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Introduction
e Camassa—Holm equation:

me = 2muy, + umg, M = U — Uy,
or

(1 — Dg)’LLt = 3ulUy — 2UzUzy — Ulgzr

e Peakon solutions

N
u(z,t) = 3 pi(8) exp(—lz — g; (1)),

j=1
where

N
g = > exp(—lg — &),
k=1
N

p; = pj Y prsign(g — ) exp(—|g; — ql)
k=1

e All the attributes of an integrable equation:

— Lax representation

— bi-Hamiltonian structure

— infinite hierarchies of (local) symmetries and con-

servation laws
e [ he first local higher symmetry is
m; = D,(1 — D2)m™>

e T he Camassa-Holm equation can be reduced to the

first negative flow of the KdV hierarchy via a recip-
rocal transformation.



e Degasperis—Procesi equation:

my = 3muy + umg, M = U— Uyy

e [ he first local higher symmetry
m,; = D,(1 — D2)(4 — D?)m >
e [ he Degasperis—Procesi equation can be related via
a reciprocal transformation to the negative flow of
the Kaup—Kupershmidt hierarchy.
e Other integrable equations of the form
(1 — D)uy = F(u,ug,...)
or

me = F(u,m,uz,mg,...), M =1u— Uz ?

e Is it possible to classify integrable equations of the
Camassa—Holm type?

Theorem 1. (Mikhailov—VN) If equation
my = bmuy, + umgz, M = U — Uy,

possesses an infinite hierarchy of (quasi-) local higher
symmetries then b = 2, 3.



Generalisations of the Camassa—Holm type equation

We consider the equation of the form

(1-— eQDi)ut = ciuly + € [czuum + C3u926] (1)
+ 62 [C4uu:c:c:c + C5u:r;u:cx]
+ 63 [C6uux:rxw + cruzUzze + C8'U»52m]

4
+ € [C9uuwxxa:a: + C10UxUgzxx + Clluxa:u:ca:a:]
e c1,...,c11 € C, e C\ {0},

e T heright hand side of the equation is a homogeneous
differential polynomial, if we assume weights

[DL(w)] =i, [ =-1,

e T heright hand side is quadratic in v and its x-derivatives.



Theorem 2. Consider the equation (1) and suppose that
either:

co2#=0 or c#=0 or cg#*=0 or c1+4+ca#0.

If the equation (1) possesses an infinite hierarchy of quasi-
local higher symmetries then up to re-scaling x — ax, t —
Bt,u — yu, o, 3,7 = const it is one of the list:

(1 —€2D)u; = 3Buuy — 2€2Uplinr — €2 Ulgzz, (2)
(1-eD)uy = D, (4—¢€D2)u?, (3)
(1-eD2u, = D, [(4— D))’ (4)
(1—e2DDuy = D (24 eD,) [(2 — eD.)ul?, (5)
(1 —e2D?u; = D, (2 —eD.)(1 4+ eDy)u?, (6)
(1—€DYus = Dy(2—eDy) [(1+ eDu)u]?, (7)
(1—e2DDuy = Du(14eD,)[(2 — eDy)ul?, (8)
(1-€e?DHu; = D, [(2—eD,)(1 4+ eD)u)?, (9)
(1-@D2ue = (1 D) (etts — el + cuny), (10)
(1= @DDu = (= eD) [SWS(u) - 3e(S(w))

—%cS(u)S(ugg)] , S=1+e€D,. (11)



Camassa-Holm equation (2). The equation (2) is the Camassa-
Holm equation. It can be rewritten as

my = 2mu, +umy;, m=u— €% Ups.

The Camassa-Holm equation possesses an infinite hier-
archy of local higher symmetries and the first non-trivial
local symmetry is

ur = D;(1 — eQum)_%.

Degasperi—Procesi equation (3). The equation (3) is the
Degasperis-Procesi equation and it can be rewritten as

my = 6mu, + 2um,, m = (1 — 62D§)u.

The Degasperis-Procesi equation also possesses an infi-
nite hierarchy of local higher symmetries and the first
non-trivial such a symmetry is

ur = (4 — €2D?) Dy (1 — 2uzs) 5.

Equation (4). The first non-trivial symmetry of equation
(4) is

2

ur = D, [(4 —€°D2) (1 — D2)u] >.
Equation (4) can be rewritten as
my = Dy (m + 3u)2, m=1u — € Uys.

It is easy to see that the Degasperis-Procesi equation
transforms into the equation (4) under the transformation

u — (4 — €D?)u.



Equation (5). The first non-trivial symmetry of equation
(5) is

wIN

ur = (24 €D;)D, [(2 —eD;)(u — ezum)] e

The Degasperis—Procesi equation transforms into (5) un-
der the change of variables

u— (2 —eDy)u.
Note that the other transformation v — (2 4+ eD,)u of
Degasperis-Procesi gives the equation (1—e?D2)u; = D, (2—
eD.) [(2 + eD,)u]?, which transforms into (5) under the
change v — —x, t — —t.

Equation (6). Equation (6) possesses a hierarchy of local
higher symmetries and the first non-trivial one is

ur = D, [(1 — eD)u] ™t

Equation (7). The higher symmetries of this equation are
quasi-local and the first non-trivial one is

(14 eD)u, = D, [(1 — €2D2)u] .

However, the equation (7) can be rewritten as

and the latter equation possesses an infinite hierarchy of
local higher symmetries in dynamical variable m. One can
easily check that the first such a symmetry is

m: = D,(1 — er)m_l.

Equations (6) and (7) are related by the transformation
u — (1 4 eD,)u. It is clear that this transformation does
not preserve the locality of higher symmetries of equation

(6).



Equation (8). The first higher symmetry of this equation
is

ur = D, [(2 — €Dy) (1 — eDy)u] 2.

It possesses an infinite hierarchy of local higher symme-
tries.

Equation (9). The first non-trivial higher symmetry of this
equation is quasi-local

(1 + eD)ur = D, [(2— eD,)(1 — €2D2)u] ~.
We can rewrite this equation as
my = D, [(2—€eD;)(1 4+ eD;E)u]Q LM = U — €Uy

and the latter equation possesses an infinite hierarchy of
local higher symmetries (in m variable). Equation (9)
can be obtained from (8) via the transformation v —

(1 4+ eD,)u.



Perturbative symmetry approach in the symbolic rep-
resentation.

Consider an evolutionary equation

u = Flu] € R (12)

R denotes a differential ring of polynomials in v and its
z-derivatives over C. The ring has a natural gradation in
degrees of nonlinearity

R:@Rn,

n>0

where R,, denotes a linear space of differential polynomials
of degree n.

Definition 1. A differential polynomial G € R is called a
generator of a symmetry of the equation (12) if a differ-
ential equation

ur =G
is compatible with (12) F, — Gy = 0.
Every differential polynomial F' € R can be expressed as
F = Filu] + Folu] + F3[u] ---,  Fi[u] € R;.
It is convenient to introduce a notion of "little oh” as
f=o(R) = Fec@R,

1>p
Definition 2. A differential polynomial G € R is called a
generator of an approximate symmetry of degree p > 0

if a differential equation v, = G is compatible with the
equation (12) up to terms of degree p

FT — Gt — O(Rp).



An integrable equation possesses infinitely many ap-
proximate symmetries of any degree.

Any equation with u; = Fi[u] + Folu] + ---, Fi[u] #
O possesses infinitely many approximate symmetries
of degree 1 — these are the symmetries of a linear
equation u; = Fi[u].

A condition of existence of approximate symmetries
of degree 2 imposes strong restrictions on the equa-
tion.

An equation may possess infinitely many approximate
symmetries of degree 2 but fail to possess approxi-
mate symmetries of degree 3.

Under some technical conditions on the equation the
condition of existence of infinitely many approximate
symmetries of degree 3 and the existence of at least
one exact symmetry is sufficient for integrability.



Symbolic representation

Let us introduce a notation u; := D.(u), i =0,1,2,3,....
Also we shall often write ug as wu.

Symbolic representation is nothing more than a simplified
form of notations of a Fourier transform.

1) Linear monomials uy:

Uy — €y,

2) Quadratic monomials upum:

,aQ
untm — (6162 + £162)-

3) General monomial;
ugou?l . .ugp SN
~n 7 ¢0 40 0 ¢1 1
— (g€ 0 el L D),

no+mni—+---+np, =n.

4) Multiplication: f,g € R
f%una(glw"?gn)a gﬁupb(gla"'afp)

fg — u"Pla(€r,. .., &) b(Ent1s - Entp)es



5) Derivation: feR

f - ﬁna(é’l, .~ 7£n)
For example, if
U2 o .o u? .
f=uu = f — 3(514-52), Dy (f) — 5(514-52)”(514-52)
5) Pseudo-differential operators in the symbolic form:

D, —n

n*(@"a(€r,. .., &) = 0"al€r,. .., &)+ + &), keZ



6) Formal series in the symbolic form:

Let we have two operators fD? and gD?® such that f and
g have symbols v'a(£1, ..., &) and w/b(&q, ..., &) respectively.
Then

fD? — w'a(y, ..., &), gD® — wb(Ey, ..., €N
and
fD%0 gD’ —
i+7
uHHa(6r, o &)+ Y Em) B it, oy €k )°) -

m=i+1

More general, in the symbolic representation instead of
formal series in powers of D, we consider formal series in
powers on nonlinearity:

B =b(n) 4+ ubi(é1,m) + u?ba(€1,&2,m) + -+ - .

Here b;(&1,...,&5,n) are some functions of their arguments,
symmetric with respect to permutations of arguments §&;,
but not necessarily argument 7.

A function b,(&1,...,&.,n) is called local if all the coeffi-
cients of its expansion

bu(€1, -5 6nm) =D b (€1, &), n— oo
1<s

are symmetric polynomials in &1,...,&n.

7) The symbolic representation of the Frechét derivative
of the element f — u"a(&1,...,&,) is

fo = nu"ta(€e, . €no1,m) -



Symmetry Approach in symbolic representation

Let the right hand side of equations (12) be a differen-
tial polynomial. In the symbolic representation it can be
written as

,a2 3

iy = aw(£1>+5a1(5l,52)+%a2<51,§2,53>+- L =F, (13)

where w(é1),an(&1,...,&n+1) are symmetrical polynomials.
We will also assume that degw(&1) > 2.

Symmetries of equation (13), if they exist, can be found
recursively:
Proposition 1. Expression

a1
1Aj(£17--->§j+1) =G (14)

iy = 4Q(&) + ) -
17T
is a symmetry of (13) if and only if functions A;(1, ..., &j+1)

determined as follows are polynomials in &1, ...,&41



Q&1+ &2) — (&) — Q2(&2)

w(é1 + &) —w(ér) —w(&2) a1(&1,62),

A1(&1,62) =

Ax(€1,62,83) =

_ (&1 + 8+ 83) — Q&) — (&) — Q2(&3)

w(é1+ & +&3) —w(&1) — w(é2) —w(és) a2(£1,£2,83) +

_|_§<A1(£1, §2 + &3)a1(€2,83) — a1(€1, €2 + €3) A1(62,€3))
2 w(é + &+ &3) —w(&) —w(é2) —w(éa)




G2 s Em
(51, NS +1)a/m(£17 ...,gm-l-l) +

Am(&1s s &my1) = GY(&1y ey Emt1)

Gw(fla XS] €m—|—1)_1 ’ [

m—1 m—+1

1
<Z ik ++ 1AJ(£17 "'7£j7 Z Sk‘)aﬂ”L—j(fj-Fla 7£m+l) —
=1 =J k=j+1
-1 1 m—+1
-y ”f":l a3 € b S ) A (Em b1y s Emt))
=17 k=m—j+1
where
G961, &m) =w(D &) — ) w(én),
n=1 n=1

GQ(£17 ---7€m) — Q(Z gn) - Z Q(fn) .
n=1

n=1



Definition 3. A formal series

N = p(m)+ag1 (€1, n)+0°¢2(€1, €2, n)+ 0 p3(&1, €2, €3, M)+,

where ¢(n) is a non-constant polynomial in n is called
a formal recursion operator for the equation (13) if it
satisfies the equation

N =F,oN—ANokF,

and all its coefficients are local functions.
Proposition 2. The coefficients of the formal recursion
operator can be determined recursively

p1(&1,m) = G¥(&1,m) tar(€1,n)(¢(n + &1) — ¢(n))

¢m(£l, ---afmﬂ?) —

G¥(&1y -y &) (6 + D &) — d(m))am(&r, ooy Emsm)+
k=1

m—1 m
Z <m :/ + 1¢n(£17 cey gn—la Z gk) n)am—n(fm cey 5m)+
n=1

k=n

Gn(€1s &+ Y &) am-n(Enit, o &mym)—

k=n+1

A (nts o &ms Y )€1, s Enm))} -

k=1



Theorem 3. (Mikhailov-VN) Suppose equation (13) has
an infinite hierarchy of symmetries

i t1
uy, = ul2;(&1)+ ) -
25+

Aij(fl,...,€j+1)=Gi, 1=1,2,...

where 2;(&£1) is a polynomial of degree m; = deg(£2;(&1))
and m; < mp < --- < m; < ---. Then the coefficients
dm (&1, ..., Em,mn) Of the formal recursion operator

N\ = n _I_ ”aﬁbl(fla"?) + ﬂ2¢2(§1, 527 77) + te
are local.

Integrability test:

e Find a first few coefficients ¢,(&1,...,&n, ) (first three
nontrivial coefficients ¢, were sufficient to analyse in
all known to us cases).

e Expand these coefficients in series of 1 /7

Sn(€r, e nym) = Y Pus(€1, s )" (15)

s=s,

and find the corresponding functions ®,,s(&1, ..., &,).

e Check that functions ®,.(&1,...,&,) are polynomials
(not rational functions).



Nonlocal extension to the Camassa-Holm type equa-
tions.

up = A(cluum + € [czuum + C3u§] (16)
+ € [cattpzr + C5ULULL]
4+ 3 [c6uumm + CTUzUzzx + chugx}
+ [covUszzazr + CLOUZUzzzr + C11UZL Uz 2] ) = F,
where

A= (1-eD?) 1.

We extend the differential ring R

RA=R, RaA=RAJAMRAY), RI'=RA|JAMRA),

Symbolic representation of operator A is A — —L . The

1—e?n?"
symbolic representation of elements of differential rings
R, is obvious. For example if A € RQ and

A — ﬁna(fl, ,§n)
then
a(€17 S 7571)

A(A) — a"
N e P N &

Performing shift ©« — v+ 1 we bring equation (16) to the
form

ur = A(Fi[u] + F2[u]), (17)
1y [U] = C1Ug + €CoUzy + 6204ummx + €3C6umm:c:c + €4C9umx:c:csc7
Folu] = F



Theorem 4. Consider the equation (17) and suppose that
either:

co2#=0 or c#=0 or cg#*=0 or c1+4+ca#0.

If the equation (17) possesses a formal recursion operator
with quasi-local coefficients then up to re-scaling x —
axr,t — Bt,u — yu, o, 8,y = const it is one of the list:

(1 —€2D)u; = 3Buuy — 2€2Uplnr — € Ulgzz, (18)
(1-eD)uy = D, (4—¢€D2)u?, (19)
(1-D?u;, = D, [(4—eDDu)?, (20)
(1—e2DDuy = D (24 eD,) [(2 — eD,)ul?, (21)
(1 —€2D?u; = D (2 —eD.)(1 4+ eDy)u?, (22)
(1—e2D)uy = Dy(2 —eDy) [(1 4 eDa)u)?, (23)
(1—e2DDuy = D.(14eD,)[(2 — eDy)ul?, (24)
(1-€e?DHu; = D, [(2—eD,)(1 4+ eD)u)?, (25)
(1—EDu; = (1 - €2D?)(euttys — %eui ¥ cuus), (26)
(1= @DDu = (= eD) [SWS(u) - 3e(S(w))

—%cS(u)S(ugg)] , S=1+e€D,. (27)



Camassa-Holm type equations with cubic nonlinear-
ity
e Zhijun Qiao’s equation

my = Dy [m(u2 — ug)] ., M = U — Ugps.

e Another equation of this form

my = uzmx 4+ 3uum, m=u— Ugs.

The corresponding structures and solutions of this
equation have been studied recently by A.N.W. Hone
and Jing Ping Wang.



