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Introduction

The fundamental ideas of gauge invariance and gauge transformations
are wide spread and in common use in almost every part of physics.

The first applications of such ideas in the theory of integrable nonlinear
equations by

Zakharov and Shabat (1974) [1],
Kuznetsov and Mikhailov (1977) [2],
Zakharov and Mikhailov (1978) [3],
Zakharov and Takhtadzhyan (1979) [4],
Konopelchenko (1982) [5],
Konopelchenko and Dubrovsky (1983, 1984) [6, 7]

and others have been made, see also the books [8, 9, 10,11,12,13] and
references therein.

Dubrovsky, Gramolin (NSTU) Gauge-invariant description . . . Nonlinear Physics V 3 / 47



Now a lot of gauge-equivalent to each other integrable nonlinear models
are well known.
In one-dimensional case the most famous are nonlinear Schrödinger and
Heisenberg ferromagnet equations:

i
∂ψ

∂t
= −∂

2ψ

∂x2 + 2κ|ψ|2ψ, (1)

∂
−→
S
∂t

=
−→
S × ∂2−→S

∂x2 , (2)

KdV and mKdV equations:

∂u0

∂t
+
∂3u0

∂x3 + 6u0
∂u0

∂x
= 0, (3)

∂u1

∂t
+
∂3u1

∂x3 + 6u2
1
∂u1

∂x
= 0, (4)

massive Thirring model and two-dimensional relativistic field model
and so on.
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In two-dimensional case the most famous are Kadomtsev–Petviashvili
(KP) and modified Kadomtsev–Petviashvili (mKP) nonlinear equations:

∂u0

∂t
+
∂3u0

∂x3 + 6u0
∂u0

∂x
+ 3σ2∂−1

x
∂2u0

∂y2 = 0, (5)

∂u1

∂t
+
∂3u1

∂x3 −
3
2

u2
1
∂u1

∂x
+ 3σ2∂−1

x
∂2u1

∂y2 − 3σ
∂u1

∂x
∂−1

x
∂u1

∂y
= 0, (6)

Davey–Stewartson

pt − κ1pξξ + κ2pηη − 2κ1p∂−1
η (pq)ξ + 2κ2p∂−1

ξ (pq)η = 0, (7)

qt + κ1qξξ − κ2qηη + 2κ1q∂−1
η (pq)ξ − 2κ2p∂−1

ξ (pq)η = 0, (8)

and Ishimori
−→
S t +

1
2
−→
S × (

−→
S ξξ +

−→
S ηη) +

1
2
ϕξ
−→
S ξ +

1
2
ϕη
−→
S η = 0, (9)

ϕξη −
−→
S · [
−→
S ξ ×

−→
S η] = 0, (10)

integrable systems of nonlinear equations and so on. See some
references in the books [8, 9, 10,11,12,13,14].
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Let us underline the unified role of gauge transformations and
gauge-invariance by the simple example of interaction of nonrelativistic
spinless charged particle with electromagnetic field.

Let us perform in nonstationary Schrödinger equation for such particle

i~ψt =
~̂p

2

2m
ψ = Ĥψ (11)

gauge transformation

ψ → ψ′ = g−1ψ, ψ = gψ′ = exp
( iχ(~r , t)q

~

)
.ψ′ (12)

for the wave function. Under substitution (12) into (11) one obtains
Schrödinger equation for the transformed wave function ψ′

i~ψ′t =

[
~̂p − (−q~∇χ)

]2
2m

ψ′ + qχtψ
′. (13)
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From another side it is known from the electrodynamics that the
vector ~A and scalar φ potentials due to gauge freedom are determine
nonuniquely

~A→ ~A′ = ~A− ~∇χ, φ→ φ′ = φ+ χt , (14)

at the same time the electromagnetic fields ~B = [~∇× ~A] and
~E = −~∇φ− ∂~A

∂t did not change. One can rewrite the equation (13) due
to (14) in the form

i~ψ′t =

(
~̂p − q~A(0)

)2

2m
ψ′ + qφ(0)ψ′, (15)

where ~A(0) = −~∇χ, φ(0) = χt . It is evident that the fields ~B = 0 and
~E = 0 as in the case of initial equation (11) and also in the transformed
equation (15) are equal to zero:

~B(0) = [~∇× ~A(0)] = 0, ~E (0) = −~∇φ(0) − ∂~A(0)

∂t
= 0. (16)
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Nevertheless the lesson from such passage is that the equation (15)
gives right gauge-invariant form of nonstationary Schrödinger equation
also in the case of nontrivial fields ~B = [~∇× ~A] 6= 0,
~E = −~∇φ− ∂~A

∂t 6= 0. This right form of nonstationary Schrödinger
equation due to (15) is the following:

i~ψt =

(
~̂p − q~A

)2

2m
ψ + qφψ. (17)

Let us consider the equation (17), from IST point of view as auxiliary
linear problem, PDE with variable coefficients for the wave function ψ.
Under gauge transformation (12) the equation (17) preserves its form if
the potentials ~A and φ have the following laws of transformations:

~A→ ~A′ = ~A− ~∇χ, φ→ φ′ = φ+ χt , (18)

in accordance with the rule (14) known from electrodynamics.
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Excluding gauge function χ from (18) one obtain the evident but
nontrivial consequences

[~∇× ~A′] = [~∇× ~A], −~∇φ′ − ∂~A′

∂t
= −~∇φ− ∂~A

∂t
. (19)

This means that the quantities

~B def
= [~∇× ~A], ~E def

= −~∇φ− ∂~A
∂t

(20)

are invariants under gauge transformations (12). Moreover from
definitions (20) for invariants ~B and ~E follows famous subsystem

div~B = ~∇ · ~B = 0, ~∇× ~E = −∂
~B
∂t
, (21)

of fundamental Maxwell equations.
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Analogous considerations based on ideas of gauge transformations and
gauge-invariance can be applied as well to integrable nonlinear
equations. The separation of physical and pure gauge degrees of
freedom in the integrable nonlinear equations and their manifestly
gauge-invariant formulation may be very useful for the understanding
of structure of these equations and the interrelations between different
gauge-equivalent to each other equations.

In the present report manifestly gauge-invariant formulation of
two-dimensional nonlinear evolution equations integrable by the
following two scalar auxiliary linear problems

L1ψ =
(
∂2
ξη + u1∂ξ + v1∂η + u0

)
ψ = 0, (22)

L2ψ =
(
∂t + u3∂

3
ξ + v3∂

3
η + u2∂

2
ξ + v2∂

2
η + ũ1∂ξ + ṽ1∂η + v0

)
ψ = 0 (23)

is developed. Here as usual ξ = x + σy , η = x − σy , σ2 = ±1 and
∂ξ = ∂/∂ξ, ∂η = ∂/∂η, ∂2

ξ = ∂2/∂ξ2, etc.
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Two cases of auxiliary linear problems (22), (23) with different second
auxiliary linear problem (23) are studied:

(i) u3 = κ1 = const, v3 = κ2 = const, – third-order problem
L2ψ = 0, such choice of second auxiliary problem (23) leads to
famous Nizhnik–Veselov–Novikov, (1980,1984) (NVN) [15,16];
modified Nizhnik–Veselov–Novikov, (1990) (mNVN) [17] and other
equations;
(ii) u3 = v3 = 0, u2 = κ1 = const, v2 = κ2 = const, – second-order
problem L2ψ = 0, such choice of second auxiliary problem (23)
leads to famous two-dimensional generalization of dispersive
long-wave equation, (1987) (2DDLW) [18]; Davey–Stewartson (DS)
system of equations, (1974) [19] and its reductions and other
equations.

All above mentioned famous integrable nonlinear equations via
compatibility condition of auxiliary linear problems (22) and (23) in the
form of Manakov’s triad representation, (1976) [20]

[L1,L2] = BL1 (24)

have been previously established [15,16,17,18].
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Gauge transformations
ψ → ψ′ = g−1ψ (25)

with arbitrary gauge function g(ξ, η, t) of auxiliary linear problems (22)
and (23) are studied. The convenient for gauge-invariant formulation
field variables, classical gauge invariants w2, w̃2, w1

w2
def
= u0 − u1ξ − u1v1 = u′0 − u′1ξ − u′1v ′1, (26)

w̃2
def
= u0 − v1η − u1v1 = u′0 − v ′1η − u′1v ′1, (27)

w1
def
= u1ξ − v1η = u′1ξ − v ′1η (28)

and pure gauge variable ρ connected with field variable u1(ξ, η, t) by
the formula

u1
def
= (ln ρ)η (29)

are introduced. The variable ρ corresponds to pure gauge degrees of
freedom and has under (25) the following simple law of transformation:

ρ→ ρ′ = gρ. (30)
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Gauge-invariant formulation of NVN system

In the case (i) of third order linear auxiliary problem (23) the first
invariant w1 is equal to zero w1 ≡ 0 and the established integrable
system of nonlinear equations in terms of ρ, w2 has the form:

ρt = −κ1ρξξξ − κ2ρηηη − 3κ1ρξ∂
−1
η w2ξ − 3κ2ρη∂

−1
ξ w2η + v0ρ, (31)

w2t = −κ1w2ξξξ − κ2w2ηηη − 3κ1
(
w2∂

−1
η w2ξ

)
ξ
− 3κ2

(
w2∂

−1
ξ w2η

)
η
. (32)

It is remarkable that the gauge-invariant subsystem of the system
(31)-(32), the equation (32) for the gauge invariant
w2 = u0 − u1ξ − u1v1, coincides in form with the famous NVN
equation [15,16]:

ut = −κ1uξξξ − κ2uηηη − 3κ1
(
u∂−1

η uξ
)
ξ
− 3κ2

(
u∂−1

ξ uη
)
η
. (33)
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Equivalently, in terms of variables φ = ln ρ and w2, system of
equations (31)-(32) takes the form:

φt = −κ1φξξξ − κ2φηηη − κ1(φξ)
3 − κ2(φη)

3 −
− 3κ1φξφξξ − 3κ2φηφηη −

− 3κ1φξ∂
−1
η w2ξ − 3κ2φη∂

−1
ξ w2η + v0, (34)

w2t = −κ1w2ξξξ − κ2w2ηηη −
− 3κ1

(
w2∂

−1
η w2ξ

)
ξ
− 3κ2

(
w2∂

−1
ξ w2η

)
. (35)

Remarkable that the equation (32) (or(35)) for the gauge invariant w2
of the last systems exactly coincides in form with famous NVN
equation [15,16]. Due to this reason it is worthwhile to name the
integrable systems (31)-(32) (or (34)-(35)) as NVN system of equations.
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The NVN system of equations (31)-(32) (or (34)-(35)) has
gauge-transparent structure. It contains:

explicity gauge-invariant subsystem – the equation (32) (or (35))
for invariant w2;
the equation (31) (or(34)) for pure gauge variable ρ (or φ) with
some terms containing gauge invariant w2 and field variable v0
from second linear auxiliary problem (23).

Manakov’s triad representation [L1,L2] = B(W2)L1 (24) for NVN
system of equations (31)-(32) (or (34)-(35)) includes the following
operators L1, L2 of auxiliary linear problems and coefficient B(w2):

L1 = ∂2
ξη +

ρη
ρ
∂ξ +

ρξ
ρ
∂η + w2 +

ρξη
ρ
, (36)

L2 = ∂t + κ1∂
3
ξ + κ2∂

3
η + 3κ1

ρξ
ρ
∂2
ξ + 3κ2

ρη
ρ
∂2
η +

+ 3κ1

(ρξξ
ρ

+
(
∂−1
η w2ξ

))
∂ξ + 3κ2

(ρηη
ρ

+
(
∂−1
ξ w2η

))
∂η + v0, (37)

B(w2) = 3κ1∂
−1
η w2ξξ + 3κ2∂

−1
ξ w2ηη. (38)
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In the case w2 = 0 of zero invariant NVN system of equations (31)-(32)
(or (34)-(35)) reduces to linear equation

ρt = −κ1ρξξξ − κ2ρηηη + v0ρ, (39)

which is integrable by auxiliary linear problems (22) and (23) with L1
and L2 from (36), (37) under w2 = 0. Compatibility condition in this
case, due to B(w2) = 0, has Lax form [L1,L2] = 0. In terms of
variable φ = ln ρ linear equation (39) looks like Burgers-type equation
of third order

φt = −κ1φξξξ −κ2φηηη −κ1(φξ)
3−κ2(φη)

3−3κ1φξφξξ −3κ2φηφηη + v0,
(40)

which linearizes by the substitution φ = ln ρ and consequently is
C-integrable.
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Let us denote by C (φ,u0, v0) the gauge which corresponds to nonzero
field variables u1 = φη, v1 = φξ, u0 and v0 of linear problems (22) and
(23) (with operator L2) and consequently to NVN system (34)-(35) in
general position. Under different gauges from NVN system follow
different integrable nonlinear equations which are gauge-equivalent to
each other. The solutions of these equations by some Miura-type
transformation are connected.

For example in the gauge C (0,u0,0) the NVN system of equations
(34)-(35) reduces to the famous NVN equation [15,16] for the field
variable u0:

u0t = −κ1u0ξξξ − κ2u0ηηη − 3κ1
(
u0∂

−1
η u0ξ

)
ξ
− 3κ2

(
u0∂

−1
ξ u0η

)
η
. (41)
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In another gauge C (φ,0, v0) the NVN system (34)-(35) takes the form:

φt = −κ1φξξξ − κ2φηηη − κ1(φξ)
3 − κ2(φη)

3 +

+ 3κ1φξ∂
−1
η

(
φξφη

)
ξ
+ 3κ2φη∂

−1
ξ

(
φξφη

)
η

+ v0, (42)

(
∂2
ξη + φη∂ξ + φξ∂η

)
φt =

(
∂2
ξη + φη∂ξ + φξ∂η

)
×

×
[
−κ1φξξξ − κ2φηηη − κ1(φξ)

3 − κ2(φη)
3 +

+ 3κ1φξ∂
−1
η

(
φξφη

)
ξ
+ 3κ2φη∂

−1
ξ

(
φξφη

)
η

]
, (43)

i. e. due to (42)-(43) NVN system (34)-(35) reduces in the gauge
C (φ,0, v0) to the following system of equations:

φt = −κ1φξξξ − κ2φηηη − κ1(φξ)
3 − κ2(φη)

3 +

+ 3κ1φξ∂
−1
η

(
φξφη

)
ξ
+ 3κ1φη∂

−1
ξ

(
φξφη

)
η

+ v0, (44)(
∂2
ξη + φη∂ξ + φξ∂η

)
v0 = 0. (45)
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For v0 = 0 system of equations (44)-(45) reduces to the famous
modified Nizhnik-Veselov-Novikov equation

φt = −κ1φξξξ − κ2φηηη − κ1(φξ)
3 − κ2(φη)

3 +

+ 3κ1φξ∂
−1
η

(
φξφη

)
ξ
+ 3κ1φη∂

−1
ξ

(
φξφη

)
η

(46)

which at first in the paper [17] of Konopelchenko (1990), in different
context was discovered. Let us mention that considered version (46) of
mNVN equation derived in the present paper in the framework of
manifestly gauge-invariant description is different from mNVN equation
discovered in the paper of Bogdanov (1987) [24].
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The new system of equations (44)-(45) can be named as modified NVN
(mNVN) system of equations. This system due to (36)-(38) and to the
choice of the gauge C (φ,0, v0) has following Manakov triad
representation (24) with (L1,L2,B):

L1 = ∂2
ξη + φη∂ξ + φξ∂η, (47)

L2 = ∂t + κ1∂
3
ξ + κ2∂

3
η + 3κ1φξ∂

2
ξ + 3κ2φη∂

2
η +

+ 3κ1

(
φ2
ξ − ∂−1

η (φξφη)ξ

)
∂ξ + 3κ2

(
φ2
η − ∂−1

ξ (φξφη)η
)
∂η + v0, (48)

B(w2) = −3κ1φξξξ − 3κ2φηηη −
− 3κ1∂

−1
η (φξφη)ξξ − 3κ2∂

−1
ξ (φξφη)ηη. (49)

The mNVN equation (46) has triad representation (47)-(49) with
v0 = 0.
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It is evident that the solutions u0 and φ of NVN (41) and mNVN (46)
equations via invariant w2 = u0 = −φξη − φξφη (calculated in different
gauges C (0,u0,0) and C (φ,0,0)) by Miura-type transformation

u0 = −φξη − φξφη (50)

are connected. In one-dimensional limit, under ∂ξ = ∂η, the mNVN
equation (46) reduces to the mKdV equation in potential form:

φt = −κφξξξ + 2κ(φξ)3, (51)

where κ = κ1 + κ2. In terms of variable v1 = φξ this is mKdV equation:

v1t = −κ v1ξξξ + 6κ v2
1 v1ξ. (52)
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Gauge-invariant formulation of 2DGDLW system

In the case (ii) of second-order linear auxiliary problem (23) the
established integrable system of nonlinear equations in terms of ρ, w1
and w2 has the form:

ρt = −κ1ρξξ − κ2ρηη − 2κ1ρ∂
−1
η w2ξ + 2κ2ρη∂

−1
ξ w1 + v0ρ, (53)

w1t = −κ1w1ξξ + κ2w1ηη − 2κ1w2ξξ + 2κ2w2ηη −
− 2κ1

(
w1∂

−1
η w1

)
ξ
+ 2κ2

(
w1∂

−1
ξ w1

)
η
, (54)

w2t = κ1w2ξξ − κ2w2ηη − 2κ1
(
w2∂

−1
η w1

)
ξ
+ 2κ2

(
w2∂

−1
ξ w1

)
η
. (55)
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The gauge-invariant subsystem of the system (53)-(55), the system of
equations (54)-(55) for invariants w1 = u1ξ − v1η and
w2 = u0 − u1ξ − u1v1, for the choice u1 = 0, v1 = v , u0 = u for which
w1 = −vη, w2 = u, leads to the well known system of equations,
Konopelchenko (1988) [22]:

vt = −κ1vξξ + κ2vηη + 2κ1∂
−1
η uξξ − 2κ2uη + 2κ1vvξ − 2κ2vη∂−1

ξ vη, (56)

ut = κ1uξξ − κ2uηη + 2κ1
(
uv
)
ξ
− 2κ2

(
u∂−1

ξ vη
)
η
.(57)

In terms of variables

v = −q
2
, u =

1
4
(1 + r − qη) (58)

integrable system of nonlinear equations (56)-(57) takes the form:

qt = −κ1∂
−1
η rξξ + κ2rη −

κ1

2
(
q2)

ξ
+ κ2qη∂−1

ξ qη, (59)

rt = −κ1qξ + κ2∂
−1
ξ qηη − κ1qηξξ + κ2qηηη − κ1

(
rq
)
ξ
+ κ2

(
r∂−1
ξ qη

)
η
.(60)
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For the particular value κ2 = 0 system of equations (59)-(60) reduces to
famous integrable two-dimensional generalization of dispersive
long-wave system of equations, Boiti, Leon, Pempinelli (1987) [18]:

qtη = −κ1rξξ −
κ1

2
(
q2)

ξη
, (61)

rtξ = −κ1
(
qr + q + qξη

)
ξξ
. (62)

In one-dimensional limit ξ = η both systems (59)-(60) with κ1 − κ2 = 1
and (61)-(62) with κ1 = 1 reduce to the famous dispersive long-wave
equation (see e. g. Broer, (1975) [23]). It is worthwhile by this reason to
name the system (53)-(55) as two-dimensional generalized dispersive
long-wave (2DGDLW) system of equations.
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In terms of variables φ = ln ρ, w1 and w2 the integrable system
(53)-(55) takes the form:

φt = −κ1φξξ − κ2φηη − κ1(φξ)
2 − κ2(φη)

2 −
− 2κ1∂

−1
η w2ξ + 2κ2φη∂

−1
ξ w1 + v0, (63)

w1t = −κ1w1ξξ + κ2w1ηη − 2κ1w2ξξ + 2κ2w2ηη −
− 2κ1

(
w1∂

−1
η w1

)
ξ
+ 2κ2

(
w1∂

−1
ξ w1

)
η
, (64)

w2t = κ1w2ξξ − κ2w2ηη − 2κ1
(
w2∂

−1
η w1

)
ξ
+ 2κ2

(
w2∂

−1
ξ w1

)
η
. (65)
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In terms of variables φ = ln ρ, w2 and w̃2 = w2 + w1 the integrable
system (53)-(55) converts to more symmetrical form:

φt = −κ1φξξ − κ2φηη − κ1(φξ)
2 − κ2(φη)

2 −
− 2κ1∂

−1
η w2ξ + 2κ2φη∂

−1
ξ w1 + v0, (66)

w2t = κ1w2ξξ − κ2w2ηη −
− 2κ1

(
w2∂

−1
η (w̃2 − w2)

)
ξ
+ 2κ2

(
w2∂

−1
ξ (w̃2 − w2)

)
η
, (67)

w̃2t = −κ1w̃2ξξ + κ2w̃2ηη −
− 2κ1

(
w̃2∂

−1
η (w̃2 − w2)

)
ξ
+ 2κ2

(
w̃2∂

−1
ξ (w̃2 − w2)

)
η
. (68)
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Remember for convenience that the variables φ = ln ρ, w1, w2 and w̃2
connected with the field variables u1, v1, u0 of corresponding auxiliary
linear problem (22) by the formulae:

u1 =
ρη
ρ

= φη, v1 =
ρξ
ρ
− ∂−1

η w1 = φξ − ∂−1
η w1, (69)

w1 = u1ξ − v1η, (70)
w2 = u0 − u1ξ − u1v1 = u0 − φξη − φηφξ + φη∂

−1
η w1 =

= u0 −
ρξη
ρ

+
ρη
ρ
∂−1
η w1, (71)

w̃2 = w2 + w1 = u0 − v1η − u1v1. (72)

Let us mention also that the invariants w2 and w̃2 of gauge
transformations (25) are nothing but the famous classical Laplace
invariants

h def
= w2, k def

= w̃2 (73)

connected with the first auxiliary problem (22).
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All considered equivalent to each other 2DGDLW integrable systems of
nonlinear equations (53)-(55), (63)-(65) and (66)-(68) have common
gauge-transparent structure:

they contain explicitly gauge-invariant subsystems (54)-(55),
(64)-(65) of nonlinear equations for gauge invariants w1 and w2 (or
equivalently subsystem (67)-(68) for gauge invariants w2 and w̃2);
they include the equation (53) for pure gauge variable ρ (or
equation (63) for variable φ = ln ρ) (with simple rule of gauge
transformation ρ→ ρ′ = gρ) with additional terms containing
gauge invariants and field variable v0.

Such structure of 2DGDLW systems reflects existing gauge freedom in
auxiliary linear problems (22) and (23).
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2DGDLW system (53)-(55) has triad representation [L1,L2] = B(w1)L1
with operators L1, L2 and coefficient B(w1) of the following forms:

L1 = ∂2
ξη +

ρη
ρ
∂ξ +

(ρξ
ρ
−
(
∂−1
η w1

))
∂η + w2 +

ρξη
ρ
− ρη

ρ
∂−1
η w1, (74)

L2 = ∂t + κ1∂
2
ξ + κ2∂

2
η + 2κ1

ρξ
ρ
∂ξ + 2κ2

(ρη
ρ
−
(
∂−1
ξ w1

))
∂η + v0, (75)

B(w1) = 2κ1∂
−1
η w1ξ − 2κ2∂

−1
ξ w1η. (76)

Let us consider some particular gauges of established 2DGDLW
systems of equations (53)-(55), (63)-(65) and (66)-(68). It is convenient
to denote the gauge in general position by the symbol C (u1, v1,u0).
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In the gauge C (u1 = φη, v1 = φξ,u0 = φξη + φξφη) which due
to (26)-(28) corresponds to zero values of invariants w1 and w2

w1 = u1ξ − v1η = 0, w2 = u0 − u1ξ − u1v1 = 0, w̃2 = 0 (77)

2DGDLW system of equations (66)-(68) reduces to two-dimensional
Burgers equation in potential form

φt = −κ1φξξ − κ2φηη − κ1(φξ)
2 − κ2(φη)

2 + v0, (78)

or in terms of variable ρ connected with φ by Hopfe-Cole
transformation φ = ln ρ, to linear diffusion equation:

ρt = −κ1ρξξ − κ2ρηη + v0ρ. (79)

The equation (78) (or (79)) due to our construction is compatibility
condition in Lax form

[L1,L2] = B(w1)L1 ≡ 0 (80)

of linear problems (22) and (23) with operators L1, L2 given by (74),
(75) under substitution w1 = w2 = 0.
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In another simple gauge C (u1 = φη, v1 = 0,u0 = 0) corresponding due
to (70)-(72) to the invariants

w1 = φξη, w2 = −φξη, w̃2 = 0, (81)

2DGDLW system of equations (66)-(68) for the choice v0 = 0 again
reduces to the single equation of Burgers type in potential form

φt = κ1φξξ − κ2φηη − κ1(φξ)
2 + κ2(φη)

2. (82)

This equation linearizes by Hopfe-Cole transformation φ = − ln ρ to
corresponding linear equation

ρt = κ1ρξξ − κ2ρηη. (83)
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In the less trivial gauge C (u1 = 0, v1 = −qξ/q,u0 = p q) the
invariants w1, w2 and w̃2 due to (70)-(72) are given by the following
expressions

w1 =
(
ln q
)
ξη
, w2 = u0 = p q, w̃2 = p q +

(
ln q
)
ξη
, (84)

the variable ρ due to (70) has constant value, consequently the variable
φ = 0. In this case due to (66)

v0 = 2κ1∂
−1
η w2ξ = 2κ1∂

−1
η

(
p q
)
ξ
. (85)

and from the 2DGDLW system of equations (66)-(68) one obtains after
some calculations the famous DS system of equations [19] for the field
variables p and q:

pt = κ1pξξ − κ2pηη + 2κ1p ∂−1
η

(
p q
)
ξ
− 2κ2p ∂−1

ξ

(
p q
)
η
, (86)

qt = −κ1qξξ + κ2qηη − 2κ1q ∂−1
η

(
p q
)
ξ
+ 2κ2q ∂−1

ξ

(
p q
)
η
. (87)
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One can consider also the gauge C (u1 = pη, v1 = qξ,u0 = pηqξ) in
which due to (70)-(72) the invariants have the following expressions
through q and p:

w1 = pξη − qξη, w2 = −pξη, w̃2 = −qξη. (88)

Substitution of w1, w2 and w̃2 from (88) into the system (66)-(68) leads
to the following three equations for p and q. From equation (66)
for φ ≡ p one obtains

pt = κ1pξξ − κ2pηη − κ1(pξ)2 + κ2(pη)2 − 2κ2pηqη + v0. (89)

Equations (67) and (68) for w2 and w̃2 in terms of variables p, q take
the forms

pt = κ1pξξ − κ2pηη − κ1(pξ)2 + κ2(pη)2 +

+ 2κ1∂
−1
η

(
pξηqξ

)
− 2κ2∂

−1
ξ

(
pξηqη

)
, (90)

qt = −κ1qξξ + κ2qηη + κ1(qξ)2 − κ2(qη)2 −
− 2κ1∂

−1
η

(
qξηpξ

)
+ 2κ2∂

−1
ξ

(
qξηpη

)
. (91)
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The equations (89) and (90) are compatible for the choice of v0 given
by the formula

v0 = 2κ1∂
−1
η

(
pξηqξ

)
+ 2κ2∂

−1
ξ

(
qξηpη

)
, (92)

and the system of three equations (89)-(91) reduces to system of two
equations (90)-(91) containing in nonlocal terms derivatives pξηqξ,
pξηqη, etc.
Analogously in the gauge C (u1 = pη, v1 = qξ,u0 = 0) it follows for w1,
w2 and w̃2 due to (70)-(72)

w1 = pξη − qξη, w2 = −pξη − pηqξ, w̃2 = −qξη − pηqξ. (93)

The equation (63) for φ ≡ p via (93) takes the form

pt = κ1pξξ − κ2pηη − κ1(pξ)2 + κ2(pη)2 −
− 2κ2pηqη + 2κ1∂

−1
η

(
pηqξ

)
ξ
+ v0. (94)

Equation (64) via substitutions from (93) transforms to the form

pt − qt = κ1
(
p + q

)
ξξ
− κ2

(
p + q

)
ηη
− κ1

(
pξ − qξ

)2
+

+ κ2
(
pη − qη

)2
+ 2κ1∂

−1
η

(
pηqξ

)
ξ
− 2κ2∂

−1
ξ

(
pηqξ

)
η
. (95)
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By substraction of equation (95) from equation (94) one obtains the
evolution equation for q:

qt = −κ1qξξ + κ2qηη + κ1
(
qξ
)2 − κ2

(
qη
)2 −

− 2κ1pξqξ + 2κ2∂
−1
ξ

(
pηqξ

)
η

+ v0. (96)

The equation (65) for the invariant w2 due to (93) in terms of
variables p, q is(

pξη + pηqξ
)

t = κ1
(
pξη + pηqξ

)
ξξ
− κ2

(
pξη + pηqξ

)
ηη
−

− 2κ1
(
(pξη + pηqξ)(pξ − qξ)

)
ξ
+ 2κ2

(
(pξη + pηqξ)(pη − qη)

)
η
. (97)

The equations (94), (96) and (97) are compatible with each other if the
field variable v0 satisfies to the equation

v0ξη + pηv0ξ + qξv0η = 0. (98)
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For the simple choice v0 ≡ 0 one obtains from the system of three
equations (95), (96) and (97) the following equivalent system of two
equations:

pt = κ1pξξ − κ2pηη − κ1
(
pξ
)2

+ κ2
(
pη
)2 −

− 2κ2pηqη + 2κ1∂
−1
η

(
pηqξ

)
ξ
, (99)

qt = −κ1qξξ + κ2qηη + κ1
(
qξ
)2 − κ2

(
qη
)2 −

− 2κ1pξqξ + 2κ2∂
−1
ξ

(
pηqξ

)
η
. (100)

At first this system of equations has been derived in another context in
the paper [22] of Konopelchenko, 1988.
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In conclusion let us derive Miura-type transformations between
different systems of DS-type equations of second order obtained in this
section in different gauges. For convenience let us denote by capital
letters P ≡ p, Q ≡ q the solutions of DS famous system (86)-(87) of
equations. By the use of invariants w1 and w2 one obtains the following
relations between variables (P ≡ p, Q ≡ q) of DS system (86)-(87) and
variables p, q of the system (90)-(91):

w1 =
(
ln Q

)
ξη

= pξη − qξη, w2 = PQ = −pξη. (101)

One derives from (101):

Q = ep−q, P = −pξη eq−p. (102)
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Quite analogously for the pair of DS systems (86)-(87) and (99)-(100)
one has

w1 =
(
ln Q

)
ξη

= pξη − qξη, w2 = PQ = −pξη − pηqξ. (103)

One obtains from (103):

Q = ep−q, P = −
(
pξη + pηqξ

)
eq−p. (104)

Transformations (102) and (104) allow to obtain solutions of famous DS
system of equations (87)-(86) from the systems of equations (90)-(91)
and (99)-(100), these transformations are Miura-type transformations
between gauge-equivalent to each other DS-type systems of equations of
second order.
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Gauge-invariant formulation of KP–mKP and SK–KK
systems

Let us consider briefly the cases of KP–mKP and SK–KK systems of
integrable nonlinear evolution equations.

For the KP–mKP system of equations, Konopelchenko (1982),
Konopelchenko & Dubrovsky (1984) starting with auxiliary linear
problems

L1ψ =
(
σ∂y + ∂2

x + u1∂x + u0
)
ψ = 0, (105)

L2ψ =
(
∂t + 4∂3

x + v2∂
2
x + v1∂x + v0

)
ψ = 0, (106)

obtains via compatibility condition [L1,L2] = 0 in terms of pure gauge
variable u1 = 2ρx

ρ and gauge invariant w0 = u0− 1
2u1x − 1

4u2
1 −

σ
2∂
−1
x u1y

the following system of integrable nonlinear equations:

ρt + 4ρxxx + 6ρxw0 + 3ρw0x − 3σρ∂−1
x w0y − ρv0 = 0, (107)

w0t + w0xxx + 6w0w0x + 3σ2∂−1
x w0yy = 0. (108)
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In the case of SK–KK (Sawada–Kotera and Kaup–Kupershmidt)
system of equations, Konopelchenko & Dubrovsky (1984),
Dubrovsky & Gramolin (2008) starting with auxiliary linear problems

L1ψ =
(
σ∂y + ∂3

x + u2∂
2
x + u1∂x + u0

)
ψ = 0, (109)

L2ψ =
(
∂t + κ∂5

x + v4∂
4
x + v3∂

3
x + v2∂

2
x + v1∂x + v0

)
ψ = 0, (110)

obtains in terms of pure gauge variable ρ

u1 = 3
ρx

ρ
(111)

and gauge invariants

w1 = u1 − u2x −
1
3

u2
2 , (112)

w0 = u0 −
1
3

u1u2 −
1
3

u2xx +
2

27
u3

2 −
σ

3
∂−1

x u2y , (113)

the following system of integrable nonlinear equations:
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ρt + κρxxxxx − ρv0 +
5
9
κ(ρw1)xxx −

5
9
κ(ρw1xx)x +

5
3
κ(ρxw0)x +

+
5
9
κρxw2

1 −
5
9
κσρx∂

−1
x w1y +

10
9
κρ(w0xx + w0w1 −

σ

9
∂−1

x w0y ) = 0,

w1t −
1
9
κw1xxxxx −

5
9
κ
(
w1w1xx

)
x −

5
3
κ
(
w0w1x

)
x −

−5
9
κw2

1 w1x +
10
3
κw0w0x −

5
9
κσw1xxy −

5
9
κσw1w1y +

+
5
9
κσ2∂−1

x w1yy −
5
9
κσw1x∂

−1
x w1y = 0,

w0t −
1
9
κw0xxxxx −

5
9
κ
(
w0w1

)
xxx −

5
9
κ
(
w0w1xx

)
x +

+
5
3
κ
(
w0w0x

)
x −

5
9
κ
(
w0w2

1
)

x −
5
9
κσw0xxy −

10
9
κσw0w1y −

−5
9
κσw1w0y +

5
9
κσ2∂−1

x w0yy −
5
9
κσw0x∂

−1
x w1y = 0.
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Conclusion

In conclusion let us underline once again that ideas of gauge invariance
now are in common use in the theory of integrable nonlinear equations.

There are known attempts to develop invariant description of some
nonlinear integrable equations considered in the present paper by the
use of matrix linear auxiliary problems. This was done for example in
the paper of Yilmaz & Athorne (2002) [26] for the
Nizhnik–Veselov–Novikov and Davey–Stewartson equations in the
framework of classical invariant theory of second order linear partial
differential equations.
Matrix linear auxiliary problems have a bigger number degrees of
freedom then the scalar, the performance of reductions from general
position to integrable nonlinear equations is more difficult; all this leads
to the need of consideration gauge transformations under some
restrictions, manifestly gauge-invariant description of integrable
nonlinear equations in this case is far from completion and requires
additional research work.
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The end

See more details of this research in arXiv:0802.2334 and our
forthcoming article in J. Phys. A: Math. Theor.

Thank you very much for your attention!
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