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Introduction

• Camassa–Holm equation:

mt = 2mux + umx, m = u− uxx

or

(1−D2
x)ut = 3uux − 2uxuxx − uuxxx

• Peakon solutions

u(x, t) =
N∑

j=1

pj(t) exp(−|x− qj(t)|),

where

q̇j =
N∑

k=1

exp(−|qj − qk|),

ṗj = pj

N∑
k=1

pk sign(qj − qk) exp(−|qj − qk|)

• All the attributes of an integrable equation:

– Lax representation

– bi-Hamiltonian structure

– infinite hierarchies of (local) symmetries and con-
servation laws

• The first local higher symmetry is

mτ = Dx(1−D2
x)m

−1

2

• The Camassa-Holm equation can be reduced to the
first negative flow of the KdV hierarchy via a recip-
rocal transformation.
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• Degasperis–Procesi equation:

mt = 3mux + umx, m = u− uxx

• The first local higher symmetry

mτ = Dx(1−D2
x)(4−D2

x)m
−2

3

• The Degasperis–Procesi equation can be related via
a reciprocal transformation to the negative flow of
the Kaup–Kupershmidt hierarchy.

• Other integrable equations of the form

(1−D2
x)ut = F (u, ux, . . .)

or

mt = F (u, m, ux, mx, . . .), m = u− uxx ?

• Is it possible to classify integrable equations of the
Camassa–Holm type?

Theorem 1. (Mikhailov–VN) If equation

mt = bmux + umx, m = u− uxx

possesses an infinite hierarchy of (quasi-) local higher
symmetries then b = 2,3.



Generalisations of the Camassa–Holm type equation

We consider the equation of the form

(1− ε2D2
x)ut = c1uux + ε

[
c2uuxx + c3u

2
x

]
(1)

+ ε2 [c4uuxxx + c5uxuxx]
+ ε3

[
c6uuxxxx + c7uxuxxx + c8u

2
xx

]
+ ε4 [c9uuxxxxx + c10uxuxxxx + c11uxxuxxx]

• c1, . . . , c11 ∈ C, ε ∈ C \ {0},

• The right hand side of the equation is a homogeneous
differential polynomial, if we assume weights

[Di
x(u)] = i, [ε] = −1,

• The right hand side is quadratic in u and its x-derivatives.



Theorem 2. Consider the equation (1) and suppose that
either:

c2 6= 0 or c6 6= 0 or c9 6= 0 or c1 + c4 6= 0.

If the equation (1) possesses an infinite hierarchy of quasi-
local higher symmetries then up to re-scaling x → αx, t →
βt, u → γu, α, β, γ = const it is one of the list:

(1− ε2D2
x)ut = 3uux − 2ε2uxuxx − ε2uuxxx, (2)

(1− ε2D2
x)ut = Dx

(
4− ε2D2

x

)
u2, (3)

(1− ε2D2
x)ut = Dx

[
(4− ε2D2

x)u
]2

, (4)

(1− ε2D2
x)ut = Dx(2 + εDx) [(2− εDx)u]2 , (5)

(1− ε2D2
x)ut = Dx(2− εDx)(1 + εDx)u

2, (6)

(1− ε2D2
x)ut = Dx(2− εDx) [(1 + εDx)u]2 , (7)

(1− ε2D2
x)ut = Dx(1 + εDx) [(2− εDx)u]2 , (8)

(1− ε2D2
x)ut = Dx [(2− εDx)(1 + εDx)u]2 , (9)

(1− ε2D2
x)ut = (1− ε2D2

x)(εuuxx −
1

2
εu2

x + cuux), (10)

(1− ε2D2
x)ut = (1− εDx)

[
εS(u)S(uxx)−

1

2
ε(S(ux))

2

−
1

2
cS(u)S(ux)

]
, S = 1 + εDx. (11)



Camassa-Holm equation (2). The equation (2) is the Camassa-
Holm equation. It can be rewritten as

mt = 2mux + umx, m = u− ε2uxx.

The Camassa-Holm equation possesses an infinite hier-
archy of local higher symmetries and the first non-trivial
local symmetry is

uτ = Dx(1− ε2uxx)
−1

2 .

Degasperi–Procesi equation (3). The equation (3) is the
Degasperis-Procesi equation and it can be rewritten as

mt = 6mux + 2umx, m = (1− ε2D2
x)u.

The Degasperis-Procesi equation also possesses an infi-
nite hierarchy of local higher symmetries and the first
non-trivial such a symmetry is

uτ = (4− ε2D2
x)Dx(1− ε2uxx)

−2

3 .

Equation (4). The first non-trivial symmetry of equation
(4) is

uτ = Dx

[(
4− ε2D2

x

)
(1− ε2D2

x)u
]−2

3 .

Equation (4) can be rewritten as

mt = Dx (m + 3u)2 , m = u− ε2uxx.

It is easy to see that the Degasperis-Procesi equation
transforms into the equation (4) under the transformation

u → (4− ε2D2
x)u.



Equation (5). The first non-trivial symmetry of equation
(5) is

uτ = (2 + εDx)Dx

[
(2− εDx)(u− ε2uxx)

]−2

3 .

The Degasperis–Procesi equation transforms into (5) un-
der the change of variables

u → (2− εDx)u.

Note that the other transformation u → (2 + εDx)u of
Degasperis-Procesi gives the equation (1−ε2D2

x)ut = Dx(2−
εDx) [(2 + εDx)u]2, which transforms into (5) under the
change x → −x, t → −t.

Equation (6). Equation (6) possesses a hierarchy of local
higher symmetries and the first non-trivial one is

uτ = Dx [(1− εDx)u]−1 .

Equation (7). The higher symmetries of this equation are
quasi-local and the first non-trivial one is

(1 + εDx)uτ = Dx

[
(1− ε2D2

x)u
]−1

.

However, the equation (7) can be rewritten as

mt = Dx(2− εDx) [(1 + εDx)u]2 , m = u− ε2uxx

and the latter equation possesses an infinite hierarchy of
local higher symmetries in dynamical variable m. One can
easily check that the first such a symmetry is

mτ = Dx(1− εDx)m
−1.

Equations (6) and (7) are related by the transformation
u → (1 + εDx)u. It is clear that this transformation does
not preserve the locality of higher symmetries of equation
(6).



Equation (8). The first higher symmetry of this equation
is

uτ = Dx [(2− εDx)(1− εDx)u]−2 .

It possesses an infinite hierarchy of local higher symme-
tries.

Equation (9). The first non-trivial higher symmetry of this
equation is quasi-local

(1 + εDx)uτ = Dx

[
(2− εDx)(1− ε2D2

x)u
]−2

.

We can rewrite this equation as

mt = Dx [(2− εDx)(1 + εDx)u]2 , m = u− ε2uxx

and the latter equation possesses an infinite hierarchy of
local higher symmetries (in m variable). Equation (9)
can be obtained from (8) via the transformation u →
(1 + εDx)u.



Perturbative symmetry approach in the symbolic rep-
resentation.

Consider an evolutionary equation

ut = F [u] ∈ R (12)

R denotes a differential ring of polynomials in u and its
x-derivatives over C. The ring has a natural gradation in
degrees of nonlinearity

R =
⊕
n>0

Rn,

where Rn denotes a linear space of differential polynomials
of degree n.
Definition 1. A differential polynomial G ∈ R is called a
generator of a symmetry of the equation (12) if a differ-
ential equation

uτ = G

is compatible with (12) Fτ −Gt = 0.

Every differential polynomial F ∈ R can be expressed as

F = F1[u] + F2[u] + F3[u] · · · , Fi[u] ∈ Ri.

It is convenient to introduce a notion of ”little oh” as

f = o(Rp) ⇔ F ∈
⊕
i>p

Rp.

Definition 2. A differential polynomial G ∈ R is called a
generator of an approximate symmetry of degree p > 0
if a differential equation uτ = G is compatible with the
equation (12) up to terms of degree p

Fτ −Gt = o(Rp).



• An integrable equation possesses infinitely many ap-
proximate symmetries of any degree.

• Any equation with ut = F1[u] + F2[u] + · · · , F1[u] 6=
0 possesses infinitely many approximate symmetries
of degree 1 – these are the symmetries of a linear
equation ut = F1[u].

• A condition of existence of approximate symmetries
of degree 2 imposes strong restrictions on the equa-
tion.

• An equation may possess infinitely many approximate
symmetries of degree 2 but fail to possess approxi-
mate symmetries of degree 3.

• Under some technical conditions on the equation the
condition of existence of infinitely many approximate
symmetries of degree 3 and the existence of at least
one exact symmetry is sufficient for integrability.



Symbolic representation

Let us introduce a notation ui := Di
x(u), i = 0,1,2,3, . . . .

Also we shall often write u0 as u.

Symbolic representation is nothing more than a simplified
form of notations of a Fourier transform.

1) Linear monomials un:

un → ûξn
1,

2) Quadratic monomials unum:

unum →
û2

2
(ξn

1ξm
2 + ξm

1 ξn
2).

3) General monomial:

un0

0 un1

1 · · ·unp

p →

→ ûn〈ξ0
1ξ0

2 · · · ξ0
n0

ξ1
n0+1 · · · ξ1

n0+n1
· · · ξp

n〉ξ

n0 + n1 + · · ·+ np = n.

4) Multiplication: f, g ∈ R

f → una(ξ1, . . . , ξn), g → upb(ξ1, . . . , ξp)

fg → un+p〈a(ξ1, . . . , ξn) b(ξn+1, . . . , ξn+p)〉ξ,



5) Derivation: f ∈ R

f → ûna(ξ1, . . . , ξn)

DN
x (f) → ûn(ξ1 + · · ·+ ξn)

Na(ξ1, . . . , ξn).

For example, if

f = uu2 =⇒ f →
û2

2
(ξ2

1+ξ2
2), Dn

x(f) →
û2

2
(ξ1+ξ2)

n(ξ2
1+ξ2

2)

5) Pseudo-differential operators in the symbolic form:

Dx → η

ηk(ûna(ξ1, . . . , ξn)) = ûna(ξ1, . . . , ξn)(ξ1 + · · ·+ ξn)
k, k ∈ Z



6) Formal series in the symbolic form:

Let we have two operators fDq and gDs such that f and
g have symbols uia(ξ1, ..., ξi) and ujb(ξ1, ..., ξj) respectively.
Then

fDq → uia(ξ1, ..., ξi)η
q, gDs → ujb(ξ1, ..., ξj)η

s

and

fDq ◦ gDs →

ui+j〈a(ξ1, ..., ξi)(η +

i+j∑
m=i+1

ξm)qb(ξi+1, ..., ξi+j)η
s〉 .

More general, in the symbolic representation instead of
formal series in powers of Dx we consider formal series in
powers on nonlinearity:

B = b(η) + ub1(ξ1, η) + u2b2(ξ1, ξ2, η) + · · · .

Here bj(ξ1, . . . , ξj, η) are some functions of their arguments,
symmetric with respect to permutations of arguments ξi,
but not necessarily argument η.

A function bn(ξ1, . . . , ξn, η) is called local if all the coeffi-
cients of its expansion

bn(ξ1, . . . , ξn, η) =
∑
j<s

bnj(ξ1, . . . , ξn)η
j, η →∞

are symmetric polynomials in ξ1, . . . , ξn.

7) The symbolic representation of the Frechét derivative
of the element f → una(ξ1, ..., ξn) is

f∗ → nun−1a(ξ1, ..., ξn−1, η) .



Symmetry Approach in symbolic representation

Let the right hand side of equations (12) be a differen-
tial polynomial. In the symbolic representation it can be
written as

ût = ûω(ξ1)+
û2

2
a1(ξ1, ξ2)+

û3

3
a2(ξ1, ξ2, ξ3)+· · · = F , (13)

where ω(ξ1), an(ξ1, ..., ξn+1) are symmetrical polynomials.
We will also assume that degω(ξ1) ≥ 2.

Symmetries of equation (13), if they exist, can be found
recursively:
Proposition 1. Expression

ûτ = ûΩ(ξ1) +
∑
j≥1

ûj+1

j + 1
Aj(ξ1, ..., ξj+1) = G (14)

is a symmetry of (13) if and only if functions Aj(ξ1, ..., ξj+1)
determined as follows are polynomials in ξ1, . . . , ξj+1



A1(ξ1, ξ2) =
Ω(ξ1 + ξ2)−Ω(ξ1)−Ω(ξ2)

ω(ξ1 + ξ2)− ω(ξ1)− ω(ξ2)
a1(ξ1, ξ2),

A2(ξ1, ξ2, ξ3) =

=
Ω(ξ1 + ξ2 + ξ3)−Ω(ξ1)−Ω(ξ2)−Ω(ξ3)

ω(ξ1 + ξ2 + ξ3)− ω(ξ1)− ω(ξ2)− ω(ξ3)
a2(ξ1, ξ2, ξ3) +

+
3

2

〈A1(ξ1, ξ2 + ξ3)a1(ξ2, ξ3)− a1(ξ1, ξ2 + ξ3)A1(ξ2, ξ3)〉
ω(ξ1 + ξ2 + ξ3)− ω(ξ1)− ω(ξ2)− ω(ξ3)



Am(ξ1, ..., ξm+1) =
GΩ(ξ1, ..., ξm+1)

Gω(ξ1, ..., ξm+1)
am(ξ1, ..., ξm+1) +

Gω(ξ1, ..., ξm+1)
−1 ·

[

〈
m−1∑
j=1

m + 1

m− j + 1
Aj(ξ1, ..., ξj,

m+1∑
k=j+1

ξk)am−j(ξj+1, ..., ξm+1)−

−
m−1∑
j=1

m + 1

j + 1
am−j(ξ1, ..., ξm−j,

m+1∑
k=m−j+1

ξk) ·Aj(ξm−j+1, ..., ξm+1)〉
]

where

Gω(ξ1, ..., ξm) = ω(
m∑

n=1

ξn)−
m∑

n=1

ω(ξn),

GΩ(ξ1, ..., ξm) = Ω(
m∑

n=1

ξn)−
m∑

n=1

Ω(ξn) .



Definition 3. A formal series

Λ = φ(η)+ûφ1(ξ1, η)+û2φ2(ξ1, ξ2, η)+û3φ3(ξ1, ξ2, ξ3, η)+· · · ,

where φ(η) is a non-constant polynomial in η is called
a formal recursion operator for the equation (13) if it
satisfies the equation

Λt = F∗ ◦ Λ− Λ ◦ F∗

and all its coefficients are local functions.
Proposition 2. The coefficients of the formal recursion
operator can be determined recursively

φ1(ξ1, η) = Gω(ξ1, η)
−1a1(ξ1, η)(φ(η + ξ1)− φ(η))

φm(ξ1, ..., ξm, η) =

Gω(ξ1, ..., ξm, η)−1{(φ(η +
m∑

k=1

ξk)− φ(η))am(ξ1, ..., ξm, η)+

m−1∑
n=1

〈
n

m− n + 1
φn(ξ1, ..., ξn−1,

m∑
k=n

ξk, η)am−n(ξn, ..., ξm)+

φn(ξ1, ..., ξn, η +
m∑

k=n+1

ξk)am−n(ξn+1, ..., ξm, η)−

am−n(ξn+1, ..., ξm, η +
n∑

k=1

ξk)φn(ξ1, ..., ξn, η)〉} .



Theorem 3. (Mikhailov-VN) Suppose equation (13) has
an infinite hierarchy of symmetries

ûti
= ûΩi(ξ1)+

∑
j≥1

ûj+1

j + 1
Aij(ξ1, . . . , ξj+1) = Gi , i = 1,2, . . .

where Ωi(ξ1) is a polynomial of degree mi = deg(Ωi(ξ1))
and m1 < m2 < · · · < mi < · · ·. Then the coefficients
φm(ξ1, ..., ξm, η) of the formal recursion operator

Λ = η + ûφ1(ξ1, η) + û2φ2(ξ1, ξ2, η) + · · ·
are local.

Integrability test:

• Find a first few coefficients φn(ξ1, ..., ξn, η) (first three
nontrivial coefficients φn were sufficient to analyse in
all known to us cases).

• Expand these coefficients in series of 1/η

φn(ξ1, ..., ξn, η) =
∑
s=sn

Φns(ξ1, ..., ξn)η
−s (15)

and find the corresponding functions Φns(ξ1, ..., ξn).

• Check that functions Φns(ξ1, ..., ξn) are polynomials
(not rational functions).



Nonlocal extension to the Camassa-Holm type equa-
tions.

ut = ∆
(
c1uux + ε

[
c2uuxx + c3u

2
x

]
(16)

+ ε2 [c4uuxxx + c5uxuxx]
+ ε3

[
c6uuxxxx + c7uxuxxx + c8u

2
xx

]
+ ε4 [c9uuxxxxx + c10uxuxxxx + c11uxxuxxx]

)
= F,

where

∆ = (1− ε2D2
x)

−1.

We extend the differential ring R

R0
∆ = R , R1

∆ = R0
∆

⋃
∆(R0

∆) , Rn+1
∆ = Rn

∆

⋃
∆(Rn

∆) ,

Symbolic representation of operator ∆ is ∆ → 1
1−ε2η2. The

symbolic representation of elements of differential rings
Rn

∆ is obvious. For example if A ∈ R0
∆ and

A → ûna(ξ1, ..., ξn)

then

∆(A) → ûn a(ξ1, . . . , ξn)

1− ε2(ξ1 + · · ·+ ξn)2

.

Performing shift u → u + 1 we bring equation (16) to the
form

ut = ∆(F1[u] + F2[u]), (17)
F1[u] = c1ux + εc2uxx + ε2c4uxxx + ε3c6uxxxx + ε4c9uxxxxx,

F2[u] = F



Theorem 4. Consider the equation (17) and suppose that
either:

c2 6= 0 or c6 6= 0 or c9 6= 0 or c1 + c4 6= 0.

If the equation (17) possesses a formal recursion operator
with quasi-local coefficients then up to re-scaling x →
αx, t → βt, u → γu, α, β, γ = const it is one of the list:

(1− ε2D2
x)ut = 3uux − 2ε2uxuxx − ε2uuxxx, (18)

(1− ε2D2
x)ut = Dx

(
4− ε2D2

x

)
u2, (19)

(1− ε2D2
x)ut = Dx

[
(4− ε2D2

x)u
]2

, (20)

(1− ε2D2
x)ut = Dx(2 + εDx) [(2− εDx)u]2 , (21)

(1− ε2D2
x)ut = Dx(2− εDx)(1 + εDx)u

2, (22)

(1− ε2D2
x)ut = Dx(2− εDx) [(1 + εDx)u]2 , (23)

(1− ε2D2
x)ut = Dx(1 + εDx) [(2− εDx)u]2 , (24)

(1− ε2D2
x)ut = Dx [(2− εDx)(1 + εDx)u]2 , (25)

(1− ε2D2
x)ut = (1− ε2D2

x)(εuuxx −
1

2
εu2

x + cuux), (26)

(1− ε2D2
x)ut = (1− εDx)

[
εS(u)S(uxx)−

1

2
ε(S(ux))

2

−
1

2
cS(u)S(ux)

]
, S = 1 + εDx. (27)



Camassa-Holm type equations with cubic nonlinear-
ity

• Zhijun Qiao’s equation

mt = Dx

[
m(u2 − u2

x)
]
, m = u− uxx.

• Another equation of this form

mt = u2mx + 3uuxm, m = u− uxx.

The corresponding structures and solutions of this
equation have been studied recently by A.N.W. Hone
and Jing Ping Wang.


