Temporally-periodic solitons of the parametrically driven damped nonlinear Schrödinger equation

E Zemlyanaya and N Alexeeva

nora.alexeeva@uct.ac.za

Joint Institute for Nuclear Research University of Cape Town

Motivation

We consider the parametrically driven, damped NLS $\frac{i\psi_t + \psi_{xx} + 2|\psi|^2\psi - \psi = h\psi^* - i\gamma\psi}{\psi^* - i\gamma\psi}$

Bondila et al. Physica **D 87** (1995) 314-320

Aims

Analysing the boundary value problem instead of the initial-boundary value problem provides insights into:

- Period doubling of single time-periodic solitons and time-periodic bound states
- Direct transiton from periodic soliton to spatiotemporal chaos
- ★ Relation between single solitons and bound states

Parametrically driven damped NLS

$$i\psi_t + \psi_{xx} + 2|\psi|^2\psi - \psi = h\psi^* - i\gamma\psi,$$

Explicit soliton solution

$$\psi^{\pm} = A_{\pm}e^{-i\theta_{\pm}}\operatorname{sech}(A_{\pm}x), \quad \text{where}$$

$$A_{+} = \sqrt{1 + \sqrt{h^2 - \gamma^2}}, \quad \theta_{+} = \frac{1}{2} \operatorname{arcsin}\left(\frac{\gamma}{h}\right),$$
$$A_{-} = \sqrt{1 + \sqrt{h^2 - \gamma^2}}, \quad \theta_{-} = \frac{\pi}{2} = \theta_{-}$$

2

Existence region

For $h < \gamma \underline{all}$ initial conditions decay to zero:

$$\dot{N} + 2\gamma N = ih \int (\psi^2 - \psi^{*2}) dx$$
, where $N = \int |\psi|^2 dx$.
Since $\dot{N} \le 2(h - \gamma)N$, we have $N(t) \to 0$ as $t \to \infty$.

Bound states

Energy of the stationary multisoliton solutions obtained by continuation in *h* for the fixed $\gamma = 0.01$ and $\gamma = 0.4$. Solid curves show stable and the dashed ones unstable solutions.

Stability of stationary solitons and bound states

The existence and stability chart of the stationary single soliton and two-soliton complexes.

Stability of time-periodic solitons

Periodic solution $\psi_0(x,t) = \Re(x,t) + i\Im(x,t)$ perturbed by $\psi(x,t) = \psi_0(x,t) + u(x,t) + iv(x,t)$

gives $\mathbf{J}\mathbf{w}_t = \mathbf{\mathcal{H}}\mathbf{w}$, with $\mathbf{w} = \begin{pmatrix} u \\ v \end{pmatrix}$, $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $\mathbf{\mathcal{H}} = \begin{pmatrix} -\partial_x^2 + 1 + h - 6\mathcal{R}^2 - 2\mathfrak{I}^2 & -4\mathcal{R}\mathfrak{I} + \gamma \\ -4\mathcal{R}\mathfrak{I} - \gamma & -\partial_x^2 + 1 - h - 2\mathcal{R}^2 - 6\mathfrak{I}^2 \end{pmatrix}$

Solution with initial condition w(x, 0) can be written as

 $\mathbf{w}(x,t) = \mathcal{M}_t \mathbf{w}(x,0)$

If the period of $\psi_0(x,t)$ is T:

 $\mathcal{M}_T \mathbf{w}(x) = \mu \mathbf{w}(x)$

Floquet multipliers

Consider the eigenvalue problem

 $\mathcal{M}_T \mathbf{w}(x) = \mu \mathbf{w}(x)$

Eigenvalues μ are Floquet multipliers and λ , where $\mu = e^{\lambda T}$, are Floquet exponents.

For each λ there is a solution $\mathbf{w}(x, t)$ such that

 $\mathbf{w}(x,t) = e^{\lambda t} \mathbf{p}(x,t),$

where $\mathbf{p}(x,t)$ is a periodic function: $\mathbf{p}(x,t+T) = \mathbf{p}(x,t)$ for all t.

Numerical stability analysis

Expand $\mathbf{w}(x,t) = \sum_{n=-N}^{N} \mathbf{w}_n e^{-iq_n x} = \sum_{n=-N}^{N} \begin{pmatrix} u_n \\ v_n \end{pmatrix} e^{-iq_n x}$

Here $\overline{\mathbf{w}_n = \mathbf{w}_n(t)}$, $q_n = \pi n/L$. Substituting into linearised problem gives

$$J\dot{\mathbf{w}}_m = \sum_{n=-N}^N H_{mn}(t)\mathbf{w}_n,$$

with
$$H_{mn}(t) = \frac{1}{2L} \int_{-L}^{L} e^{i(q_m - q_n)x} \times \left(\begin{array}{cc} q_n^2 + 1 + h - 6\Re^2 - 2\Im^2 & -4\Re \Im + \gamma \\ -4\Re \Im - \gamma & q_n^2 + 1 - h - 2\Re^2 - 6\Im^2 \end{array} \right) dx.$$

Solution of the form $u_n(t) = e^{\lambda t} f_n(t), \quad v_n(t) = e^{\lambda t} q_n(t),$ where $f_n(t+T) = f_n(t)$, $g_n(t+T) = g_n(t)$ for all t. Form $\vec{w} = (u_{-N}, v_{-N}, u_{-N+1}, v_{-N+1}, ..., u_N, v_N).$ The problem reduces to $\vec{w_t} = \hat{H}\vec{w}$, where $\hat{H} = J^{-1}H_{mn}$. The principal fundamental matrix: $M_t = \left(\vec{w}_{-N}^{(1)}, \vec{w}_{-N}^{(2)}, ..., \vec{w}_N^{(1)}, \vec{w}_N^{(2)}\right).$ Here $\vec{w}_{\alpha}^{(1,2)}(t)$ (with $\alpha = -N, ..., N$) is the solution with the ICs $u_n(0) = \delta_{n\alpha}, \quad v_n(0) = 0 \quad (n = -N, ..., N),$ $u_n(0) = 0, \quad v_n(0) = \delta_{n\alpha} \quad (n = -N, ..., N).$

Floquet multipliers are eigenvalues of the monodromy matrix with t = T

$$M_T \vec{w} = \mu \vec{w}.$$

No period doubling for moderate dampings γ

The energy and the period of the periodic solution for $\gamma = 0.3$. The solid curve shows the stable and the dashed one unstable branch.

Time evolution for $\gamma = 0.3$

The absolute value of the periodic solution with $\gamma = 0.3$ for h = 0.55, T = 4.356 and h = 0.62, T = 2.998. In each case several periods of oscillation are shown.

Period doubling for small dampings γ

The energy and the period of the periodic solution for $\gamma = 0.265$. Solid curves show the stable and the dashed ones unstable branches.

Teme evolution for $\gamma = 0.265$

The absolute value of the double-periodic solution for h = 0.502, $T \approx 23$. A rapid oscillation is followed by a long quasistationary epoch.

Strong damping γ

The energy and the period of the periodic solution for $\gamma = 0.565$. The solid curve shows the stable and the dashed one unstable branch. The stability boundary is marked by a black blob.

Time evolution of periodic bound state

Clearly visible is the two-soliton spatial structure of the solution. Here h = 0.92, $T \approx 14$.

Conclusions

- Small damping: Period doubling confirmed; character of the bifurcation elucidated; accurate bifurcation value determined
- Large damping: Direct transition from temporally periodic soliton to spatiotemporal chaos explained; accurate value for the onset of the spatiotemporal chaos determined
- ★ Bifurcations of bound states of solitons described