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Building Inverse Scattering in two dimen-

sions

Let us consider the KPI and KPII equations

(ut − 6uux1 + ux1x1x1)x1 = ±3ux2x2 , x = (x1, x2),

prototype of integrable equations in 2+1 dimensions, with u =

u(x, t) real.

They are associated, respectively, to the Nonstationary Schrödinger

operator

L(x, i∂x) = i∂x2 + ∂2
x1 − u(x),

and to the heat operator

L(x, i∂x) = −∂x2 + ∂2
x1 − u(x)

Being a generalization of the KdV equation, they admit solutions

behaving at space infinity like the solutions of the KdV equation.

Their Inverse Scattering theory for solutions decaying at large

spaces was developed by Manakov, Ablowitz, Fokas and Bar

Yakoov at the beginning of the eighties.

In the case of solutions with constant behavior along some rays,

the integral equations defining the Jost solutions of L are diver-

gent, nor can be regularized.

One needs to proceed in two successive steps: first by considering

the pure N soliton solution uN and afterwards by adding, via a

dressing procedure, an arbitrary smooth decaying background u′

getting u = uN + u′.
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In order to perform this program, one needs to explore the spec-

tral nature of L by using a more general mathematical tool than

the resolvent, precisely, what we call the extended resolvent.

This corresponds to consider a general class of Green’s functions

of L, depending on a two dimensional spectral parameter.

First, one gets explicitly the extended resolvent for the N soli-

ton potential and studies its singularities, due to the constant

behavior of the potential at large space along some rays.

Afterwards, one deals with the perturbed resolvent and its

singularities, that, now, can be studied, since they are, in some

sense inherited from the unperturbed resolvent. All traditional

mathematical entities of the Inverse Scattering theory, i.e., Jost

solutions and spectral data are, then, obtained via a reduction

procedure from the resolvent.

In the KPI case, this procedure was already performed suc-

cessfully by Boiti, Pempinelli, Pogrebkov. The Green’s function

GN (x, x′;k) of the N soliton potential was obtained as a reduc-

tion of the resolvent and it turned out to be analytical in the

complex k-plane with a discontinuity across the real axis and

along N segments with a log singularity at the end points. The

perturbed Jost solutions have, consequently, the same analytical

properties. Spectral data are relating the limiting values of the

Jost solution at the two sides of these cuts. Direct and inverse

spectral problem was contructed and time evolution of spectral

data was determined.
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In the KPII case, this procedure was performed by Boiti,

Pempinelli, Pogrebkov, Prinari only for a bidimensionally per-

turbed one soliton potential. Here, again, the Green’s function

G1(x, x′;k) of the one soliton potential, obtained as a reduction

of the resolvent, resulted to have unexpected singular properties.

Precisely, besides being non analytical, it has not just poles, but

pole-like discontinuities at two points. Notwithstanding, spectral

data were defined and direct and inverse problem solved.

Successively, Ablowitz and Villaroel considered the same problem

by using the standard Inverse Scattering theory. However, they

required a special and inexplicit condition on the potential, in

order to deal with less singular objects.

Here, we report on the first step for the heat operator, that is on

the construction of the resolvent for the pure N soliton potential

uN . In fact, we construct the resolvent for the more general case

of N solitons superimposed à la Darboux to a generic smooth

background.

The problem turned out to be unexpectedly more complicated

than in the case of the Nonstationary Schrödinger operator and,

up to now, some technical details are not yet solved. Singularities

of the Green’s function GN (x, x′;k) remain to be explored.

We think that the difficulties are mainly due to the fact that the

heat operator is not autodual.

3



Extended operators and resolvent

For any differential operator L(x, i∂x) we introduce its extension

L(x, x′;q) ≡ L(x, i∂x + q)δ(x− x′), q = (q1,q2) ∈ C2.

By using the Fourier transform we can write

L(x, x′;q) =
1

(2π)2

∫
dα e−iα(x−x′)L(x, α + q), α = (α1, α2).

In the KPII case

L(x,q) = iq2 − q2
1 − u(x).

Notice that for q = `(k) ≡ (k,−ik2) we have L(x, `(k)) = 0.

By considering not just a polynomial L(x,q) in q but a tempered

distribution P(x,q) in its six real variables we introduce more

general operators, the extended operators

A(x, x′;q) =
1

(2π)2

∫
dα e−iα(x−x′)P(x, α + q)

Notice that

A(x, x′;q) = eiq<(x−x′)A(x, x′; q), q ≡ q=.

The extended operators generalize the pseudo-differential opera-

tors in two respects: they depend on a spectral parameter q and

belong to the space of tempered distributions, which is larger

than the functional space generally used.

M. Kruskal, first, noted that P(x,q) generalizes what the mathe-

maticians call the symbol of a pseudo-differential operator. This

generalization is essential since just its dependence on the spec-

tral parameter q allows us to get the Jost solutions from some

special symbols after the reduction q = `(k). 4



It is useful to consider also the Fourier transform of the symbol

P(x,q)

A(p;q) =
1

(2π)2

∫
dxeipxP(x,q) =

=
1

(2π)2

∫
dx

∫
dx′ ei(p+q<)x−iq<x′A(x, x′;q=), p = (p1, p2).

Then, we can consider A(x, x′; q) and A(p;q) as two represen-

tations of the operator A(q) in the x and in the p-space. The

p-space is more suitable for studying analyticity properties, while

boundedness is more easily studied in the x-space.

For generic operators A(q) and B(q) with kernels A(x, x′; q) and

B(x, x′; q) we introduce the standard composition law

(AB)(x, x′; q) =

∫
dx′′A(x, x′′; q) B(x′′, x′; q),

if the integral exists in terms of distributions.

The composition in the p-space becomes a sort of shifted convo-

lution

(AB)(p;q) =

∫
dp′A(p− p′;q + p′)B(p′;q).
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The main object of our approach is the extended resolvent (or

resolvent for short) M of the operator L, which is defined as the

inverse of the operator L, i.e.,

LM = ML = I,

where,correspondingly, in the x and in the p-space,

I(x, x′; q) = δ(x− x′), and I(p;q) = δ(p).

The Hilbert identity

M ′ −M = −M ′(L′ − L)M,

satisfied by two extended differential operators L and L′ and their

resolvents M and M ′ is the main instrument of our construction.

Notice that

L(x, ∂x)M̂(x, x′; q) = δ(x− x′) = Ld(x′, ∂x′)M̂(x, x′; q),

where M̂(x, x′; q) = eq(x−x′)M(x, x′; q) and Ld(x′, ∂x′) is the dual

to L(x, ∂x).

That is, the extended resolvent M̂((x, x′; q) can be considered as

defining a two-parameter set of Green’s functions of L.
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Dressing operators ν and ω

In the p-space the bare operators L0 and M0 are given by

L0(p;q) = δ(p)(iq2 − q2
1), M0(p;q) =

δ(p)

iq2 − q2
1

.

We start by considering the case of a rapidly decaying potential

u(x). The resolvent M can also be defined as the solution of the

integral equations

M = M0 + M0uM, M = M0 + MuM0,

which can be directly derived from the Hilbert identity.

Looking at these integral equations written in the p space, recall-

ing the explicit form of M0(p;q), we recognize that the kernel

M(p;q) is singular at q = `(k) and at q + p = `(k + p1) for any

choice of the complex parameter k, `(k) being the two-component

vector `(k) = (k,−ik2)

Therefore, it is natural to introduce the following truncations

and reductions of the resolvent

ν(p;q) = (ML0)(p;q)
∣∣∣
q=`(q1)

,

ω(p;q) = (L0M)(p;q)
∣∣∣
q=`(q1+p1)−p

.

From the Hilbert identity one gets that the operator L(q) and

its resolvent M(q) admit the following bilinear representations in

terms of ν and ω

L = νL0ω, M = νM0ω.

Then, the operators ν and ω are called dressing operators since

they “dress” the bare operators L0 and M0. 7



In order to define Jost solutions by means of the dressing op-

erators we introduce operators χ(k) and ξ(k) depending on the

complex parameter k ∈ C with kernels in p-space

χ(p,k;q) = ν(p;k), ξ(p,k;q) = ω(p;k− p1),

independent of the q-variable. Taking their Fourier transforms

χ(x,k) =

∫
dp e−ipxν(p;k), ξ(x,k) =

∫
dp e−ipxω(p;k− p1),

one recovers the standard Jost solutions

Φ(x,k) = e−i`(k)xχ(x,k), Ψ(x,k) = ei`(k)xξ(x,k).

Scalar product and completeness in this operatorial language are

written, respectively,

ων = I, νω = I.
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Darboux transformation via twisting opera-

tors ζ and η

In order to build the extended resolvent corresponding to a

two-dimensional potential describing N solitons superimposed

to a generic smooth background, we need to use the operator

formulation previously introduced and to bypass the recursive

procedure building directly the final Darboux transformation.

The main tools in doing this is what we call the twisting operators.

The most general Darboux transformation from the operator L

to a new operator of the same form

L′ = L0 − u′, u′(x, x′; q) = u′(x)δ(x− x′),

can be obtained by means of an operator pair ζ, η according to

the formulae

L′ζ = ζL, ηL′ = Lη,

“twisting” L to L′. We require η to be the left inverse of ζ

ηζ = I,

so that

L = ηL′ζ.

However, in order to generate solitons by this twisting trans-

formation, the product ζη cannot be equal to I and we have

P = I − ζη,

with P a projector since

P 2 = P.
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The twisting operators ζ and η generate a Darboux transforma-

tion since they not only generate the new potential u′, but also

the new dressing operators

ν′ = ζν, ω′ = ωη.

These dressing operators are orthogonal

ω′ν′ = I,

but not complete, since,

ν′ω′ + P = I.
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Construction of ζ and η

In order to obtain a Darboux transformation we must specify

the analyticity properties of the kernels ζ(p;q) and η(p;q) of the

twisting operators with respect to the variables q.

First, we note that, thanks to the completeness of the dressing

operators ν and ω, from

ν′ = ζν, ω′ = ωη,

we have

ζ = ν′ω, η = νω′.

We assume

1. that ν′(p;q) and ω′(p;q), as ν(p;q) and ω(p;q), are inde-

pendent of q2 and have the same asymptotic behavior

lim
q1→∞

ν′(p;q) = δ(p), lim
q1→∞

ω′(p;q) = δ(p).

2. that ν′(p;q) and ω′(p;q) have (correspondingly, right and

left) simple poles with respect to the variable q1

ν′bl
(p) = lim

q1→ibl

ν′(p;q)(q1 − ibl),

ω′aj
(p) = lim

q1→−p1+iaj

ω′(p;q)(q1 + p1 − iaj),

where a1, . . . , aNa , b1, . . . , bNb are Na + Nb real parameters,

which we choose to be all different.
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Then, the kernels ζ(p;q) and η(p;q) are given by means of the

following representations

ζ(p;q) = δ(p) +

Nb∑

l=1

∫
dp′

ν′bl
(p− p′)ω(p′; ibl − p′1)

q1 + p′1 − ibl
,

η(p;q) = δ(p) +

Na∑
j=1

∫
dp′

ν(p− p′; iaj)ω
′
aj

(p′)

q1 + p′1 − iaj
.

By imposing ηζ = I and, then, working in the x-space, we get

for the transformed Jost solutions

Φ′(x,k) = Φ(x,k)−
Na∑
j=1

Nb∑

l=1

Φ(x, iaj)mjl(x)F(x, ibl,k),

Ψ′(x,k) = Ψ(x,k)−
Na∑
j=1

Nb∑

l=1

F(x,k, iaj)mjl(x)Ψ(x, ibl),

where m(x) is the Na ×Nb matrix

m(x) = (ENa + cF(x))−1c = c(ENb + F(x)c)−1.

c is a real constant Na × Nb matrix, ENa the unity Na × Na

matrix, ENb and the unity Nb ×Nb matrix,

F(x,k,k′) =

x1∫

(k′=−k=)∞

dx′1Ψ(x′,k)Φ(x′,k′)
∣∣∣
x′2=x2

and F(x) is the Nb × Na matrix with elements F(x)lj =

F(x, ibl, iaj).
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For the transformed potential we get

u′(x) = u(x)− 2∂2
x1 ln det(ENb + Fc) =

= u(x)− 2∂2
x1 ln det(ENa + cF).

In the case u(x) ≡ 0 one gets the general N soliton solution.

This solution was already obtained in 2001, in an equivalent

form, by Boiti, Pempinelli, Pogrebkov and Prinari, but only the

structure of the 2 soliton solution was studied in its generality.

Successively, Biondini, Kodama and Chakrabarty, using τ func-

tions, obtained an equivalent but more symmetric form and, in

a series of papers, studied the general structure of the N soliton

solution.
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Getting the transformed resolvent

Once obtained the transformed operator L′

L′ = L0 − u′,

if M∆ is a solution of the operator equations

L′M∆ = P, M∆L′ = P,

then, one can show that resolvent M ′ of L′ is given by

M ′ = ζMη + M∆.

The main difficulty is to find a bounded solution M∆.

Taking advantage of the experience made in the KPI case one

would write

(ζMη)(x, x′; q) = − sgn(x2 − x′2)
2π

e−q(x−x′)×

×
∫

dp1θ
(
(q2 + p2

1 − q2
1)(x2 − x′2)

)
Φ′(x; p1 + iq1)Ψ

′(x′; p1 + iq1).

and

M∆(x, x′; q) = sgn(x2 − x′2)e
−q(x−x′)×

×
Na∑
j=1

Nb∑

l=1

[θ(q1 − bl)− θ(q1 − aj)]×

× θ((x2 − x′2)(q2 − (aj + bl)q1 + ajbl))Φ
′(x; iaj)cjlΨ

′(x′, ibl).
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One can show easily that (ζMη)(x, x′; q) is bounded.

In the special case in which Na = Nb and the matrix cij is

diagonal one can show that also M∆(x, x′; q) is bounded.

However, in the general case this expression for M∆(x, x′; q) is

not bounded and needs to be modified, writing an alternative

more symmetric form in the spectral parameters aj and bl.

We succeeded on doing this in the special cases where Na has

any value and Nb = 1 and Nb = 2.

However, the general case is not yet solved.

I could write this formulas, but we prefer to wait for having

the explicit formula for the general case, also because we think

that in getting it we will discover what is the simplest and more

transparent way of writing M∆.

The main difficulty in doing this job is due to the fact that, in

spite of the fact that a symmetric formulation of the potential

is possible as shown by Biondini, Kodama and Chakrabarty, the

Jost solutions Φ′(x;k) and Ψ′(x′,k) are solutions of two different

spectral problems and the asymmetry in the role played by the

spectral parameters aj and bl in the resolvent cannot be totally

removed.

However, in the search of the correct expression for M∆(x, x′; q)

it seems that a crucial role is played by the identity

Na∑
j=1

Nb∑

l=1

res
k=iaj ,ibl

Φ′(x;k)Ψ′(x′,k) = 0,

which is totally symmetric in the aj and bl parameters.
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