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Microstructured Optical Fibers

• Microstructured optical fibers (MOF) allow the properties of optical
fiber to be taylored to suit a many different applications [Knight, 2003]

• Different materials of different shapes can be placed in the fiber

• Used for supercontinuum generation, endlessly single-moded
fibers, sensing, dispersion engineering · · ·
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An example: High NA fiber

• Numeral Aperture quantifies the light capture of an optical fiber

NA = sin(θmax) =
√

n2
core − n2

clad

• Highest NA attainable in air clad fiber

• Suspended core fibers are a way to approach this
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An example: High bandwidth polymer MOF

• Microstructures can be taylored to give high bandwidths in highly
multimodes fibers

• Typically the higher the NA the lower the bandwidth,
microstructures can be optimised to maximize both.
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Fiber properties by modal analysis

• Many designs of interest in MOF are highly multi-moded
• Calculation of photonic bandgaps and density of states requires

calculations of many modes over wavelength range of interest
• The effective NA and bandwidth require computation of all guided

modes in the fiber
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Microstructured fibers and leaky modes

• Each mode is defined by an effective index neff related to the
eigenvalue

• In fibers with a low index cladding, the light falls of exponentially in
the cladding,

As r → ∞, Φ(r) ∼ exp(−γbr)

neff > nclad, γb =
√

n2
eff − n2

clad

• In MOF structures the light is not bound within the core and leaks
into the cladding

As r → ∞, Φ(r) ∼ exp(−iγlr)

neff > nclad, γl =
√

n2
clad − n2

eff

• Leaky modes loose power as the propagate,

loss = 20 Im(n2
eff)

2π

λ log 10
Introduction Multimode Algorithms for Leaky modes 2008 7 / 49



Logarithmic intensity of the z component of the Poynting vector
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Finding leaky modes in MOF numerically

Many techniques have been used to model light propagation in optical
fibers. Some specific techniques for finding leaky modes in MOF are:

• Integral techniques using analytic solutions of waves in an
unbounded homogeneous domain

• Multipole method [Kuhlmey et al., 2002]

• Surface Model Technique [Hochman and Leviatan, 2004]

• Use standard numerical techniques and a non-reflective boundary
condition (NRBC)

• Finite difference methods [Issa and Poladian, 2003]

• Finite element methods [Uranus and Hoekstra, 2004] + commercial codes

• Non-reflective boundary condition required [Givoli, 1991]

∂Φ
∂r

= M
[
Φ

]
on boundary
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The Scalar Wave Equation

Looking for a solution with explicit t and z dependance of the form

Ψ̃(r, φ, z) = Ψ(r, φ) exp(i(ωt − neffk0)z)

The scalar wave equation can be written in cylindrical polar coords as,

∂2Ψ
∂r2

+
1
r

∂Ψ
∂r

+
∂2Ψ
∂φ2

+
[
n(r, φ)2 − n2

eff

]
k2

0Φ = 0

In homogeneous regions n(r, φ) = n0 is a constant the outward
solution is

Ψ(r, φ) =
∞∑

m=−∞
cmH(1)

m (γr)eimφ

where γ =
√

n2
0 − n2

effk0, k0 = 2π/λ and H(1) is the Hankel functions of

the first kind.
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The boundary conditions I

Taking the derivative of the solution in the external domain

∂Ψj

∂r
(R, φ) =

1
2π

∞∑
m=−∞

M̂m(λj, R)
∫ π

−π
Ψj(R, φ̃)eim(φ−φ̃)dφ̃

= M[Ψj(R, φ), λj]

where with H(1)′
n (x) = ∂xH(1)

n (x)

M̂m(λ, r) =
γ(λ)H(1)′

m (γ(λ)r)

H(1)
m (γ(λ)r)

This is the Dirichlet-to-Neumann (DtN) map for the solution on a circle
of radius R.
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The nonlinear eigenvalue problem

• The boundary condition is dependent on the eigenvalue

• The discretized problem is thus also dependent on the eigenvalue

• This defines a nonlinear eigenvalue problem (NLEP)

T(λ) = A(λ)x− λx = 0

• For bound modes the fields are evanescent → a boundary can be
found with field small and little dependence on the eigenvalue

• For leaky modes the loss is important and the boundary cannot be
found with arbitrarily small field

• Confinement loss of the mode is highly dependent on accurate
solution of the NLEP
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Solving the NLEP: Fixed point iterations

• Start with an approximate eigenvalue of interest λ0

• Solve linear eigenproblem for λ1, the next guess

A(λi)xi+1 = λi+1xi+1

• Iterate until converged

Convergence dependent upon the loss of the mode. Defining the fixed
point iterations as a function,

λn+1 = f(λn)

Method converges for |f′(λ̂)| < 1

f′(µ) = −y
∗A′(µ)x
y∗x

A′(λ) is the Jacobian matrix of A(λ)
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Solving the NLEP: Nonlinear inverse iterations

Newton’s method can be applied to both the eigenvector and
eigenvalue together [Ruhe, 1973]

P(ξ) = P

(
x
λ

)
=

[
T(λ)x

y∗x− 1

]
= 0

Applying Newtown’s method

ξi+1 = ξi − P′(ξi)−1P(ξi)

Gives the iterative method,

ui+1 = T(λi)−1T′(λi)xi, λi+1 = λi − v∗
i xi

v∗
i ui+1

, xi+1 = ciui+1

Nonlinear inverse iteration has the problem that the inverse operator
must be updated with a new approximate shift at each iteration.
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Residual inverse iteration

Replacing T′(λi) = 1
λi+1−λi

[T(λi+1) − T(λi)] we get

ui+1 = T(λi)−1 [T(λi) − T(λi+1)] xi = xi − T(λi)−1T(λi+1)xi

In fact the matrix inverse can now be given a constant shift, σ, and
convergence is still achieved [Neumaier, 1985].

ui+1 = xi − T(σ)−1T(λi+1)xi
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Problems: Spurious modes

• Modes may be guided between the microstructure and the
imperfect boundary conditions

• These modes do not represent a physical solution
• They usually converge very slowly, or with the FP method not at

all.
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Eigenvectors of NLEP are not orthogonal

• The right Aui = λiui and left eigenvectors A∗vi = λ̄ivi form a
bi-orthogonal basis for the eigenspace

〈
vi, uj

〉
=

{
1, i = j

0, i %= j

• For the NLEP with T(λi)xi = 0, T(λi)∗yi = 0 this is usually not true,

y∗
i xj %= 0 for i %= j

• This is clear as yi and xj are eigenvectors of different linear
matricies, however if |λj − λi| is small, the eigenvectors are almost
orthogonal.
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Problems: Repeated modes

• For the non-Hermitian problem there is no deflation proceedure
available so eigevectors are often found multiple times

• Thus multiple modes must be eliminated without eliminating
degenerate modes

• Typically in large problems 30% of the eigenvectors are repeated

Inefficient computations are caused by slow convergence of unwanted
solutions and calculation of already found modes
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Extended Inner Product

• On the infinite domain the eigenvectors are orthogonal as they
solve the wave equation.

I =
∫ ∞

0

∫ π

−π
r Ψj(r, φ)Ψk(r, φ) = 0

• However for leaky modes the integration must be performed in the
complex plane as the eigenmode does not decay as r → ∞

Ψ(r, φ) =
∞∑

m=−∞
H(1)

m (γr) ∼
∞∑

m=−∞
exp(imγrr)exp(−mγir)

which grows as γi < 0
• On the homogeneous external domain the contribution to the

integral can be analytically derived∫
R∞

∫ π

−π
r Ψj(r, φ)Ψk(r, φ) = f(Ψj(R, φ), Ψk(R, φ), λj, λk)
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Correct the numerical dot product with the contribution from the
analytic solution in the external domain

!" !#$%

&'%()*'+,"% -./01%2"(2.%#3*/0

I =
〈
yj, xk

〉
+ f(yr=rc

, xr=rc , λj, λk)
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Extended Projection

• Thus a new inner product can be defined,〈
yj, xk

〉
λj,λk

=
〈
yj, xk

〉
+f(yr=rc

, xr=rc , λj, λk)

• The true eigenvectors fulfill a bi-orthonormal relation with respect
to this inner product 〈

yj, xk
〉

λj,λk
= δj,k

• Thus a spectral “projection” can be defined as,

Pj(λ̃)x̃ =

〈
yj, x̃

〉
λj,λ̃〈

yj, xj
〉

λj,λ̃

xj

• A spectral projector must fulfill

P2
j = Pj PjPk = 0

N∑
i=1

Pi = I
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Extended orthogonalization

• The Gram-Schmidt process doesn’t work with the extended inner
product

• Supposing we know eigenvalues λi and eigenvectors yi, xi for
i = 1 . . . k and a new eigenvalue λk+1 with x̃ =

∑k+1
i=1 αixi〈

yi, x̃
〉

λi,λk+1
=

k+1∑
i=j

αj
〈
yi, xj

〉
λi,λk+1

=
k∑

i=j

αj
〈
yi, xj

〉
λi,λk+1

,

• This can be expressed as a matrix problem and α = [αj]j=1...k

found as

α = Q(λk+1)−1η(λk+1)

where Q(λ̃)i,j =
〈
yi, xj

〉
λi,λ̃

, η(λ̃)i,j =
〈
yi, x̃

〉
λi,λ̃

• Thus the orthogonalization against eigenvectors 1 . . . k

x̃ −
k∑

i=1

αixi = αk+1xk+1
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Algorithm

• Start with approximate eigensolution λ̃(0), x̃(0), ỹ(0)

• While |r| < ε
..1 Extended orthogonalize to previous vectors

u(i) = x(i) −
∑

j
αjxj

v(i) = y(i) −
∑

j
αL

j yj

..2 Also giving new eigenvalue estimate λ̃(i+1)

..3 Apply RII operator

x(i+1) = R(λ̃(i+1))u(i)

y(i+1) = R(λ̃(i+1))∗v(i)

..4 Calculate residual
r = T(λ̃(i+1))x(i+1)
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Results

!"#$%&"'()#
*+#,-','$./
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Improved extended orthogonality

• Another measure of orthogonality for NLEP is〈
y, x

〉
λj,λk

=
y∗[

T(λj) − T(λk)
]
x

λj − λk

• With yi, xi left and right eigenvalues corresponding too λi clearly〈
yj, xk

〉
λj,λk

=
〈
yk, xj

〉
λj,λk

= 0

!"#$%&'(
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Convergence with Exact IP
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Projection methods for eigenvalue problems

• The successive application of the matrix A to a starting vector v0

gives a series of vectors Av0, A2v0, A3v0 . . .
• These vectors vi = Avi−1 converge to the dominant eigenvector

but also have information on other eigenvectors.
• Projection methods aim to extract this information

Given a bi-orthogonal basis v0 . . . vn, w0 . . .wn for a right V and a left
subspaces W,
For the linear eigenvalue problem

Av = λ

Assume that a pair λ̃, ṽ =
∑n

j=0 αjvj for some α = [α0, . . . , αn], is an
approximate solution fulfilling the Galerkin condition

Aṽ− λ̃ṽ = AVα − λ̃Vα ⊥ W

This gives a projected eigenproblem of dimension n

AP α = λ̃α AP = W∗AVα
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For NLEP we can apply the Galerkin condition to the extended inner
product, the residual is orthogonal to the left subspace

T(λ̃)ṽ ⊥ W

n∑
j=0

αj〈wi, T(λ̃)vj〉λi,λ̃
= 0 ∀i = 0 . . . n

This gives the projected nonlinear eigenvalue problem.

TP(λ̃)α = 0

where the (i, j) element in the projected matrix is given by[
TP(λ̃)

]
i,j

= 〈wi, T(λ̃)vj〉λi,λ̃
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Single eigenvalue solution

Projection Methods Multimode Algorithms for Leaky modes 2008 29 / 49



Conclusion

• A general proscription for solving linear wave problems in
unbounded domains has been applied to the vector wave equation

• Reduction of the wave problem onto a bounded domain by a
Dirichlet to Neumann nonlocal boundary condition

• Solve the resulting nonlinear eigenvalue problem using extended
orthogonalization

• Current algorithm allows the modal analysis of MOF with arbitrary
cross-sectional profile quickly with little user intervention

• Algorithms using NLEP projection methods are hoped to be
developed for automatic calculation of large numbers of modes
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Non-reflective boundary conditions

• Artificial absorbing material: Matched
Layer & Perfectly Matched Layer
[Bérenger, 1994]

• Radiation boundary conditions &
one-way wave equations [Bayliss et al., 1982]

lim
r→∞ r( d−1

2 )

[
∂Φ
∂r

− ikΦ
]

= 0

• Dirichlet to Neumann maps as
boundary conditions [Givoli, 1991]

∂Φ
∂r

= M
[
Φ

]


B

Where M[·] is typically a nonlocal operator.
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The extended inner product
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• The extended IP is only approximately valid, depends on the
accuracy of the numerical solution.

• Typically obtain first order convergence.
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Extended Projection

However for the extended projection,

Pj(λ̃)2x̃ = Pj(λ̃)x̃ = σjxj

Pj(λ̃)Pk(λ̃)x̃ =

〈
yj, σkxk

〉
λj,λ̃〈

yj, xj
〉

λj,λ̃

xj %= 0

However using a different parameter for the projector would give what
we expect,

Pj(λj)Pk(λ̃)x̃ =

〈
yj, σkxk

〉
λj,λj〈

yj, xj
〉

λj,λj

xj = 0

Taking x̃ as a combination of eigenvectors x̃ =
∑

i αixi then clearly the
sum of the spectral projectors does not recover x̃,∑

j

Pj(λj)x̃ =
∑

j

∑
i

αi

〈
yj, xi

〉
λj,λ̃〈

yj, xj
〉

λj,λ̃

xj %= x̃, ∀λ̃ ∈ C
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Extended orthogonalization

• If x̃ contains more than one unknown eigenvector then this
orthogonalization doesn’t work, x̃ =

∑n
i=1 βixi, n > k + 1

〈
yi, x̃

〉
λi,λk+1

=
n∑

i=j

βj
〈
yi, xj

〉
λi,λk+1

=
k∑

i=j

βj
〈
yi, xj

〉
λi,λk+1

+
n∑

i=k+2

βj
〈
yi, xj

〉
λi,λk+1

• The calculated αi %= βj and the orthogonalization will give
components of x1 . . . xk

x̃ −
k∑

i=1

αixi = αk+1xk+1 +
k∑

i=1

(βi − αi)xi
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Residual inverse iteration with orthogonalization

• Applying the RII operator to a vector x̃ = xk+1 +
∑k

i=1 βixi

R(µ)x̃ =
[
I − T(σ)−1T′(µ)

]
x̃

• For eigenvectors close to σ and µ

R(µ)x̃
y∗

i R(µ)x̃
+ xi +

∑
i

βi
σ − λk+1

σ − λi
xi

• Thus contributions from other eigenvectors are reduced at a rate
σ−λk+1

σ−λi
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Orthogonalization and the Rayleigh Functional

• However to orthogonalize a vector pair ỹ, x̃ close to an eigenpair
yk+1, xk+1 we need an approximation to the eigenvalue

• The eigenvalue will solve the equation

ỹ∗T(λ̃)x̃ = 0

• With an approximate λ̃(0) Newtown’s method gives an updated
approximate

λ̃(1) = λ̃(0) − ỹ∗T(λ̃(0))x̃
ỹ∗T′(λ̃(0))x̃

• Therefore EO seeks a solution λ̃, x = x̃− ∑
j αjxj, y = ỹ− ∑

j α
(L)
j yj〈

yi, x
〉

λi,λ̃
= 0〈

y, xi
〉

λ̃,λi
= 0

y∗T(λ̃)x = 0
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Vector wave equations

∇2H(r, z) − k2n2(r)H(r, z) = −(∇ ln n2(r)) × [∇ ×H(r, z)
]

(1a)

and for the corresponding electric field

∇2E(r, z) − k2n2(r)E(r, z) = −∇ [
E(r, t) · (∇ ln n2(r))

]
(1b)

assuming an implicit time dependence and where ∇2 is the vector
Laplacian, E and H are the electric and magnetic vector fields,
n = n(r) is the refractive index, r is the transverse coordinate vector
and k = ω

√
ε0µ0 = 2π/λ is the wave number in free space [Snyder and

Love, 1983].
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The SWE operator in polar coordinates can be written as,

S =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂φ2
+ (n2(r, φ)k2 − β2)

Considering two solutions of the SWE S[yj] = 0 and S[yk] = 0 with
different eigenvalues βj, βk we form the combination ykSyj − yjSyk = 0
giving,

∂

∂r

(
rWr[yj, yk]

)
+

∂

∂φ

(
rWφ[yj, yk]

)
= (βj − βk)ryjyk

where the Wronksians in r and φ are given by Wr[yj, yk] = ∂yj

∂r yk − yj
∂yk
∂r

and Wφ[yj, yk] = ∂yj

∂φ yk − yj
∂yk
∂φ

Integrating over r and φ and using the periodicity of y(r, φ) in φ we
arrive at ∫ ∞

0

∫ 2π/µ

0
ryj(r, φ)yk(r, φ)drdφ =

[
Wr[yj, yk]

]∞
0
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when βj %= βk. For all bound modes it is clear that
[
Wr[yj, yk]

]∞
0

= 0
however for leaky modes this is not true.
Substituting the Fourier series for yj(r, φ) =

∑∞
m=−∞ Y(j)

m exp(imµφ) into
this equation we have∫ ∞

0

∫ 2π/µ

0
ryj(r, φ)yk(r, φ)

=
∫ ∞

0

∫ 2π

0
r

( ∞∑
m=−∞

Y(j)
m (r)ei(mµ+m(j)

0 )φ

)

·
( ∞∑

n=−∞
Y(k)

k (r)ei(nµ+m(k)
0 )φ

)
dφdr

=
∞∑

m=−∞

∞∑
n=−∞

∫ ∞

0

∫ 2π

0
rY(j)

n (r)Y(k)
m−n(r)ei(mµ+m(j)

0 +m(k)
0 )φdφdr
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Clearly the only contribution comes from when n = 0 and m(j)
0 = −m(k)

0
as µ/2 < m0 < µ/2. In that case the orthogonality relation reduces to,∫ ∞

0

∫ 2π

0
yj(r, φ)yk(r, φ) =

∞∑
m=−∞

2π

µ

∫ ∞

0
Y(j)

m (r)Y(k)
−m(r)dr = 0 (2)

This relationship is true for all solutions of the SWE of Eq.?? that
decay to zero as r → ∞, for leaky modes this is not true as long as r is
real and this orthogonality relation must me modified for leaky modes,
as detailed in the following sections.
Due to the exponential growth of the leaky mode in the direction
orthogonal to the fiber axis the orthogonality condition of Eq. ?? is
invalid, however an alternate condition can be found by modifying the
integral to occur in the complex r plane [Snyder and Love, 1983].

Notes Multimode Algorithms for Leaky modes 2008 44 / 49



The complex integration path can be specified so that the field
exponentially decreases along this path, thus introducing r = rr + iri

and using the asymptotic expression of Eq. ??∫
R

ryj(r, φ)yk(r, φ)dr ∼
∫

R
e+

[
|γ(j)

r |+|γ(k)
r |

]
rr−

[
|γ(j)

i |+|γ(j)
i |

]
ri

× e+i
([

|γ(j)
r |+|γ(j)

r |
]

ri+
[

|γ(j)
i |+|γ(j)

i |
]

rr

)
eiβrz−βiz (3)

so we choose a path so that limr→∞ Hj(r, φ) = 0, namely
ri

rr
>

[
|γ(j)

r | + |γ(k)
r |

]
/
[
|γ(j)

i | + |γ(k)
i |

]
as rr → ∞. This can be acheived by

choosing the path illustrated in Fig. ?? where the integration is
performed along the real axis until a point where the path diverts into
the imaginary axis with an angle

θ > tan−1 |γ(j)
r | + |γ(k)

r |
|γ(j)

i | + |γ(k)
i |

(4)
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Using this path the orthogonality relationship may be expressed as∫
R

∫ 2π/µ

0
ryj(r, φ)yk(r, φ)drdφ = 0

where now yj and yk can be leaky modes and the integration path R is
in the complex plane.
Now if a mode is computed numerically on a finite numerical domain
0 < r < rmax representing the numerically calculated solution as ỹ and
the associated extended solution outside the computational domain as
y we can break the orthogonality integral into two parts, one inside the
computational domain and one outside. Assuming wlog that the
integration path extends into imaginary r only outside of the numerical
region we arrive at,

I =
∫

R

∫ 2π/µ

0
ryj(r, φ)yk(r, φ)drdφ = In + I∞ = 0
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where

In =
∫ rmax

0

∫ 2π/µ

0
rỹj(r, φ)ỹk(r, φ)drdφ

I∞ =
∫

R′

∫ 2π/µ

0
ryj(r, φ)yk(r, φ)drdφ = 0

where R′ is the integration path of Fig. ?? starting from r = rmax and
continuing to infinity.
The second part of this expression can be calculated analytically,
assuming the region r > rmax has constant refractive index using the
analytic expression for the outward travelling wave field of Eq. ?? and
the orthogonality relation in the Fourier coefficients of Eq. ??.

I∞ =
2π

µ

∞∑
m=−∞

∫
R′

rY(j)
m (r)Y(k)

−m(r)dr

=
2π

µ

∞∑
m=−∞

a(j)
m a(k)

−m

∫
R′

rH(1)
mµ+m0+p(γjr)H

(1)
−mµ−m0−p(γkr)dr
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Using the Bessel identity H(1)
−n(x) = einπH(1)

n (x) and the analytic
representation of the integral, [Abramowitz and Stegun, 1965] we
obtain

I∞ =
2π

µ

∞∑
m=−∞

[
(−1)m̃r

a(j)
m a(k)

−m

γ2
j − γ2

k

(
γjH

(1)
m̃+1(γjr)H

(1)
m̃ (γkr)

− γkH(1)
m̃ (γjr)H

(1)
m̃+1(γkr)

)]r∞

rmax

This expression is accurate for real and complex r and as the
integration path has been chosen so that the integrand vanishes as
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r → r∞ the contribution to the integral from that point is zero and we
obtain the analytic contribution to the orthogonality relation as

I∞ =
2π

µ

∞∑
m=−∞

(−1)m̃rmax
a(j)

m a(k)
−m

γ2
j − γ2

k

(
γjH

(1)
m̃+1(γjrmax)

× H(1)
m̃ (γkrmax) − γkH(1)

m̃ (γjrmax)H(1)
m̃+1(γkrmax)

)
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