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Korteweg-de Vries equation (KdV)

ut + uux + δ2uxxx = 0

a particular continuum limit of an FPU lattice

d2

dt2
y = (yn−1 − 2yn + yn+1) [1− α (yn−1 − yn+1)]

Repeated near-recurrences are observed in FPU lattices with

yn(0) = sin(nπ
N ),

d

dt
yn(0) = 0.

[FPU, 1955]
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Look for (near) recurrence in KDV by simulation
[Zabusky & Kruskal,1965]

ut + uux + δ2uxxx = 0

δ = .0222 << 1 u(x, 0) = sin(πx)

d

dt
un =

(un−1 + un + un+1) (un−1 − un+1)
3h

+δ2 un−2 − 2un−1 + 2un+1 − un+2

2h3

d

dt
u = − (A3u) (Dcu)− δ2D3cu
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Recurrence
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Recurrence
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Emergence of Solitons
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Emergence of Solitons

KdV solitary waves

u(x, t) = 12δ2k2 sech2
[
k(x− 4δ2k2t)

]

are the limit of periodic, cnoidal-wave solutions

u(x, t) = 12δ2k2m cn2
[
k(x− 4δ2k2(2m− 1)t,m)

]

The solitary waves are solitons:
they pass through one another and regain their original shape &
velocity.
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Recurrence

Recurrence has been explained in terms of the solitons.
[Zabusky & Kruskal, 1965; Osborne & Bergamasco, 1986]

Q: How does recurrence depend on the spatial discretization?

Hypotheses:

H1: Higher-accuracy discretization gives better recurrence.

H2: Integrable discretization gives better recurrence.
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High-accuracy Discretizations

Pseudo-spectral:

d

dt
u = −u(Dfu)− δ2D3

fu

Pseudo-spectral (Conservation Form):

d

dt
u = − 1

2Dfu
2 − δ2D3

fu

Spectral:
d

dt
u = −DfF−1 [(Fu) ∗ (Fu)]− δ2D3

fu

Df = F−1ΩF: Fourier differentiation matrix
F: discrete Fourier transform matrix
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Solitons
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Recurrence
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Recurrence
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Recurrence
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Recurrence

Surprise(?): Recurrence is worse in pseudospectral and spectral
schemes.

Higher accuracy does not yield better recurrence.

Q: What about a “rougher” grid (e.g., N = 64)?

A1: Zabusky-Kruskal and Spectral discretizations don’t show
recurrence.

A2: Pseudospectral discretizations manifest a nonlinear instability.
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No Recurrence
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Solitons(?)
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Nonlinear Instability

In pseudospectral discretizations there is rapid uncontrolled growth
of the solution for “rough” grids.

The nonlinear terms induce aliasing.

Preservation of
∑

n u2
n in other discretizations precludes the

instability.

A similar instability exists in:

simple finite-difference discretizations of KdV,

discretizations of viscous Burger’s equation [Maritz & Schoombie],

discretizations inviscid Burger’s equation. [Majda & Timofeyev,
2002]
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Finer Grid
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Integrable Discretization of KdV

KdV can be associated with the Zakharov-Shabat Scattering
problem in the form

ψx =


 ik u

−1 −ik


ψ

Forward difference ⇒ discrete (Ablowitz-Ladik) scattering problem:

ψn+1 =


z Un

α z−1


ψn = Snψn

where
Un = hun, α = −h, z = eikh
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Integrable Discretization of KdV

Discrete Compatibility Condition:

d

dτ
Sn = Tn+1Sn − SnTn

where
ψn+1 = Snψn

d

dτ
ψn = Tnψ

Compatibility condition is equivalent to:

d

dτ
Un = (1− αUn) [−αUn−1(Un−2 − Un)− αUn+1(Un − Un+2)

− α(Un−1 + 2Un + Un+1)(Un−1 − Un+1)

+Un−2 − 2Un−1 + 2Un+1 − Un+2]
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Integrable Discretization of KdV

Rescale:
Un → h

6 un, α → − h
δ2 τ → 3δ2

h4

IDKdV:

d

dt
un =

(
1 +

h2un

6δ2

) [
un−1(un−2 − un)

12h
+

un+1(un − un+2)
12h

+
(un−1 + 2un + un+1)(un−1 − un+1)

12h
+ δ2 un−2 − 2un−1 + 2un+1 − un+2

2h3

]

Truncated (non-integrable):

d

dt
un =

un−1(un−2 − un)
12h

+
un+1(un − un+2)

12h

+
(un−1 + 2un + un+1)(un−1 − un+1)

12h
+δ2 un−2 − 2un−1 + 2un+1 − un−2

2h3
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Solitons
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Recurrence
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Recurrence
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Recurrence
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Recurrence
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Observations

Presence of solitons in discretization not sufficient to capture
recurrence.

Recurrence is worse in pseudospectral and spectral discretizations
than carefully-chosen (Zabusky-Kruskal) finite-differences.

Recurrence not always strengthened by decrease the grid size.

Integrable discretization does not capture recurrence better than
Zabusky-Kruskal discretization.

(Related?) Phenomena:

• uncontrolled nonlinear instability

• (modulated) grid-scale oscillations
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