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Spin system in question

Consider a planar atomic lattice.

Each atom has a spin s> 1 (high spin). n

Each atom is assigned to three spin operators :

{Ŝ1
n, Ŝ2

n, Ŝ3
n} = Ŝn, [Ŝa

n, Ŝb
m] = iεabcŜ

c
nδnm,

where a, b, c ∈ {1, 2, 3}, and δnm is the Kronecker symbol.
{Ŝa

n} are Hermitian operators.
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Quantum model

The quantum model is described by a generalized
Heisenberg Hamiltonian :

as s = 1 with biquadratic exchange

Ĥ = −
∑

n,δ

(

J(Ŝn, Ŝn+δ) + K(Ŝn, Ŝn+δ)
2
)

,

δ runs over the nearest-neighbour sites;

as s = 3/2 with bicubic exchange

Ĥ = −
∑

n,δ

(

J(Ŝn, Ŝn+δ) + K(Ŝn, Ŝn+δ)
2 + L(Ŝn, Ŝn+δ)

3
)

;

spin s with 2s-th power of exchange interaction.
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Space of representation (s=1)

The spin operators {Ŝa
n} are naturally considered over

(2s+ 1)-dimensional space of irreducible representation of
group SU(2). In the case s=1, the space is 3-dimensional,
canonical basis: {|+1〉, |−1〉, |0〉}.

The operators {Ŝa
n} generate an associative matrix algebra

over the space of representation.
In the case s=1, in addition to {Ŝa

n} ∈ Mat3×3 we introduce

quadrupole operators : {Q̂12
n , Q̂13

n , Q̂23
n , Q̂

[2,2]
n , Q̂

[2,0]
n }

as tensor operators of weight 2,

Q̂ab
n = Ŝa

nŜb
n + Ŝb

nŜa
n, a 6= b, Q̂

[2,2]
n = (Ŝ1

n)2 − (Ŝ2
n)2,

Q̂
[2,0]
n =

√
3
(

(Ŝ3
n)2 − 2

3

)

.
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Space of representation (s=3/2)

In the case s=3/2, the space of representation is 4-dim,
canonical basis: {|+3

2〉, |+1
2〉, |−1

2〉, |−3
2〉}.

We complete the associative algebra of {Ŝa
n} ∈ Mat4×4 by

tensor operators of weight 2 — quadrupole operators :

Q̂ab
n =

√
5

2
√

3

(

Ŝa
nŜb

n + Ŝb
nŜa

n

)

, a, b∈{1, 2, 3}, a6=b

Q̂
[2,2]
n =

√
5

2
√

3

(

(Ŝ1
n)2 − (Ŝ2

n)2
)

, Q̂
[2,0]
n =

√
5

2

(

(Ŝ3
n)2 − 5

4

)

,

and of weight 3 — sextupole operators :

T̂ ab
n = 1

√

6

(

(Ŝa
n)2Ŝb

n + Ŝb
n(Ŝa

n)2 + Ŝa
nŜb

nŜa
n − (Ŝb

n)3
)

, T̂ a3
n = (Q̂a2

n Ŝ3
n + Ŝ3

nQ̂a2
n ),

T̂ 3a
n = 1

√

10

(

Q̂a3
n Ŝ3

n + Ŝ3
nQ̂a3

n +
√

3(Q̂[2,0]
n Ŝa

n + Ŝa
nQ̂[2,0]

n )
)

, a, b∈{1, 2}, a6=b,

T̂ [3,0]
n = 1

12

(

41Ŝ3
n − 20(Ŝ3

n)3
)

.
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Bilinear Hamiltonian

In terms of tensor operators (together {P̂ a
n}) over the space

of representation we obtain bilinear Hamiltonians :
(N is the overall number of sites in the lattice)

Ĥspin 1 = −(J−1
2K)

∑

n,δ

∑

b

Ŝb
nŜb

n+δ − 1
2K

∑

n,δ

∑

α

Q̂α
nQ̂α

n+δ − 4
3KN ;

Ĥspin 3/2 = −(J−1
2K+587

80 L)
∑

n,δ

∑

b

Sb
nSb

n+δ − 75
32(4K−L)N−

− 6
5(K−2L)

∑

n,δ

∑

α

Qα
nQα

n+δ − 9
10L

∑

n,δ

∑

β

T β
n T β

n+δ.

Remark . The operators {P̂ a
n}8

a=1 form an orthogonal basis in su(3).

The operators {P̂ a
n}15

a=1 form an orthogonal basis in su(4).
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Mean field Hamiltonian

We introduce a vector field: {µa(xn)}8
a=1 = {〈Ŝ1

n〉, 〈Ŝ2
n〉, 〈Ŝ3

n〉,
〈Q̂12

n 〉, 〈Q̂13
n 〉, 〈Q̂23

n 〉, 〈Q̂[2,2]
n 〉, 〈Q̂[2,0]

n 〉} called a mean field .

Here 〈·〉 denotes a quasiaverage (which means a
quantum-mechanical and thermodynamical average
after a spontaneous breaking of symmetry).

In the case s=1, a mean field Hamiltonian :

Ĥspin 1
MF =−(J−1

2K)z
∑

n

3
∑

a=1

P̂ a
nµa(xn)−

− 1
2Kz

∑

n

8
∑

a=4

P̂ a
nµa(xn) − 4

3KzN,

z is a number of the nearest-neighbour sites.
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Order parameters

The mean field Hamiltonian is SU(2)-invariant.
By action of SU(2) it can be reduced to the diagonal form:

Ĥspin 1
MF =−z

∑

n

(

(J−1
2K)Ŝ3

nµ3(xn) + 1
2KQ̂

[2,0]
n µ8(xn)

)

−4
3KzN.

In the case of thermodynamical equilibrium and unlimited
lattice, µ3 and µ8 are constants. We call them order
parameters .

µ3 describes a normalized magnetization (a ratio of
z-projection of magnetic moment to a saturation
magnetization)

µ8 is a normalized projection of quadrupole moment .

Nonlinear (topological) excitations in 2D spin systems with high spin (s > 1) – p. 9/22



Self-consistent equations (SCEq)

A mean field exists if self-consistent relations are held:
(ĥMF is a one-site Hamiltonian: ĥMF = ĤMF/N )

µ3 = 〈Ŝ3〉MF =
Tr Ŝ3e−

ĥMF
kT

Tr e−
ĥMF
kT

, µ8 = 〈Q̂[2,0]〉MF =
Tr Q̂[2,0]e−

ĥMF
kT

Tr e−
ĥMF
kT

.

In the case s=1, self-consistent equations are

µ3 =
2 sinh

(J−K/2)µ3
kT

exp

{

−
√

3 Kµ8
2kT

}

+2 cosh
(J−K/2)µ3

kT

,

µ8 = 2√
3

cosh
(J−K/2)µ3

kT
−exp

{

−
√

3 Kµ8
2kT

}

exp

{

−
√

3 Kµ8
2kT

}

+2 sinh
(J−K/2)µ3

kT

.

This is a kind of

Weiss equation
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Phase diagram

There exist 4 solutions of SCEq (as T=0, J>0):
|µ3| = 1, µ8 = 2J−K

√

3 K
ferromagnetic state

|µ3| = 1
2 , µ8 = J−K/2

√

3 K
partly ordered ferromagnetic state (K>0), unstable

µ3 = 0, |µ8| = 2
√

3
nematic state (K>0)

µ3 = 0, |µ8| = 1
√

3
partly ordered nematic state (K>0), unstable

Matveev V. M., Quantum quadrupole magnetizm and changes of phase
under biquadratic exchange, J. Exper. Theor. Phys., 65 (1973), 1627–1636.

According to SCEq, nematic states
appear in the dark region if T<Tcrit,
where Tcrit≈K

3k
.

Ferromagnetic states appear
in the region 0<K<2J .

-K

K J2=
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Motion equations

Motion equations in the quantum model are

i~
dP̂ a

n

dt
= [P̂ a

n , Ĥ]. (1)

Suppose we take the quasiaverage as explained above
(mean field average ) of (1), and take a large-scale limit
with zero correlations between fluctuations, then
the equations (1) transform into

∂µa

∂t
= Jz

~
Cabcµb(µc,xx + µc,yy), (2)

where Cabc are structure constants for the Lie algebra of
operators {P̂ a

n}: [P̂ a
n , P̂ b

m] = iCabcP̂
c
nδnm.

Remark . The equations (2) are a generalization of Landau-Lifshits
equation to the case of vector field {µa}.
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Classical model

The generalized Landau-Lifshits equation (2) can be
interpreted as a Hamiltonian hierarchy on a coadjoint
orbit of a Lie group :
SU(3) in the case s = 1,
SU(4) in the case s = 3/2,
SU(2s+1) in the case of spin s.

That is why we use the method of Hamiltonian systems on
coadjoint orbits of Lie groups (orbital method ) to
investigate a generalized Landau-Lifshits equation,
which is a classical model for the system in question.

The matrices {P̂ a} serve as a basis in the Lie algebra
su(2s+1). The components of mean field {µa} serve as
coordinates in the dual space to su(2s+1).
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Motion equations on orbit

By the orbital method we obtain Hamiltonian equations
on coadjoint orbits of the Lie group SU(2s+1).

Depending on an orbit we have different equations
implied by different ways of the mean field averaging .
For example, if we neglect correlations between fluctuations
of the quantum fields {P̂ a

n} we come to Hamiltonian
equations on the maximal degenerate orbit.

In the case s = 1:

∂µa

∂t
= 1

3h0
Cabcµb(µc,xx + µc,yy), h0 =

(

µ0
8(T )

)2
, (3)

the parameter h0 depends on initial conditions, which
generally depend on a temperature T .
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Effective Hamiltonians

Each orbit has a Hamiltonian. We call the Hamiltonians on
all orbits of SU(2s+1) effective Hamiltonians of the model.
Equations determining orbits serve as constrains .

In the case s = 1, we deal with the group SU(3),
which has two types of orbits : degenerate and generic.
Thus, we propose two effective Hamiltonians .

Heff,1 = 1
6h0

∫ 8
∑

a=1

(

(µa,x)2 + (µa,y)
2
)

dxdy,

dabcµbµc +
√

h0/3 µa − 2h0

3 = 0, for a degenerate orbit

where dabc = 1
4 Tr(P̂aP̂bP̂c + P̂bP̂aP̂c) is a symmetric tensor.

Remark . The Hamiltonian Heff,1 gives rise to the generalized
Landau-Lifshits equation (3), which coincides with (2).
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Effective Hamiltonians

Another Hamiltonian is

Heff,2 = 1
8(h3

0−3f2
0 )

8
∑

a=1

(

h2
0(∇µa)

2 + 3h0(∇ξa)
2 − 6f0〈∇µa,∇ξa〉

)

,

dabcµbξc − h0µa − 2
3f0 = 0, for a generic orbit

ξa is a quadratic form in {µa}: ξa = dabcµbµc.
The parameters h0, f0 depend on initial conditions,
and generally depend on a temperature T .

Remark . One can quantize Heff,1-, and Heff,2-models. Such effective
models are called σ-models in quantum field theory. Evidently, they
describe slow fluctuations. One can take into account quick fluctuations
by means of a renormalization group connected to the coefficients

1
8(h3

0(T )−3f2
0 (T ))

and 1
6h0(T ) .
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Geometry of orbits

Effective Hamitonians have a geometrical nature .

For an orbit is a homogeneous space that admits a
Kählerian structure , we use a complex parameterization
(by means of generalized stereographic projection) and
reduce effective Hamiltonians to the form:

Heff =

∫

∑

α,β

hαβ̄

(∂wα

∂z

∂wβ

∂z̄
+

∂wα

∂z̄

∂wβ

∂z

)

dzdz̄,

hαβ̄ are components of a Kählerian metrics on an orbit;
{wα} are complex parameters on an orbit.

Remark . The geometric form of an effective Hamiltonian does not
depend on an orbit. A density of Hamiltonian is defined by
a Kahlerian metrics.
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Generalized stereographic projection

µ1 =
µ0

3 −
√

3 µ0
8

2
√

2
· w2 + w3 + w̄2 + w̄3

1 + |w2|2 + |w3|2
− µ0

3√
2

(1 − w1)(w̄3 − w̄1w̄2) + (1 − w̄1)(w3 − w1w2)

1 + |w1|2 + |w3 − w1w2|2

µ2 =
µ0

3 −
√

3 µ0
8

2i
√

2
· w3 − w2 − w̄3 + w̄2

1 + |w2|2 + |w3|2
+

iµ0
3√
2

(1 + w1)(w̄3 − w̄1w̄2) − (1 + w̄1)(w3 − w1w2)

1 + |w1|2 + |w3 − w1w2|2

µ3 = −µ0
3 −

√
3 µ0

8

2
· |w2|2 − |w3|2
1 + |w2|2 + |w3|2

+
µ0

3(1 − |w1|2)

1 + |w1|2 + |w3 − w1w2|2

µ4 =
µ0

3 −
√

3 µ0
8

2i
· w̄2w3 − w2w̄3

1 + |w2|2 + |w3|2
+

iµ0
3(w1 − w̄1)

1 + |w1|2 + |w3 − w1w2|2

µ5 =
µ0

3 −
√

3 µ0
8

2i
√

2
· w2 + w3 − w̄2 − w̄3

1 + |w2|2 + |w3|2
+

iµ0
3√
2

(1 − w̄1)(w3 − w1w2) − (1 − w2)(w̄3 − w̄1w̄2)

1 + |w1|2 + |w3 − w1w2|2

µ6 =
µ0

3 −
√

3 µ0
8

2
√

2
· w3 − w2 + w̄3 − w̄2

1 + |w2|2 + |w3|2
− µ0

3√
2

(1 + w1)(w̄3 − w̄1w̄2) + (1 + w̄1)(w3 − w1w2)

1 + |w1|2 + |w3 − w1w2|2

µ7 =
µ0

3 −
√

3 µ0
8

2
· w̄2w3 + w2w̄3

1 + |w2|2 + |w3|2
− µ0

3(w1 + w̄1)

1 + |w1|2 + |w3 − w1w2|2

µ8 = −µ0
3 −

√
3 µ0

8

2
√

3
· 2 − |w2|2 − |w3|2
1 + |w2|2 + |w3|2

+
µ0

3√
3
· 1 + |w1|2 − 2|w3 − w1w2|2

1 + |w1|2 + |w3 − w1w2|2
.
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Topology of orbits

A coadjoint orbit SU(3) is parameterized by {w1, w2, w3}.
Kählerian potentials are

Φ = µ0
3 Φ1 +

√
3µ0

8−µ0
3

2 Φ2,

Φ1 = ln(1 + |w1|2 + |w3−w1w2|2), Φ2 = ln(1 + |w2|2 + |w3|2).

On a generic orbit dim H2 = 2 (H2 is a cohomology class).
On a degenerate orbit: µ0

3=0, w1=0 or µ0
3=

√
3µ0

8, w2=0,
evidently, dim H2 = 1.

Density of the effective Hamiltonians

hα,β̄ =
∂2Φ1

∂wα∂w̄β
+

∂2Φ2

∂wα∂w̄β
+

2ωαβ̄

eΦ1eΦ2
,

ω22̄ = |w1|2, ω23̄ = ω̄32̄ = −w1, ω22̄ = 1.
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Topological charge

Introduce a topological charge of a mean field
configuration on a Kählerian manifold by

Q =
1

4π

∫

∑

α,β

ihαβ̄

(∂wα

∂z

∂wβ

∂z̄
− ∂wα

∂z̄

∂wβ

∂z

)

dz ∧ dz̄.

The expressions for Q and Heff differ only in the sign.

Remark . Compare with Heff =
∫

∑

α,β

hαβ̄

(

∂wα

∂z
∂wβ

∂z̄ + ∂wα

∂z̄
∂wβ

∂z

)

dzdz̄.

Evidently,
Heff > 4π|Q|.

A minimum of Heff is realized if the equality holds, that
takes place if {wα} are holomorphic or antiholomorphic .
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Large-scale topological excitations
Example. Consider a planar magnet with spin 1, and the effective

Heff,1-model. This corresponds to a degenerate orbit of SU(3).

Assign µ0
3 = 0, µ0

8 = − 2√
3

(an equilibrium nematic state).

Take a mean field configuration with the

holomorphic functions (Q = 2):

w2(z)= a1
z−z1

, w3(z)= a2
z−z2

,

a1, z1, a2, z2 ∈ C .

This is a kind of Belavin-Polyakov soliton.

Heff,1 does not depend on a1, z1, a2, z2.
Thus, the excitation can infinitely enlarge
without energy input, that causes
destruction of the nematic order.

1

z1

z2

m3

-1

3

2

Ö
-

3

1

Ö

z

m8

z2z1

z

a1

a2

a1 a2

( )w , w
32

( )w , w
32
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Results

The example shows that in a 2D magnet an ordered
state is easily destroyed at any temperature T>0
(that agrees with Mermin-Wagner theorem).
Moreover, we propose a mechanism of destruction
of ordered states in 2D magnets. That is, we suggest
that an order exists, but any excitation easily destroys it.

The well-known fact: an order exists in 3D magnets.
How does it disappear in 2D?
A prospect : to construct a quasi2D theory that
considers a planar magnet with a fixed thickness,
and takes into account anisotropic effects
(demagnetization in normal direction).

The end
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