tr log P + 1

2
(∂μ − M1Bμ)2 + |DμH |2 − V (H,θ)

with

(47)L′ (2) = −1

4
F 2

A − 1

4
F 2

B + ψ
(2)
L /Dψ

(2)
L + ψ̄

(2)
R /Dψ

(2)
R .

The derivative expansion of the effective action can be organized in terms of corrections in
the Stückelberg mass. Obviously, a similar approach can be followed for the integration of a Ma-
jorana fermion, which is slightly more involved. The basic physical principle, however, remains
the same also in this second variant. In this case the functional determinant can be organized as
in [47].

There are some implications concerning the two realizations of this class of effective actions,
especially in regard to the possible mass of the axion as a dark matter candidate in the various
models that share the effective actions that we have presented. The first observation concerns the
absence of a direct Yukawa coupling between the heavy Higgs and the light fermion spectrum,
which is part of the effective action after partial integration on the heavy fermion modes. This
feature is absent in the MLSOM, and turns out to be rather important since it affects drastically
the lifetime of the axion, as we are going to elaborate in the following sections. We will find
that a GeV axion is favoured by the mechanism of partial decoupling but is not allowed in the
MLSOM. In this second case a very light axion is necessary in order to have a state which is long
lived and that can be a good dark matter candidate.

3.2. Parametric solutions of the anomaly equations

It is clear that the typical effective action isolated by the decoupling of (one or more) chiral
fermions can be organized in terms of the defining Lagrangian plus the WZ counterterms, which
restore the gauge invariance of the model. Therefore, up to operators of mass dimension 5, the
two Lagrangians are quite overlapping at operatorial level. For this reason, we will construct
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Table 2
Labels for the gauge charges of the fermion spectrum.

QL uR dR L eR νR

qB
QL

qB
uR

qB
dR

qB
L

qB
eR

qB
νR

a complete charge assignments for these models, starting from an anomaly-free theory, with a
spectrum that we deliberately choose to include one right-handed neutrino per generation, and
which we will decouple from the low energy dynamics according to the procedure described
above. Of course, other choices are also possible. As we have already stressed, the motivations
for selecting this approach are not just of practical nature, although it allows to generate effective
anomalous models with ease. For instance, one could envision a scenario, inspired by leptogene-
sis, which could offer a realization of this decoupling mechanism, although its details remain, at
the moment, rather general. We will not pursue the analysis of this point any further, and leave
it as an interesting possibility for future studies. However, we will discover, by using the decou-
pling approach, that a significant class of charge assignments of intersecting brane models can
be easily reproduced by the free gauge charges which parametrize the violation of the conditions
of cancellation of the anomaly equations. We should also mention that the dependence of our
results on the various charge assignments is truly small, showing that the relevant parameters of
the models are the Stückelberg mass, the anomalous coupling and the parameters of the potential,
which control the axion mass in each realization.

To proceed, we impose first the conditions of cancellation of the gauge and of the mixed
gravitational-U(1)B anomalies, thereby fixing the U(1)B charges, followed by the conditions of
invariance of the Yukawa couplings, in order to determine the charges of the two Higgs [48]. We
take the U(1)B fermion charges to be family-independent in order to avoid possible constraints
from flavor-changing neutral current processes. We label the generic fermion charges under the
additional group U(1)B as shown in Table 2.

For every anomalous triangle we allow, in general, a WZ counterterm whose coefficient has
to be tuned in order to satisfy the conditions for anomaly cancellation. For the fermion charges
qB
L , qB

dR
, qB

eR
we find the following constraints

BSU(2)SU(2): qB
L + 3qB

QL
− CBWW = 0,

BSU(3)SU(3): qB
dR

+ qB
uR

− 2qB
QL

− CBgg = 0,

(48)BYY: 3qB
eR

+ 6qB
QL

+ 3qB
uR

− 3

2
CBWW − CBYY − CBgg,

where the coefficients appearing in front of the WZ counterterms are proportional to the charge
asymmetries

CBWW ∝
∑
f

θf L,

CBgg ∝
∑
Q

θB
Q,

CBYY ∝
∑
f

θBYY
f ,

(49)CBBB ∝
∑

θBBB
f ,
f
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which are detailed in Appendices A–H, and with the hypercharges of U(1)Y given in Table 3.
If we consider the charges qB

QL
, qB

L as free parameters of the model, CBWW , CBgg, CBYY can
be in principle expressed in terms of these parameters. The other three conditions coming from
the gauge invariance give the following further constraints

YBB: −3
(
qB
dR

)2 − 3
(
qB
eR

)2 + 3
(
qB
L

)2 − 3
(
qB
QL

)2 + 6
(
qB
uR

)2 − CYBB = 0,

BBB: 9
(
qB
dR

)3 + 3
(
qB
eR

)3 − 6
(
qB
L

)3 − 18
(
qB
QL

)3 + 9
(
qB
uR

)3 − CBBB = 0,

(50)BRR: 9qB
dR

+ 9qB
uR

+ 3qB
eR

− 6qB
L − 18qB

QL
− 3CBGG = 0,

where the condition on the BRR triangle comes from the mixed gravitational-U(1)B anomaly
cancellation. From the gauge invariance of the Yukawa couplings (see Lagrangian (73)), we
obtain

qB
QL

− qB
d

2
− qB

dR
= 0,

qB
QL

+ qB
u

2
− qB

uR
= 0,

qB
L − qB

d

2
− qB

eR
= 0,

(51)qB
L + qB

u

2
= 0,

which can be used to constrain the charges of the two Higgs doublets qB
u , qB

d and the countert-
erms CBWW , CBgg. Collecting the constraints in Eqs. (51), (48) and (50) we obtain a set of ten
equations whose solution allows us to identify a class of charge assignments that we call f

(52)f
(
qB
QL

, qB
L ,�qB

)= (qB
QL

, qB
uR

;qB
dR

, qB
L , qB

eR
, qB

u , qB
d

)
.

These depend only upon the three free parameters qB
QL

, qB
L , �qB , where �qB = qB

u − qB
d . The

explicit dependences are shown in Table 3, while the related WZ counterterms take the form

(53)CBYY = −3

2

(
qB
L − 5qB

QL

)+ 2�qB,

(54)CYBB = 3
(
qB
L

)2 − 3

2

[
18
(
qB
QL

)2 + 8qB
QL

�qB + (�qB
)2]

,

(55)CBBB = −6
(
qB
L

)3 + 78
(
qB
QL

)3 + 72
(
qB
QL

)2
�qB + 18qB

QL

(
�qB

)2 + 3

2

(
�qB

)3
,

(56)CBgg = 1

2
�qB,

(57)CBWW = qB
L + 3qB

QL
,

where in particular, from the charge assignment shown in Table 3, we identify the counterterm
for the mixed gravitational-U(1)B anomaly with

(58)CBGG = 2
(−qB

L + qB
QL

+ �qB
)
.

Then the WZ counterterms, as defined in general in Eqs. (194), can now be specialized in terms
of the different charge assignments f (qB

QL
, qB

uR
,�qB), just by substituting the corresponding

chiral asymmetries. This function will appear in several of our plots.
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Table 3
The three-parameter family f (qB

QL
,qB

L
,�qB) of solutions for fermion and scalar charges.

f SU(3)C SU(2)L U(1)Y U(1)B

QL 3 2 1/6 qB
QL

uR 3 1 2/3 0
dR 3 1 −1/3 2qB

QL
+ 1

2 �qB

L 1 2 −1/2 qB
L

eR 1 1 −1 2qB
QL

+ 1
2 �qB

νR 1 1 0 0

Hu 1 2 1/2 −2qB
QL

Hd 1 2 1/2 −2qB
QL

− �qB

Finally, since in the case qB
u − qB

d = 0 the Oχ matrix would become trivial, we require the
following relation between the Higgs charges

(59)qB
u − qB

d �= 0

where, in particular, qB
u − qB

d = 4 is exactly the value implied by the charge assignment derived
from the Madrid model (see Table 6) for the two Higgs. We will be using this value to constrain
the chiral asymmetry θB

f by means of Eq. (58), and will be taken as the starting value for all

our comparisons. Notice that the family f (qB
QL

, qB
L ,�qB) for the particular choice qB

QL
= −1,

qB
L = −1 reproduces the entire charge assignment of the Madrid model

(60)f (−1,−1,4) = (−1,0,0,−1,0,+2,−2).

3.3. The Madrid model

We just recall, as already mentioned, that the charge assignment for our anomalous (brane)
model that we consider is obtained from the intersection of 4 branes (a, b, c, d) with genera-
tors (qa, qb, qc, qd) which are rotated on the hypercharge basis U(1)Xi

with i = A,B,C and
U(1)Y , with an anomaly free hypercharge. The U(1)a and U(1)d symmetries are proportional
to the baryon number and the lepton number respectively. The U(1)c symmetry can be iden-
tified as the third component of the right-handed weak isospin, while the U(1)b is a PQ-like
symmetry. A detailed discussion of this construction can be found in [4] and [49]. The identifica-
tion of the generators involve the solution of some constraint equations. In general, for a simple
T 6 compactification the solutions of these equations are parametrized by a phase ε = ±1, the
Neveu–Schwarz background on the first two tori βi = 1 − bi = 1, 1/2, the four integers na2,
nb1, nc1, nd2 which are the wrapping numbers of the branes around the extra (toroidal) mani-
folds of the compactification, and finally a parameter ρ = 1, 1/3. One of the possible choices for
these parameters is reported in Table 4 which identifies a particular class of models, the so-called
Class A models. The result of this D-brane construction is the charge assignment specified in
Table 5 whose corresponding fermion spectrum is anomalous under the extra U(1)B Abelian
symmetry. Imposing the gauge invariance of the Yukawa couplings, see Eq. (73), we constraint
the charges of the Higgs doublets to the values specified in Table 6.
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Table 4
Parameters for a Class A model with a D6-brane.

ν β1 β2 na2 nb1 nc1 nd2

1/3 1/2 1 na2 −1 1 1 − na2

Table 5
Fermion spectrum charges in the Y -basis for the Madrid model [49].

f QL uR dR L eR νR

qY 1/6 2/3 −1/3 −1/2 −1 0
qB −1 0 0 −1 0 0

Table 6
Higgs charges in the Madrid model.

Y XA XB

Hu 1/2 0 2
Hd 1/2 0 −2

4. Trilinear and quadrilinear interactions of the axi-Higgs from the MLSOM scalar
potential

One of the objectives of this work is to quantify the decay rates in the various channels of the
axi-Higgs χ and of the two Higgs bosons H0 and h0 of the CP-even sector, and to explore some
possible channels in which the production of an axi-Higgs can be realized at the LHC. For this
goal we proceed with a careful inspection of the interaction Lagrangian, in order to extrapolate all
the relevant couplings and interactions of the axi-Higgs and of the CP-even sector with the other
particles. We start this analysis by collecting first all the trilinear and quadrilinear interactions of
the axi-Higgs that emerge from the scalar potential and then move to the mixed vertices which
involve both the CP-even and CP-odd sectors.

Collecting the quadrilinear vertices we obtain

(61)Lχ4 = [Rχ4

1 + R
χ4

2 + R
χ4

3 + R
χ4

4

]
χ4,

where we have defined

R
χ4

1 = 1

4
λuu

(
O

χ

11

)4 + 1

4
λdd

(
O

χ

21

)4
,

R
χ4

2 = −1

2
λud

(
O

χ
11

)2(
O

χ
21

)2
,

R
χ4

3 = 1

2
λ1
(
O

χ
11

)2(
O

χ
21

)2 − 2
vd

M1
�qBλ1

(
O

χ
11

)2
O

χ
21O

χ
31 + 2

vu

M1
�qBλ1

(
O

χ
11

)(
O

χ
21

)2
O

χ
31

+ O
(
1/M2),

R
χ4

4 = 1

2
λ2
(
O

χ
11

)3
O

χ
21 + 1

2
λ3
(
O

χ
21

)3
O

χ
21 + vu

2M1
�qB

[
λ2O

χ
21O

χ
31

(
O

χ
11

)2 + λ3O
χ
31

(
O

χ
21

)3]
(62)− vd

�qB
[
λ3O

χ

11O
χ

31

(
O

χ

21

)2 + λ2O
χ

31

(
O

χ

11

)3]
.

2M1
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The first contribution (R1) is extracted from the diagonal part of the Higgs potential (i.e.
∼λaa(H

†
a Ha)

2), the second originates from the non-diagonal u–d terms (∼λud(H
†
uHu)(H

†
d Hd)),

the third comes from the contribution of the PQ-breaking potential proportional to λ1, while R
χ4

4
is the contribution of the last two pieces of the same potential which are proportional to λ2 and λ3.

The quadrilinear couplings of the axi-Higgs with the neutral Higgs sector involve interactions
between two axions and the two neutral states (H 0, h0). We can write the interaction Lagrangian
as follows

Lχ2H 0h0 = [Rχ2H 0h0

1 + R
χ2H 0h0

2 + R
χ2H 0h0

3 + R
χ2H 0h0

4

]
χ2H 0h0

+ [Rχ2H 0H 0

1 + R
χ2H 0H 0

2 + R
χ2H 0H 0

3 + R
χ2H 0H 0

4

]
χ2H 0H 0

(63)+ [Rχ2h0h0

1 + R
χ2h0h0

2 + R
χ2h0h0

3 + R
χ2h0h0

4

]
χ2h0h0

where the coefficients R
χ2HH
i are defined in Appendices A–H.

The trilinear interactions of the axi-Higgs with the neutral Higgs sector exhibit couplings with
two axions and one Higgs state H 0, h0. The interaction Lagrangian can be written as

(64)Lχ2higgs = Lχ2H 0 + Lχ2h0

where we have defined

(65)Lχ2H 0 =
[

5∑
i=1

R
χ2H 0

i

]
χ2H 0, Lχ2h0 =

[
5∑

i=1

R
χ2h0

i

]
χ2h0.

Again, the R
χ2h0/H 0

i coefficients are listed in Appendices A–H. It is important to note that these
couplings are also present in a general 2HDM, while they are absent in the MSSM due to the
strong constraints obtained by imposing supersymmetry.

4.1. Self interactions in the CP-even sector

The self interactions of H0 and h0 can be described as above, by analyzing the quadrilinear
and trilinear vertices generated by the rotation of the fields in the physical basis after electroweak
symmetry breaking (EWSB). Starting from the quadrilinear interactions we can write

(66)LH 4 = LH 4
0

+ Lh4
0
+ Lh2

0H
2
0

+ Lh0H
3
0

+ LH0h
3
0
,

where

LH 4
0

= [RH 4
0

1 + R
H 4

0
2 + R

H 4
0

3 + R
H 4

0
4

]
H 4

0 ,

Lh4
0
= [Rh4

0
1 + R

h4
0

2 + R
h4

0
3 + R

h4
0

4

]
h4

0,

Lh2
0H

2
0

= [Rh2
0H

2
0

1 + R
h2

0H
2
0

2 + R
h2

0H
2
0

3

]
H 2

0 h2
0,

Lh0H
3
0

= [Rh0H
3
0

1 + R
h0H

3
0

2

]
H 3

0 h0,

(67)LH0h
3
0
= [RH0h

3
0

1 + R
H0h

3
0

2

]
h3

0H0.
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The coefficients RH 4

i can be found in Appendices A–H. Also here it is interesting to observe that
R1 and R2 are in general related to the PQ symmetric part of the scalar potential, while R3 and
R4 come from the PQ-breaking terms.

The trilinear interaction Lagrangian can be written as

(68)LH 3 = LH 3
0

+ Lh3
0
+ Lh2

0H0
+ Lh0H

2
0

where we have defined

LH 3
0

= [RH 3
0

1 + R
H 3

0
2 + R

H 3
0

3 + R
H 3

0
4

]
H 3

0 ,

Lh3
0
= [Rh3

0
1 + R

h3
0

2 + R
h3

0
3 + R

h3
0

4

]
h3

0,

Lh2
0H0

= [Rh2
0H0

1 + R
h2

0H0

2 + R
h2

0H0

3

]
H0h

2
0,

(69)Lh0H
2
0

= [Rh0H
2
0

1 + R
h0H

2
0

2

]
H 2

0 h0.

All the coefficients RH 3

i are given in Appendices A–H.

4.2. Trilinear interactions of the CP-even sector with the W± and Z gauge bosons

Since, in general, the branching ratios for the decay of the Higgs into a pair of vector bosons
W± or ZZ are relevant in a certain kinematical regime, it is important to quantify the tree level
decay rate for this channel, and to give an estimate of the coefficients of the trilinear interactions
of H0 and h0 with two gauge bosons W+W− and ZZ. For the charged W± it is straightforward
to obtain the corresponding coefficients

CH0
WW = g2

2

2
(sinαvd − cosαvu),

(70)Ch0
WW = g2

2

2
(sinαvd + cosαvu).

The calculation of the coefficients for the analogous interactions with the Z’s is more complicated
because of the structure of the model. For this purpose it is useful to introduce the following
coefficients

f1 = 2M2
1 − g2v2 + NBB,

ξ1 =
f 2

1 + f1
(√

f 2
1 + 4g2x2

B − 2gBqd
BxB

)
2
√

2
(
4g2x2

B + f1

√
f 2

1 + 4g2x2
B

)

+
2xB

[
xBg2 + gBqd

B

(
gBqd

BxB −
√

f 2
1 + 4g2x2

B

)]
2
√

2
(
4g2x2

B + f1

√
f 2

1 + 4g2x2
B

) ,

ξ2 =
f 2

1 + f1
(√

f 2
1 + 4g2x2

B − 2gBqu
BxB

)
2
√

2
(
4g2x2

B + f1

√
f 2

1 + 4g2x2
B

)

(71)+
2xB

[
xBg2 + gBqu

B

(
gBqu

BxB −
√

f 2
1 + 4g2x2

B

)]
2
√

2
(
4g2x2 + f1

√
f 2 + 4g2x2

)

B 1 B
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and the interactions H–Z–Z at tree level – summarized by the coefficients CH
ZZ – are given by

CH0
ZZ = 1√

2

(
vdg2ξ2

1 sinα − vug
2ξ2

2 cosα
)
,

(72)Ch0
ZZ = 1√

2

(
vug

2ξ2
2 sinα + vdg2ξ2

1 cosα
)
,

where g2 = g2
Y + g2

2 .

5. The Yukawa couplings and the axi-Higgs

The couplings of the two Higgs and of the axi-Higgs to the fermion sector are entirely de-
scribed by the Yukawa Lagrangian. The Yukawa couplings of the model are given by

Lunit.
Yuk = −Γ dQ̄LHddR − Γ dd̄RH

†
d QL − Γ uQ̄L

(
iσ2H

∗
u

)
uR − Γ u ūR

(
iσ2H

∗
u

)†
QL

− Γ eL̄HdeR − Γ eēRH
†
d L − Γ νL̄

(
iσ2H

∗
u

)
νR − Γ νν̄R

(
iσ2H

∗
u

)†
L

= −Γ dd̄H 0
d PRd − Γ dd̄H 0∗

d PLd − Γ uūH 0∗
u PRu − Γ uūH 0

uPLu

(73)− Γ eēH 0
d PRe − Γ eēH 0∗

d PLe − Γ νν̄H 0∗
u PRν − Γ νν̄H 0

uPLν,

where the Yukawa coupling constants Γ d , Γ u, Γ e and Γ ν run over the three generations, i.e.
u = {u, c, t}, d = {d, s, b}, ν = {νe, νμ, ντ } and e = {e,μ, τ }. Rotating the CP-odd and CP-even
neutral sectors into the mass eigenstates and expanding around the vacuum we obtain

H 0
u = vu + ReH 0

u + i ImH 0
u√

2

(74)= vu + (h0 sinα − H 0 cosα) + i(O
χ

11χ + O
χ

12G
0
1 + O

χ

13G
0
2)√

2
,

H 0
d = vd + ReH 0

d + i ImH 0
d√

2

(75)= vd + (h0 cosα + H 0 sinα) + i(O
χ
21χ + O

χ
22G

0
1 + O

χ
23G

0
2)√

2

so that in the unitary gauge we obtain

H 0
u = vu + 1√

2

[(
h0 sinα − H 0 cosα

)+ iO
χ
11χ
]

(76)= vu + 1√
2

[(
h0 sinα − H 0 cosα

)− iN cosβχ
]
,

H 0
d = vd + 1√

2

[(
h0 cosα + H 0 sinα

)+ iO
χ

21χ
]

(77)= vu + 1√
2

[(
h0 cosα + H 0 sinα

)+ iN sinβχ
]
,

where the vevs of the two neutral Higgs bosons vu = v sinβ and vd = v cosβ satisfy

(78)tanβ = vu

vd

, v =
√

v2
u + v2

d .
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We have also relied on the definitions of Oχ introduced in a previous work [38]

(79)O
χ

11 = −N cosβ,

(80)O
χ
21 = N sinβ,

that we have reported in Appendices A–H. For convenience we have introduced the following
normalization coefficient

(81)N = 1√
1 + (qB

u −qB
d )2

M 2
1

v2
dv2

u

v2

.

The fermion masses are given by

mu = vuΓ
u, mν = vuΓ

ν,

(82)md = vdΓ d, me = vdΓ e,

where the generation index has been suppressed for brevity. The fermion masses, defined in
terms of the two expectation values vu, vd of the model, show an enhancement of the down-type
Yukawa couplings for large values of tanβ while at the same time the up-type Yukawa couplings
get a suppression. The couplings of the h0 boson to fermions are given by

LYuk
(
h0)= −Γ dd̄LdR

(
cosα√

2
h0
)

− Γ uūLuR

(
sinα√

2
h0
)

− Γ eēLeR

(
cosα√

2
h0
)

(83)− Γ νν̄LνR

(
sinα√

2
h0
)

+ c.c.

The couplings of the H 0 boson to the fermions are

LYuk
(
H 0)= −Γ dd̄LdR

(
sinα√

2
H 0
)

− Γ uūLuR

(
−cosα√

2
H 0
)

− Γ e ēLeR

(
sinα√

2
H 0
)

(84)− Γ νν̄LνR

(
−cosα√

2
H 0
)

+ c.c.

For later reference we group together the couplings of the axi-Higgs χ with the fermion sector

LYuk(χ) = −Γ dd̄LdR

(
i
N sinβ√

2
χ

)
− Γ uūLuR

(
−i

N cosβ√
2

χ

)
− Γ eēLeR

(
i
N sinβ√

2
χ

)

(85)− Γ νν̄LνR

(
−i

N cosβ√
2

χ

)
+ c.c.

We have listed these couplings in Table 7 where the normalization coefficient N is defined in (81).
From the Yukawa couplings of Eq. (73) and relations (74), (75) we can extract the coupling

of the Goldstone boson G0
2 to the fermions

LYuk
(
G0

2

)= −Γ dd̄

(
i
O

χ

23√
2

G0
2

)
PRd − Γ dd̄

(
−i

O
χ

23√
2

G0
2

)
PLd − Γ uū

(
−i

O
χ

13√
2

G0
2

)
PRu

− Γ uū

(
i
O

χ

13√
2

G0
2

)
PLu − Γ eē

(
i
O

χ

23√
2

G0
2

)
PRe − Γ eē

(
−i

O
χ

23√
2

G0
2

)
PLe

(86)− Γ νν̄

(
−i

O
χ
13√
2

G0
2

)
PRν − Γ νν̄

(
i
O

χ
13√
2

G0
2

)
PLν.
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Table 7
Couplings of the neutral MLSOM Higgs bosons to up- and down-type fermions, and comparison
with the fermion couplings of the SM Higgs boson.

Up-fermion Down-fermion

Higgs SM −mf
v −mf

v

Lighter Higgs h0 −mf
v sinα/ sinβ −mf

v cosα/ cosβ

Heavier Higgs H 0 mf
v cosα/ sinβ −mf

v sinα/ cosβ

axi-Higgs χ i
mf
v N/ tanβ −i

mf
v N tanβ

Using the expression of Oχ we can compute the coupling between the Goldstone boson G0
2 and

the down-like quarks that takes the form

(87)−Γ dd̄H 0
d PRd − Γ dd̄H 0∗

d PLd = md√
2

{
−N

[
− (qB

u − qB
d )

M1

v2
u

v2

]}
id̄γ 5dG0

2

and similarly for the other generations. These expressions have been used in order to fix the
explicit form of the Wess–Zumino (WZ) counterterms using the condition of gauge invariance.

6. Decay rates of the axi-Higgs

We proceed to compute the partial decay widths and the branching ratios of the axi-Higgs for
different decay modes in the CP-odd sector of the MLSOM, taking the mass of the axion as a
free parameter. As we have already mentioned, in the case of the MLSOM, there is an interesting
window in which the axion acquires a lifetime typical of a good dark matter candidate. This
mass value, which is the same as that of a traditional Peccei–Quinn axion (∼10−4 eV, or in
the ultralight mass window), is not the most interesting one for studies of this particle at the
LHC. The reason of this result has to be found in the fact that the most relevant channels for the
production of a particle of this mass are (1) the pseudoscalar vertex with a top or bottom quark
loop (the dominance of one or the other fermion contribution depends closely on the value of
tanβ); (2) the direct WZ vertex in which the axion is radiated off by a gauge field. The WZ term
is quite small compared to the contribution from the fermion loop, which is instead dependent on
the mass of the axion. For an ultralight axion the loop contribution is rather small and the chances
of producing a particle of such a mass by gluon fusion or in qq̄ annihilation of light quarks are
quite small. For this reason, if we are interested in the study of a GeV axion, which is the goal
of the numerical sections that follow, we are automatically excluding a long-lived particle. On
the other end, in this mass region, we are instead analyzing a particle whose behaviour is Higgs-
like but with a direct (although small) direct coupling to the gauge fields. At the same time, the
Higgs-like nature of the axion can be investigated by taking its mass in the several GeV region,
say in the 100–120 GeV range. Our results, however, are quite general, in this respect, and can
be used for direct studies of this particle in any mass range. As we have already stressed, what
makes a distinction between a “standard” CP-odd Higgs state and the axion of the MLSOM are
the WZ interactions, which are, in any case, subdominant compared to the triangle diagram in
any mass range.

In the case of fermion decoupling one can proceed with similar considerations, although the
conclusions are rather different and will be addressed below. We will describe in a final section
the main properties of the axion if its origin is to be traced back to a decoupled Higgs sector,
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which show, in this second realization, that the axion can be long lived and with a mass in the
GeV range.

The relevant parameters which appear in the decay are the following coefficients

cχ,u = −i
mu

vu

O
χ

11 = i
mu

v

N

tanβ
, cχ,d = −i

md

vd

O
χ

21 = −i
md

v
N tanβ,

(88)cχ,ν = −i
mν

vu

O
χ
11 = i

mν

v

N

tanβ
, cχ,e = −i

me

vd

O
χ
21 = −i

me

v
N tanβ,

which will be essential in order to establish the size of the various decay channels.
Since we are interested in a relatively light axi-Higgs, we have focused our study on a kine-

matical mass range going from 1 to 100 GeV. The fermionic decay channels that we consider are
the bb̄, cc̄, ss̄ for the tree level decays into quarks, τ τ̄ and μμ̄ for the decays into leptons. At
one-loop order we consider the decay into two photons, two gluons and in one photon and one Z

boson. We have added both the massless contribution coming from the WZ counterterm and the
fermion loop contribution from a pseudoscalar triangle. The total decay rate of the axi-Higgs in
this approximation is given by

(89)Γ
χ

tot = Γ χ
gg + Γ χ

γγ + Γ
χ
γZ +

∑
q=s,c,b

Γ
χ
qq̄ +

∑
l=μ,τ

Γ
χ

ll̄
.

• The tree level decays into fermions: χ → f f̄

At leading order, for the tree-level process χ → f f̄ , we obtain the decay rate

(90)Γ (χ → f f̄ ) = mχ

8π
e2Q2

f

(
cχ,f

)2
Nc(f )

√
1 −

(
2mf

mχ

)2

,

for a value of the fermion mass below the pair production threshold (4m2
f < m2

χ ). The pseu-

doscalar couplings to the fermions (cχ,f ) have been defined in Eq. (88).
The leading decay is χ → bb̄, due to the suppression of the fermion couplings of the up-type

fermions (clearly shown in Table 6). We show the variations of the branching ratio (BR) of the
pseudoscalar for different charge assignments f (−1,−1,�qB), and as observed before, there
are no substantial differences induced by the selection of different assignments.

• One-loop decays into photons and gluons: χ → γ γ and χ → gg

We now compute the partial decay width of the axi-Higgs boson into two photons χ → γ γ . The
invariant matrix element considered for the process is the sum of the two contributions shown in
Fig. 1. The first amplitude (Fig. 1a) is a massless WZ vertex

(91)Mμν
WZ(χ → γ γ ) = 4gχ

γγ ε[μ,ν, k1, k2],
where the coefficient g

χ
γγ comes from the counterterm given in formula (192). The second am-

plitude (Fig. 1b) is a pure massive contribution

(92)Mμν
f (χ → γ γ ) =

∑
f

Nc(f )iC0
(
m2

χ ,mf

)
cχ,f
γ γ ε[μ,ν, k1, k2], f = {u,d, ν, e},

where Nc(f ) is the color factor, 1 for leptons and 3 for quarks. In the domain 0 < mχ < 2mf

the pseudoscalar triangle when both photons are on mass-shell k2 = k2 = 0 is given by the
1 2
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Fig. 1. Massless plus massive contributions to the χ → γ γ process.

expression

(93)C0
(
m2

χ ,mf

)= − mf

π2m2
χ

arctan2 1√
(

2mf

mχ
)2 − 1

= − mf

π2m2
χ

arctan2 1√
−ρ2

f χ

,

with

(94)ρf χ =
√

1 −
(

2mf

mχ

)2

,

while in the domain 2mf < mχ it becomes

(95)C0
(
m2

χ ,mf

)= ReC0
(
m2

χ ,mf

)+ i ImC0
(
m2

χ ,mf

)
.

Here we have set

(96)ReC0
(
m2

χ ,mf

)= mf

π2m2
χ

[
1

4
log2

(
1 + ρf χ

1 − ρf χ

)
− π2

4

]
,

(97)ImC0
(
m2

χ ,mf

)= mf

π2m2
χ

[
π

2
log

(
1 + ρf χ

1 − ρf χ

)]
.

In the numerical analysis presented below, we have introduced the function f (τ), defined in any
kinematic domain, whose real part is given by

(98)Re
[
f (τ)

]=
{

(arcsin 1/
√

τ )2 if τ � 1,

− 1
4 [log2( 1+√

1−τ

1−√
1−τ

) − π2] if τ < 1,

while its imaginary part is

(99)Im
[
f (τ)

]=
{

0 if τ � 1,

π
2 [log( 1+√

1−τ

1−√
1−τ

)] if τ < 1,

where τ = 4m2
f /m2

χ .
Finally, the 1-loop decay χ → γ γ is given by the following amplitudes

(100)Mμν(χ → γ γ ) = Mμν
WZ + Mμν

f

and the rate computed from the two contributions shown in Fig. 1 is

Γ (χ → γ γ ) = m3
χ

32π

{
8
(
gχ

γγ

)2 + 1

2

∣∣∣∣∑
f

Nc(f )i
τf f (τf )

4π2mf

e2Q2
f cχ,f

∣∣∣∣
2

(101)+ 4gχ
γγ

∑
Nc(f )i

τf f (τf )

4π2mf

e2Q2
f cχ,f

}
.

f
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In Fig. 1a we have isolated the massless contribution to the decay rate coming from the WZ
counterterm χFγ Fγ whose expression is

(102)ΓWZ(χ → γ γ ) = m3
χ

4π

(
gχ

γγ

)2
.

We should notice that the massive contribution from amplitude (92) is completely independent
of the anomalous coupling gB , which does not appear in the coefficients cχ,f , as can be seen
from Eq. (88). For the decay into two gluons we proceed in a similar manner (see Fig. 8) and the
amplitude is given by

(103)Mμν
WZ(gg → χ) = 4gχ

ggε[μ,ν, k1, k2],
where the coefficient g

χ
gg is given in Eq. (192). The second amplitude (Fig. 8b) is a pure massive

contribution

(104)Mμν
q (gg → χ) =

∑
q

iC0
(
m2

χ ,mq

)
Tr
[
T aT b

]
cχ,q

gg ε[μ,ν, k1, k2], q = {u,d},

with u = {u, c, t} and d = {d, s, b}, and the coefficients cχ,q are defined in relations (88). The
decay rate is then given by

Γ (χ → gg) = m3
χ

16π

[
8
(
gχ

gg

)2 + 1

2

∣∣∣∣∑
q

i
Ncτf f (τf )

4π2mf

4παsc
χ,q

∣∣∣∣
2

(105)+ 4gχ
gg

∑
q

i
Ncτf f (τf )

4π2mf

4παsc
χ,q

]
,

while the expression of the isolated contribution from the corresponding WZ counterterm is
instead given by

(106)ΓWZ(χ → gg) = m3
χ

2π

(
gχ

gg

)2
.

• The decay χ → γZ

The partial decay rate computed from the corresponding WZ counterterm and fermion loop,
analogously to Fig. 1, is

Γ (χ → γ Z) = m3
χ

8π

[
4
(
g

χ

γ Z
)2 +

∣∣∣∣∑
f

Nc(f )iC0
(
m2

χ ,m2
Z ,mf

)
e2Q2

f c
χ,f

γ Z

∣∣∣∣
2

(107)+ 4g
χ

γ Z
∑
f

Nc(f )iC0
(
m2

χ ,m2
Z ,mf

)
e2Q2

f c
χ,f

γ Z

](
1 − m2

Z
m2

χ

)3

(Z = Z,Z′) which is well defined only for a mass of the Z boson under the threshold production
mZ < mχ . The couplings are defined as

(108)c
χ,f

γ Z = gZ g
Z ,f
V cχ,f .
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The vector and axial-vector couplings of the Z bosons to the fermions in the physical basis are
related to the charges of the chiral fermions by the expressions

(109)g
Z ,f
V = 1

2

(
Q

R,f

Z + Q
L,f

Z
)
, g

Z ,f
A = 1

2

(
Q

R,f

Z − Q
L,f

Z
)
,

which are obtained, as detailed in [15,38], starting from the interaction basis (W 3, Y,B) by means
of the following rotations

gZ Q
R,f

Z = gY YR,f OA
Y Z + gBY

R,f
B OA

BZ ,

(110)gZ Q
L,f

Z = g2T
3L,f OA

W3 Z + gY YL,f OA
Y Z + gBY

L,f
B OA

BZ .

The Y
L/R
B , YL/R and T 3L are the generators of the gauge group of the model in the chiral basis.

The pseudoscalar triangle C0(m
2
χ ,m2

Z ,mf ) involved in the decay χ → γ Z with both external

lines on their mass-shell, k2
1 = 0 and k2

2 = m2
Z , is given by (see [50])

(111)C0
(
m2

χ ,m2
Z ,mf

)= 1

m2
χ − m2

Z

[
m2

χC0
(
m2

χ ,mf

)− m2
Z C0

(
m2

Z ,mf

)]
,

where the structure of C0(m
2
χ ,mf ) has already been studied in (93), (95). In complete analogy,

the function C0(m
2
Z ,mf ) can be obtained from C0(m

2
χ ,mf ) just by replacing the first argument

m2
χ with m2

Z . Then, the study of the decay rate is closely related to the behaviour of the three-
point function (111) in the various physical domains of its definition. In the domain 0 < mZ <

mχ < 2mf the expressions for C0(m
2
χ ,mf ) and C0(m

2
Z ,mf ) can be read from Eq. (93), in

particular we obtain

(112)C0
(
m2

Z ,mf

)= − mf

π2m2
Z

arctan2 1√
−ρ2

f Z
,

with

(113)ρf Z =
√

1 −
(

2mf

mZ

)2

.

As mχ grows we can have two possible cases. If 0 < mZ < 2mf < mχ , while the function
C0(m

2
χ ,mf ) develops real and imaginary part as shown in Eq. (95), the function C0(m

2
Z ,mf )

is still well defined. But finally if 0 < 2mf < mZ < mχ also C0(m
2
Z ,mf ) develops real and

imaginary parts, in particular

(114)C0
(
m2

Z ,mf

)= ReC0
(
m2

Z ,mf

)+ i ImC0
(
m2

Z ,mf

)
,

in analogy to Eq. (95). The massless WZ contribution to the decay rate is

(115)ΓWZ(χ → γ Z) = m3
χ

2π

(
g

χ

γ Z
)2(

1 − m2
Z

m2
χ

)3

(Z = Z,Z′).

We just remark that in the calculation of Γ (χ → γ γ ) and Γ (χ → γ Z) we have neglected the
contributions coming from the loops generated by the scalar H0 and h0.

In Fig. 2, for a given value of the Stückelberg mass M1 = 1 TeV, we study the dependence
on the free parameter tanβ = {10,40} and on gB = {0.2,0.6}. The dependence on tanβ strongly
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Fig. 2. Study of the branching ratios of the axi-Higgs. We analyze the dependence on the
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Fig. 3. Branching ratios for the CP-odd scalar A0 of the MSSM.

affects the branching ratio for the decay into a cc̄ pair, which appears to be suppressed for a large
value of tanβ (tanβ = 40). The plots clearly show the presence of 3 different main regions in
which the decay channels of the axi-Higgs are rather different. In the region 0 � mχ � 2.8 GeV
the dominant decay is in the ss̄ and μμ̄ channels, with a sizeable gluon channel which becomes
very relevant around mχ = 3 GeV.

For 2.8 � mχ � 8.5 GeV the dominant decay channel is the τ τ̄ , followed by a third region
with mχ > 8.5 GeV in which the bb̄ channel opens up. The 4 plots describe different charge
assignments. One can notice rather straightforwardly that the leading behaviour in each mass re-
gion remains the same in each plot, while the subleading channels get reshuffled in their separate
contributions. We show in Fig. 3 for a comparison, the branching ratios for the CP-odd scalar of
the MSSM as a function of its mass. In this case the dominant regions are two, divided approx-
imately into the two regions by mχ = 5 GeV and the where the dominant decays are into ss̄ (in
the lower region) and into τ τ̄ (in the higher mass region).

• Total rates and dependence on the charge assignments

We show in Fig. 4 plots which illustrate the behaviour of the (inclusive) branching ratios of
the axi-Higgs into quarks and leptons as a function of the mass of the physical axion, obtained
by varying the charge assignments of the model. The enhancement of the lepton decay channels
for a light axion mass between 4 and 8 GeV, respect to the quark channel, is very stable against
these variations. These changes are described by the function f (qB

QL
, qB

uR
,�qB) and in the var-

ious cases are almost coincident, and this is due to the fact that the differences in the smaller
than 10−3.

7. CP-even sector: Decays and associated production

We now move to discuss the CP-even sector of the model which involves the two states H0
and h0. We include all the relevant channels, such as the f f̄ , the WW , ZZ and Zγ and diphoton
channels.
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Fig. 4. Study of the leptonic and the quarks branching ratios of the axi-Higgs. We analyze the dependence on the function
f (qB

QL
,qB

uR
,�qB).

• Decays into f f̄

We start by calculating the tree level decay rate into fermions, which is given by

(116)Γ (h/H → f f̄ ) = mh/H

8π

∣∣ch/H,f
∣∣2Nc(f )

(
1 − 4m2

f

m2
h/H

)3/2

where the scalar couplings to the fermions ch/H,f have been defined in Eqs. (120), (119). The
decay for the SM scalar Higgs is obtained from Eq. (116) just by substituting the coupling ch/H,f

with the SM one, that is −mf /v, where v is the vacuum expectation value of the SM Higgs field
(v ≈ 246 GeV).

• Tree level decays of the scalar Higgs bosons into W± and ZZ

The tree level contributions to the total decay rate of the two Higgs due to the decay into a
W± pair and a ZZ pair are computed similarly. These are found to be relevant in the case of
H0 for a mass mH0 greater than 100 GeV. In particular we have added the contributions due to
H0/h0 → Z∗Z and H0/h0 → W ∗W that could be significant when the mass of the scalar is
close to the thresholds for ZZ and WW pair production.

For the case of a ZZ pair we obtain

Γ (H → ZZ)

=

⎧⎪⎨
⎪⎩

Γ H
Z∗Z = (C

H0/h0
ZZ

g2
cwMz

)2(7 − 40
3 s2

w + 160
9

s4
w

c4
w
)
mH F(MZ/mH )

2048π3 if MZ � mH � 2MZ,

(C
H0/h0
ZZ )2

√
1−xz

128πmH
(3 + 4

x2
z

− 4
xz

) + ΓZ∗Z if mH � 2MZ,

where the coupling C
H0/h0
ZZ has been defined in the previous sections and xz = 4M2

Z/m2
H .

sw , cw are short notations for sin θW , cos θW respectively.



116 C. Corianò, M. Guzzi / Nuclear Physics B 826 (2010) 87–147
For the case of two charged W ’s we have

Γ (H → WW)

=
⎧⎨
⎩

Γ H
W ∗W = (C

H0/h0
WW

g2
MW

)2 n̄mH

512π3 F(MW/mH ) if MW � mH � 2MW,

(C
H0/h0
WW )2

√
1−xw

64πmH
(3 + 4

x2
w

− 4
xw

) + Γ H
W ∗W if mH � 2MW.

Here the coefficient n̄ is equal to 3 if W ∗ → tb is not allowed, while is equal to 4 if W ∗ → tb is
allowed. Again, we have defined the coefficient xw = 4M2

W/m2
H .

In the region 1/2 � x � 1 the function F(x) is defined as follows

F(x) = −∣∣1 − x2
∣∣(47

2
x2 − 13

2
+ 1

x2

)
+ 3
(
1 − 6x2 + 4x4)∣∣ln(x)

∣∣
(117)+ 3(1 − 8x2 + 20x4)√

4x2 − 1
cos−1

(
3x2 − 1

2x3

)
.

• Two photon decay of the scalar Higgs bosons h0, H 0 → γ γ

The computation of the decay rate of a CP-even scalar of the MLSOM into a pair of photons is
similar to that of the SM. It includes the contribution of the spin 1/2 particles (the fermion loop),
of the spin 1 (the W loop) and the spin 0 (H± loop) and it is given by

Γ (H → γ γ ) = 4α2
em

1024π3
m3

H

∣∣∣∣∑
f

Nc(f )Q2
f

cH,f

mf

(−2)τf

[
1 + (1 − τf )f (τf )

]

(118)+
(

CH
WW

g2M
2
W

)[
2 + 3τw + 3τw(2 − τw)f (τw)

]∣∣∣∣
2

where H represents H0 or h0, τf = 4m2
f /m2

H , τw = 4M2
W/m2

H and the function f (τ) has been

defined previously. The scalar couplings of the lighter Higgs boson h0 to the fermions are shown
in LYuk(h) and their expressions are

ch0,u = −mu

vu

sinα = −mu

v

sinα

sinβ
, ch0,d = −md

vd

cosα = −md

v

cosα

cosβ
,

(119)ch0,ν = −mν

vu

sinα = −mν

v

sinα

sinβ
, ch0,e = −me

vd

cosα = −mν

v

sinα

cosβ
,

while the scalar couplings of the heavier Higgs boson H 0 to the fermions are shown in LYuk(H)

and are given by

cH0,u = mu

vu

cosα = mu

v

cosα

sinβ
, cH0,d = −md

vd

sinα = −md

v

sinα

cosβ
,

(120)cH0,ν = mν

vu

cosα = mν

v

cosα

sinβ
, cH0,e = −me

vd

sinα = −me

v

sinα

cosβ
.

Here we have used the relations for the expectation values vu = v sinβ and vd = v cosβ to
express these couplings in terms of the couplings of the Higgs boson o the SM. The calculation
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of the rate into gluons is similar but we have only the fermion loop

(121)Γ (H → gg) = 4α2
s

512π3
m3

H

∣∣∣∣∑
f

cH,f τf

mf

(−2)
[
1 + (1 − τf )f (τf )

]∣∣∣∣
2

.

• Zγ decay of the scalar Higgs bosons

The last contribution that we consider in the computation of the total decay rate of H0/h0 is
the decay into Zγ . Also in this case we include only the contribution of the fermion loop and of
the spin-1 loop and we neglect the contribution coming from other loops of scalars

Γ (H → Zγ ) = m3
H

32

(
1 − M2

Z

m2
H

)3∣∣∣∣∑
f

Nc(f )
αem

2π

cH,f

mf

(−2)Qf (T 3L
f − 2Qf s2

w)

swcw

× [I1(τf , λf ) − I2(τf , λf )
]

− αem

4πM2
W

CH
WW cot θW

{
4
(
3 − (tan θW )2)I2(τw,λW )

(122)+
[(

1 + 2

τW

)
(tan θW )2 −

(
5 + 2

τW

)]
I1(τw,λW )

}∣∣∣∣
2

where λf = 4m2
f /M2

Z and λW = 4M2
W/M2

Z , while the functions I1,2 are given in [51,52]. We
report them here for completeness

I1(a, b) = ab

2(a − b)
+ a2b2

2(a − b)2

[
f (a) − f (b)

]+ a2b

(a − b)2

[
g(a) − g(b)

]
,

(123)I2(a, b) = − ab

2(a − b)

[
f (a) − f (b)

]
.

The function f (τ) has been defined in a previous section while g(τ) is given by

g(τ) =
{√

τ − 1 arcsin(1/
√

τ) if τ � 1,

1
2

√
1 − τ [ln( 1+√

1−τ

1−√
1−τ

) − iπ] if τ < 1.

It is important to observe that in the first line of Eq. (122) we have neglected the contribution
to the fermion–boson couplings due to the presence of an extra anomalous U(1). As a matter of
fact, in our hypothesis (M1 = 1 TeV and gB = 0.1 − 0.2), this contribution is found to be very
small and for this kind of study these couplings can be considered substantially coincident with
those of the SM.

Finally, the total decay rate for H0/h0 will be given as follows

(124)Γ H
tot =

∑
f

Γf f̄ + Γγγ + Γgg + ΓWW + ΓZZ + ΓZγ .

7.1. Numerical results

We shown in Figs. 5–6 a comparative study of the branching ratios of the scalars H0 and h0 in
the CP-even sector of the MLSOM and those of the Higgs of the SM. While the H0 and the SM
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Fig. 5. Study of the branching ratios of the CP-even sector.

Higgs appear to be dominated in their decays by the bb̄ channel only below the WW region, the
preferential decay of the h0 is entirely into this final state for all mass ranges. Both the H0 and
the h0 appear to have a more sizeable decay into τ τ̄ compared to the SM Higgs. The branching
ratio for the decay into γ γ appears to be rather small for the h0 in all the mass range, while the
H0 and the SM Higgs show, for this channel, a similar behaviour. The two-gluons channel also
appears to be more significant for both states of the MLSOM compared to the SM Higgs, over
the entire mass range, while the cc̄ channel appears to be rather suppressed in the case of the h0

compared to the SM Higgs. Smaller cc̄ rates are also found for the H0 respect to the ordinary
Higgs.
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Fig. 6. Study of the branching ratios of the SM-Higgs.

7.2. Associated production of the CP-even states with vector bosons

Another possible way of detecting the Higgs at hadron colliders is through its associated
production with a vector boson. Here we calculate the LO cross section for the H0/h0 associated
production with a W and Z at the LHC and Tevatron and we have made a comparison with the
corresponding rates for the ordinary SM Higgs.

The partonic cross section can be written as

σ̂ (qq̄ → H0/h0 + V ) = g2
2

32M2
V

(
CH

VV

)2 1

288πŝ

[(
g

f
A

)2 + (gf
V

)2]

(125)× λ1/2(M2
V ,m2

H , ŝ
)λ(M2

V ,m2
H , ŝ) + 12M2

V /ŝ

(1 − M2
V /ŝ)2

where V represents W or Z, the couplings to the fermions are defined as g
f
A = 2T 3L

f , g
f
V =

2T 3L
f −4Qf s2

w for the Z, while g
f
A = g

f
V = √

2 for the W . The phase space coefficient is defined

as λ(x, y, z) = (1 − x/z − y/z)2 − 4xy/z2. The total cross section as a function of the mass of
the Higgs is given by the convolution of the partonic cross section with the PDFs luminosity of
the quark–antiquark pair produced in the initial state which is given by

(126)Φqq̄(τ,μF ,μR) =
1∫

τ

∑
q,q̄

dx

x

[
f

q
H1

(x,μF ,μR)f
q̄
H2

(τ/x,μF ,μR) + {H1 ↔ H2}
]

where μF , μR are the factorization and renormalization scales and f
q
H1

represents the quark
probability relative to the hadron H1, etc. We have performed the PDF evolution with CANDIA
[53] and we have used the set MRST 2001 as input distributions, evolved up to μF = μR = Q.
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Fig. 7. qq̄ → H + V + X at LO at the Tevatron.

The total cross section is given by

(127)σLO(mH ,μF ,μR) =
1∫

τ0

Φqq̄(τ,μF ,μR)σ̂ (τS)dτ

where τ0 = (MV + mH )2/S and S is the center of mass energy of the two incoming hadrons.
In Fig. 7 we have shown the plots of the total cross section for the LHC and the Tevatron. In
the W -channel the cross section of the SM Higgs is smaller that the similar one of the MLSOM
due to the H0, while the same cross section for the h0 is more suppressed. A similar behaviour
is found both at the LHC and at the Tevatron. The cross section in the case of the Z follows a
similar pattern in all the three cases.
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8. Axi-Higgs production at hadron colliders

The study of the production of the axi-Higgs at hadron colliders is particularly interesting,
especially for the possibility of having sizeable branching ratios of the two Higgs H0 and h0 into
final state axions. Before we come to this study, we pause for some observations regarding the
scalar potential of the MLSOM, stressing on the similarities and on the differences respect to
the 2-Higgs doublets model (2HDM) of type II, which is sufficiently general to describe most of
the scalar extensions which can be envisioned for LHC applications, and to the potential of the
MSSM (see Ref. [54]).

Naturally, the most problematic feature of the 2HDM is the presence of a large number of
free parameters that affect the possibility of unique and specific predictions, due to the different
scenarios that may emerge at future experiments in regard to the scalar sector. The MLSOM
potential is also affected by the same problem. In the case of the MSSM instead, the presence
of supersymmetry allows some relations between the masses and the couplings and between the
mass of the gauge bosons and their interaction parameters, which provide further constrains on
the allowed parameter space. In the scalar sector, in this case, there are only two free parameters,
which can be identified with tanβ and with the mass of one of the two Higgs bosons [52]. As a
result of this, for instance, in the MSSM, some Higgs-to-Higgs decays (see Ref. [55]) which are
possible in the MLSOM, are avoided. Other features of the CP-odd sector of the MLSOM are,
for instance, the independence of the mass of the axi-Higgs from the parameters of the CP-even
sector and the existence of a sum rule relating H0 and h0 with the vector bosons (V ), which is
also typical of the 2HDM

(128)
∑

i

g2
h0

i VV
= g2

HSMVV .

8.1. Axion-like interactions

As we have discussed above, in the MLSOM the specific feature of the CP-odd sector is
the presence of axion-like interactions which are not found in the 2HDM and which are the
true novelty of the entire construction. It is important to remark that while in models con-
taining CP-odd scalars effective interactions such as A0γ γ induced by the fermion loops are
indeed present, they turn out to be proportional to the mass of the fermion running in the loop.
This mass-dependence, obviously, is completely absent in the MLSOM, since the origin of the
Wess–Zumino terms, which provide these interactions, is related to the restoration of the gauge
symmetry of the anomalous effective theory and not to a mechanism of symmetry breaking.

In complete analogy to the case of the SM Higgs, the most relevant sector to look for in the
production of an axion-like particle is the gluon–gluon fusion channel. It is important to point
out that given the presence of free parameters that are involved in the generation of its mass
appearing in the PQ-breaking potential, the axion can be searched for in different kinematical
domains because the model allows both a very light axion with a mass of the order of 1 GeV or
less, and a heavier one. As stated before, the particular features of the scalar potential render the
predictions of the MLSOM different respect to the general 2HDM, due to the presence of the b

field, and this of course imposes some differences in the treatment of the experimental constraints
on the allowed parameter space.
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8.2. The parameters

The free parameters of the scalar potential can be identified by the coefficients (λuu,λdd,

λud, λ′
ud) that are contained in the PQ potential and by (b1, λ1, λ2, λ3), that are contained in the

PQ-breaking potential. The other free parameters are the ratio of the Higgs vevs, identified with
tanβ , the Stückelberg mass M1 and the coupling constant gB .

We start our analysis by considering a scenario in which the mass of the Z boson is exactly
reproduced at MZ = 91.1876 GeV and the bounds on the mass of the extra Z′ are required
to be compatible with the current Tevatron data. These conditions can be obtained by fixing
the value of the anomalous coupling gB ≈ 0.1, the value of vu ≈ 246 GeV, the value of the
Stückelberg mass M1 in the TeV range and tanβ = 40. These requirements induce also a small
mixing parameter between Z and Z′ (below 10−3), which is also in agreement with current data.
Thus, the mass of the particles of the scalar sector are identified by the eight parameters listed
above. The value of the mass of the axi-Higgs is completely governed by the PQ-breaking sector
of the potential and one can always find a combination of its parameters so that the axion is
very light. The other parameters enter in the structure of the mass of the two neutral Higgs and
the eigenvalues are found to be very sensitive to the selection of these parameters. In our case,
these have been chosen as follows: {λ1, λ2, λ3, b1, λuu, λdd, λud} = {−9 × 10−5,−1 × 10−6,

−1×10−5,5×10−3,6×10−2,5,0.9}, and we have obtained the following values for the masses
of the CP-even and the CP-odd sectors: {mH0 ≈ 122,mH0 ≈ 15,mχ ≈ 5} (GeV).

8.3. The invariant mass distribution

To quantify the cross section of the processes that we are considering, we introduce the in-
variant mass distributions that must be convoluted with the gluon luminosity in order to obtain
predictions at hadron level. In general, the total cross section for each process can be determined
by using the following factorization formula

(129)σ
(
S,μ2

R,μ2
F

)=
1∫

0

dξ1

1∫
0

dξ2 g
(
ξ1,μ

2
F

)
g
(
ξ2,μ

2
F

)
σ̂
(
αs

(
μ2

R

)
,Q2/μ2

R,Q2/μ2
F

)

where τ = Q2/S, g(ξ2,μ
2
F ) is the gluon density, function of the Bjorken variable ξ and of the

factorization scale μF . A similar expression holds for the invariant mass distributions for the
production of a pseudoscalar with an invariant mass Q, which is given at parton level by

(130)
dσ̂

dQ2
=
∑

pol, spin

|M|2
2Q2

dΦn

1

ξ1ξ2S
δ

(
1 − τ

ξ1ξ2

)
.

Here |M|2 represents the square of the matrix element for the production of n scalar particles in
the final state, the variables ξ1, ξ2 represent the fraction of the momentum carried by the partons
in the collision and dΦn is the Lorentz invariant phase space. The invariant mass Q2 is defined
as ŝ + t̂ + û = Q2, while the fraction 1/Q2 is the partonic flux. Then we can write at hadron level

(131)
dσ

dQ2
= σ̂ (Q2)

S
Φgg(τ )
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Fig. 8. The two contributions to the gg → χ production channel.

where

(132)σ̂
(
Q2)= ∑

pol, spin

|M(αs(μ
2
R))|2

2Q2
dΦn,

and the gluon luminosity is given by the following convolution product

(133)Φgg
(
x,μ2

F

)=
1∫

x

dy

y
g
(
y,μ2

F

)
g

(
x

y
,μ2

F

)
.

The computation of this cross section for the production of the axi-Higgs pp → gg → χ + X

via gluon fusion involves two contributions: the fermion loop correction and the direct (contact)
decay due to the Wess–Zumino term, as shown in Fig. 8, with the WZ counterterm suppressed
as 1/M1 and therefore quite subleading respect to the first.

At parton level the production cross section for the axi-Higgs via gluon fusion is related to the
decay rate by the following relation

(134)σgg→χ (ŝ) = 8π2

mχN2
c

Γ (χ → gg)δ
(
ŝ − m2

χ

)= σ 0
gg→χδ

(
ŝ − m2

χ

)
where ŝ is the squared partonic c.m. energy and Nc = 8 is the color factor for the gluons. At
hadron level the total cross section for the inclusive axi-Higgs production is given by

σ(pp → gg → χ + X)

(135)=
1∫

m2
χ /S

dτ Φgg(τ )σgg→χ (τS) = 1

S
σ 0

gg→χΦgg(τ )

∣∣∣∣
τ=m2

χ /S

, τ = Q2

S
,

where the variables S and
√

Q2 stand for the squared c.m. energy of the incoming hadrons and
the invariant mass of the gluon pair, respectively. In Fig. 9 we show the plots of the total cross
section at LO at the LHC and at the Tevatron respectively, for the production of the axion and
of each of the CP-even H0, h0 Higgs, and the corresponding plots for the SM Higgs. Notice that
the result shows a rather sharp rise of the production cross section with a decrease of the axion
mass, larger by a factor of 10 compared to the case of other CP-even scalars. A similar rise is
found also for the CP-odd sector of the 2HDM, being typical of the CP-odd sector.

9. Axion plus photon production

In this section we compute the production of an axion plus one photon at the LHC in leading
order (LO), given by the diagrams in Fig. 10. The computation of the amplitude requires the
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(a)

(b)

Fig. 9. Cross section for the production of the two Higgs h0 and H0 and the axi-Higgs via gluon–gluon fusion at LO at
the LHC (a) and at the Tevatron (b).

three-point correlator between two photon and one axion, with one off-shell photon and with
mf �= 0. This can be achieved by using the parametrization of the trilinear vertex with two off-
shell external legs and away from the chiral limit (see [26]).

Denoting by T λμν the correlator with outgoing momenta k
μ
1 , kν

2 and incoming momentum kλ,
the generalized WI gives the following relation

(136)kλT
λμν = 2mf T μν + anε[k1, k2,μ, ν]
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where the tensor T μν is defined by

(137)T λμν = − iC̄0(k
2, k2

2,m2
f )m2

f

π4
ε[k1, k2,μ, ν].

Performing the change of the momenta k1 → k1, k2 → −q, k → k2, we obtain the expression for
the three-point correlator between two photons (one off-shell) and one pseudoscalar, suitable for
our calculation. The function C̄0 has the following expression

(138)C̄0
(
s,m2

χ ,m2
f

)= iπ2

2(s2 − m2
χ )

[
log2

(
a2 + 1

a2 − 1

)
− log2

(
a3 + 1

a3 − 1

)]
,

where we have defined

(139)a2 =
√

1 − 4m2
f

s
, a3 =

√√√√1 − 4m2
f

m2
χ

.

We can identify four kinematic regions in which the function C̄0 can be analytically continued:

• Region I q2 > 4m2
f , m2

χ > 4m2
f , where a2 − 1 < 0 and a3 − 1 < 0 and

(140)

C̄0
(
s,m2

χ ,m2
f

)= iπ2

2(s2 − m2
χ )

{[
log

(
a2 + 1

1 − a2

)
+ iπ

]2

−
[

log

(
a3 + 1

a3 − 1

)
+ iπ

]2}
.

• Region II q2 < 4m2
f , m2

χ < 4m2
f where a2 → i

√
−a2

2 and a3 → i

√
−a2

3

(141)

C̄0
(
s,m2

χ ,m2
f

)= iπ2

2(s2 − m2
χ )

{[
−2i arctan

(
1√
−a2

2

)]2

−
[
−2i arctan

(
1√
−a2

3

)]2}
.

• Region III q2 > 4m2
f , m2

χ < 4m2
f where a2 − 1 < 0 and a3 → i

√
−a2

3

(142)

C̄0
(
s,m2

χ ,m2
f

)= iπ2

2(s2 − m2
χ )

{[
log

(
a2 + 1

1 − a2

)
+ iπ

]2

−
[
−2i arctan

(
1√
−a2

3

)]2}
.

• Region IV q2 < 4m2
f , m2

χ > 4m2
f where a2 − 1 < 0 and a3 → i

√
−a2

3

(143)

C̄0
(
s,m2

χ ,m2
f

)= iπ2

2(s2 − m2
χ )

{[
−2i arctan

(
1√
−a2

2

)]2

−
[

log

(
a3 + 1

a3 − 1

)
+ iπ

]2}
.

The squared and averaged partonic contributions are given by

∑
|M1|2 = 1

36

[
t2 + u2

s

]
Q2

f e2
∣∣∣∣∑

′
Q2

f ′e2
O

χ

f ′

vf ′
C̄0
(
s,mχ2 ,m

2
f ′
)m2

f ′

π4

∣∣∣∣
2

,

spin f
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Fig. 10. Production channel for a single axion plus a photon.

∑
spin

|MWZ|2 = 1

36

[
t2 + u2

s

]
Q2

f e2(gχ
γγ

)2
,

(144)

∑
spin

2 Re
[

M1 M∗
WZ

]= 1

36

[
t2 + u2

s

]
Qf e2gχ

γγ

∑
f ′

Q2
f ′e2 Re

[
C̄0
(
s,mχ2 ,m

2
f ′
)]Oχ

f ′

vf ′

m2
f ′

π4

where O
χ

f ′/vf ′ is O
χ

11/vu for an up type quark, while O
χ

21/vd for a down type quark.
Integrating over the two-particle phase space we obtain

σ̂1
(
s,m2

χ

)= 1

48πN2
c

1

2s

(s − m2
χ )2(s + m2

χ )

s2
Q2

f e2
∣∣∣∣∑

f ′
Q2

f ′e2
O

χ

f ′

vf ′
C̄0
(
s,mχ2 ,m

2
f ′
)m2

f ′

π4

∣∣∣∣
2

,

σ̂WZ
(
s,m2

χ

)= 1

48πN2
c

1

2s

(s − m2
χ )2(s + m2

χ )

s2
Q2

f e2(gχ
γγ

)2
,

σ̂int
(
s,m2

χ

)= 1

48πN2
c

1

2s

(s − m2
χ )2(s + m2

χ )

s2
Qf e2gχ

γγ

(145)×
∑
f ′

Q2
f ′e2 Re

[
C̄0
(
s,mχ2 ,m

2
f ′
)]Oχ

f ′

vf ′

m2
f ′

π4
,

where σ̂int denotes the interference term. Introducing the invariant mass distribution at hadron
level, we have

(146)
dσ

dQ2
= σ̂ (Q2,m2

χ )

S
Φqq̄(τ )

where the parton luminosity Φqq̄ has been previously defined and Q represents the invariant
mass of the final state.

We show in Fig. 11 a plot of the cross section for the production of an axion and one photon
at the LHC as a function of the mass of the χ . The mass dependence of the result is quite small,
except for a larger mass of the particle, in a region where it is Higgs-like. For an ultralight
axion the value of the cross section is around 10−2 pb. We have shown the contribution from the
triangle and the Wess–Zumino terms combined and separately, in order to show the dominance
of one channel respect to the other. The Wess–Zumino term is indeed strongly suppressed (by a
factor of 1010).



C. Corianò, M. Guzzi / Nuclear Physics B 826 (2010) 87–147 127
Fig. 11. Invariant mass distribution for the associated production of an axion plus one photon at the LHC.

10. Multi axion production

One of the peculiarities of a light axion-like particle is its possibility to generate cascade de-
cays with multi-lepton final states which are more sizeable especially for a mass of χ in the GeV
range. We have indeed seen that for mχ around few GeVs, the largest contribution to the branch-
ing ratio of its decay is predominantly into leptons, and for this reason we are going to investigate
systematically this particular interval in parameter space. Our analysis will include two types of
vertices, the trilinear χχH0, h0 vertex and the χ4 vertex. As we are going to see, multilepton
decays will be sizeable even in the presence of a considerable phase space suppression and we
will quantify them rather accurately.

We consider both the production of axions in combination with a scalar of the CP-even sector
of the MLSOM, and final states made entirely of several light axions which branch primarily into
leptons. We consider the gluon fusion channel, in which the production of the CP-even scalars
(h0,H0) is mediated by the top and bottom loops. The sizeable values of the multi-axion cross
sections for the invariant mass distributions are related to the large production cross sections
which are typical of pseudoscalar channels and to the large values of the reduced couplings –
normalized to the SM ones – of the trilinear interactions of the scalars. The leading contribution
to the production cross section comes from the fermion loop graph with a final state axion. In
the model, each contribution is accompanied by the corresponding WZ counterterm, which is
suppressed by a factor of 105 compared to the loop graph (see Fig. 8).

Channels involving several final state axions can be built rather easily. list of several diagrams
contributing to these channels is given in Fig. 12. For instance, the simplest process involves a
gg–h0 production channel combined with the h0–χχ vertex. In this case the WZ counterterm is
absent. A similar process is the gg–χ triangle vertex, followed by the χχh0 vertex, which gives
the combination of a χ and of a CP-even Higgs (h0) in the final state. In this case the channel is
accompanied by a WZ term gg–χ describing the direct interaction of the two gluons of the initial
state with the axion. Cascading channels can be easily obtained by combining trilinear (χχh0)
and quadrilinear (χ4) vertices, which are more involved and that we will study below.
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Fig. 12. Channels for multi axion production from gluon–gluon fusion.

10.1. H0, h0–3χ decay

The amplitude for the on-shell production of three χ and one scalar Higgs – through the
process gg → h0χχχ – is given by the sum of a part containing the fermion triangle plus the
counterterm

(147)M = Mloop + Mcount.

Defining s = q2 = (k1 + k2)
2 we can write the square of the matrix element as∑

spin,pol

|Mh,3χ |2

=
{

(4παs)
2

(N2
c − 1)2

∑
f

(
cf f̄
χ

)2
C2

χ2 higgsC
2
χ4

4m2
f

π4q4
N2

c

∣∣f (τf )
∣∣2 +

(g
χ
GG)2C2

χ2 higgs
C2

χ4

8(N2
c − 1)2

(148)

+ 4παs Re[Ncg
χ
GGf (τf )]

(N2
c − 1)2

mf c
f f̄
χ Cχ2 higgsCχ4

π2q2

}
1

(q2 − m2
χ )2(1 − x2 + ρ1−ρ2

4 )2
,

where x2 = p′ · q/q2. The coefficient τf is defined as 4m2
f /q2, while ρ1 = 4m2

h/q
2, and ρ2 =

4m2 /q2. The coefficient gχGG of the counterterm is defined in the previous sections and the
χ
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couplings of the axion to the up- and down-type quarks are given by

(149)cuū
χ = mu√

2vu

O
χ
11 = −muvd√

2v
, cdd̄

χ = md√
2vd

O
χ
21 = mdvu√

2v
.

The details of the computation can be found in Appendices A–H.

10.2. 4–χ decay

We move to discuss the possibility of producing four axions in the final state mediated by a
CP-even Higgs (H0, h0). At parton level, the squared amplitude for the process gg → H → 4χ

is given by

(150)

∑
spin,pol

|M4χ |2 = (4παs)
2

(N2
c − 1)2

∑
f

(c
f f̄
H )2C2

χ2 higgs
C2

χ4

(q2 − m2
H )2(1 − x2)2

4m2
f

π4q4
N2

c

∣∣1 + (1 − τf )f (τf )
∣∣2

where H = H0, h0 and the couplings of the Higgs to the quarks are given by

cuū
H = mu

v
R12, cuū

H = mu

v
R22,

(151)R12 = − cosα, R22 = sinα.

The coefficients R12, R22 are the matrix elements for passing from the interaction eigenstate
basis to the physical basis, already defined in the previous sections.

The plots for the production of four scalar particles via gluon–gluon fusion are shown in
Fig. 14. Notice that the production of four axions and that of three axions and one h0 show
invariant mass distribution which are rather similar in their sizes. This is due to the fact that in
this study we have chosen h0 to be not too much heavier than χ (mh0 ≈ 15 GeV). Details on the
computation of the 4-particle phase space can be found in Appendices A–H. We have performed
a direct computations of the phase space integrals, which have been reduced into a 2-dimensional
form and then have been integrated numerically. The results of this study are shown in Fig. 13
for the Tevatron and the LHC respectively. The plots presented in the two figures show sizeable
rates which become large on the Higgs (H0) resonance, chosen to be at 120 GeV. At the LHC
the peak value of the cross section for pp → χχ , mediated by the H0 is larger by a factor of
about 10–100 compared to the Tevatron and would be significant. In the same figures, the same
production channel, mediated by the h0, is also resonant at 15 GeV, but is not shown in our study
since it involves an extrapolation of the parton distributions towards the small-x region, which
we have not included in our analysis.

Coming to the 4-axions final state, the numerical values of the various distributions are shown
in Fig. 14, where they appear to be down by a factor of approximately 104 compared to the
analogous ones with 2 χ ’s or with one χ and one CP-even Higgs in the final state. We have
summarized in Table 8 the numerical value of the cross sections at a representative value of Q at
which they appear to be sizeable, within the parametric choices used in our analysis. The largest
values shown are those on the resonances of the two neutral Higgs. The multilepton channels, for
a GeV axion, appear to be rather small even on the largest production resonance, which is on the
peak of the H0, due to a large phase space suppression. Typical resonant rates are 10−5 pb/GeV
for 4 muons and 10−16 pb/GeV for the production of 8 muons. For final states with 8 muons
mediated by the h0 in the non-resonant region and coming from the pairwise decays of 4 axions,
the rates are much smaller (∼10−20 GeV pb/GeV).
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Fig. 13. gg → 2-scalar reactions mediated by trilinear vertices.

11. The light mass region of the axion and its lifetime

One obvious question to ask is whether the axi-Higgs, which takes the role of a valid example
of a gauged axion, has any chance of being a dark matter candidate, with properties which remain
quite distinct from those of the axion of the PQ model.

As we have already remarked in the introduction, axion-like particles originate from the
gauging of anomalous symmetries, and take the role of phases in the scalar potential, which
is characterized by a small curvature in these variables. We have seen that for a particle mass in
the GeV range the branching ratios for its decay into leptons appear to be too large for the particle
to be long lived. We can pause for a moment and try to understand the origin of this result.
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Fig. 14. Production of 3 and 4 scalars from gluon–gluon fusion mediated by trilinear and quadrilinear vertices.

The axion interaction with the fermions is generated by the ordinary Yukawa couplings, being
the particle part of the scalar sector of the model. In particular, the CP-odd contributions are
re-expressed in the physical basis by the elements of the rotation matrix Oχ together with other
parameters, the most significant of them being β , as shown by Eq. (85). Notice that the matrix
elements of this matrix are O(1), which means that we can’t expect a large suppression of its
coupling to the fermions just from its mixing with the other CP-odd components of the Higgs
sector.

If we look more closely into the two contributions which appear in the decay of an axion, the
triangle diagram and the WZ term, one finds that the contribution from the triangle is O(mf /v),
where v is the vev which represents the symmetry breaking scale of the symmetry to which the



132 C. Corianò, M. Guzzi / Nuclear Physics B 826 (2010) 87–147
Table 8
A list of processes analyzed at hadron colliders at the LHC and at the Tevatron (T). Q is in GeV and dσ/dQ in pb/GeV.

Process Q dσ/dQ (LHC) Q dσ/dQ (T)

gg → h0 → 4χ 45 ≈10−3 22 4 × 10−4

gg → H0 → 4χ MH0 103 MH0 1.56
gg → χ → 3χ + h0 50 5 × 10−4 40 2 × 10−5

gg → χ → 3χ + H0 150 2 × 10−7 150 ≈10−8

gg → h0 → 2χ 45 26 20 2.5 × 103

gg → H0 → 2χ MH0 324 × 103 20 4.9 × 103

gg → χ → h0 + χ 45 0.69 20 2.5 × 103

gg → χ → H0 + χ 150 ≈10−3 150 ≈10−5

gg → H0 → h0 + h0 → 4χ MH0 5 × 103 150 82

axion is associated as a phase of a complex scalar. Consider, for instance, the mechanism of chi-
ral decoupling, that we have described in the previous sections. In this case, the only interaction
of the axion with the gauge fields takes place through the WZ terms, since there are no Yukawa
couplings between the light fermions and the pseudoscalar. Then, if we assume that the decou-
pling scale MD = gBMS is around 1010 GeV, which is the decoupling scale of a right-handed
neutrino in a typical leptogenesis scenario, the decay rate is simply given by the relation

(152)Γχ = m3
χ

4π

[(
gχ

γγ

)2 + 2
(
gχ

gg

)2]
where g

χ
γγ and g

χ
gg are proportional to M−1

D

(153)gχ
γγ ∝ gB

M−1
D

and is dominated by the 2-photons and 2-gluons channels. For a very weakly coupled axion,
with a small value of the coupling constant (gB ≈ 10−5), we have indeed a long lived particle of
around 1 GeV with a rather long lifetime

(154)τχ = 1

Γχ

≈ 1026 s.

In the MLSOM instead, the suppression comes from the Stückelberg mass M1 while the
Yukawa couplings remain unsuppressed. Therefore, in this model, the structure of the axion-
fermion–fermion interaction is proportional to mf /v × Oχ , where v is of the order of the
electroweak scale and Oχ is of order 1 if M1 is in the TeV region. In these conditions, the
MLSOM allows a long lived axion only if this is very light, with a mass mχ ≈ 10−5 eV, which
is again, specific of this construction.

We show in Fig. 15 plots of the lifetime of a very light axion (10−4–10−5 eV) of the MLSOM
as a function of tanβ , which shows that in both cases the particle is very long lived, with features
which resemble quite closely those of the traditional Peccei–Quinn axion.

12. Conclusions

In this work we have an analyzed the phenomenology of the physical axion that emerges
in several extensions of the Standard Model and which include an anomalous U(1) gauge
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Fig. 15. Lifetime for an ultralight axion as a function of tanβ .

symmetry. We have focused our study on a mass window characterized by an axion of a light-
to-intermediate mass, which is probably easier to detect at colliders, although windows for a
particle of even lower mass can be analyzed in a similar fashion. One of the most appealing
features of the class of models that we have presented consists in the possibility to justify in a
natural way a particle in the CP-odd sector of such a small mass, which would be more difficult
to motivate at theoretical level in other constructions. We have shown that the origins of the class
of effective actions that are characterized by the presence of such a state could be quite differ-
ent. For instance, in the case of brane models, the small mass of the axions is parameterized by
extra terms in the potential which are identified by the symmetry of the low energy model and
in which the axion appears as a complex phase. These terms may induce a small tilting on the
scalar potential, giving a small mass to the physical axion, extracted after electroweak symmetry
breaking. A similar tilting is induced by the instanton vacuum in the case of the Peccei–Quinn
axion, and as such, it is possible, given the strong analogy between our case and the PQ case, to
borrow most of the results – well known in the case of the invisible axion model – and extend
them to this more general model. A very light axion would be, with no doubt, a good candidate
for dark matter.

We have also shown, although in a simplified model, that effective actions which resemble
quite closely the MLSOM, can be obtained by a completely different approach, using the decou-
pling of a chiral fermion – due to a large vev of a Higgs to which this fermion is coupled – from
the effective theory. The charge assignments of generalizations of the MLSOM can be obtained
by this approach. In this second case our analysis has to be considered as rather preliminary
and needs further extensions, although we expect that most of the features of the special form
of chiral decoupling that we have proposed can be worked out more closely in the context of a
Grand Unified Theory. The generalization of this analysis to the supersymmetric case appears to
be rather interesting as are the cosmological implications of the presence of a gauged axion (with
or without supersymmetry) in the low energy spectra of these theories which deserve further
studies.
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Appendix A. The Lagrangian

The classical Lagrangian of the model is explicitly given by

L0 = −1

2
Tr
[
FG

μνF
Gμν

]− 1

2
Tr
[
FW

μνF
Wμν

]− 1

4
FB

μνF
Bμν − 1

4
FY

μνF
Yμν

+
∣∣∣∣
(

∂μ + ig2
τ j

2
Wj

μ + igY qY
u AY

μ + igB

qB
u

2
Bμ

)
Hu

∣∣∣∣
2

+
∣∣∣∣
(

∂μ + ig2
τ j

2
Wj

μ + igY qY
d AY

μ + igB

qB
d

2
Bμ

)
Hd

∣∣∣∣
2

+ Q̄Liiγ
μ

(
∂μ + ig3

λa

2
Ga

μ + ig2
τ j

2
Wj

μ + igY q
(QL)
Y AY

μ + igBq
(QL)
B Bμ

)
QLi

+ ūRi iγ
μ
(
∂μ + igY q

(uR)
Y AY

μ + igBq
(uR)
B Bμ

)
uRi

+ d̄Ri iγ
μ
(
∂μ + igY q

(dR)
Y AY

μ + igBq
(dR)
B Bμ

)
dRi

+ L̄i iγ
μ

(
∂μ + ig2

τ j

2
Wj

μ + igY q
(L)
Y AY

μ + igBq
(L)
B Bμ

)
Li

+ ēRi iγ
μ
(
∂μ + igY q

(eR)
Y AY

μ + igBq
(eR)
B Bμ

)
eRi

+ ν̄Ri iγ
μ
(
∂μ + igY q

(νR)
Y AY

μ + igBq
(νR)
B Bμ

)
νRi

(155)+ 1

2
(∂μb + MStBμ)2 + V (Hu,Hd, b),

which generates S0. We have summed over SU(3) index a = 1,2, . . . ,8, over the SU(2) index
j = 1,2,3 and over the fermion index i = 1,2,3 denoting a given generation. We have denoted
with FG

μν the field-strength for the gluons and with FW
μν the field strength of the weak gauge

bosons Wμ. FY
μν and FB

μν are the field-strengths related to the Abelian hypercharge and the
extra Abelian gauge boson, B , which has anomalous interactions with a typical generation of the
Standard Model. The fermions are either left-handed or right-handed Dirac spinors fL, fR and
they fall in the usual SU(3)C and SU(2)W representations of the Standard Model.

Appendix B. Matrices of the potential

The mass matrix in the CP-even sector is given by

N2(1,1) = −2

(
−4v2λuu sin2 β + v2λ3 cos2 β cotβ − 3

2
v2λ2 sin 2β + b cotβ

)
,

N2(1,2) = 2
(
3v2λ3 cos2 β + 3v2λ2 sin2 β + 2v2λ1 sin 2β − 2v2λud sin 2β + b

)
,
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(156)

N2(2,2) = −2 secβ
(−4λddv2 cos3 β − 3λ3v

2 sinβ cos2 β + λ2v
2 sin3 β + b sinβ

)
.

In the CP-odd sector we have

(157)N3 = −1

2
vuvdcχ ′

⎛
⎜⎜⎜⎝

cotβ −1 vd
qI
u−qI

d

MI

−1 tanβ −vu
qI
u−qI

d

M1

vd
qI
u−qI

d

MI
−vu

qI
u−qI

d

MI
vuvd

(qI
u−qI

d )2

M2
I

⎞
⎟⎟⎟⎠ .

In the charged sector, the mass matrix elements are

N1(1,1) = −2 cotβ
(
λ3 cos2 β + (λ1 − λ′

ud

)
sin 2β + λ2 sin2 β

)
v2 − 2b cotβ,

N1(1,2) = 2
(
λ3 cos2 β + (λ1 − λ′

ud

)
sin 2β + λ2 sin2 β

)
v2 + 2b,

(158)N1(2,2) = −2
(
λ3 cos2 β + (λ1 − λ′

ud

)
sin 2β + λ2 sin2 β

)
v2 tanβ − 2b tanβ.

Appendix C. Matrix Oχ and quadrilinear interactions

We report for completeness the matrix Oχ , which is given by

(
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(
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32
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The coefficients appearing in the quadrilinear vertices are given by
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2
cos2 α λud

[(
O

χ
21

)2 + (Oχ
11

)2]
,

R
χ2h0h0

2 = −1

2
sin2 α λud

[(
O

χ
21

)2 + (Oχ
11

)2]
,

R
χ2H 0h0

3 = sinα cosα λ1
[(

O
χ

21

)2 − (Oχ

11

)2]− 4 sinα cosα λ1
�qB

M1
O

χ

31

(
O

χ

21 + O
χ

11

)
+ O

(
1/M2

1

)
,

R
χ2H 0H 0

3 = −1

2
cos2 α λ1

[(
O

χ
21

)2 + (Oχ
11

)2 + 4O
χ
11O

χ
21

]
+ cos2 α λ1

�qB

M1

[
vd

(
4O

χ

11O
χ

31 + 2O
χ

21O
χ

31

)− vu

(
4O

χ

21O
χ

31 + 2O
χ

11O
χ

31

)]
+ O

(
1/M2

1

)
,

R
χ2h0h0

3 = −1

2
sin2 α λ1

[(
O

χ
21

)2 + (Oχ
11

)2 − 4O
χ
11O

χ
21

]
+ sin2 α λ1

�qB

M1

[
vd

(−4O
χ

11O
χ

31 + 2O
χ

21O
χ

31

)− vu

(−4O
χ

21O
χ

31 + 2O
χ

11O
χ

31

)]
+ O

(
1/M2

1

)
,

R
χ2H 0h0

4 = sinα cosα O
χ

21O
χ

11(λ3 − λ2)

+ sinα cosα
�qB

O
χ

31

[
vdO

χ

11(λ2 − 3λ3) + vuO
χ

21(λ3 − 3λ2)
]
,

M1
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R
χ2H 0H 0

4 = 1

2
cos2 α

{
λ2
[
O

χ
21O

χ
11 − (Oχ

11

)2]+ λ3
[
O

χ
21O

χ
11 − (Oχ

21

)2]}
+ cos2 α

�qB

2M1
O

χ
31

{
vu

[
O

χ
21(λ3 + 3λ2) + 2λ2O

χ
11

]
− vd

[
O

χ

11(λ2 + 3λ3) + 2λ3O
χ

21

]}
,

R
χ2h0h0

4 = 1

2
sin2 α

{
λ2
[
O

χ
21O

χ
11 + (Oχ

11

)2]+ λ3
[
O

χ
21O

χ
11 + (Oχ

21

)2]}
+ sin2 α

�qB

2M1
O

χ
31

{
vu

[
O

χ
21(λ3 + 3λ2) − 2λ2O

χ
11

]
(168)− vd

[
O

χ

11(λ2 + 3λ3) − 2λ3O
χ

21

]}
.

Appendix D. Axi-Higgs trilinear interactions

R
χ2H 0

1 = cosα
[(

O
χ

21

)2
vdλdd − (Oχ

11

)2
vuλuu

]
,

R
χ2h0

1 = sinα
[(

O
χ

21

)2
vdλdd + (Oχ

11

)2
vuλuu

]
,

R
χ2H 0

2 = cosα λud

[(
O

χ

21

)2
vu − (Oχ

11

)2
vd

]
,

R
χ2h0

2 = − sinα λud

[(
O

χ

21

)2
vu + (Oχ

11

)2
vd

]
,

R
χ2H 0

3 = −b1 cosα O
χ

31
�qB

M1

(
O

χ

11 + O
χ

21

)
,

R
χ2h0

3 = b1 sinα O
χ

31
�qB

M1

(
O

χ

21 − O
χ

11

)
,

R
χ2H 0

4 = cosα λ1
[
O

χ

21

(
2O

χ

11 + O
χ

21

)
vu − O

χ

11

(
O

χ

11 + 2O
χ

21

)
vd

]
+ 2 cosα λ1

�qB

M1
O

χ

31

[
O

χ

11vd(vd − 2vu) + O
χ

21vu(vu − 2vd)
]+ O

(
1/M2

1

)
,

R
χ2h0

4 = − sinα λ1
[
O

χ

11

(
O

χ

11 − 2O
χ

21

)
vd − O

χ

21

(
2O

χ

11 + O
χ

21

)
vu

]
+ 2 sinα λ1

�qB

M1
O

χ

31

[
O

χ

21vu(2vd + vu) − O
χ

11vd(vd + 2vu)
]+ O

(
1/M2

1

)
,

R
χ2H 0

5 = 1

2
cosα

[
O

χ
21λ3

(
2O

χ
11vd + O

χ
21(vu − vd)

)− O
χ
11λ2

(
O

χ
11(vd − vu) + 2O

χ
21vu

)]
+ cosα

�qB

2M1
O

χ
31

[−vuλ2
(
3O

χ
21vu + O

χ
11(vu − 2vd)

)
− vdλ3

(
3O

χ

11vd + O
χ

21(vd − 2vu)
)]

,

R
χ2h0

5 = 1

2
sinα

[
O

χ
11λ2

(
2O

χ
21vu + O

χ
11(vu + vd)

)+ O
χ
21λ3

(
O

χ
21(vd + vu) + 2O

χ
11vd

)]
+ sinα

�qB

2M1
O

χ
31

[
vdλ3

(
O

χ
21(vd + 2vu) − 3O

χ
11vd

)
(169)+ vuλ2

(
3O

χ

21vu − O
χ

11(2vd + vu)
)]

.
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Appendix E. Quadrilinear self interactions in the CP-even sector

For H 4
0 we have

R
H 4

0
1 = (cosα)4 1

4
(λuu + λdd),

R
H 4

0
2 = −(cosα)4 1

2
λud,

R
H 4

0
3 = (cosα)4 1

2
λ1,

(170)R
H 4

0
4 = (cosα)4 1

2
(λ2 + λ3),

while for h4
0 we have

R
h4

0
1 = 1

4
(sinα)4(λuu + λdd),

R
h4

0
2 = −1

2
(sinα)4λud,

R
h4

0
3 = 1

2
(sinα)4λ1,

(171)R
h4

0
4 = 1

2
(sinα)4(λ2 + λ3).

For the interactions of the type h2
0H

2
0 we obtain

R
H 2

0 h2
0

1 = 3

2
(sinα)2(cosα)2(λuu + λdd),

R
H 2

0 h2
0

2 = (sinα)2(cosα)2λud,

(172)R
H 2

0 h2
0

3 = −(sinα)2(cosα)2λ1.

For the interactions of the type h3
0H0 we obtain

R
H0h

3
0

1 = (sinα)3 cosα(λdd − λuu),

(173)R
H0h

3
0

2 = (sinα)3 cosα(λ3 − λ2),

while for h0H
3
0 we obtain

R
h0H

3
0

1 = (cosα)3 sinα(λdd − λuu),

(174)R
h0H

3
0

2 = −(cosα)3 sinα(λ2 − λ3).

Appendix F. Trilinear self interactions in the CP-even sector

For H 3
0 we have

R
H 3

0 = (cosα)3(vdλdd − vuλuu),
1
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R
H 3

0
2 = (cosα)3(vd − vu)λud,

R
H 3

0
3 = (cosα)3(vd − vu)λ1,

(175)R
H 3

0
4 = 1

2
(cosα)3[vu(3λ2 + λ3) − vd(λ2 + 3λ3)

]
,

while for h3
0 we have

R
h3

0
1 = (sinα)3(vdλdd + vuλuu),

R
h3

0
2 = −(sinα)3(vd + vu)λud,

R
h3

0
3 = (sinα)3(vd + vu)λ1,

(176)R
h3

0
4 = 1

2
(sinα)3[vu(3λ2 + λ3) + vd(λ2 + 3λ3)

]
.

For the case h2
0H0 we have

R
h2

0H0

1 = 3 cosα(sinα)2(vdλdd − vuλuu),

R
h2

0H0

2 = cosα(sinα)2λud(vd − vu),

R
h2

0H0

3 = cosα(sinα)2λ1(vu − vd),

(177)R
h2

0H0

4 = −3

2
cosα(sinα)2(vu + vd)(λ2 − λ3),

while for the case h0H
2
0 we have

R
h0H

2
0

1 = 3 sinα(cosα)2(vdλdd + vuλuu),

R
h0H

2
0

2 = sinα(cosα)2λud(vd + vu),

R
h0H

2
0

3 = − sinα(cosα)2λ1(vu + vd),

(178)R
h0H

2
0

4 = 3

2
sinα(cosα)2(vd − vu)(λ2 − λ3).

Appendix G. The axion Lagrangian in the physical basis

We have seen that after symmetry breaking, in the scalar sector we isolate a physical axion,
χ , also called the axi-Higgs. Here we present the axion Lagrangian rotated on the basis of the
mass eigenstates. In particular, the W3, AY and B gauge bosons become linear combinations of
the physical states Aγ , Z, Z′. Indeed, the mass-matrix in the neutral gauge sector is given by

Lmass = (W3, Y,B)M2

⎛
⎝W3

Y

B

⎞
⎠

where B is the Stückelberg field and the mass matrix is defined as

(179)M2 = 1

4

⎛
⎝ g2

2v2 −g2gY v2 −g2xB

−g2gY v2 gY
2v2 gY xB

2

⎞
⎠

−g2xB gY xB 2M1 + NBB
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with

(180)NBB = (qB2
u v2

u + qB2
d v2

d

)
g2

B, xB = (qB
u v2

u + qB
d v2

d

)
gB.

Here vu and vd denote the vevs of the two Higgs fields Hu, Hd while qB
u and qB

d are the

Higgs charges under the extra anomalous U(1)B . We have also defined v =
√

v2
u + v2

d and

g =
√

g2
2 + g2

Y . The mass-squared eigenstates of the mass matrix corresponding to one zero mass

eigenvalue for the photon Aγ and two non-zero mass eigenvalues for the Z and for the Z′ vector
bosons, are respectively given by

M2
Z = 1

4

(
2M2

1 + g2v2 + NBB −
√(

2M2
1 − g2v2 + NBB

)2 + 4g2x2
B

)

(181)� g2v2

2
− 1

M2
1

g2x2
B

4
+ 1

M4
1

g2x2
B

8

(
NBB − g2v2),

M2
Z′ = 1

4

(
2M2

1 + g2v2 + NBB +
√(

2M2
1 − g2v2 + NBB

)2 + 4g2x2
B

)
(182)� M2

1 + NBB

2
.

The mass of the Z gauge boson gets corrections of the order v2/M1 converging to the SM value
as M1 → ∞, while the mass of the Z′ gauge boson can grow large with M1. The physical gauge
fields can be obtained from the rotation matrix OA

(183)

(
Aγ

Z

Z′

)
= OA

⎛
⎝W3

AY

B

⎞
⎠

which can be approximated at the first order as

(184)OA �
⎛
⎜⎝

gY

g
g2
g

0
g2
g

+ O(ε2
1) − gY

g
+ O(ε2

1)
g
2 ε1

− g2
2 ε1

gY

2 ε1 1 + O(ε2
1)

⎞
⎟⎠ .

Moreover, after symmetry breaking, as we have already shown in Eq. (19), the Stückelberg field
b is rotated by means of the matrix Oχ as follows

(185)b = O
χ
31χ + O

χ
32G

0
1 + O

χ
33G

0
2,

where the elements of the rotation matrix have the following expressions

(186)O
χ
31 = 1√

M2
1

(qB
u −qB

d )2
v2

v2
uv2

d

+ 1

, O
χ
33 = 1√

1 + (qB
u −qB

d )2

M2
1

v2
uv2

d

v2

, O
χ
32 = 0.

Then, starting from Eq. (185), the Goldstone modes GZ and GZ′
in the γ -basis are obtained by

the combination

(187)G0
2 = C′

ZGZ + C′
Z′GZ′

.
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More details can be found in [25]. Starting from the WZ Lagrangian in the Y-basis

Laxion
Y -basis = Db Tr

[
FG ∧ FG

]+ Fb Tr
[
FW ∧ FW

]
(188)+ CYY bFY ∧ FY + CBBbFB ∧ FB + CYBbFY ∧ FB

and rotating into the physical mass eigenstates using Eqs. (183) and (185) we obtain the axion-
like terms of the WZ Lagrangian

Laxion(χ) = gχ
ggχ Tr

[
FG ∧ FG

]+ g
χ
+−χ Tr

[
FW+ ∧ FW−]+ gχ

γγ χFγ ∧ Fγ

+ g
χ
ZZχFZ ∧ FZ + g

χ

Z′Z′χFZ′ ∧ FZ′ + g
χ
γZχFγ ∧ FZ

(189)+ g
χ

γZ′χFγ ∧ FZ′ + g
χ

ZZ′χFZ ∧ FZ′
,

Laxion(GZ)= cZ
ggG

Z Tr
[
FG ∧ FG

]+ cZ+−GZ Tr
[
FW+ ∧ FW−]+ cZ

γ γ GZ Fγ ∧ Fγ

+ cZ
ZZGZ FZ ∧ FZ + cZ

Z′Z′GZ FZ′ ∧ FZ′ + cZ
γZGZ Fγ ∧ FZ

(190)+ cZ
γZ′GZ Fγ ∧ FZ′ + cZ

ZZ′GZ FZ ∧ FZ′
,

where Z stays for Z, Z′. Finally the WZ Lagrangian in the physical basis is given by the sum of
three contributions

(191)Laxion
γ -basis = Laxion(χ) + Laxion(GZ

)+ Laxion(GZ′)
,

where we have identified the physical couplings of the axi-Higgs χ to the gauge bosons as

gχ
gg = DO

χ
31,

g
χ
+− = FO

χ

31,

gχ
γ γ = (FOA

W3γ
OA

W3γ
+ CYY OA

Yγ OA
Yγ

)
O

χ

31,

g
χ
ZZ = (FOA

W3Z
OA

W3Z
+ CYY OA

YZOA
YZ + CBBOA

BZOA
BZ + CYBOA

YZOA
BZ

)
O

χ
31,

g
χ

Z′Z′ = (FOA
W3Z

′OA
W3Z

′ + CYY OA
YZ′OA

YZ′ + CBBOA
BZ′OA

BZ′ + CYBOA
YZ′OA

BZ′
)
O

χ
31,

g
χ
γZ = (2FOA

W3γ
OA

W3Z
+ 2CYY OA

Yγ OA
YZ + CYBOA

Yγ OA
BZ

)
O

χ

31,

g
χ

γZ′ = (2FOA
W3γ

OA
W3Z

′ + 2CYY OA
Yγ OA

YZ′ + CYBOA
Yγ OA

BZ′
)
O

χ
31,

g
χ

ZZ′ = (2FOA
W3Z

OA
W3Z

′ + 2CYY OA
YZOA

YZ′ + 2CBBOA
BZOA

BZ′

(192)+ CYBOA
YZOA

BZ′ + CYBOA
YZ′OA

BZ

)
O

χ

31

and the interactions of the NG bosons GZ (Z = Z,Z′) with the gauge bosons

cZ
gg = DO

χ
33C

′
Z ,

cZ+− = FO
χ

33C
′

Z ,

cZ
γ γ = (FOA

W3γ
OA

W3γ
+ CYY OA

Yγ OA
Yγ

)
O

χ

33C
′

Z ,

cZ
ZZ = (FOA

W3Z
OA

W3Z
+ CYY OA

YZOA
YZ + CBBOA

BZOA
BZ + CYBOA

YZOA
BZ

)
O

χ

33C
′

Z ,

cZ
Z′Z′ = (FOA

W3Z
′OA

W3Z
′ + CYY OA

YZ′OA
YZ′ + CBBOA

BZ′OA
BZ′ + CYBOA

YZ′OA
BZ′
)
O

χ
33C

′
Z ,

cZ
γZ = (2FOA

W3γ
OA

W3Z
+ 2CYY OA

Yγ OA
YZ + CYBOA

Yγ OA
BZ

)
O

χ
33C

′
Z ,

cZ ′ = (2FOA OA ′ + 2CYY OA OA ′ + CYBOA OA ′
)
O

χ
C′ ,
γZ W3γ W3Z Yγ YZ Yγ BZ 33 Z
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cZ
ZZ′ = (2FOA

W3Z
OA

W3Z
′ + 2CYY OA

YZOA
YZ′ + 2CBBOA

BZOA
BZ′

(193)+ CYBOA
YZOA

BZ′ + CYBOA
YZ′OA

BZ

)
O

χ

33C
′

Z ,

where Z stays for Z, Z′. We also summarize for convenience the coefficients of the WZ coun-
terterms

F = gB

M1
ig2

2
an

2
D

(L)
B ,

D = gB

M1
ig2

3
an

2
D

(Q)
B ,

CBB = g3
B

M1

i

3!anDBBB,

CYY = gB

M1
ig2

Y

an

2
DBYY ,

(194)CYB = g2
B

M1
igY

an

2
DYBB,

with an = − i

2π2 and the chiral asymmetries have been defined, for brevity, in the following way

D
(L)
B = 1

8

∑
f

θB
f L = −1

8

∑
f

qB
f L,

D
(Q)
B = 1

8

∑
Q

θB
Q = 1

8

∑
Q

[
qB
QR

− qB
QL

]
,

DBBB = 1

8

∑
f

θBBB
f = 1

8

∑
f

[(
qB
f R

)3 − (qB
f L

)3]
,

DBYY = 1

8

∑
f

θBYY
f = 1

8

∑
f

[
qB
f R

(
qY
f R

)2 − qB
f L

(
qY
fL

)2]
,

(195)DYBB = 1

8

∑
f

θYBB
f = 1

8

∑
f

[
qY
f R

(
qB
f R

)2 − qY
f L

(
qB
fL

)2]
.

Appendix H. Three- and four-particle phase space

The three and four body phase space in the case of massive particles can be computed di-
rectly in four dimensions since there are no soft and collinear divergences. The reactions that
we are considering are g(k1) + g(k2) → χ(q2) → χ(p)χ(r)χ(p′)H(p′) and g(k1) + g(k2) →
H(q2) → χ(p)χ(r)χ(p′)χ(p′), where the on-shell conditions are given by r2 = r ′2 = p2 =
mχ2 and p′2 = m2

H for the first reaction, while for the second we have r2 = r ′2 = p2 = p′2 =
mχ2 . The computation follows closely [56], with some modifications due to our specific case,
given the three axions and one Higgs boson in the final state.
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H.1. Phase space for the three axions and one scalar Higgs final state

In four dimensions we can write the most general formula as follows

(196)

dΦ4 = 1

2!
∫

d3p

2p0(2π)3

d3p′

2p′
0(2π)3

d3r

2r0(2π)3

d3r ′

2r ′
0(2π)3

(2π)4δ4(q − p − p′ − r − r ′),

where 1/2! is a statistical factor that takes into account the fact that a pair of identical particles
are produced in the final state. The reference frame in the CM of r , r ′ can be chosen as

r = (r0, |�r| sin θ sinφ, |�r| sin θ cosφ, |�r| cos θ
)
,

r = (r0,−|�r| sin θ sinφ,−|�r| sin θ cosφ,−|�r| cos θ
)
,

p = p0

(
1,0,0,

√
1 − m2

χ

p2
0

)
,

(197)p′ = p′
0

(
1,0,

√
1 − m2

H

p′2
0

sinα,

√
1 − m2

H

p′2
0

cosα

)
.

We introduce the following variables

x1 = 2
q · p
q2

, x2 = 2
q · p′

q2
, y = 2

(r + r ′)2

q2
, θ, φ,

r0 =
√

q2

√
y

2
, |�r| =

√
r2

0 − m2
χ ,

(198)ρ1 = 4
m2

H

q2
, ρ2 = 4

m2
χ

q2
.

From the momentum conservation equations (q −p)2 = (p′ + r + r ′) and (q −p′)2 = (p′ + r +
r ′) we derive the expression of p0 and p′

0 as a function of the variables (x1, x2, y,
√

q2,mχ ,mH )

as follows

p0 = (1 − x2 − y)
√

q2

2
√

y
+ m2

H − m2
χ

2
√

q2√y
,

(199)p′
0 = (1 − x1 − y)

√
q2

2
√

y
+ m2

H − m2
χ

2
√

q2√y
.

Using the equation q2 = (p + p′ + r + r ′)2, we obtain the expression of cosα in terms of the
kinematic variables defined above

(200)cosα = p0 + p′
0 +√q2√y − (p2

0 − m2
χ ) − (p′2

0 − m2
H ) − q2

2
√

p2
0 − m2

χ

√
p′2

0 − m2
H

.

In order to integrate the expression given in Eq. (196) it is useful to introduce the following
identities

(201)
∫

d4t

(2π)4
(2π)4δ4(t − r − r ′) = 1, q2

∫
dy

(2π)
(2π)δ

(
t2 − q2y

)= 1
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which allow us to incorporate r and r ′ in the t state. Thus, we obtain

dΦ4 = 1

2!
∫

d3t

2t0(2π)3

∫
d3p

2p0(2π)3

∫
d3p′

2p′
0(2π)3

(2π)4δ(q − t − p − p′)

(202)× q2
∫

dy

(2π)
Θ(y)

∫
d3r

2r0(2π)3

d3r ′

2r ′
0(2π)3

(2π)4δ4(t − r − r ′),

where Θ(y) is the Heaviside step function. In this way we have factorized the expression of dΦ4
phase space as a product of dΦ3 × dΦ2

dΦ2 =
∫

d3r

2r0(2π)3

d3r ′

2r ′
0(2π)3

(2π)4δ4(t − r − r ′),

(203)dΦ3 =
∫

d3t

2t0(2π)3

∫
d3p

2p0(2π)3

∫
d3p′

2p′
0(2π)3

(2π)4δ(q − t − p − p′).

Integrating over dΦ2 we obtain

(204)dΦ2 = 1

4

1

(2π)2

√
1 − ρ2

y

1∫
0

dv

2π∫
0

dφ

where we have defined v = 1/2(1 − cos θ), while the integration over dΦ3 brings us to

(205)dΦ3 =
∫

(2π)

2t0

|p|2 d|p|Ω3

2p0(2π)3

|p′|2 d|p′| sinβ dβ Ω2

2p′
0(2π)3

δ(q0 − t0 − p0 − p′
0),

where t0 and β have been computed below

t0 =
√

|�t |2 + q2y =
√

| �p|2 + | �p′|2 + 2| �p|| �p′| cosβ + q2y,

(206)cosβ = [(2 − x1 − x2)
2 − 4y] − (x2

1 − ρ2) − (x2
2 − ρ1)

2
√

x2
1 − ρ2

√
x2

2 − ρ1

.

Finally we obtain

(207)dΦ3 = q2

2(4π)3

∫
dx1 dx2,

and the final result for the dΦ4 phase space is given by

(208)dΦ4 = q4

2!(4π)6

ȳ+∫
ρ2

√
1 − ρ2

y
dy

x̄1+∫
√

ρ2

dx1

x̄2+∫
x̄2−

dx2

1∫
0

dv

2π∫
0

dφ,

where the integration limits are discussed in the next section.

H.2. Integration limits

At this stage we need to define the integration limits of the integrals appearing in the four
body phase space. From the definitions of x1, x2 it is clear that 0 � x1, x2 � 1, but imposing the
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reality condition of the square root we obtain

(209)x1 � √
ρ2, x2 � √

ρ1.

Solving the condition −1 � cosβ � 1 with respect to x2 we obtain a bound on this variable
which is given by

x̄2± = 1

8x1 − 2(ρ2 + 4)

{[
(x1 − 2)

(
ρ1 − 4(x1 + y − 1)

)+ (x1 − 2)ρ2
]

± {(x2
1 − ρ2

)[
16x2

1 + 8x1(4y + ρ1 − ρ2 − 4) + 16y2

(210)+ (ρ2 − ρ1 + 4)2 − 8y(ρ1 + ρ2 + 4)
]}1/2

}
.

Again, we have to impose the condition x̄2+ � √
ρ1 which gives us a condition on the variable

x1

(211)x1(y) � −4y + ρ1 + ρ2 − 4
√

ρ1 + 4

4 − 2
√

ρ1
,

but x1 must be such that the square root in Eq. (210) is real

x1(y) � 1

4

(−4y − 4
√

ρ1
√

y − ρ1 + ρ2 + 4
)
,

(212)x1 � √
ρ2.

From these three conditions we can extrapolate some conditions on the y variable

(213)ρ2 � y � 1

4

(√
ρ1 + √

ρ2 − 2
)2

.

H.3. Phase space for a four axions final state

In the case of a four axions final state we have a simplification in the computation since
ρ2 = ρ1 = ρ. Thus, the four body phase space is computed exactly as in [56] and the final result
is given by

(214)dΦ4 = q4

4!(4π)6

ȳ+∫
ρ

√
1 − ρ

y
dy

x̄1+∫
√

ρ

dx1

x̄2+∫
x̄2−

dx2

1∫
0

dv

2π∫
0

dφ

where the factor 1/4! is a statistical factor that takes into account the four identical particles in
the final state and the integration bounds are defined as

x̄2± = 1

4(1 − x1) + ρ

[
(2 − x1)(2 + ρ − 2y − 2x1) ± 2

√(
x2

1 − ρ
)[

(x1 − 1 + y)2 − ρy
] ]

,

x1 � 1 − y − √
ρy,

(215)ȳ1+ = (1 − √
ρ )2.

These integrals have been computed numerically.
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