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| 1. Governing equations for the inviscid fluid motionl

e The motion of inviscid fluid with a constant density p is

described by the Euler’s equations:
B+ (v-V)v=—1VP+g,
V-v=0,

where v(x,y, 2z, t) is the velocity of the fluid at the point (z,y, z)
at the time ¢, P is the pressure in the fluid, g = (0,0, —g) is the

constant Earth’s gravity acceleration.

Consider now a motion of a shallow water over a flat bottom,
which is located at z = 0. We assume that the motion is in the

x-direction, and that the physical variables do not depend on y.




e Let h be the mean level of the water and let n(x,t) describes the
shape of the water surface, i.e. the deviation from the average

level. The pressure is
P = PA +pg(h - Z) —|—p(ﬂ?,2,t),
where P, is the constant atmospheric pressure, and p is a

pressure variable, measuring the deviation from the hydrostatic

pressure distribution.

On the surface z = h 4+ n, P = P4 and therefore p = npg. Taking
v = (u,0,w) we can write the kinematic condition on the surface
as (Johnson 1997)

_ 9n on _
w =% +tug, on z=h+4+n.

Finally, there is no horizontal velocity at the bottom, thus

w=20 on z = 0.

e The equations give the system




Ut + Uy + WU, = — =

= Wt + UWy + WW, = —=

Uy +w, =0

W= +Uune, p=mnpg, on  z=h+
w =20 on z = 0.

Let us introduce now dimensionless parameters

e =a/h and

60 =h/\,
where a is the typical amplitude of the wave and A is the typical

wavelength of the wave. Now we can introduce dimensionless
quantities, according to the magnitude of the physical quantities,

see (Johnson 1997, 2002) for details:
T — AT

z — zh,




This scaling is due to the observation that both w and p are
proportional to € i.e. the wave amplitude, since at undisturbed
surface (¢ = 0) both w = 0 and p = 0. The system in the new,

dimensionless variables is

ur + e(Uty + wWu,) = —pg,

6% (wy + e(uwy + ww,)) = —p.,

ux+wz207

W =1 + EUNg, P =1,
w =20 on z = 0.




| 2. Green-Naghdi Equations l

e We present a derivation of the relevant form of the Green
-Naghdi (GN) equations (Green and Naghdi 1976), which follows
directly from the above system.

We assume that u is not a function of z. This is not correct at
O(e), but this approximation is valid for the leading-order
problem. This assumption is equivalent to the simplifying
approximation used by Green and Naghdi (namely, that w is

linear in z in a single-layer model).

Thus we have w = —zu,, which satisfies u, + w, = 0 and the
bottom condition.

The second equation gives

p=n-— %52[(1 +en)? — 2] (ugs + eun, — eu?),

which satisfies the pressure condition at the surface.




e This expression for p is now used in the first equation, which is

then integrated over all z to give

_ 0%/3 3 2
u + ety + 1 = 135, [(1 4 en)” (Uat + eutzs — euz)la,

e The first order in the small parameters is
2

Uy 53 Ugrt + EUUL + Ny = 0.

e The condition on the surface gives

e+ [(u(l +en)]e = 0.




|3. Two component Camassa-Holm system I

One can demonstrate that the Green-Naghdi system can be
related to the following two component Camassa-Holm system in
the first order with respect to € and §2:

me + 2u,m + umg + pp, = 0,

Pt + (up)x =0,

where m = u — U ..

The CH equation can be obtained via the obvious reduction
p=0.

The system is integrable, it can be written as a compatibility

condition of two linear systems (Lax pair) with a spectral

parameter (:




\Ij:m: — <_ C2p2 + Cm+ %)\Ija
U= (g —u) Wy + Ju, .

e The system is also bi-Hamiltonian.

e The first Poisson bracket is
{A,BY=— [ [%(mm om) 28 + 845935 4 845,05

5m

for the Hamiltonian H = % [(um + p?)du;

e The second Poisson bracket is
[A, B}y =— [ { (0—0%)28 + 5A85B}dx
for the Hamiltonian Hy = £ [(up? + u® + uu2)dz.
It has two Casimirs: [ pdz and [ mdz.
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e Let us define p =1+ %677 — %82(”&2 +n?).

The expansion of p? in the same order of ¢ is

p? =1+en— i52u2.

With this definition it is straightforward to write in the form
2
(u — %um>t + Seuug + $(p*)s =0

or, introducing the variable m = u — %52um,
in the same order (i.e. neglecting terms of order £62)

my + emuy, + Seum, + %(pQ)x — 0.
Next, using the fact that in linear approximation

Ut ~ _77:67

we have p; =

11



With these expressions for p and p; the second GN equation can
be written as

pr + 5(pu)z = 0.
The rescaling u — %u, xr — % x,t— %t in GN equations gives

the CH2 system.

The case with —pp, term, which is considered in the most
previous works on the system, corresponds to a situation in
which the gravity acceleration points upwards.

Concerning the occurrences of peakons, it was recently
established that the only peakons of the CH2 system arise when

p =0 and u(x,t) = ce” ¢ for some wave speed ¢ # 0.

Wave breaking is the only way that singularities arise in smooth
solutions to the system and that for the occurrence of breaking
waves it is not necessary to require that p = 0.
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|Kaup - Boussinesq system I

The Kaup - Boussinesq system is another integrable system
matching the GN equation to the first order of the small
parameters ¢, 0.

The first GN equation can be written as

Vi +eVV,+n, =0 where V =u — %um,

The second GN equation - first order in €, o:

M+ Ve + 5 Vaar +€(nV)e = 0

rescaling and shift in 7 leads to the Kaup - Boussinesq system
Vi+VVe+n,=0

Nt + Vagz + 0V )z = 0,
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e which is integrable, with Lax pair

oo = ((C=3V)2=1)v,

U, =—((+3V)0, + 1V, 0.
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| 4. Travelling waves l

e We are looking for solutions of the form of travelling waves, i.e.
solutions that depend on a single variable & = x — ¢t for some
constant velocity c.

The second equation gives immediately

—cp’ + (up)' =0

p(§) = w6y —c Where a is an integration constant.

The first equation
—em’ +2u'm + um’ + pp’ =0, m = u — u” integrated once gives
—cm + 2u? — 1(u)? + $p? = B = const.

Introducmg new variable z = % and using p = Z(S)I | the

equation for z(&) acquires the form

%(z’)z—i—zz” —z —|—2|| z+ 2 54—2622 2
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e integration over z of both sides gives:
f[l( ’)2 +22")dz = L2(2)2 = L [222/d + [ 22"dz =
fzz/cil;é gﬁdz 4 fZZ”dZ _ %Z(Z/)2

e Finally
(22")? = 24 + 2152 24yt +pz— &
where v and p are new letters for the integration constants.
o 24 +215 |z + 922 +pz— % = (2 —21)(z — 22)(2 — 23) (2 — 24)

zdz
p— i
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|5. Multicomponent CH generalizationsl

e In order to obtain multi-component generalizations, we consider
a more general Lax pair, leading to a hierarchy of Camassa-Holm
type:

Vg = Q(xv )‘)\Ija
U, = —U(z,\)V, + sU, (2, \)V,

where

Q(z,N\) = Nqp(2) + N g_1(x) + ...+ Aqq () + i,

Uz, \) = ug(x) + 28 4 eele),

The compatibility condition of these gives the equation

Qr = %Uxasa: — 2U:Q — UQy,

which, is equivalent to a chain of n evolution equations with
k + 1 differential constraints for the n + k£ + 1 variables

d1, 42, - .-y 4n, Ug, U1, ..., Uk
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(n and k are arbitrary natural numbers, i.e. positive integers):

In—rt = = D smmax(0.r—k) 2Ur—s,0Gn—s + Ur—sqn—s.z),
r=0,1,...,n—1,

0= 3 (trzae — tra) = 2oy " QU p o e F Uy o )
r=0,1,...,k—1,

0= %(uk,xxx — uk,ac)-

Example 1. k. =n = 2.
The choice uy = —1/2 solves automatically one of the

constraints. The other two differential constraints can be easily
integrated, giving

qr — U1 — U1 zx + wi,
_ 2 9
g2 = U — Up gz T SUT — UT , — 2U U] g0 + dwWiUy + W2,

where wy o are arbitrary constants.
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The system of equations for ug, uq is

QQ,t + QUO,xQQ + UOQQ’;B — 0,
q1,t + 2U0,2q1 + UG,z + 2U1 2 Q2 + U1G2. = 0.

Example 2: k=1, n = 2.

In the notations ug = u, ¢; = ¢ and ¢» = p?, and with the choice

u; = —1/2, the system can be written in the form

gt = UqQy + 2quy — ppg = 0,
Pt + (’U,p)x — 07

where ¢ = u — u,, + w and w is an arbitrary constant.
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o Fxample 3. CH equation

Taking u; = w; =0 gives ¢1 = 0, g2 = up — Uz + w2 and we

obtain exactly the CH equation with u = ug and w = ws.

CH can also be obtained as a reduction from Example 2 by

setting p = 0.

20



| 2+1 dimensional generalization I

The system

my + 2Uz,m + (Uy + v)my + ppy =0

pr + Uy +7)pla =0

with m = U, — U,z + const

is integrable, and reduces to CH2 if x = y and u = U,..

It can be written as a compatibility condition of two linear

systems (Lax pair) with a spectral parameter (:
\Ijxsc — ( — C2p2 + Cm + i)qja
vy = %\py + (Uy +7)¥s +
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|6. Peakons of the system in the short-wave limit l

e No peakons among the solitary wave solutions.

e However, there are peakon solutions of the ’short wave limit’
equation o; = 0.

The peakon solutions have the form

m(z,t) = > mi(t)d(z — 2k (t))

u(@,t) = =5 gy ma ()| — ax(t)],

pla,t) = 35y pr()0(z — (1)),

where 6 is the Heaviside unit step function. The asymptotic
behaviour p(z,t) — 0 for x — oo and [ mdz = 0 lead to

N N
Zzzl my = 2121 pr =0, or
N
Zl:l pup =0
in terms of the new complex variable p; = my + 1p%.
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The substitution of the above Ansatz into the equations under
the assumption that z1(t) < z2(t) < ... < xzn(t) for all ¢, (a
condition holding for the peakons of HS equation gives the
following dynamical system for the time-dependent variables:

N
do‘litk - _% El:l ml‘xl - xkﬁ|7

U =5, msgn(k—1)

with the convention sgn(0) = 0.

The integrals for this system can be obtained from the integrals
of the original system by substituting the expressions . It is
convenient to write the system in terms of the new independent
variables Ay = xp11 — xp,

Mg =+ ..o+ p,

with £ =1,2,...,N — 1.

e The Hamiltonian of the new system is H = < l]izl | M |2 Ay,
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the equations

dA,
e —
dMp _ 1
e —

being Hamiltonian with respect to the bracket

_ My
— M, 5”{7

in which the bar stands for complex conjugation. These

equations integrate immediately:

1
My(t) = T ¥/24cy

Ak( ) _ Ak<0> (t/24ck,1) -|—01~c,27

2 2
Ck1TCk o

where ¢, = ¢ 1 +icko = —Mk_l(O) is a complex constant with
real and imaginary parts ci 1 and cj 2 respectively. Notice that
the large time asymptotics My, ~ t=%, Aj ~ t?, are the same as
those for the peakons of the Hunter-Saxton equation when
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