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1. Governing equations for the inviscid fluid motion

• The motion of inviscid fluid with a constant density ρ is

described by the Euler’s equations:
∂v

∂t + (v · ∇)v = − 1
ρ∇P + g,

∇ · v = 0,

where v(x, y, z, t) is the velocity of the fluid at the point (x, y, z)

at the time t, P is the pressure in the fluid, g = (0, 0,−g) is the

constant Earth’s gravity acceleration.

• Consider now a motion of a shallow water over a flat bottom,

which is located at z = 0. We assume that the motion is in the

x-direction, and that the physical variables do not depend on y.
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• Let h be the mean level of the water and let η(x, t) describes the

shape of the water surface, i.e. the deviation from the average

level. The pressure is

P = PA + ρg(h − z) + p(x, z, t),

where PA is the constant atmospheric pressure, and p is a

pressure variable, measuring the deviation from the hydrostatic

pressure distribution.

On the surface z = h + η, P = PA and therefore p = ηρg. Taking

v ≡ (u, 0, w) we can write the kinematic condition on the surface

as (Johnson 1997)

w = ∂η
∂t + u ∂η

∂x on z = h + η.

Finally, there is no horizontal velocity at the bottom, thus

w = 0 on z = 0.

• The equations give the system
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ut + uux + wuz = − 1
ρpx,

= wt + uwx + wwz = − 1
ρpz,

ux + wz = 0

w = ηt + uηx, p = ηρg, on z = h + η

w = 0 on z = 0.

• Let us introduce now dimensionless parameters

ε = a/h and

δ = h/λ,

where a is the typical amplitude of the wave and λ is the typical

wavelength of the wave. Now we can introduce dimensionless

quantities, according to the magnitude of the physical quantities,

see (Johnson 1997, 2002) for details:

x → λx

z → zh,
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t → λ√
gh

t,

η → aη,

u → ε
√

ghu,

w → εδ
√

ghw,

p → ερgh.

This scaling is due to the observation that both w and p are

proportional to ε i.e. the wave amplitude, since at undisturbed

surface (ε = 0) both w = 0 and p = 0. The system in the new,

dimensionless variables is

ut + ε(uux + wuz) = −px,

δ2(wt + ε(uwx + wwz)) = −pz,

ux + wz = 0,

w = ηt + εuηx, p = η, on z = 1 + εη,

w = 0 on z = 0.
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2. Green-Naghdi Equations

• We present a derivation of the relevant form of the Green

-Naghdi (GN) equations (Green and Naghdi 1976), which follows

directly from the above system.

• We assume that u is not a function of z. This is not correct at

O(ε), but this approximation is valid for the leading-order

problem. This assumption is equivalent to the simplifying

approximation used by Green and Naghdi (namely, that w is

linear in z in a single-layer model).

• Thus we have w = −zux, which satisfies ux + wz = 0 and the

bottom condition.

• The second equation gives

p = η − 1
2δ2[(1 + εη)2 − z2](uxt + ǫuux − ǫu2

x),

which satisfies the pressure condition at the surface.
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• This expression for p is now used in the first equation, which is

then integrated over all z to give

ut + εuux + ηx = δ2/3
1+εη [(1 + εη)3(uxt + εuuxx − εu2

x)]x,

• The first order in the small parameters is

ut − δ2

3 uxxt + εuux + ηx = 0.

• The condition on the surface gives

ηt + [(u(1 + εη)]x = 0.
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3. Two component Camassa-Holm system

One can demonstrate that the Green-Naghdi system can be

related to the following two component Camassa-Holm system in

the first order with respect to ε and δ2:

mt + 2uxm + umx + ρρx = 0,

ρt + (uρ)x = 0,

where m = u − uxx.

• The CH equation can be obtained via the obvious reduction

ρ ≡ 0.

The system is integrable, it can be written as a compatibility

condition of two linear systems (Lax pair) with a spectral

parameter ζ:
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Ψxx =
(

− ζ2ρ2 + ζm + 1
4

)

Ψ,

Ψt =
(

1
2ζ − u

)

Ψx + 1
2uxΨ.

• The system is also bi-Hamiltonian.

• The first Poisson bracket is

{A, B} = −
∫

[

δA
δm (m∂ + ∂m) δB

δm + δA
δmρ∂ δB

δρ + δA
δρ ∂ρ δB

δm

]

dx

for the Hamiltonian H = 1
2

∫

(um + ρ2)dx;

• The second Poisson bracket is

{A, B}2 = −
∫

[

δA
δm (∂ − ∂3) δB

δm + δA
δρ ∂ δB

δρ

]

dx

for the Hamiltonian H2 = 1
2

∫

(uρ2 + u3 + uu2
x)dx.

It has two Casimirs:
∫

ρdx and
∫

mdx.
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• Let us define ρ = 1 + 1
2εη − 1

8ε2(u2 + η2).

The expansion of ρ2 in the same order of ε is

ρ2 = 1 + εη − 1
4ε2u2.

• With this definition it is straightforward to write in the form
(

u − δ2

3 uxx

)

t
+ 3

2εuux + 1
ε (ρ2)x = 0

or, introducing the variable m = u − 1
3δ2uxx,

in the same order (i.e. neglecting terms of order εδ2)

mt + εmux + 1
2εumx + 1

ε (ρ2)x = 0.

• Next, using the fact that in linear approximation

ut ≈ −ηx, ηt ≈ −ux,

we have ρt = 1
2εηt + 1

4ε2(ηu)x.
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• With these expressions for ρ and ρt the second GN equation can

be written as

ρt + ε
2 (ρu)x = 0.

• The rescaling u → 2
εu, x → δ√

3
x, t → δ√

3
t in GN equations gives

the CH2 system.

• The case with −ρρx term, which is considered in the most

previous works on the system, corresponds to a situation in

which the gravity acceleration points upwards.

• Concerning the occurrences of peakons, it was recently

established that the only peakons of the CH2 system arise when

ρ ≡ 0 and u(x, t) = c e−|x−ct| for some wave speed c 6= 0.

• Wave breaking is the only way that singularities arise in smooth

solutions to the system and that for the occurrence of breaking

waves it is not necessary to require that ρ ≡ 0.
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Kaup - Boussinesq system

The Kaup - Boussinesq system is another integrable system

matching the GN equation to the first order of the small

parameters ε, δ.

• The first GN equation can be written as

Vt + εV Vx + ηx = 0 where V = u − δ2

3 uxx,

• The second GN equation - first order in ε, δ:

ηt + Vx + δ3

3 Vxxx + ε(ηV )x = 0

rescaling and shift in η leads to the Kaup - Boussinesq system

Vt + V Vx + ηx = 0

ηt + Vxxx + (ηV )x = 0,
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• which is integrable, with Lax pair

Ψxx =
(

(ζ − 1
2V )2 − η

)

Ψ,

Ψt = −(ζ + 1
2V )Ψx + 1

4VxΨ.
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4. Travelling waves

• We are looking for solutions of the form of travelling waves, i.e.

solutions that depend on a single variable ξ = x − ct for some

constant velocity c.

• The second equation gives immediately

−cρ′ + (uρ)′ = 0

ρ(ξ) = α
u(ξ)−c where α is an integration constant.

The first equation

−cm′ + 2u′m + um′ + ρρ′ = 0, m = u − u′′ integrated once gives

−cm + 3
2u2 − 1

2 (u′)2 + 1
2ρ2 = β = const.

Introducing new variable z = u−c
|c| and using ρ = α

z(ξ)|c| the

equation for z(ξ) acquires the form

1
2 (z′)2 + zz′′ = 3

2z2 + 2 c
|c|z + 2c2−β

c2 + α2

2c2 z−2
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• integration over z of both sides gives:
∫

[ 12 (z′)2 + zz′′]dz = 1
2z(z′)2 − 1

2

∫

z2z′dz′ +
∫

zz′′dz =

= 1
2z(z′)2 −

∫

zz′ dz′

dξ
dξ
dz dz +

∫

zz′′dz = 1
2z(z′)2

• Finally

(zz′)2 = z4 + 2 c
|c|z

3 + γz2 + µz − α
c4

where γ and µ are new letters for the integration constants.

• z4 + 2 c
|c|z

3 + γz2 + µz − α
c4 = (z − z1)(z − z2)(z − z3)(z − z4)

ξ =
∫

zdz√
(z−z1)(z−z2)(z−z3)(z−z4)

⇒ z(ξ)
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5. Multicomponent CH generalizations

• In order to obtain multi-component generalizations, we consider

a more general Lax pair, leading to a hierarchy of Camassa-Holm

type:

Ψxx = Q(x, λ)Ψ,

Ψt = −U(x, λ)Ψx + 1
2Ux(x, λ)Ψ,

where

Q(x, λ) = λnqn(x) + λn−1qn−1(x) + . . . + λq1(x) + 1
4 ,

U(x, λ) = u0(x) + u1(x)
λ + . . . uk(x)

λk .

• The compatibility condition of these gives the equation

Qt = 1
2Uxxx − 2UxQ − UQx,

which, is equivalent to a chain of n evolution equations with

k + 1 differential constraints for the n + k + 1 variables

q1, q2, . . ., qn, u0, u1, . . ., uk
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(n and k are arbitrary natural numbers, i.e. positive integers):

qn−r,t = −
∑r

s=max(0,r−k)(2ur−s,xqn−s + ur−sqn−s,x),

r = 0, 1, . . . , n − 1,

0 = 1
2 (ur,xxx − ur,x) −

∑min(n,k−r)
s=1 (2ur+s,xqs + ur+sqs,x)

r = 0, 1, . . . , k − 1,

0 = 1
2 (uk,xxx − uk,x).

• Example 1: k = n = 2.

The choice u2 = −1/2 solves automatically one of the

constraints. The other two differential constraints can be easily

integrated, giving

q1 = u1 − u1,xx + ω1,

q2 = u0 − u0,xx + 3u2
1 − u2

1,x − 2u1u1,xx + 4ω1u1 + ω2,

where ω1,2 are arbitrary constants.
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The system of equations for u0, u1 is

q2,t + 2u0,xq2 + u0q2,x = 0,

q1,t + 2u0,xq1 + u0q1,x + 2u1,xq2 + u1q2,x = 0.

• Example 2: k = 1, n = 2.

In the notations u0 ≡ u, q1 ≡ q and q2 ≡ ρ2, and with the choice

u1 = −1/2, the system can be written in the form

qt = uqx + 2qux − ρρx = 0,

ρt + (uρ)x = 0,

where q = u − uxx + ω and ω is an arbitrary constant.
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• Example 3: CH equation

Taking u1 = ω1 = 0 gives q1 = 0, q2 = u0 − u0,xx + ω2 and we

obtain exactly the CH equation with u ≡ u0 and ω ≡ ω2.

CH can also be obtained as a reduction from Example 2 by

setting ρ = 0.
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2+1 dimensional generalization

The system

mt + 2Uxym + (Uy + γ)mx + ρρy = 0

ρt + [(Uy + γ)ρ]x = 0

with m = Ux − Uxxx + const

is integrable, and reduces to CH2 if x = y and u = Ux.

It can be written as a compatibility condition of two linear

systems (Lax pair) with a spectral parameter ζ:

Ψxx =
(

− ζ2ρ2 + ζm + 1
4

)

Ψ,

Ψt = 1
2ζ Ψy + (Uy + γ)Ψx + 1

2UxyΨ.
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6. Peakons of the system in the short-wave limit

• No peakons among the solitary wave solutions.

• However, there are peakon solutions of the ’short wave limit’

equation σ1 = 0.

• The peakon solutions have the form

m(x, t) =
∑N

k=1 mk(t)δ(x − xk(t))

u(x, t) = − 1
2

∑N
k=1 mk(t)|x − xk(t)|,

ρ(x, t) =
∑N

k=1 ρk(t)θ(x − xk(t)),

where θ is the Heaviside unit step function. The asymptotic

behaviour ρ(x, t) → 0 for x → ∞ and
∫

m dx = 0 lead to
∑N

l=1 ml =
∑N

l=1 ρl = 0, or
∑N

l=1 µl = 0

in terms of the new complex variable µk ≡ mk + iρk.
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The substitution of the above Ansatz into the equations under

the assumption that x1(t) < x2(t) < . . . < xN (t) for all t, (a

condition holding for the peakons of HS equation gives the

following dynamical system for the time-dependent variables:
dxk

dt = − 1
2

∑N
l=1 ml|xl − xk|,

dµk

dt = µk

2

∑N
l=1 µl sgn(k−l)

with the convention sgn(0) = 0.

The integrals for this system can be obtained from the integrals

of the original system by substituting the expressions . It is

convenient to write the system in terms of the new independent

variables ∆k ≡ xk+1 − xk,

Mk ≡ µ1 + . . . + µk,

with k = 1, 2, . . . , N − 1.

• The Hamiltonian of the new system is H = 1
2

∑N−1
l=1 |Mk|2∆k,
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the equations
d∆k

dt = −Re(Mk)∆k,
dMk

dt = 1
2M2

k

being Hamiltonian with respect to the bracket

{∆k, Ml} = −Mk

M̄k
δlk,

in which the bar stands for complex conjugation. These

equations integrate immediately:

Mk(t) = − 1
t/2+ck

,

∆k(t) = ∆k(0)
(t/2+ck,1)

2+c2

k,2

c2

k,1
+c2

k,2

,

where ck ≡ ck,1 + ick,2 = −M−1
k (0) is a complex constant with

real and imaginary parts ck,1 and ck,2 respectively. Notice that

the large time asymptotics Mk ∼ t−1, ∆k ∼ t2, are the same as

those for the peakons of the Hunter-Saxton equation when

ρk ≡ 0.
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