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1. Motivation

I Study of longitudinal bulk solitary waves in nonlinearly elastic
waveguides (Nariboli and Sedov 1970, Ostrovsky and Sutin 1977,
Engelbrecht 1981, Samsonov et al. 1984-present)

I Lattice modelling of nonlinear waves in a bi-layer with delamination
(Khusnutdinova and Silbershmidt 2003)

I Longitudinal bulk strain solitary waves can propagate for
considerable distances without any significant decay (Samsonov et
al. 2006)

I Aim: find experimentally observable nonlinear effects caused by
damage/ delamination. Show that splitting of a waveguide leads to
fission of a bulk solitary wave.

I Fission of a solitary wave in various problems of fluid mechanics
(Tappert and Zabusky 1971, Pelinovsky 1971, Johnson 1972,
Djordevic and Redekopp 1978, Grimshaw et al. 2007). No
consistent mathematical approach to problems of this type (e.g., no
approach to the description of higher-order corrections). No studies
in mechanics of elastic solids.



2. Model equation for long longitudinal waves

The Doubly Dispersive Equation (DDE) has been derived to describe
long nonlinear longitudinal waves in a cylindrical bar of circular cross
section by Samsonov (1984). The DDE can also be derived to describe
the propagation of a long nonlinear longitudinal bulk wave in an isotropic
elastic bar of rectangular cross section σ = {−a ≤ y ≤ a;−b ≤ z ≤ b}:
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Figure: Elastic bar of rectangular cross section.



2. Model equation for long longitudinal waves

Main assumptions:

I Murnaghan’s 5-constant model for the density of potential energy Π:

Π = (λ+ 2µ)I 2
1 /2− 2µI2 + (l + 2m)I 3

1 /3− 2mI1I2 + nI3 + ...

where Ik are invariants of the deformation tensor
C = [∇U + (∇U)T +∇U·(∇U)T ]/2.

I The planar cross-section hypothesis and the approximate relations
for the transverse displacements:

u = u(x , t) + ..., v = −yνux + ..., w = −zνux + ...,

where ν = λ
2(λ+µ) is Poisson’s ratio (Love, Volterra).

I The scaling

ε =
Wave amplitude

Wave length
=

(
Bar width

Wave length

)2



2. Model equation for long longitudinal waves

The DDE for long nonlinear longitudinal displacement waves in a bar of
rectangular cross section has the form:

utt − c2uxx =
β

ρ
uxuxx +

Jν2

σ
(utt − c2

1uxx)xx , (1)

where c =
√

E/ρ, c1 =
√
µ/ρ = c/

√
2(1 + ν), and

J =
∫
σ

(y2 + z2)dσ = 4ab
3 (a2 + b2).

Differentiating (1) with respect to x , we obtain the following equation for
the linear strain component e ≡ ux :

ett − c2exx =
β

2ρ
(e2)xx +

Jν2

σ

(
ett − c2

1exx

)
xx
. (2)

The one-parameter family of exact solitary wave solutions of (2):

e = e0 sech2 1

Λ
(x − st) , (3)

where

e0 =
3ρ(s2 − c2)

β
, Λ2 =

2ν2J

(1 + ν)σ

»
1 +

(1 + 2ν)s2

s2 − c2

–
.



3. Problem formulation

Consider the propagation of long nonlinear longitudinal bulk waves in a
delaminated, symmetric two-layered elastic bar (layers are identical and
have the same width 2a and the same height b). We assume that there is
a perfect interface when x < 0 and complete debonding when x > 0.
The material to the left of x = 0 may be different from the material to
the right, in which case we assume that the cross section x = 0 is also a
perfect interface.
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Figure: Delaminated, two-layered elastic bar.



3. Problem formulation

Assuming that the delamination area is {x > 0,−a < y < a, z = 0},
using the planar cross section hypothesis and the symmetry of the
structure, we consider the (1+1) - dimensional formulation of the
problem:

u−tt − u−xx = 2ε[−6u−x u−xx + u−xxxx ], (4)

u+
tt − c2u+

xx = 2ε[−6βu+
x u+

xx + γu+
xxxx ], (5)

u−|x=0 = u+|x=0, (6)

u−x + 2ε[−3(u−x )2 + u−xxx ]|x=0 =

c2u+
x + 2ε[−3β(u+

x )2 + γu+
xxx ]|x=0. (7)

Here, we used asymptotic relations u−ttxx = u−xxxx + O(ε) and
u+

ttxx = c2u+
xxxx + O(ε), and introduced dimensionless parameters

c2 =
c2
+

c2
−
, β =

β+ρ−
β−ρ+

, γ =
J+ν

2
+(c2

+ − c2
1+)σ−

J−ν2
−(c2

− − c2
1−)σ+

.

The same problem (4) – (7) appears in a continuum approximation for
long weakly nonlinear waves in an inhomogeneous FPU chain.



4. Weakly nonlinear solution

For x < 0, we look for a leading order solution in the form

u− = I (ξ−,X ) + R(η−,X )

+ εP(ξ−, η−,X ) + O(ε2), (8)

where ξ− = x − t and η− = x + t are the fast characteristic variables,
and X = εx is the slow space variable. This ansatz is similar to that
introduced by Miles (1977) in the study of the interaction of solitons,
apart from the replacement of the slow time with the slow space variable.

For x > 0, we look for a solution in the form

u+ = T (ξ+,X ) + εQ(ξ+, η+,X ) + O(ε2), (9)

where, again, we introduce the characteristic variables
ξ+ = x − ct, η+ = x + ct, and the slow space variable X = εx .



4. Weakly nonlinear solution

We assume that the right-propagating incident wave I (ξ−,X ) is known
and defined by a solution of the KdV equation:

I =

∫
Ĩ dξ−, where ĨX − 6Ĩ Ĩξ− + Ĩξ−ξ−ξ− = 0. (10)

We need to find the reflected wave

R =

∫
R̃dη−, where R̃X − 6R̃R̃η− + R̃η−η−η− = 0, (11)

and the higher-order terms:

P = 3[RIξ− + IRη− ] + φ(ξ−,X ) + ψ(η−,X ).

Here, we choose the function φ(ξ−,X ) = 0 in accordance with the
radiation conditions (there must be no corrections to the given incident
wave in the disturbance caused by it), and the function ψ(η−,X ) has to
be found from the continuity conditions.



4. Weakly nonlinear solution

Similarly, in the delaminated area (x > 0), we look for the leading order
transmitted wave

T =

∫
T̃ dξ+, where T̃X − 6

β

c2
T̃ T̃ξ+ +

γ

c2
T̃ξ+ξ+ξ+ = 0, (12)

and the higher-order corrections

Q = q(ξ+,X ) + r(η+,X ).

Here again,r(η+,X ) = 0 due to the radiation conditions (if the incident
wave is coming only from the left, the waves on the right-hand side must
be right-going), and q(ξ+,X ) should be found from the continuity
conditions.



4. Weakly nonlinear solution

Then, from continuity conditions we can find the “initial” conditions for
the KdV equations, defining both reflected and transmitted “strain”
waves at x = 0 in terms of the given incident wave:

R̃|x=0 = CR Ĩ |x=0 and T̃ |x=0 = CT Ĩ |x=0, (13)

where we introduced the reflection coefficient

CR =
c − 1

c + 1
, (14)

and the transmission coefficient

CT =
2

c(1 + c)
. (15)

Note, that if c = 1, i.e. if c− = c+, then the reflection coefficient
CR = 0, and there will be no leading order reflected wave.



4. Weakly nonlinear solution

We can also restore the dependence of ψ(η−,X )and q(ξ+,X ) on their
respective characteristic variables

ψ(η−,X ) =
1

1 + c

∫
[cf (η−,X ) + g(η−,X )] dη−,

q(ξ+,X ) =
1

c(1 + c)
×∫ [

f

(
−ξ+

c
,X

)
− g

(
−ξ+

c
,X

)]
dξ+ (16)



5. Fission of an incident solitary wave

We assume that the leading order right-propagating incident “strain”
wave is given by an exact solitary wave solution of the KdV (incident)
equation:

Ĩ = −v

2
sech2

√
v

2
(ξ− − vX ).

We should describe the leading order reflected and transmitted waves, as
well as the higher-order corrections. Since experimentally measured
quantities are the “strains” u−x and u+

x , we aim at finding the explicit
leading order asymptotics of these functions for large t and x .

5.1 Transmitted wave
The transmitted wave is defined by the spectrum of the Schrödinger
equation associated with the (transmitted) KdV equation:

Ψχχ + [λ− U(χ)]Ψ = 0, (17)

where, the potential is given by

U(χ) = −A sech2 χ

l
, A =

vβ

γc(1 + c)
, l =

2c√
v
.



5.1 Transmitted wave

The number N of secondary solitary waves produced in the delaminated
area is defined by the largest integer satisfying the inequality

N <
1

2

[(
1 +

4α2

π2

)1/2

+ 1

]
,

where α = π
√

Al = 2π

√
β

γ
· c

1 + c
. (18)

Parameters β, γ and c depend on material properties and geometry of
the waveguide, and have been defined in Sec. 3. There is always one
solitary wave for small α, while more solitons will emerge as α increases.
Asymptotically, as τ → +∞, the solution evolves into a procession of
solitary waves propagating to the right, and some decaying radiation (a
dispersive wave train) propagating to the left (e.g., Drazin and Johnson):

U ∼ −
N∑

n=1

2k2
n sech2kn(χ− 4k2

nτ − χn) + radiation.



5.1 Transmitted wave

Is fission still possible if the waveguide is made of one and the same
material? The answer is entirely defined by the geometry of the

waveguide. Indeed, in this case, c = 1, β = 1 and γ = J+σ−
J−σ+

= 4+κ2

4(1+κ2) ,

where κ = b/a. This yields

N =

{
largest integer <

1

2

[√
1 + 32

1 + κ2

4 + κ2
+ 1

]}
.

Thus, the number of secondary solitons depends on κ, and there will be
either two (for κ ≤ 2

√
2) or three (for κ > 2

√
2) solitons. For example,

for κ = 1 (i.e., b = a) there will be two secondary solitons.
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Figure: Two secondary solitons and dispersive radiation in the transmitted
wave field at X = 100 (κ = 1, v = 0.35).



5.2 Reflected wave

The reflected wave field is defined by the spectrum of the Schrödinger
equation, where the potential U(χ) is given by

U(χ) = −B sech2 χ

m
, B =

v(c − 1)

2(c + 1)
, m =

2√
v
.

Here, the sign of the coefficient B depends on the sign of the reflection
coefficient CR = c−1

c+1 , and is negative if c < 1. In this case the reflected
wave field does not contain any solitary waves, and the “initial” pulse
degenerates into a dispersive wave train. If c > 1, there will be at least
one reflected solitary wave accompanied by radiation.

If the structure is made of one and the same material, then the reflection
coefficient CR = 0, and there will be no leading order reflected wave.



5.3 Higher-order corrections

The expansions of the “strain” fields u−x and u+
x are given by

u−x = Ix(ξ−,X ) + Rx(η−,X )

+ ε
{

3[RĨξ− + 2Ĩ R̃ + I R̃η− ]

+
1

1 + c
g(η−,X )

}
, (19)

and

u+
x = Tx(ξ+,X )− ε 1

c(1 + c)
g(−ξ+

c
,X ), (20)

respectively. Here, the corrections in (19) describe diffraction in the
vicinity of the “jump”, and higher-order correction to the reflected wave,
while (20) gives higher-order correction to the transmitted wave.



5.3 Higher-order corrections

There is no leading order reflected wave if c = 1. However, a small
reflected wave exists in higher-order corrections to the “strain” field u−x :

u−x = Ix(ξ−,X ) + εr(η−,X ), where

r(η−,X ) =
v2

8
sech4

√
v

2
(η− + vX )×[

1 + 2γ − 3β + (1− γ) cosh
√

v(η− + vX )
]
.
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Figure: Higher-order reflected wave r(η−,X ) for c = 1, β = 1, γ = 5/8,
v = 0.35.

There is also a similar correction to the transmitted “strain” wave field.



6. Experiments

Experiments in the Ioffe Institute of the Russian Academy of Sciences,
St. Petersburg.

Figure: Experimental set-up.



6. Experiments

Holographic interferograms:

Figure: Experimentally observed secondary solitons in a two-layered PMMA bar.

Figure: Experimentally observed secondary solitons in a three-layered PMMA
bar.



6. Experiments

Theoretical prediction for the ratio of the amplitude of the lead “strain”
solitary wave in the delaminated area to the amplitude of the incident
“strain” solitary wave in the bonded area:

CA1
T =

γ

4

„r
1 +

8

γ
− 1

«2

, γ =
n2 + κ2

n2(1 + κ2)

Remark: The results have been generalized to the case of a symmetric
n-layered elastic bar.

The increase of the soliton amplitude is detectable (10-20 %, Dreiden et
al., to appear in Strain).

An expanded and refined experimental programme is in progress.



Concluding remarks

Concluding remarks:

I The approach can be applied to other equations with
piecewise-constant coefficients.

I The effect of fission of a strain soliton might be useful for the NDT
of certain layered structures.

Current work:

I various problems of multiple delamination areas, both for perfect
and imperfect interfaces, for other types of incident waves, and for
more complicated cases of asymmetric layered structures.

Question: Does anybody know anything about the spectrum of a
Schrödinger operator with the potential in the form of an N-soliton
solution of the KdV equation multiplied by a constant?
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