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Why hard spheres?

? The presence of a strong repulsive core is a prominent feature of the
pair potentials describing the dynamics of a variety of systems,
ranging from classical and quantum liquids to nuclear matter

? Compare the distribution functions corresponding to Lennard-Jones
and hard core potentials

vLJ(r) = 4ε

[(σ
r

)12
−

(σ
r

)12
]
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Why hard spheres? (continued)

? The nucleon-nucleon interaction is known to be strongly repulsive at
short distances, as clearly shown by the saturation of the measured
charge-density distributions
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? Radial dependence of the
nucleon-nucleon potential in
the S = 0, T = 1 and `= 0
channel

? A system of pointlike fermions at uniform density ρ, interacting
through the potential

v(r) =
( ∞ r < a

0 r > a

is a very useful model for investigating concepts and approximations
employed to study the properties of nuclear matter
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Taming the hard core

. Problem: “standard” perturbation theory in the Fermi gas basis cannot
be used

. The matrix elements of the hard-core potential

〈p′|v|p〉 ,

where the states |p〉 and |p′〉 describe non interacting particle pairs
carrying relative momenta p and p′, respectively, are divergent.

. The perturbative series can be rearranged replacing v with the
T-matrix, describing scattering between free particles

〈p′|T |p〉 = 〈p′|v|p〉+∑
p′′

〈p′|v|p′′〉 m

p2 −p′′2 〈p′′|T |p〉 ,

where m is the particle mass.

. T is well behaved, and in a dilute system can be treated in
perturbation theory.
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Results of perturbation theory

. Including the first four terms of the low-density expansion, the energy
per particle can be written in the form

E

N
= k2

F

2m

[
3

5
+ 2

π
x+ 12

35π2 (11−2ln2)x2 +0.78x3
]

with x = kF a and kF = (6π2ρ/ν)1/3, ν being the degeneracy of the
system (ν= 2, 4 for pure neutron matter and symmetric nuclear
matter, respectively)

. The estimated error is

∆= k2
F

2m

x4

1−x

. Note: denoting by r0 the unit radius, defined through 4πρr3
0/3 = 1 we

find
r0

a
= 1

x

(
18π

4ν

)1/3

≈ 1

x
(1.5÷1.9)
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Convergence of the low-density expansion

? How do we extend the description to the high-density region, relevant
for many astrophysical applications?
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Correlated Basis Function (CBF) theory

? A complete set of correlated states are obtained from the Fermi gas
states through the transformation

|n〉 = F |nFG〉 =
∏
j>i

f (rij) |nFG〉

. The shape of f (rij) reflects the
behavior of the potential.

? Problem: compute

〈0FG|F†
(∑N

i=1− ∇2

2m

)
F |0FG〉

〈0FG|F†F |0FG〉
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Statistical mechanics of classical liquids

? Canonical Ensamble : fixed particle number (N), volume (V ) and
temperature (T)

. Equilibrium probability density (R ≡ {r1, . . . ,rN }, P ≡ {p1, . . . ,pN }):

n0(R,P) = 1

N !

e−βHN (R,P)

QN (V ,T)
,

where β= 1/T , HN is the hamiltonian

HN (R,P) = TN (P)+VN (R) =
N∑

i=1

p2
i

2m
+

N∑
j>i=1

v(rij) ,

with rij = |ri − rj|, and QN is the canonical partition function

QN (V ,T) = 1

N !

∫
dP

(2π)3N
dR e−βHN (R,P) = Λ−3N

N !
ZN (V ,T)

Λ=
(

2πβ

m

)1/2

, ZN (V ,T) =
∫

dR e−βVN (R)
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? Link between statistical mechanics and thermodinamycs:

. At equilibrium the free energy F

F = E −TS =− 1

β
lnQN (V ,T) ,

where E and S denote energy and entropy, respectively, is minimum.

P =−
(
∂F

∂V

)
T

, S =−
(
∂F

∂T

)
V

, E =−
(
∂(F/T)

∂(1/T)

)
V

? n-particle density:

ρ(n)
N (r1, . . . ,rn) = 1

(N −n)!

1

QN (V ,T)

∫
dP

(2π)3N

∫
d3rn+1 . . .d3rN e−βHN

= N !

(N −n)!

1

ZN (V ,T)

∫
d3rn+1 . . .d3rN e−βVN
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Distribution functions

. Normalization of the n-particle density∫
d3r1 . . .d3rn ρ

(n)
N (r1, . . . ,rn) = N !

(N −n)!

. Homogeneous system

ρ(1)
N (r1) = N

V
= ρ

. Ideal gas: VN (R) = 0, ZN (V ,T) = V N

ρ(n)
N (r1, . . . ,rn) = ρn N !

Nn(N −n)!
= ρn

[
1+O

( n

N

)]

ρ(2)(r1,r2) = ρ2
(
1− 1

N

)
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. Definition of distribution functions

g(n)
N (r1, . . . ,rn) = 1

ρnρ
(n)
N (r1, . . . ,rn)

Note: interaction effects factor out.

. g(n)
N describes deviations from independent (random) motion

. n = 2

g(2)
N = g(r12) , lim

r12→∞g(r12) =
(
1− 1

N

)
. g(r12) determines the interaction energy

E = Ekin +Eint , Eint = 1

2

∫
d3r12 v(r12)g(r12)

. Warning : the simple structure of the above equation is deceiving, as
the integration over the coordinates of (N −2)-particles is hidden in
the definition of the two-particle distribution function.

. Problem : how do we compute g(r12)?
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Typical behavior of the radial distribution function

Figure 11: Radial distribution function determined from a
 ps molecular dynamics simulation of liquid argon at a

temperature of  K and a density of  g/cm [15].

A typical radial distribution function calculated from a MD simulation is shown in Fig. 11. At short
distances (less than atomic diameter)  is zero. This is due to the strong repulsive forces. The first

(and large) peak occurs at  Å, with  having a value of about . This means that it is

three times more likely that two molecules would be found at this separation. The radial distribution
function then falls and passes through a minimum value around  Å. The chances of finding
two atoms with this separation are less. At long distances,  approaches one which indicates there

is no long-rang order.

To calculate the pair distribution function from a simulation, the neighbors around each atom or
molecule are sorted into distance bins. The number of neighbors in each bin is averaged over the
entire simulation. For example, a count is made of the number of neighbors between  and ,

 and  Å and so on for every atom or molecule in the simulation. This count can be
performed during the simulation itself or by analyzing the configurations that are generated.

Radial distribution function can be measured experimentally using X-ray diffraction. The regular
arrangement of the atoms in a crystal gives the characteristic X-ray diffraction pattern with bright,
sharp spots. For liquids, the diffraction pattern has regions of high and low intensity but no sharp
spots. The X-ray diffraction pattern is analyzed to estimate an experimental distribution function,
which is compared with the results obtained from the simulation.

Thermodynamic properties can be studied by calculating the radial distribution function. For example,
in the calculation for the energy of a real gas, we consider the spherical shell of volume  that
contains  particles. If the pair potential at a distance  has a value , the energy of

interaction between the particles in the shell and the central particle is . The total

potential energy of the real gas is obtained by integrating  from  to  and multiplied by 

(the factor  ensures that we only count each interaction once). The total energy is

? g(r) of liquid Argon at temperature 100 K and density 1.396 g/cm3,
obtained from a molecular dynamics simulation
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Enter the diagrammatic expansion

. Starting point

e−β
∑N

j>i=1 v(rij) =ΠN
j>i=1e−βv(rij) =ΠN

j>i=1 f 2(rij) =ΠN
j>i=1 [1+h(rij)]

. v(rij) short ranged ⇒ limr→∞ f 2(r) = 1 ⇒ limr→∞ h(r) = 0

. Two-particle density

ρ(2)
N (r12) = N(N −1)

∫
d3r3 . . .d3rN ΠN

j>i=1[1+h(rij)]∫
d3r1 . . .d3rN ΠN

j>i=1[1+h(rij)]
=

. Expand numerator and denominator in “powers” of the short-ranged
function h(r), the volume integral of which is small

ΠN
j>i=1[1+h(rij)] = f 2(r12)

[
1 + ∑

(ij) 6=(12)
h(rij) + ∑

(ij),(kl) 6=(12)
h(rij)h(rkl) + . . .

]
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HNC integral equation for g(r)

. Neglecting elementary diagrams

g(r12) = e−βv(rij) eN(rij)

X(r12) = e−βv(r12)eN(r12) −N(r12)−1 = g(r12)−1−N(r12)

eβv(r12)g(r12) = eN(r12) ⇒ N(r12) =βv(r12)+ lng(r12)

X(r12) = g(r12)−1−βv(r12)− lng(r12)

. The integral equation of the previous slide becomes

βv(r12)+ lng(r12) = ρ
∫

d3r3[g(r13)−1−βv(r13)− lng(r13)][g(r32)−1]
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Distribution function of the bosonic hard sphere liquid

. Replace the phase-space distribution with |Ψ(R)|2

g(r12) = N(N −1)

ρ2

∫
d3rn+1 . . .d3rN |Ψ0(R)|2∫

dR |Ψ0(R)|2

. Ground state wave function

Ψ0(R) =ΠN
j>i=1f 2(rij)

. Same diagrammatic expansion as in the case of classical liquids:
replace exp[−βv(rij)] → f 2(rij)

X(r12) = f 2(r12)eN(r12) −N(r12)−1

N(r12) = ρ
∫

d3r3X(r13)[N(r32)+X(r32)]

g(r12) = N(r12)+X(r12)+1
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? For any given f (r), g(r) can be obtained iteratively

(1) Compute the first approximation to X(r), setting N(r) = 0

X (0)(r) = f 2(r)

(2) solve the integral equation for N(r) numerically, either through matrix
inversion in coordinate space or in Fourier space, using

N (0)(k) = ρX (0)(k)

1−ρX (0)(k)

(3) Compute
X (1)(r) = f 2(r) exp[N (0)(r)]−N (0) −1

(4) Go back to step (3) and continue till convergence is reached
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Enter Fermi statistics

. Ground state wave function of the Fermion hard sphere liquid

Ψ0(R) =ΠN
j>i=1f 2(rij) Φ0(1, . . . ,N)

. Φ0 is the ground state wave-function of the Fermi gas at density ρ

Φ0(1, . . . ,0) = 1p
N !

det[φi(xi)] ,

φi(xi) = 1p
V

eiki·ri ηi , |ki| < kF =
(

6π2ρ

ν

)1/3

. Antisymmetrization of the ground state wave function leads to
significant changes in the diagrammatic cluster expansion of the
distribution function
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Ditribution function of the free Fermi gas

. Consider (dxi denotes ri integration and sum over discrete degrees of
freedom)

gFG(r12) == N(N −1)

ρ2

∫
dx3 . . .dxN |Φ0(x1, . . . ,xN )|2∫
dx1 . . .dxN |Φ0(x1, . . . ,xN )|2

. Exploiting the properties of determinants the above equation can be
rewritten (recall: |ki|, |kj| < kF )

gFG(r12) =∑
i,j
φi(r1)φj(r2)[φi(r1)φj(r2)−φj(r1)φi(r2)]

= ν2

(2π)6

[(
4πk3

F

3

)2

− 1

ν

∣∣∣∣∫|k|<kF

d3k eik·r12

∣∣∣∣2
]
= ρ2

[
1− 1

ν
`2(kF r12)

]

`(x) = 3

x3 [sinx−x cosx]
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gFG(r) in symmetric nuclear matter at equilibrium density
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