Correlated Basis Function theory of the fermion hard-sphere fluid

Omar Benhar

INFN and Department of Physics
Università "La Sapienza"
I-00185 Roma, Italy

Otranto, May 30-June 4, 2011

Outline

\star Why hard spheres?
\star The hard core problem

* Perturbative expansion at low density
\star Correlated Basis Function (CBF) theory
\star Diagrammatic cluster expansion
* The Hyper-Netted-Chain approximation for the radial distribution function of a classical liquid
\star Extension to the case of quantum fluids: Bose statistics

Why hard spheres?

* The presence of a strong repulsive core is a prominent feature of the pair potentials describing the dynamics of a variety of systems, ranging from classical and quantum liquids to nuclear matter
\star Compare the distribution functions corresponding to Lennard-Jones and hard core potentials

$$
v_{\mathrm{LJ}}(r)=4 \epsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{12}\right]
$$

Why hard spheres? (continued)

* The nucleon-nucleon interaction is known to be strongly repulsive at short distances, as clearly shown by the saturation of the measured charge-density distributions

* Radial dependence of the nucleon-nucleon potential in the $S=0, T=1$ and $\ell=0$ channel

\star A system of pointlike fermions at uniform density ρ, interacting through the potential

$$
v(r)=\left(\begin{array}{cc}
\infty & r<a \\
0 & r>a
\end{array}\right.
$$

is a very useful model for investigating concepts and approximations employed to study the properties of nuclear matter

Taming the hard core

\triangleright Problem: "standard" perturbation theory in the Fermi gas basis cannot be used
\triangleright The matrix elements of the hard-core potential

$$
\left\langle\mathbf{p}^{\prime}\right| \nu|\mathbf{p}\rangle,
$$

where the states $|\mathbf{p}\rangle$ and $\left|\mathbf{p}^{\prime}\right\rangle$ describe non interacting particle pairs carrying relative momenta \mathbf{p} and \mathbf{p}^{\prime}, respectively, are divergent.
\triangleright The perturbative series can be rearranged replacing ν with the T-matrix, describing scattering between free particles

$$
\left\langle\mathbf{p}^{\prime}\right| T|\mathbf{p}\rangle=\left\langle\mathbf{p}^{\prime}\right| \nu|\mathbf{p}\rangle+\sum_{\mathbf{p}^{\prime \prime}}\left\langle\mathbf{p}^{\prime}\right| \nu\left|\mathbf{p}^{\prime \prime}\right\rangle \frac{m}{\mathbf{p}^{2}-\mathbf{p}^{\prime \prime 2}}\left\langle\mathbf{p}^{\prime \prime}\right| T|\mathbf{p}\rangle,
$$

where m is the particle mass.
$\triangleright T$ is well behaved, and in a dilute system can be treated in perturbation theory.

Results of perturbation theory

\triangleright Including the first four terms of the low-density expansion, the energy per particle can be written in the form

$$
\frac{E}{N}=\frac{k_{F}^{2}}{2 m}\left[\frac{3}{5}+\frac{2}{\pi} x+\frac{12}{35 \pi^{2}}(11-2 \ln 2) x^{2}+0.78 x^{3}\right]
$$

with $x=k_{F} a$ and $k_{F}=\left(6 \pi^{2} \rho / v\right)^{1 / 3}, v$ being the degeneracy of the system ($v=2$, 4 for pure neutron matter and symmetric nuclear matter, respectively)
\triangleright The estimated error is

$$
\Delta=\frac{k_{F}^{2}}{2 m} \frac{x^{4}}{1-x}
$$

\triangleright Note: denoting by r_{0} the unit radius, defined through $4 \pi \rho r_{0}^{3} / 3=1$ we find

$$
\frac{r_{0}}{a}=\frac{1}{x}\left(\frac{18 \pi}{4 v}\right)^{1 / 3} \approx \frac{1}{x}(1.5 \div 1.9)
$$

Convergence of the low-density expansion

\star How do we extend the description to the high-density region, relevant for many astrophysical applications?

Correlated Basis Function (CBF) theory

\star A complete set of correlated states are obtained from the Fermi gas states through the transformation

$$
|n\rangle=F\left|n_{F G}\right\rangle=\prod_{j>i} f\left(r_{i j}\right)\left|n_{F G}\right\rangle
$$

Correlated Basis Function (CBF) theory

* A complete set of correlated states are obtained from the Fermi gas states through the transformation

$$
|n\rangle=F\left|n_{F G}\right\rangle=\prod_{j>i} f\left(r_{i j}\right)\left|n_{F G}\right\rangle
$$

\triangleright The shape of $f\left(r_{i j}\right)$ reflects the behavior of the potential.

Correlated Basis Function (CBF) theory

* A complete set of correlated states are obtained from the Fermi gas states through the transformation

$$
|n\rangle=F\left|n_{F G}\right\rangle=\prod_{j>i} f\left(r_{i j}\right)\left|n_{F G}\right\rangle
$$

\triangleright The shape of $f\left(r_{i j}\right)$ reflects the behavior of the potential.
^ Problem: compute

$$
\frac{\left\langle 0_{F G}\right| F^{\dagger}\left(\sum_{i=1}^{N}-\frac{\nabla^{2}}{2 m}\right) F\left|0_{F G}\right\rangle}{\left\langle 0_{F G}\right| F^{\dagger} F\left|0_{F G}\right\rangle}
$$

Statistical mechanics of classical liquids

\star Canonical Ensamble : fixed particle number (N), volume (V) and temperature (T)
\triangleright Equilibrium probability density $\left(R \equiv\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right\}, P \equiv\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{N}\right\}\right)$:

$$
n_{0}(R, P)=\frac{1}{N!} \frac{\mathrm{e}^{-\beta H_{N}(R, P)}}{Q_{N}(V, T)},
$$

where $\beta=1 / T, H_{N}$ is the hamiltonian

$$
H_{N}(R, P)=T_{N}(P)+V_{N}(R)=\sum_{i=1}^{N} \frac{\mathbf{p}_{i}^{2}}{2 m}+\sum_{j>i=1}^{N} v\left(r_{i j}\right)
$$

with $r_{i j}=\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|$, and Q_{N} is the canonical partition function

$$
\begin{aligned}
Q_{N}(V, T) & =\frac{1}{N!} \int \frac{d P}{(2 \pi)^{3 N}} d R \mathrm{e}^{-\beta H_{N}(R, P)}=\frac{\Lambda^{-3 N}}{N!} Z_{N}(V, T) \\
\Lambda & =\left(\frac{2 \pi \beta}{m}\right)^{1 / 2}, Z_{N}(V, T)=\int d R \mathrm{e}^{-\beta V_{N}(R)}
\end{aligned}
$$

\star Link between statistical mechanics and thermodinamycs:
\triangleright At equilibrium the free energy F

$$
F=E-T S=-\frac{1}{\beta} \ln Q_{N}(V, T),
$$

where E and S denote energy and entropy, respectively, is minimum.

$$
P=-\left(\frac{\partial F}{\partial V}\right)_{T} \quad, \quad S=-\left(\frac{\partial F}{\partial T}\right)_{V} \quad, \quad E=-\left(\frac{\partial(F / T)}{\partial(1 / T)}\right)_{V}
$$

\star n-particle density:

$$
\begin{aligned}
\rho_{N}^{(n)}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{n}\right) & =\frac{1}{(N-n)!} \frac{1}{Q_{N}(V, T)} \int \frac{d P}{(2 \pi)^{3 N}} \int d^{3} r_{n+1} \ldots d^{3} r_{N} \mathrm{e}^{-\beta H_{N}} \\
& =\frac{N!}{(N-n)!} \frac{1}{Z_{N}(V, T)} \int d^{3} r_{n+1} \ldots d^{3} r_{N} \mathrm{e}^{-\beta V_{N}}
\end{aligned}
$$

Distribution functions

\triangleright Normalization of the n-particle density

$$
\int d^{3} r_{1} \ldots d^{3} r_{n} \rho_{N}^{(n)}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{n}\right)=\frac{N!}{(N-n)!}
$$

\triangleright Homogeneous system

$$
\rho_{N}^{(1)}\left(\mathbf{r}_{1}\right)=\frac{N}{V}=\rho
$$

\triangleright Ideal gas: $V_{N}(R)=0, Z_{N}(V, T)=V^{N}$

$$
\begin{gathered}
\rho_{N}^{(n)}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{n}\right)=\rho^{n} \frac{N!}{N^{n}(N-n)!}=\rho^{n}\left[1+O\left(\frac{n}{N}\right)\right] \\
\rho^{(2)}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\rho^{2}\left(1-\frac{1}{N}\right)
\end{gathered}
$$

\triangleright Definition of distribution functions

$$
g_{N}^{(n)}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{n}\right)=\frac{1}{\rho^{n}} \rho_{N}^{(n)}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{n}\right)
$$

Note: interaction effects factor out.
$\triangleright g_{N}^{(n)}$ describes deviations from independent (random) motion
$\triangleright n=2$

$$
g_{N}^{(2)}=g\left(r_{12}\right), \quad \lim _{r_{12} \rightarrow \infty} g\left(r_{12}\right)=\left(1-\frac{1}{N}\right)
$$

$\triangleright g\left(r_{12}\right)$ determines the interaction energy

$$
E=E_{\text {kin }}+E_{\text {int }}, \quad E_{\text {int }}=\frac{1}{2} \int d^{3} r_{12} v\left(r_{12}\right) g\left(r_{12}\right)
$$

\triangleright Warning : the simple structure of the above equation is deceiving, as the integration over the coordinates of $(N-2)$-particles is hidden in the definition of the two-particle distribution function.
\triangleright Problem : how do we compute $g\left(r_{12}\right)$?

Typical behavior of the radial distribution function

$\star g(r)$ of liquid Argon at temperature 100 K and density $1.396 \mathrm{~g} / \mathrm{cm}^{3}$, obtained from a molecular dynamics simulation

Enter the diagrammatic expansion

\triangleright Starting point

$$
\mathrm{e}^{-\beta \sum_{j>i=1}^{N} \nu\left(r_{i j}\right)}=\Pi_{j>i=1}^{N} \mathrm{e}^{-\beta v\left(r_{i j}\right)}=\Pi_{j>i=1}^{N} f^{2}\left(r_{i j}\right)=\Pi_{j>i=1}^{N}\left[1+h\left(r_{i j}\right)\right]
$$

$\triangleright v\left(r_{i j}\right)$ short ranged $\Rightarrow \lim _{r \rightarrow \infty} f^{2}(r)=1 \Rightarrow \lim _{r \rightarrow \infty} h(r)=0$
\triangleright Two-particle density

$$
\rho_{N}^{(2)}\left(r_{12}\right)=N(N-1) \frac{\int d^{3} r_{3} \ldots d^{3} r_{N} \Pi_{j>i=1}^{N}\left[1+h\left(r_{i j}\right)\right]}{\int d^{3} r_{1} \ldots d^{3} r_{N} \Pi_{j>i=1}^{N}\left[1+h\left(r_{i j}\right)\right]}=
$$

\triangleright Expand numerator and denominator in "powers" of the short-ranged function $h(r)$, the volume integral of which is small

$$
\Pi_{j>i=1}^{N}\left[1+h\left(r_{i j}\right)\right]=f^{2}\left(r_{12}\right)\left[1+\sum_{(i j) \neq(12)} h\left(r_{i j}\right)+\sum_{(i j),(k l) \neq(12)} h\left(r_{i j}\right) h\left(r_{k l}\right)+\ldots\right]
$$

* Associate diagrams to the terms resulting from the expansion of nimueretor and denonnimetor

$$
\begin{aligned}
& \int d d^{3} r_{3} h\left(r_{13}\right) h\left(r_{32}\right)= \\
& \int d^{3} r_{3} d 1^{3} r_{4} h\left(r_{13}\right) h\left(r_{34}\right) h\left(r_{42}\right)=
\end{aligned}
$$

External point; represents particles 1 or 2
Intermel point ; represents any of ponticles $3, \ldots, N$, The coordinates of which one integrated over. i.......j correlation line: represents a factor $h\left(r_{i j}\right)$, w where the indices i and j may bebel either internal or u external points.

* Topological Classification*

Connected

Disconnected

Reducible

* From labelled to unlabelled oliagnauns

The bleck dots correspond to dummy integration variables. Hence, labelling is irrelevant and can be omitted

$\Gamma=\frac{1}{2!}\{$ sum of all topologically distinct diagrams obtained assigmug lebels 3 \& 4 to the internal points. $\}$

* Diegremmetic expausien of the parr distribution functien $g\left(r_{12}\right)$.

$$
g\left(r_{12}\right)=f^{2}\left(r_{12}\right)\left[1+\sum_{n=1}^{\infty} \rho^{n} g_{m}\left(r_{12}\right)\right]
$$

* The sum incluoles the coutributiens of all connected and ineducible diegrems

$$
\begin{aligned}
& g_{1}\left(r_{12}\right)=0!^{9} \ddots_{0} \\
& g_{2}\left(r_{12}\right)=\frac{1}{6} \\
& +\frac{1}{b^{\prime}} \lambda^{\prime} \dot{1}+\frac{1}{b} \hat{1}+
\end{aligned}
$$

Further classification

* Nodal (or series) diagrams: all paths connecting The external points $1 \& 2$ go through (at least) one of the internal points (nodes)

* Elementary (or bridge) diagrams: There are several imalepenelnt paths (with no internal points in common) connecting the external points

$$
\begin{aligned}
g\left(r_{12}\right)= & e^{-\beta v\left(r_{22}\right)} e^{\left[N\left(r_{12}\right)+E\left(r_{12}\right)\right]} \\
= & e^{-\beta v\left(r_{12}\right)}\left\{1+\left[N\left(r_{12}\right)+E\left(r_{12}\right)\right]\right. \\
& \left.+\frac{1}{2}\left[N\left(r_{12}\right)+E\left(r_{12}\right)\right]^{2}+\cdots \cdot\right\} \\
= & e^{-\beta v\left(r_{12}\right)}\left[1+N\left(r_{12}\right)+E\left(r_{12}\right)\right]+X\left(r_{12}\right)
\end{aligned}
$$

* Composite (or parellel) aliagroms

Define
sum of all non-nodal dregrams

$$
\begin{aligned}
& N=0178180+0112170+\cdots \cdot \\
& =0186 \times[0170+0110+\cdots]
\end{aligned}
$$

Hypernetted Chain (HNC) approximation: neglect elementary diagrams (may be reasonable at "not too high" density

$$
N\left(r_{12}\right)=\rho \int d^{3} r_{3} X\left(r_{13}\right)\left[X\left(r_{32}\right)+N\left(r_{32}\right)\right]
$$

HNC integral equation for $g(r)$

\triangleright Neglecting elementary diagrams

$$
\begin{gathered}
g\left(r_{12}\right)=\mathrm{e}^{-\beta v\left(r_{i j}\right)} \mathrm{e}^{N\left(r_{i j}\right)} \\
X\left(r_{12}\right)=\mathrm{e}^{-\beta v\left(r_{12}\right)} \mathrm{e}^{N\left(r_{12}\right)}-N\left(r_{12}\right)-1=g\left(r_{12}\right)-1-N\left(r_{12}\right) \\
\mathrm{e}^{\beta v\left(r_{12}\right)} g\left(r_{12}\right)=\mathrm{e}^{N\left(r_{12}\right)} \Rightarrow N\left(r_{12}\right)=\beta v\left(r_{12}\right)+\ln g\left(r_{12}\right) \\
X\left(r_{12}\right)=g\left(r_{12}\right)-1-\beta v\left(r_{12}\right)-\ln g\left(r_{12}\right)
\end{gathered}
$$

\triangleright The integral equation of the previous slide becomes

$$
\beta v\left(r_{12}\right)+\ln g\left(r_{12}\right)=\rho \int d^{3} r_{3}\left[g\left(r_{13}\right)-1-\beta v\left(r_{13}\right)-\ln g\left(r_{13}\right)\right]\left[g\left(r_{32}\right)-1\right]
$$

Distribution function of the bosonic hard sphere liquid

\triangleright Replace the phase-space distribution with $|\Psi(R)|^{2}$

$$
g\left(r_{12}\right)=\frac{N(N-1)}{\rho^{2}} \frac{\int d^{3} r_{n+1} \ldots d^{3} r_{N}\left|\Psi_{0}(R)\right|^{2}}{\int d R\left|\Psi_{0}(R)\right|^{2}}
$$

\triangleright Ground state wave function

$$
\Psi_{0}(R)=\Pi_{j>i=1}^{N} f^{2}\left(r_{i j}\right)
$$

\triangleright Same diagrammatic expansion as in the case of classical liquids: replace $\exp \left[-\beta \nu\left(r_{i j}\right)\right] \rightarrow f^{2}\left(r_{i j}\right)$

$$
\begin{gathered}
X\left(r_{12}\right)=f^{2}\left(r_{12}\right) \mathrm{e}^{N\left(r_{12}\right)}-N\left(r_{12}\right)-1 \\
N\left(r_{12}\right)=\rho \int d^{3} r_{3} X\left(r_{13}\right)\left[N\left(r_{32}\right)+X\left(r_{32}\right)\right] \\
g\left(r_{12}\right)=N\left(r_{12}\right)+X\left(r_{12}\right)+1
\end{gathered}
$$

\star For any given $f(r), g(r)$ can be obtained iteratively
(1) Compute the first approximation to $X(r)$, setting $N(r)=0$

$$
X^{(0)}(r)=f^{2}(r)
$$

(2) solve the integral equation for $N(r)$ numerically, either through matrix inversion in coordinate space or in Fourier space, using

$$
N^{(0)}(k)=\frac{\rho X^{(0)}(k)}{1-\rho X^{(0)}(k)}
$$

(3) Compute

$$
X^{(1)}(r)=f^{2}(r) \exp \left[N^{(0)}(r)\right]-N^{(0)}-1
$$

(4) Go back to step (3) and continue till convergence is reached

Enter Fermi statistics

\triangleright Ground state wave function of the Fermion hard sphere liquid

$$
\Psi_{0}(R)=\Pi_{j>i=1}^{N} f^{2}\left(r_{i j}\right) \Phi_{0}(1, \ldots, N)
$$

$\triangleright \Phi_{0}$ is the ground state wave-function of the Fermi gas at density ρ

$$
\begin{gathered}
\Phi_{0}(1, \ldots, 0)=\frac{1}{\sqrt{N!}} \operatorname{det}\left[\phi_{i}\left(x_{i}\right)\right], \\
\phi_{i}\left(x_{i}\right)=\frac{1}{\sqrt{V}} \mathrm{e}^{i \mathbf{k}_{i} \cdot \mathbf{r}_{i}} \eta_{i}, \quad\left|\mathbf{k}_{i}\right|<k_{F}=\left(\frac{6 \pi^{2} \rho}{v}\right)^{1 / 3}
\end{gathered}
$$

\triangleright Antisymmetrization of the ground state wave function leads to significant changes in the diagrammatic cluster expansion of the distribution function

Ditribution function of the free Fermi gas

\triangleright Consider ($d x_{i}$ denotes \mathbf{r}_{i} integration and sum over discrete degrees of freedom)

$$
g_{F G}\left(r_{12}\right)==\frac{N(N-1)}{\rho^{2}} \frac{\int d x_{3} \ldots d x_{N}\left|\Phi_{0}\left(x_{1}, \ldots, x_{N}\right)\right|^{2}}{\int d x_{1} \ldots d x_{N}\left|\Phi_{0}\left(x_{1}, \ldots, x_{N}\right)\right|^{2}}
$$

\triangleright Exploiting the properties of determinants the above equation can be rewritten (recall: $\left|\mathbf{k}_{i}\right|,\left|\mathbf{k}_{j}\right|<k_{F}$)

$$
\begin{gathered}
g_{F G}\left(r_{12}\right)=\sum_{i, j} \phi_{i}\left(\mathbf{r}_{1}\right) \phi_{j}\left(\mathbf{r}_{2}\right)\left[\phi_{i}\left(\mathbf{r}_{1}\right) \phi_{j}\left(\mathbf{r}_{2}\right)-\phi_{j}\left(\mathbf{r}_{1}\right) \phi_{i}\left(\mathbf{r}_{2}\right)\right] \\
=\frac{v^{2}}{(2 \pi)^{6}}\left[\left(\frac{4 \pi k_{F}^{3}}{3}\right)^{2}-\frac{1}{v}\left|\int_{|\mathbf{k}|<k_{F}} d^{3} k \mathrm{e}^{i \mathbf{k} \cdot \mathbf{r}_{12}}\right|^{2}\right]=\rho^{2}\left[1-\frac{1}{v} \ell^{2}\left(k_{F} r_{12}\right)\right] \\
\ell(x)=\frac{3}{x^{3}}[\sin x-x \cos x]
\end{gathered}
$$

$g_{F G}(r)$ in symmetric nuclear matter at equilibrium density

