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Introduction

Consider a pair for principal chiral field equations

∂τ1ψ =
1

λ− 1
Uψ, ∂τ2ψ =

1

λ+ 1
Vψ.

From compatibility condition for linear problems one gets

∂τ2U

λ− 1
− ∂τ1V

λ+ 1
+

[
U

λ− 1
,

V

λ+ 1

]
= 0,

and as a result the equations

∂τ2U =
1

2
[U,V ], ∂τ1V =

1

2
[U,V ].

For U, V belonging to matrix Lie algebra - standard (1+1) dimensional
principal chiral field equations.
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It is also possible to consider U, V belonging to infinite-dimensional Lie
algebra of vector fields, then we get multidimensional equations for
coefficients of vector field. Consider

U =
N∑

i=1

ui
∂

xi
,

V =
N∑

i=1

vi
∂

xi
.

Then equations

∂τ2U =
1

2
[U,V ], ∂τ1V =

1

2
[U,V ]

give (2+N)-dimensional closed system of equations for the functions ui , vi .
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Considering two-dimensional (variables x , y) Hamiltonian vector fields
(Hamiltonians H1 for U, H2 for V ), it is possible to introduce potential Θ,

H1 = ∂τ1Θ, H2 = ∂τ2Θ.

For Θ we obtain Husain equation (1994) in cone variables

∂τ1∂τ2Θ +
1

2
{∂τ1Θ, ∂τ2Θ}(x ,y) = 0.
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Dunajski equation

A canonical Plebański form of null-Kähler metrics (signature (2,2))

g = dwdx + dzdy −Θxxdz2 −Θyydw2 + 2Θxydwdz . (1)

The conformal anti-self-duality (ASD) condition leads to Dunajski equation

Θwx + Θzy + ΘxxΘyy −Θ2
xy = f , (2)

�f = fxw + fyz + Θyy fxx + Θxx fyy − 2Θxy fxy = 0. (3)
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Equations (2,3) represent a compatibility condition for the linear system
L0Ψ = L1Ψ = 0, where Ψ = Ψ(w , z , x , y , λ) and

L0 = (∂w −Θxy∂y + Θyy∂x)− λ∂y + fy∂λ,

L1 = (∂z + Θxx∂y −Θxy∂x) + λ∂x − fx∂λ. (4)

The case f = 0 corresponds to metrics of the form (1) satisfying Einstein
equations, and Dunajski equation (2), (3) reduces to Plebański second
heavenly equation.

[1] J.F. Plebański, J. Math. Phys. 16 2395–2402 (1975)
[2] M.Dunajski, Proc.Roy.Soc.Lond.A 458, 1205 (2002)
[3] Q-H. Park, Phys. Lett. B 269, 271–274 (1991)
[4] K. Takasaki, Phys. Lett. B 285, 187–190(1992)
[5] L.V. Bogdanov, V.S. Dryuma, S.V. Manakov, Journal of Physics A:
Math. and Theor. 40, 14383–14483 (2007)
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Dressing scheme

Nonlinear vector Riemann problem

S+ = F(S−). (5)

We consider three-component problem (5)

S0
+ = F 0(S0

−,S
1
−,S

2
−),

S1
+ = F 1(S0

−,S
1
−,S

2
−),

S2
+ = F 2(S0

−,S
1
−,S

2
−) (6)

for the functions S0 → λ+ O( 1
λ), S1 → −λz + x + O( 1

λ),
S2 → λw + y + O( 1

λ), λ→∞, where x , y ,w , z are the variables of
Dunajski equation (‘times’).
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Let us consider a linearized problem

δS i
+ =

∑
j

F i
,jδS

j
−.

The linear space of solutions of this problem is spanned by the functions
Sx , Sy , Sλ, which can be multiplied by λn and arbitrary function of times.
Expanding the functions Sz , Sw into the basis, we obtain linear equations

((∂w + uy∂y + vy∂x)− λ∂y + fy∂λ)S = 0,

((∂z − ux∂y − vx∂x) + λ∂x − fy∂λ)S = 0, (7)
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u, v , f can be expressed through the coefficients of expansion of S0, S1,
S2 at λ = ∞

u = S2
1 − wS0

1 , v = S1
1 + zS0

1 , f = S0
1 , (8)

S0 = λ+
∞∑

n=1

S0
n

λn
, S1 = −zλ+ x +

∞∑
n=1

S1
n

λn
,

S2 = wλ+ y +
∞∑

n=1

S2
n

λn
, λ = ∞.
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To get a Lax pair for Dunajski equation, we should consider the reduction
vx = −uy , then we can introduce a potential Θ,

v = Θy , u = −Θx . (9)

Proposition

Sufficient condition to provide the reduction

vx = −uy

in terms of the Riemann problem (5) is

det F i
,j = 1. (10)
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Proof Condition (10) implies that

dS0
+ ∧ dS1

+ ∧ dS2
+ = dS0

− ∧ dS1
− ∧ dS2

−,

and thus the form
Ω = dS0 ∧ dS1 ∧ dS2

is analytic in the complex plane. Then the determinant of the matrix

J =

S0
λ S1

λ S2
λ

S0
x S1

x S2
x

S0
y S1

y S2
y

 (11)

is also analytic.
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Considering behavior of det J at λ = ∞, we come to the conclusion that

det J = 1.

Calculating the coefficient of expansion of det J at λ = ∞ corresponding
to λ−1, we get

S1
1x + zS0

1x + S2
1y − wS0

1y = 0,

then, according to (8),
vx = −uy .

�
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Constructing solutions. Simple example

S1
+ = S1

−, (12)

S2
+ = S2

− exp(−iF (S2
− · S0

−,S
1
−)), (13)

S0
+ = S0

− exp(iF (S2
− · S0

−,S
1
−)), (14)

where F is an arbitrary function of two variables.
The function S2 · S0 is analytic. Then we get an expression

φ = S2 · S0 = λ2w + λy + 2fw + u. (15)

Equation (14) now reads

S0
+ = S0

− exp(iF (φ,−λz + x)).
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The solution to this equation looks like

S0 = λ exp

(
1

2π

∫
γ

dλ′

λ− λ′
F (φ(λ′),−λ′z + x)

)
Considering the expansion of this expression in λ, we obtain the equations

1

2π

∫
γ
dλF (φ(λ),−λz + x) = 0, (16)

1

2π

∫
γ
λdλF (φ(λ),−λz + x) = f . (17)

u, f are defined as implicit functions. Solution to Dunajski equation is
given by Θx = −u, Θy = zf .
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To simplify the example and exclude integration with respect to λ, it is
possible to consider function F of the form

F (φ,S1) =
∑

i

fi (φ)

S1 − ci
=
∑

i

fi (φ)

−λz + x − ci
,

where fi are some analytic functions and ci some constans. Then,
performing integration in equations (16), (17) (considering γ as a small
circle around infinity) we obtain∑

i

fi

(
φ
(x − ci

z

))
= 0, (18)

∑
i

x − ci

z
fi

(
φ
(x − ci

z

))
= zf . (19)
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We have obtained a solution to Dunajski equation, depending on arbitrary
function of two variables, in terms of implicit functions.
Functional dependence on the function of two variables indicates that the
solution we have constructed correspons to some (2+1)-dimensional
reduction of Dunajski equation. It is possible to find the reduced equations
explicitely, using the fact that linear equations (4) have analytic solutions φ
and −λz + x . Substituting these solutions to (4) and using (9), we obtain

(∂w −Θxy∂y + Θyy∂x)(2
w

z
Θy −Θx) +

y

z
Θyy = 0, (20)

(∂z + Θxx∂y −Θxy∂x)(2
w

z
Θy −Θx)−

y

z
Θxy = 0, (21)
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HE2 hierarchy

(Takasaki)
We start from two formal Laurent series in λ,

S1 =
∞∑

n=0

t1
nλ

n +
∞∑

n=1

S1
n (t1, t2)λ−n,

S2 =
∞∑

n=0

t2
nλ

n +
∞∑

n=1

S2
n (t1, t2)λ−n,

We denote x = t1
0 , y = t2

0 , introduce the Poisson bracket
{f , g} := fxgy − fygx and the projectors (

∑∞
−∞ unλ

n)+ =
∑∞

n=0 unλ
n,

(
∑∞
−∞ unλ

n)− =
∑n=−1
−∞ unλ

n.
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Heavenly equation hierarchy is defined by the relation

(d̃S1 ∧ d̃S2)− = 0

Differential d̃f =
∑∞

n=0 ∂
1
nf dt1

n +
∑∞

n=0 ∂
2
nf dt2

n

Equivalent Lax-Sato form

∂1
nS = −{(λnS2)+,S},
∂2

nS = {(λnS1)+,S},
{S1,S2} = 1.

Riemann problem (+ area conservation condition):

S1
+ = F 1(λ,S1

−,S
2
−),

S2
+ = F 2(λ,S1

−,S
2
−).
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dKP hierarchy

Two formal Laurent series, usual notations L(p) (Lax function), M(p)
(Orlov function), here, respectively, S0(λ), S1(λ):

S0 = λ+
∞∑

n=1

S0
n (t1, t2)λ−n, (corresponds to L(p))

S1 =
∞∑

n=0

t1
n(S0)n +

∞∑
n=1

S1
n (t1, t2)(S0)−n (corr. to M(p))

Generating relation (plays a role of Hirota identity)

(dS0 ∧ dS1)− = 0,

differential df =
∑∞

n=0 ∂
1
nf dt1

n + ∂λf dλ.
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Equivalent Lax-Sato form (here the Poisson bracket is
{f , g}(λ,x) := fλgx − fxgλ)

∂1
nS =

1

n + 1
{(S0)n+1

+ ,S}(λ,x),

{S0,S1}(λ,x) = 1.

Riemann problem (+ area conservation condition):

S0
+ = F 1(S0

−,S
1
−),

S1
+ = F 2(S0

−,S
1
−).

L.V. Bogdanov (L.D. Landau ITP RAS, Moscow) Talk at NLP.V, Gallipoli 21 / 31



Dunajski equation hierarchy and related hierarchies

To define Dunajski equation hierarchy, we consider three formal Laurent
series in λ, depending on two infinite sets of additional variables (‘times’)

S0 = λ+
∞∑

n=1

S0
n (t1, t2)λ−n,

S1 =
∞∑

n=0

t1
n(S0)n +

∞∑
n=1

S1
n (t1, t2)(S0)−n

S2 =
∞∑

n=0

t2
n(S0)n +

∞∑
n=1

S2
n (t1, t2)(S0)−n,
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We denote x = t1
0 , y = t2

0 , ∂1
n = ∂

∂t1
n
, ∂2

n = ∂
∂t2

n
and introduce the

projectors (
∑∞
−∞ unλ

n)+ =
∑∞

n=0 unλ
n, (
∑∞
−∞ unλ

n)− =
∑n=−1
−∞ unλ

n.
Dunajski equation hierarchy is defined by the relation

(dS0 ∧ dS1 ∧ dS2)− = 0, (22)

where the differential includes both times and a spectral variable,

df =
∞∑

n=0

∂1
nf dt1

n +
∞∑

n=0

∂2
nf dt2

n + ∂λf dλ.
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Proposition

The relation (22) is equivalent to the set of equations

∂1
nS =

∑
i=0,1,2

(J−1
1i (S0)n)+∂iS, (23)

∂2
nS =

∑
i=0,1,2

(J−1
2i (S0)n)+∂iS, (24)

det J = 1, (25)

where

J =

S0
λ S1

λ S2
λ

S0
x S1

x S2
x

S0
y S1

y S2
y

 , (26)

∂0 = ∂λ, ∂1 = ∂x , ∂2 = ∂y .
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The proof of (22) ⇒ hierarchy (23,24,25) is based on the following
statement.

Lemma
Given identity (22), for arbitrary first order operator Û,

ÛS =

(∑
i

(u1
i (λ, t

1, t2)∂1
i + u2

i (λ, t
1, t2)∂2

i ) + u0(λ, t1, t2)∂λ

)
S

with ‘plus’ coefficients ((u1
i )− = (u2

i )− = u0
− = 0), the condition

(ÛS)+ = 0 (for S1 and S2 modulo the derivatives of S0) implies that
ÛS = 0.
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The statement (23,24,25) ⇒ (22) directly follows from the relation

Lemma ∣∣∣∣∣∣
∂τ0S

0 ∂τ0S
1 ∂τ0S

2

∂τ1S
0 ∂τ1S

1 ∂τ1S
2

∂τ2S
0 ∂τ2S

1 ∂τ2S
2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
V 0

τ0+ V 1
τ0+ V 2

τ0+

V 0
τ1+ V 1

τ1+ V 2
τ1+

V 0
τ2+ V 1

τ2+ V 2
τ2+

∣∣∣∣∣∣ (27)

where τ0, τ1, τ2 is an arbitrary set of three times of the hierarchy
(23,24,25), and V i

τ+ are the coefficients of corresponding vector fields
given by the r.h.s. of equations (23,24),

∂τj S =
∑

i=0,1,2

V i
τj+
∂iS.
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Proposition

The flows of the DE hierarchy (23,24) commute and the condition
det J = 1(25) is preserved by the dynamics.

Condition det J = 1 defines a reduction for the DE hierarchy (23, 24). The
general hierarchy in the unreduced case is given by equations (23, 24), and
the analogue of relation (22) is

((det J)−1dS0 ∧ dS1 ∧ dS2)− = 0. (28)

Two-component case of relation (28)

((det J)−1dS0 ∧ dS1)− = 0

and corresponding equations (23, 24) define a hierarchy for the system
introduced by Manakov and Santini (dispersionless KP minus area
conservation)
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A special subclass of the hierarchies of the type (28), (22) is singled out by
the condition S0 = λ. In this case (22) is transformed to the relation

(dλ ∧ dS1 ∧ dS2)− = 0 ⇒ (d̃S1 ∧ d̃S2)− = 0,

where the differential d̃ takes into account only times (Plebanski second
heavenly equation hierarchy). A two-component case of (28) under the
condition S0 = λ reduces to

((S1
x )−1d̃S1)− = 0.

Hierarchy, introduced by L. Martinez Alonso and A.B. Shabat
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In a more explicit form, Dunajski equation hierarchy (23, 24) can be
written as

∂1
nS = +

(
(S0)n

∣∣∣∣S0
λ S2

λ

S0
y S2

y

∣∣∣∣)
+

∂xS−
(

(S0)n
∣∣∣∣S0

λ S2
λ

S0
x S2

x

∣∣∣∣)
+

∂yS−(
(S0)n

∣∣∣∣S0
x S2

x

S0
y S2

y

∣∣∣∣)
+

∂λS,

∂2
nS = −

(
(S0)n

∣∣∣∣S0
λ S1

λ

S0
y S1

y

∣∣∣∣)
+

∂xS +

(
(S0)n

∣∣∣∣S0
λ S1

λ

S0
x S1

x

∣∣∣∣)
+

∂yS +(
(S0)n

∣∣∣∣S0
x S1

x

S0
y S1

y

∣∣∣∣)
+

∂λS.
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It is easy to check that for S0 = λ Dunajski equation hierarchy reduces to
first heavenly equation hierarchy, while for S2 = y it reduces to
dispersionless KP hierarchy.
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Waterbag-type reduction

S0 = λ+
N∑

n=1

ln

(
λ− u0

n

λ− v0
n

)
,

S1 =
∞∑

n=0

t1
n(S0)n +

N∑
n=1

ln

(
λ− u1

n

λ− v1
n

)

S2 =
∞∑

n=0

t2
n(S0)n +

N∑
n=1

ln

(
λ− u2

n

λ− v2
n

)
,

where the functions u, v depend only on times of the hierarchy. This
anzats is consistent with Dunajski equation hierarchy and defines
(1+1)-dimensional reduction. The first system arises from det J = 1.
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