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Introduction

The fundamental ideas of gauge invariance and gauge transformations
are wide spread and in common use in almost every part of physics.

The first applications of such ideas in the theory of integrable nonlinear
equations by

e Zakharov and Shabat (1974) [1],

o Kuznetsov and Mikhailov (1977) [2],

e Zakharov and Mikhailov (1978) [3],

e Zakharov and Takhtadzhyan (1979) [4],
Konopelchenko (1982) [5],

o Konopelchenko and Dubrovsky (1983, 1984) (6, 7|

and others have been made, see also the books [8,9,10,11,12, 13| and
references therein.
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Now a lot of gauge-equivalent to each other integrable nonlinear models
are well known.
In one-dimensional case the most famous are nonlinear Schrédinger and

Heisenberg ferromagnet equations:
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9 = a‘_i_’+2|w|w, (1)
88 = 828
ot 0 X e @

KdV and mKdV equations:
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ot Toxd T ox T

massive Thirring model and two-dimensional relativistic field model
and so on.
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In two-dimensional case the most famous are Kadomtsev—Petviashvili
(KP) and modified Kadomtsev—Petviashvili (mKP) nonlinear equations:

8U0 83U0 8U0 21 82U0 _

W"‘axs +6 087"‘3 ax 87}/2—0,
ouy 83U1 3 6U1 2 _16 U4 8U1 1 oy .
ot oxd 2V a+3aay2_ axx gy =Y

Davey—Stewartson
Pt — K1Pee + 2Py — 2610, (PQ)e + 2k2pd; ' (PQ), = 0,
Gt + K1Gec — KaGyn + 26190, 1 (pQ)¢ — 2k2P0; ' (pq)y = O,

and Ishimori

integrable systems of nonlinear equations and so on. See some
references in the books [8,9,10,11,12,13,14].
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Let us underline the unified role of gauge transformations and
gauge-invariance by the simple example of interaction of nonrelativistic
spinless charged particle with electromagnetic field.

Let us perform in nonstationary Schrodinger equation for such particle

~2
L

iy = 51 = Hy (11)

gauge transformation

v =g, =gy =ep(209) )

for the wave function. Under substitution (12) into (11) one obtains
Schrodinger equation for the transformed wave function v’

[6— (—qVx)]?
2m

i = W+ e (13)
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From another side it is known from the electrodynamics that the
vector A and scalar ¢ potentials due to gauge freedom are determine
nonuniquely

AsA=A-Vx, ¢6—-¢=0d+x, (14)

at the same time the electromagnetic fields B = [V x A] and

E=-V¢-— %—’? did not change. One can rewrite the equation (13) due
o (14) in the form

(B— gA®)?

TR (15)

i} =
where AO) = —ﬁx, #© = y¢. It is evident that the fields B =0 and
E = 0 as in the case of initial equation (11) and also in the transformed
equation (15) are equal to zero:

A0
o0 _ OAY

=0 (16)

BO — [ x A0 =0, EO —_
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Nevertheless the lesson from such passage is that the equation (15)
gives right gauge-invariant form of nonstationary Schrédinger equation
also in the case of nontrivial fields B = [V x A] # 0,

E = —ﬁqb — % = 0. This right form of nonstationary Schrodinger
equation due to (15) is the following:

(P q)

ihapt = Y+ qoip. (17)

Let us consider the equation (17), from IST point of view as auxiliary
linear problem, PDE with variable coefficients for the wave function 2.
Under gauge transformation (12) the equation (17) preserves its form if
the potentials A and ¢ have the following laws of transformations:

AsA=A-Vx, ¢6—-¢=0d+x (18)

in accordance with the rule (14) known from electrodynamics.
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Excluding gauge function y from (18) one obtain the evident but
nontrivial consequences

L L . oA . 9A
A/ = A — = Z= = — _—

This means that the quantities
B9 A, EY g, A
ot
are invariants under gauge transformations (12). Moreover from

definitions (20) for invariants B and E follows famous subsystem

divB=V B -0, vxé:ﬁ;,

of fundamental Maxwell equations.
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Analogous considerations based on ideas of gauge transformations and
gauge-invariance can be applied as well to integrable nonlinear
equations. The separation of physical and pure gauge degrees of
freedom in the integrable nonlinear equations and their manifestly
gauge-invariant formulation may be very useful for the understanding
of structure of these equations and the interrelations between different
gauge-equivalent to each other equations.

In the present report manifestly gauge-invariant formulation of
two-dimensional nonlinear evolution equations integrable by the
following two scalar auxiliary linear problems

Lyt = (0, + t10s + v19, + Up)¥ = 0, (22)
Loy = (61‘ aF U3(9é3 = V3(92 = u28§ =F V28727 + Uy 85 + 677 + VO)#’ =0 (23)

is developed. Here as usual £ = X + oy, 1 =X — oy, 02 = +1 and
O0¢ = 0/0¢, O, = 0/, 852 = 02 /0€?, etc.
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Two cases of auxiliary linear problems (22), (23) with different second
auxiliary linear problem (23) are studied:

o (i) u3 = K1 = const, V3 = Kkp = const, — third-order problem
Lot = 0, such choice of second auxiliary problem (23) leads to
famous Nizhnik—Veselov—Novikov, (1980,1984) (NVN) [15,16];
modified Nizhnik—Veselov—Novikov, (1990) (mNVN) [17| and other
equations;

o (ii) u3 = v3 =0, Up = k1 = const, Vo = ko = const, — second-order
problem L% = 0, such choice of second auxiliary problem (23)
leads to famous two-dimensional generalization of dispersive
long-wave equation, (1987) (2DDLW) [18]; Davey—Stewartson (DS)
system of equations, (1974) [19] and its reductions and other
equations.

All above mentioned famous integrable nonlinear equations via
compatibility condition of auxiliary linear problems (22) and (23) in the
form of Manakov’s triad representation, (1976) [20]

[Lq, o] = BLy (24)
have been previously established [15,16,17,18|.
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Gauge transformations
b= =gy (25)
with arbitrary gauge function g(&,n,t) of auxiliary linear problems (22)

and (23) are studied. The convenient for gauge-invariant formulation
field variables, classical gauge invariants Ws, Wo, Wy

def / / !,
W2 = Up — Uig — UrVy = Uy — Uje — Uy Vg, (26)
~ def / / I
Wo = Uy — Vi, — UgVy = Up — Vi, — UpVy, (27)
def / /
Wi = Uig — Vi = Uge — vy, (28)

and pure gauge variable p connected with field variable uy(&,n,t) by
the formula "
t & (Inp), (20)

are introduced. The variable p corresponds to pure gauge degrees of
freedom and has under (25) the following simple law of transformation:

p—p = gp. (30)
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Gauge-invariant formulation of NVN system

In the case (i) of third order linear auxiliary problem (23) the first
invariant wy is equal to zero wy = 0 and the established integrable
system of nonlinear equations in terms of p, o has the form:

pt = —F1peee — Kapnmm — 310y, Woe — Brapyd; ' Way + Vop, (31)

Wot = — K1 Wagee — KoWoypy — 3k1 (W2(977_1 W2£)£ — 3kp (W285_1 Wgn)n. (32)

It is remarkable that the gauge-invariant subsystem of the system
(31)-(32), the equation (32) for the gauge invariant

Wo = Up — Uy¢ — UqVy, coincides in form with the famous NVN
equation [15,16]:

Ut = —KqUgee — Ralpyny — 3K+ (u8;1 Ug)5 = 352(U8g1 Un)n.
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Equivalently, in terms of variables ¢ = In p and ws, system of
equations (31)-(32) takes the form:

bt = —K1deee — Kabnny — F1(d¢)° — ka(dy)® —
— 3Kt PePee — 3K2PnPny —

— 3K+ ¢5877_1 Woe — 3%2@785_1 W2y, + Vo, (34)
Wor = — K1 Wogee — ReWayyy —
— 3k (W2(9n_1 W2§)§ — 3kp (W285_1 Wgn). (35)

Remarkable that the equation (32) (or(35)) for the gauge invariant ws
of the last systems exactly coincides in form with famous NVIN
equation [15,16]. Due to this reason it is worthwhile to name the
integrable systems (31)-(32) (or (34)-(35)) as NVN system of equations.
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The NVN system of equations (31)-(32) (or (34)-(35)) has
gauge-transparent structure. It contains:

o explicity gauge-invariant subsystem — the equation (32) (or (35))
for invariant we;

o the equation (31) (or(34)) for pure gauge variable p (or ¢) with
some terms containing gauge invariant Ws and field variable vy
from second linear auxiliary problem (23).

Manakov’s triad representation [Ly, Lp] = B(Wa)Lq (24) for NVN
system of equations (31)-(32) (or (34)-(35)) includes the following
operators Ly, Ly of auxiliary linear problems and coefficient B(ws):

Ly =02 + p—p"ag + %&7 +wo + %, (36)
Lo = 0 + K4 82’ = 5282 + 3k %8? G 3/62[)7:7872] aF
+ 3k (”—ff + (0, wac) )0 + 352(”—;’7 + (07 " Wo) )0+ vo,  (37)

B(w2) = 3k4 8,71 Woee + 3/12651 W, (38)
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In the case wo = 0 of zero invariant NVN system of equations (31)-(32)
(or (34)-(35)) reduces to linear equation

Pt = —K1pgee — K2Pmm + Vop, (39)

which is integrable by auxiliary linear problems (22) and (23) with L4
and Ly from (36), (37) under wp = 0. Compatibility condition in this
case, due to B(wz) = 0, has Lax form [Ly, L] = 0. In terms of
variable ¢ = In p linear equation (39) looks like Burgers-type equation
of third order

bt = —h1beee — kabnm — £1(0)® — ka(dn)® — Bk1dedec — Bradydn, + o,

(40)
which linearizes by the substitution ¢ = In p and consequently is
C-integrable.
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Let us denote by C (¢, Up, Vo) the gauge which corresponds to nonzero
field variables Uy = ¢y, V4 = ¢¢, Ug and Vg of linear problems (22) and
(23) (with operator Lp) and consequently to NVN system (34)-(35) in
general position. Under different gauges from NVN system follow
different integrable nonlinear equations which are gauge-equivalent to
each other. The solutions of these equations by some Miura-type
transformation are connected.

For example in the gauge C (0, Up,0) the NVN system of equations
(34)-(35) reduces to the famous NVN equation [15, 16| for the field
variable Up:

Upt = —K1Uogge — Kelogny — 3K+ (U()an_1 Uog)g = 3%2(U0851 Uon)n. (41)
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In another gauge C (¢, 0, vp) the NVN system (34)-(35) takes the form:

Gt = —K1Peee — Kobumn — K1 (de) — ka(dy)® +
+3r100, " (Gedy) ¢ + Bradnd; ' (Sedn), + Vo, (42)

(08, + dn0c + 00,) bt = (08, + byOe + Pc0y) X
X [—fﬁ Pece — Kby — k1(de)® — wal(dy)® +

+3rk10¢0; " (Bebn)  + Bkt (6¢6), | (43)

i. e. due to (42)-(43) NVN system (34)-(35) reduces in the gauge
C (9,0, vp) to the following system of equations:

bt = —F1Beee — adnm — K1 (de)> — ra(dy)® +
+3k10¢0;, " (¢edy) ¢+ 31 bn0; (¢e¢n), + Vo, (44)
(0, + 00 + d¢0y) vo = 0. (45)
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For vo = 0 system of equations (44)-(45) reduces to the famous
modified Nizhnik-Veselov-Novikov equation

bt = —K1deee — Kadny — K1(de)® — ra(ey)® +
+ k1 ¢§677_1 (¢€¢n)5 + 3k1 ¢na§_1 (¢$¢n)n (46)

which at first in the paper [17] of Konopelchenko (1990), in different
context was discovered. Let us mention that considered version (46) of
mNVN equation derived in the present paper in the framework of
manifestly gauge-invariant description is different from mNVN equation
discovered in the paper of Bogdanov (1987) [24].
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The new system of equations (44)-(45) can be named as modified NVN
(mNVN) system of equations. This system due to (36)-(38) and to the
choice of the gauge C (9,0, vp) has following Manakov triad
representation (24) with (Lq, Lo, B):
Ly = 8B, + 6u0e + 0cdy,  (47)
L2 = at + /45182 + @82 = 3/’4}1 (ﬁg@? + 3%2@785 +
+ ki1 (02 = 0, (Bhn)e ) O + Bkz (62 — 07 (9600)n ) 0y + Yo, (48)
B(wz) = —3rk1¢¢ee — 3radnm —
— 3K1 3771 (¢£¢n)§£ - 3/@2851 (‘bf‘bn)nn- (49)

The mNVN equation (46) has triad representation (47)-(49) with
Vo = 0.
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It is evident that the solutions Uy and ¢ of NVN (41) and mNVN (46)
equations via invariant Wo = Uy = —¢¢,; — ¢¢dy (calculated in different
gauges C (0, up,0) and C(¢,0,0)) by Miura-type transformation

Up = —¢en — Pty (50)

are connected. In one-dimensional limit, under d¢ = 9,, the mNVN
equation (46) reduces to the mKdV equation in potential form:

bt = —k peee + 26 (), (51)
where k = k1 + k2. In terms of variable vy = ¢¢ this is mKdV equation:

Vit = —K V1§§§+616 V12V1§. (52)
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Gauge-invariant formulation of 2DGDLW system

In the case (ii) of second-order linear auxiliary problem (23) the

established integrable system of nonlinear equations in terms of p, wj
and Wso has the form:

Pt = —K1pge — K2Pmm — 251%?3,7_1 Woe + 2/€2Pn3{1 wy + vop,  (53)
Wit = — K1 Wige + KaWiyy — 261 Woge + 2rp Wy, —
— 2K1 (W13,7_1 W1)5 + 2/432(W18§_1 W1)

Wat = K1 Woge — KpWayy — 2K (W287I_1 W1)£ aF 2/4,2(W28{1 W1)

,’77

n
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The gauge-invariant subsystem of the system (53)-(55), the system of
equations (54)-(55) for invariants wy = u1¢ — vy, and

Wo = Ug — Uye — Uy Vy, for the choice uy =0, v4 = Vv, Ug = U for which
Wy = —V,, Wo = U, leads to the well known system of equations,
Konopelchenko (1988) [22]:

Vi = —K1Vee + KoV + 2/61877_1 Uge — 2K2U,7 + 254 WWe — 2kKo V77851 Vi, (56)
Ut = KqUge — Ky + 2k (uv)g — 2mg(u8g1 Vi), (57)

In terms of variables

1
v=-2, u:1(1 +r—aqy,) (58)

integrable system of nonlinear equations (56)-(57) takes the form:

_ K _
g: = —H1877 1I’§§ + Kol — ?1(672)5 aF H2q1785 1(.77,, (59)

r = —k1Ge + k20; ' Gy — K1 Gnge + K2 Gy — 51 () + K2(rd; " gy), - (60)
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For the particular value kp = 0 system of equations (59)-(60) reduces to
famous integrable two-dimensional generalization of dispersive
long-wave system of equations, Boiti, Leon, Pempinelli (1987) [18]:

K
Gy = —ritlec = 5 (@), (61)
lte = — K4 (qr +g+ Ckn)gg' (62)

In one-dimensional limit & = 1 both systems (59)-(60) with k1 — kg = 1
and (61)-(62) with k1 = 1 reduce to the famous dispersive long-wave
equation (see e. g. Broer, (1975) [23]). It is worthwhile by this reason to
name the system (53)-(55) as two-dimensional generalized dispersive
long-wave (2DGDLW) system of equations.
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In terms of variables ¢ = In p, wy and ws the integrable system
(53)-(55) takes the form:

Ot = —r1ee — Kpdn — 1(0¢)? — Ka(dn)* —
— 2K1 6;1 Wo¢ + 2K2¢nag1 w1 + W, (63)

Wit = —K1Wige + KpWiyy — 21 Woge + 2R2Wapy —
— 21 (w10, W1)g + 2r2 (W1 86_1 W1)n’

Wot = K1 Woge — KpWayy — 2K (Wgan_1 W1)£ P 2%2(W28{1 W1)n.
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In terms of variables ¢ = In p, wo and Wo = W, + Wy the integrable
system (53)-(55) converts to more symmetrical form:

bt = —K1¢ee — Koty — k1(de)? — ra(dy)? —

— 2k10;)  Wag + 20 Wi + Vo, (66)
Wot = K1 Wage — KoWayy, —

— 21 (W20, (We — W), + 2r2 (Wod; ' (W2 — w2)),, (67)
Wat = —Fq Woge + KoWayy —

— 25K (VV2877_1 (WQ = Wg))6 ai 2/{2(ﬁ/28€1 (Wg = WQ)) (68)

0"
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Remember for convenience that the variables ¢ = Inp, wy, Wo and Ws
connected with the field variables Uy, vy, Up of corresponding auxiliary
linear problem (22) by the formulae:

P P = -
u1:?n:¢n, v1:f—3n1w1:¢§—8,71w1, (69)
Wi = Ut — Vi, (70)
W2 = Up — U1g — U1 V4 =Uo—¢£n—¢n¢€+¢ﬂ8;1w1 -
:Uo—@+@877_1w17 (71>
PP
|7y2:w2+w1:uo—v1,7—u1v1. (72)

Let us mention also that the invariants wo and Ws of gauge
transformations (25) are nothing but the famous classical Laplace
invariants

h déf Wo, k déf V~V2 (73)

connected with the first auxiliary problem (22).
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All considered equivalent to each other 2DGDLW integrable systems of
nonlinear equations (53)-(55), (63)-(65) and (66)-(68) have common
gauge-transparent structure:

e they contain explicitly gauge-invariant subsystems (54)-(55),
(64)-(65) of nonlinear equations for gauge invariants wy and ws (or
equivalently subsystem (67)-(68) for gauge invariants Wo and Ws);

e they include the equation (53) for pure gauge variable p (or
equation (63) for variable ¢ = In p) (with simple rule of gauge
transformation p — p’ = gp) with additional terms containing
gauge invariants and field variable vj.

Such structure of 2DGDLW systems reflects existing gauge freedom in
auxiliary linear problems (22) and (23).
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2DGDLW system (53)-(55) has triad representation [Lq, Lp] = B(wq)Lq
with operators Ly, Ly and coefficient B(wy) of the following forms:

—g2 4 Pn PE_ (g1 Pen _ Pn g1
Ly =9, + p8€+<p (an W1)>87]+W2+ . p 0, 'wy, (74)
Lo =0+ /{1852 + IQ28727 + 2ﬁ1%8g + 2k2 (%7 - (351 W1)>8,7 + Vo, (75)
B(wq) = 2k4 6,7_1 Wi — 2%2651 Wiy (76)

Let us consider some particular gauges of established 2DGDLW
systems of equations (53)-(55), (63)-(65) and (66)-(68). It is convenient
to denote the gauge in general position by the symbol C (uy, v1, Up).
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In the gauge C (U4 = ¢y, V1 = ¢, Uy = d¢y + Pey) which due
to (26)-(28) corresponds to zero values of invariants wy and ws

W1=U1§—V177=0, WQZUO—U1§—U1V1:O, |7V2:0 (77)

2DGDLW system of equations (66)-(68) reduces to two-dimensional
Burgers equation in potential form

Ot = —k1bee — Kadny — K1 (P¢)? — r2(dy)® + Vo, (78)

or in terms of variable p connected with ¢ by Hopfe-Cole
transformation ¢ = In p, to linear diffusion equation:

pt = —K1pee — K2pyy + Vop- (79)

The equation (78) (or (79)) due to our construction is compatibility
condition in Lax form

[L1, Lo] = B(wy)Ly =0 (80)

of linear problems (22) and (23) with operators L1, Ly given by (74),
(75) under substitution wy = ws = 0.
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In another simple gauge C (U1 = ¢y, V1 =0, Ugp = 0) corresponding due
to (70)-(72) to the invariants

Wy = ¢£777 Wo = _¢§7’]7 WQ — 07 (81)

2DGDLW system of equations (66)-(68) for the choice vy = 0 again
reduces to the single equation of Burgers type in potential form

Ot = F1ee — kb — K1 () + ra(dy)?. (82)

This equation linearizes by Hopfe-Cole transformation ¢ = —Inp to
corresponding linear equation

Pt = K1pge = K2Pny- (83)
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In the less trivial gauge C(u1 = 0,v4 = —Qq:/q, Up = pq) the
invariants wy, W and Ws due to (70)-(72) are given by the following
expressions

wi=(Inqg),,, we=uo=pg, WwWp=pg+(nqg),, (84)

the variable p due to (70) has constant value, consequently the variable
¢ = 0. In this case due to (66)

Vo = 2K1 8771 Woe = 2kK1 (97,_1 (,O q>€ (85)

and from the 2DGDLW system of equations (66)-(68) one obtains after
some calculations the famous DS system of equations [19] for the field
variables p and q:

Pt = K1Pgg — KPPy + 2f<é1l3(97771 (P Q)g — 2k2p 35_1 (P CI)n7 (86)

Gt = —K1Gee + K2l — 25190, (PQ), + 25290 ' (PQ),.  (87)
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One can consider also the gauge C (U = py,, V1 = G¢, Up = P, qe) in
which due to (70)-(72) the invariants have the following expressions
through g and p:

Wi = Dey — Qeny Wo = —Pgy,  Wo = —Qey- (88)

Substitution of wy, W and Ws from (88) into the system (66)-(68) leads
to the following three equations for p and g. From equation (66)
for ¢ = p one obtains

Pt = k1P — KaPyy — #1(Pe)? + K2(Py)? — 262D, Gy + Vo- (89)

Equations (67) and (68) for wo and Ws in terms of variables p, g take
the forms

Pt = K1Pge — KaPyy — K1 (P£)2 + Hz(Pn)z +

+ 2’“877_1 (Pene) — 2“285_1 (Penn) (90)
Gt = —k1 Qe + KaGyy + £1(Ge)® — r2(ay)® —
— 2610, (QenPe) + 26207 " (Qenpn)- (91)
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The equations (89) and (90) are compatible for the choice of vy given
by the formula

Vo = 219y ' (PeyQe) + 2620; ' (Qenion) (92)
and the system of three equations (89)-(91) reduces to system of two
equations (90)-(91) containing in nonlocal terms derivatives pe,Qe,

PenQy, ete.
Analogously in the gauge C(u1 = py, Vi = q¢, Up = 0) it follows for wy,
Wo and Wp due to (70)-(72)

Wi =Pey = Qens Wo = —Pey — PyGe, Wo = —Qey — PyQc-  (93)
The equation (63) for ¢ = p via (93) takes the form

Pt = K1Pee — 2Py — #1(Pe)? + K2(py)? —
— 2Py Qy + 2610, (PyGe) ¢ + Vo (94)

Equation (64) via substitutions from (93) transforms to the form
2
Pt —Gi=r1(P+a)e — r2(p+0),, —#1(Ps — G)” +
2 — —
+r2(Py — Q)" + 2610, (P Q) . — 2r20; ' (Py ), - (95)
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By substraction of equation (95) from equation (94) one obtains the
evolution equation for g:

Qi = —R1Qee + K2Qyy + K1 (%)2 - Hz(qn)z -
— 2R1Pe Qe + 2r20; ' (PyGe), + Vo. (96)

The equation (65) for the invariant wo due to (93) in terms of
variables p, q is

(Pey + Py ), = £1 (Pey + pan)gg — ri2(Pen + pnqé)m, -
— 261 ((Pey + Py Ge) (P — Ge)) . + 22 ((Pen + PyGe)(Py — @), (97)

The equations (94), (96) and (97) are compatible with each other if the
field variable vy satisfies to the equation

Voen + Py Voe + Qe Vo = 0. (98)
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For the simple choice Vg = 0 one obtains from the system of three
equations (95), (96) and (97) the following equivalent system of two
equations:

Pt = K1Pee — KDy — 1 (pe) + K2 (Py)” —
— 252y Gy + 2619, (P ) (99)

qt = —K1Qge + K2Qny + K1 (%)2 - ﬁz(qn)z -
— 2K1PeQe + 2%2851 (pan)fl' (100)

At first this system of equations has been derived in another context in
the paper [22] of Konopelchenko, 1988.
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In conclusion let us derive Miura-type transformations between
different systems of DS-type equations of second order obtained in this
section in different gauges. For convenience let us denote by capital
letters P = p, Q = g the solutions of DS famous system (86)-(87) of
equations. By the use of invariants wy and Ws one obtains the following
relations between variables (P = p, Q = q) of DS system (86)-(87) and
variables p, g of the system (90)-(91):

Wy = (In Q)fﬂ = Pen — Qe Wo = PQ = —Psn- (101)
One derives from (101):

Q=¢eP9 P=—py,elP (102)
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Quite analogously for the pair of DS systems (86)-(87) and (99)-(100)
one has

wi = (INQ),, =Pey — Gey, W = PQ=—pey — Py (103)
One obtains from (103):
Q=69 P=—(pey+pnqe)e?P. (104)

Transformations (102) and (104) allow to obtain solutions of famous DS
system of equations (87)-(86) from the systems of equations (90)-(91)
and (99)-(100), these transformations are Miura-type transformations
between gauge-equivalent to each other DS-type systems of equations of
second order.
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Gauge-invariant formulation of KP-mKP and SK-KK

systems

Let us consider briefly the cases of KP-mKP and SK-KK systems of
integrable nonlinear evolution equations.

For the KP-mKP system of equations, Konopelchenko (1982),
Konopelchenko & Dubrovsky (1984) starting with auxiliary linear
problems

Ly = (00y + 05 + u10x + Up) Y = 0, (105)
Loy = (8t 4 463 a4 v26§ + V40x + Vo)@/) =0, (106)
obtains via compatibility condition [Ly, Lp] = 0 in terms of pure gauge
variable Uy = 2% and gauge invariant Wy = Ug — %u1 X — %u? — 30x L Uyy
the following system of integrable nonlinear equations:
pt + 4pxxx + 6pxWo + 3pWox — 300y Woy — p¥o = 0, (107)
Wot + Woxxx + 6WoWox + 30’28;1 Woyy = 0. (108)
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In the case of SK-KK (Sawada—Kotera and Kaup—Kupershmidt)
system of equations, Konopelchenko & Dubrovsky (1984),
Dubrovsky & Gramolin (2008) starting with auxiliary linear problems

Ly = (00y + 05 + Up03 + tOx + Up) = 0, (109)
Lot = (Ot + KO3 + Vady + V3038 + V203 + v10x + Vo) =0,  (110)

obtains in terms of pure gauge variable p

Px
U =3— (111)

p

and gauge invariants
1 2
Wi = Uy —U2x—§U27 (112)
1 1 2 3 0 41

Wo = Up — glilz — glloxx + 5o Uz — gax Uy, (113)

the following system of integrable nonlinear equations:
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5 5 5
Pt + Epxxoox — PVo + E(pW1)xxx — =K(PWixx)x + 5 E(pxWo)x +

9 9 3
5 5 _ 10 o,
+§HPXW12 - §/$apx(9x 1 Wiy + ?HP(WOXX + Wowq — 56)( 1 Woy) = 0,
1 5 5

Wit — §HW1xxxxx — §H(W1 W1xx)x - gH(WOWu)X —

5 5 10 5 5
—§KJW1 Wix + ?KJW()WOX = §I€O'W1xxy = §I€O'W1 Wiy +

5 5

+§I€028;1 Wiy — §HUW1X8;1 wyy, =0,

1 5 5
Wor — §"§W0Xxxxx - §K(WOW1)XXX - §"1(WOW1XX)X -+

5 5 . 5 10
+§n(W0W0X)X — §/-s(wow1 )y — 570 Woxxy — g KO WoWiy —

9 9 9
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— ~KOWi Woy + = k02D ' Woyy — = KoWoxOy Wiy, = 0.

41 /
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Conclusion

In conclusion let us underline once again that ideas of gauge invariance
now are in common use in the theory of integrable nonlinear equations.

There are known attempts to develop invariant description of some
nonlinear integrable equations considered in the present paper by the
use of matrix linear auxiliary problems. This was done for example in
the paper of Yilmaz & Athorne (2002) [26] for the
Nizhnik—Veselov—Novikov and Davey—Stewartson equations in the
framework of classical invariant theory of second order linear partial
differential equations.

Matrix linear auxiliary problems have a bigger number degrees of
freedom then the scalar, the performance of reductions from general
position to integrable nonlinear equations is more difficult; all this leads
to the need of consideration gauge transformations under some
restrictions, manifestly gauge-invariant description of integrable
nonlinear equations in this case is far from completion and requires
additional research work.
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See more details of this research in arXiv:0802.2334 and our
forthcoming article in J. Phys. A: Math. Theor. J

Thank you very much for your attention! |
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http://arxiv.org/abs/0802.2334
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