Correlated Basis Function theory of the fermion hard-sphere fluid

Omar Benhar

INFN and Department of Physics
Università "La Sapienza"
I-00185 Roma, Italy

Otranto, May 30-June 4, 2011

Outline

\star Fermi gas radial distribution function
\star Diagrammatic expansion for Fermi systems
\star FHNC equations for the radial distribution function
\star Calculation of the ground state energy
\star The CBF effective interaction. Shear viscosity of the Fermi hard sphere fluid
\star Extension to neutron star matter

Ditribution function of the free Fermi gas

\triangleright Consider ($d x_{i}$ denotes \mathbf{r}_{i} integration and sum over discrete degrees of freedom)

$$
g_{F G}\left(r_{12}\right)==\frac{N(N-1)}{\rho^{2}} \frac{\int d x_{3} \ldots d x_{N}\left|\Phi_{0}\left(x_{1}, \ldots, x_{N}\right)\right|^{2}}{\int d x_{1} \ldots d x_{N}\left|\Phi_{0}\left(x_{1}, \ldots, x_{N}\right)\right|^{2}}
$$

\triangleright Exploiting the properties of determinants the above equation can be rewritten (recall: $\left|\mathbf{k}_{i}\right|,\left|\mathbf{k}_{j}\right|<k_{F}$)

$$
\begin{gathered}
\rho^{2} g_{F G}\left(r_{12}\right)=\sum_{i, j} \phi_{i}^{\dagger}\left(\mathbf{r}_{1}\right) \phi_{j}^{\dagger}\left(\mathbf{r}_{2}\right)\left[\phi_{i}\left(\mathbf{r}_{1}\right) \phi_{j}\left(\mathbf{r}_{2}\right)-\phi_{j}\left(\mathbf{r}_{1}\right) \phi_{i}\left(\mathbf{r}_{2}\right)\right] \\
=\frac{v^{2}}{(2 \pi)^{6}}\left[\left(\frac{4 \pi k_{F}^{3}}{3}\right)^{2}-\frac{1}{v}\left|\int_{|\mathbf{k}|<k_{F}} d^{3} k \mathrm{e}^{i \mathbf{k} \cdot \mathbf{r}_{12}}\right|^{2}\right]=\rho^{2}\left[1-\frac{1}{v} \ell^{2}\left(k_{F} r_{12}\right)\right] \\
\ell(x)=\frac{3}{x^{3}}[\sin x-x \cos x]
\end{gathered}
$$

$g_{F G}(r)$ in symmetric nuclear matter at equilibrium density

Diagrammatic representation of $g_{F G}$

$$
\begin{equation*}
g_{F G}\left(r_{12}\right)=1-\frac{1}{v} \ell^{2}\left(k_{F} r_{12}\right)= \tag{2}
\end{equation*}
$$

\star Diagrammatic rules
\triangleright statistical correlations between particles 1 and 2 , corresponding to

$$
-\frac{1}{v} \int_{|\mathbf{k}|<k_{F}} d^{3} k \mathrm{e}^{i \mathbf{k} \cdot \mathbf{r}_{12}}=-\frac{1}{v} \ell\left(k_{F} r_{12}\right)
$$

are represented by oriented solid lines
\triangleright oriented lines form loops that do not touch one another
\triangleright each loop contributes a factor $-v$
\triangleright in the cluster expansion of $g(r)$ the statistical correlation lines can be superimposed to dynamical correlation lines

* only connected and irreducible diagrams contribute

Effect of statistical correlation

\star As an exmple, consider the term of order ρ in the expansion of the radial distribution function. In the case of Fermi statistics

$$
\begin{gathered}
\int d^{3} r_{3} h\left(r_{13}\right) h\left(r_{32}\right) \Rightarrow \int d^{3} r_{3} h\left(r_{13}\right) h\left(r_{32}\right) \Delta(1,2,3) \\
\Delta(1,2,3)=\int d x_{4} \ldots d x_{N}\left|\Phi_{0}(1, \ldots, N)\right|^{2} \\
=1-\frac{1}{v} \ell^{2}\left(k_{F} r_{12}\right)-\frac{1}{v} \ell^{2}\left(k_{F} r_{13}\right)--\frac{1}{v} \ell^{2}\left(k_{F} r_{32}\right) \\
-\frac{1}{v^{2}} \ell\left(k_{F} r_{12}\right) \ell\left(k_{F} r_{23}\right) \ell\left(k_{F} r_{32}\right)-\frac{1}{v^{2}} \ell\left(k_{F} r_{13}\right) \ell\left(k_{F} r_{32}\right) \ell\left(k_{F} r_{21}\right)
\end{gathered}
$$

* Antisymmetrization of the grond state leads to the appearance of five additional contributions.

Diagrams contributing to $\mathrm{g}_{1}(r)$

* The diagrams can be classified according to the pattern of statistical correlation lines reaching the external points

Classification of nodal diagrams

\star In Fermi systems nodal diagrams $N\left(r_{12}\right)$ can be classified in four different classes
$\triangleright N_{d d}\left(r_{12}\right)$ nodal diagrams having no statistical correlation lines reaching the external points
$\triangleright N_{d e}\left(r_{12}\right) N_{d e}\left(r_{21}\right)$ nodal diagrams in which either of the external points belongs to a binary exchange loop involving one internal point
$\triangleright N_{e e}\left(r_{12}\right)$ nodal diagrams in which both external points belong to a binary exchange loops, involving internal points
$\triangleright N_{c c}\left(r_{12}\right)$ nodal diagrams in which both external points belong to a circular exchange loop involving internal points

Parallel connection of nodal diagrams

\triangleright Define:

$$
F\left(r_{12}\right)=f^{2}\left(r_{12}\right) \mathrm{e}^{N_{d d}\left(r_{12}\right)}
$$

\triangleright Composite diagrams can be generated through parallel connections of the nodal diagrams $N_{x y}\left(r_{12}\right)$ according to

$$
\begin{gather*}
X_{d d}\left(r_{12}\right)=F\left(r_{12}\right)-N_{d d}\left(r_{12}\right)-1 \\
X_{d e}\left(r_{12}\right)=F\left(r_{12}\right) N_{d e}-N_{d e}\left(r_{12}\right) \\
X_{e e}\left(r_{12}\right)=F\left(r_{12}\right)\left[N_{e e}\left(r_{12}\right)+N_{d e}^{2}\left(r_{12}\right)-v N_{c c}^{2}\left(r_{12}\right)\right. \\
\left.+\quad 2 \ell\left(k_{F} r_{12}\right) N_{c c}\left(r_{12}\right)-\frac{1}{v} \ell^{2}\left(k_{F} r_{12}\right)\right] \tag{1}\\
X_{c c}\left(r_{12}\right)=F\left(r_{12}\right)\left[N_{c c}\left(r_{12}\right)-\frac{1}{v} \ell\left(k_{F} r_{12}\right)\right]-\frac{1}{v} \ell\left(k_{F} r_{12}\right)-N_{c c}\left(r_{12}\right)
\end{gather*}
$$

FHNC equations (Fantoni \& Rosati, AD 1975)

\triangleright Define:

$$
W_{x y}\left(r_{12}\right)=X_{x y}\left(r_{12}\right)+N_{x y}\left(r_{12}\right)
$$

\triangleright The integral equations for the $N_{x y}\left(r_{12}\right)$ are

$$
\begin{gathered}
N_{d d}\left(r_{12}\right)=\rho \int d^{3} r_{3}\left\{\left[X_{d d}\left(r_{13}\right)+X_{d e}\left(r_{13}\right)\right] W_{d d}\left(r_{32}\right)+X_{d d}\left(r_{13}\right) W_{d e}\left(r_{32}\right)\right\} \\
N_{d e}\left(r_{12}\right)=\rho \int d^{3} r_{3}\left\{\left[X_{d d}\left(r_{13}\right)+X_{d e}\left(r_{13}\right)\right] W_{d d}\left(r_{32}\right)+X_{d d}\left(r_{13}\right) W_{e e}\left(r_{32}\right)\right\} \\
N_{e e}\left(r_{12}\right)=\rho \int d^{3} r_{3}\left\{X_{e d}\left(r_{13}\right) W_{e e}\left(r_{32}\right)+\left[X_{d d}\left(r_{13}\right)+x_{e e}\left(r_{13}\right) W_{d e}\left(r_{32}\right)\right\}\right. \\
\\
N_{c c}\left(r_{12}\right)=\rho \int d^{3} r_{3}\left\{X_{c c}\left(r_{13}\right)\left[W_{c c}\left(r_{32}\right)-\frac{1}{v} \ell\left(k_{F} r_{32}\right)\right]\right.
\end{gathered}
$$

FHNC results: $g(r)$ of the fermion hard sphere liquid

Calculation of the ground state energy

\triangleright Use the variational principle to determine the shape of the correlation function and the ground state energy

$$
\begin{gathered}
\Psi_{0}=F \Phi_{0}=\Pi_{j>i=1}^{N} f\left(r_{i j}\right) \Phi_{0} \\
f(r)=\left\{\begin{array}{cc}
0 & r<a \\
\frac{d}{r} \frac{\sin \left[k_{0}(r-a)\right]}{\sin \left[k_{0}(d-a)\right]} & r>a
\end{array}\right. \\
\min _{d} \frac{\langle 0| F H F|0\rangle}{\langle 0| F^{2}|0\rangle} \geq E_{0}
\end{gathered}
$$

$\triangleright k_{0}$ determined in such a way as to have

$$
\left(\frac{d f}{d r}\right)_{r=d}=0
$$

Kinetic energy

\triangleright Ambiguity involved in the calculation of the kinetic energy

$$
\frac{\left\langle\Phi_{0}\right| F\left(\sum_{i=1}^{N}-\frac{\nabla_{i}^{2}}{2 m}\right) F\left|\Phi_{0}\right\rangle}{\left\langle\Phi_{0}\right| F^{2}\left|\Phi_{0}\right\rangle}
$$

\triangleright From

$$
\left\langle\Phi_{0} F \nabla_{i}^{2} F \Phi_{0}\right\rangle=\left\langle\Phi_{0}\left[F^{2}\left(\nabla_{i}^{2} \Phi_{0}\right)+F\left(\nabla_{i}^{2} F\right) \Phi_{0}+2 F(\nabla F) \cdot\left(\nabla \Phi_{0}\right)\right]\right\rangle
$$

integrating by parts we obtain

$$
\left\langle\Phi_{0} F^{2}\left(\nabla_{i}^{2} \Phi_{0}\right)\right\rangle-\left\langle\Phi_{0}(\nabla F)^{2} \Phi_{0}\right\rangle-\left\langle\left(\nabla \Phi_{0}\right) F \cdot(\nabla F) \Phi_{0}\right\rangle+\left\langle\Phi_{0}\left(\nabla \Phi_{0}\right) \cdot F(\nabla F)\right\rangle
$$

\triangleright Note that, as the FHNC calculation of the expectation value does not include all diagrams, the above expressions do not yield the same result. The small (typically less than few percent) difference between the two results provides an estimate of the accuracy of the calculation

Minimization of the ground state expectation value $\langle H\rangle$

$\mathrm{E}(\mathrm{d})$ in FHNCS calculation for $\mathrm{k}_{\mathrm{F}}=0.3, \mathrm{~d}_{\text {min }}=5.5$

E (d) in FHNCS calculation for $\mathrm{k}_{\mathrm{F}}=0.5, \mathrm{~d}_{\text {min }}=3.9$

Shape of the correlation function at $k_{F}=0.5 \mathrm{fm}^{-1}$

i

Comparison between FHNC and perturbation theory

* The requirement that the FNHC results provide an upper bound to the ground state energy ia always fulfilled

To the equation of state and beyond

\star The formalism of correlated basis functions (CBF) and the FHNC equations provides a viable computational scheme to obtain the ground state energy per particle, thus allowing to determine the EOS

$$
e(\rho)=\frac{E}{N} \Rightarrow \epsilon(\rho)=\rho e, P(\rho)=\rho^{2}\left(\frac{\partial e}{\partial \rho}\right) \Rightarrow P=P(\epsilon)
$$

\star The $P(\epsilon)$ relation is needed to obtain M and R of non rotating stars from the solution of the Tolmann-Oppenheimer-Volkoff equations (see Ignazio Bombaci's lectures)

To the equation of state and beyond

\star The formalism of correlated basis functions (CBF) and the FHNC equations provides a viable computational scheme to obtain the ground state energy per particle, thus allowing to determine the EOS

$$
e(\rho)=\frac{E}{N} \Rightarrow \epsilon(\rho)=\rho e, P(\rho)=\rho^{2}\left(\frac{\partial e}{\partial \rho}\right) \Rightarrow P=P(\epsilon)
$$

\star The $P(\epsilon)$ relation is needed to obtain M and R of non rotating stars from the solution of the Tolmann-Oppenheimer-Volkoff equations (see Ignazio Bombaci's lectures)

* Can the theoretical approach used to compute the EOS be exploited to consistently obtain other properties of astrphysical interest?

Transport properties of neutron matter

* Abrikosov \& Khalatnikov (AK) formalism (AD 1957). Starting point: Boltzman equation

$$
\begin{gathered}
\frac{\partial n}{\partial t}+\frac{\partial n}{\partial \mathbf{r}} \frac{\partial \epsilon_{\mathbf{p}}}{\partial \mathbf{p}}-\frac{\partial n}{\partial \mathbf{p}} \frac{\partial \epsilon_{\mathbf{p}}}{\partial \mathbf{r}}=I(n) \\
n=n_{0}+\delta n \quad, \quad n_{0}=\{1+\exp [\beta(\epsilon-\mu)]\}^{-1}
\end{gathered}
$$

Transport properties of neutron matter

* Abrikosov \& Khalatnikov (AK) formalism (AD 1957). Starting point: Boltzman equation

$$
\begin{gathered}
\frac{\partial n}{\partial t}+\frac{\partial n}{\partial \mathbf{r}} \frac{\partial \epsilon_{\mathbf{p}}}{\partial \mathbf{p}}-\frac{\partial n}{\partial \mathbf{p}} \frac{\partial \epsilon_{\mathbf{p}}}{\partial \mathbf{r}}=I(n) \\
n=n_{0}+\delta n \quad, \quad n_{0}=\{1+\exp [\beta(\epsilon-\mu)]\}^{-1}
\end{gathered}
$$

\star The collision integral $I(n)$ depends on the probability of the scattering process $1+2 \longrightarrow 1^{\prime}+2^{\prime}$

Transport properties of neutron matter

* Abrikosov \& Khalatnikov (AK) formalism (AD 1957). Starting point: Boltzman equation

$$
\begin{gathered}
\frac{\partial n}{\partial t}+\frac{\partial n}{\partial \mathbf{r}} \frac{\partial \epsilon_{\mathbf{p}}}{\partial \mathbf{p}}-\frac{\partial n}{\partial \mathbf{p}} \frac{\partial \epsilon_{\mathbf{p}}}{\partial \mathbf{r}}=I(n) \\
n=n_{0}+\delta n \quad, \quad n_{0}=\{1+\exp [\beta(\epsilon-\mu)]\}^{-1}
\end{gathered}
$$

\star The collision integral $I(n)$ depends on the probability of the scattering process $1+2 \longrightarrow 1^{\prime}+2^{\prime}$
\star Consider shear viscosity as an example. Using Landau theory of Fermi liquids AK obtain the approximate (although rather accurate) result

$$
\eta_{A K}=\frac{1}{5} \rho m^{*} v_{F}^{2} \tau \frac{2}{\pi^{2}\left(1-\lambda_{\eta}\right)}
$$

* quasiparticle lifetime and angle-averaged scattering probability $\langle W\rangle$

$$
\begin{gathered}
\tau T^{2}=\frac{8 \pi^{4}}{m^{* 3}} \frac{1}{\langle W\rangle} \quad\langle W\rangle=\int \frac{d \Omega}{2 \pi} \frac{W(\theta, \phi)}{\cos \theta / 2} \\
\lambda_{\eta}=\frac{\left\langle W\left(1-3 \sin ^{4} \theta / 2 \sin ^{2} \phi\right)\right\rangle}{\langle W\rangle}
\end{gathered}
$$

* quasiparticle lifetime and angle-averaged scattering probability $\langle W\rangle$

$$
\begin{gathered}
\tau T^{2}=\frac{8 \pi^{4}}{m^{* 3}} \frac{1}{\langle W\rangle} \quad\langle W\rangle=\int \frac{d \Omega}{2 \pi} \frac{W(\theta, \phi)}{\cos \theta / 2} \\
\lambda_{\eta}=\frac{\left\langle W\left(1-3 \sin ^{4} \theta / 2 \sin ^{2} \phi\right)\right\rangle}{\langle W\rangle}
\end{gathered}
$$

* exact solution by Brooker \& Sykes (AD 1968)

$$
\begin{gathered}
\eta=\eta_{A K} C\left(\lambda_{\eta}\right) \\
C\left(\lambda_{\eta}\right)=\frac{1-\lambda_{\eta}}{4} \sum_{k=0}^{\infty} \frac{4 k+3}{(k+1)(2 k+1)\left[(k+1)(2 k+1)-\lambda_{\eta}\right]} \\
-2<\lambda_{\eta}<1 \quad, \quad 0.750<C\left(\lambda_{\eta}\right)<0.925
\end{gathered}
$$

* quasiparticle lifetime and angle-averaged scattering probability $\langle W\rangle$

$$
\begin{gathered}
\tau T^{2}=\frac{8 \pi^{4}}{m^{* 3}} \frac{1}{\langle W\rangle} \quad\langle W\rangle=\int \frac{d \Omega}{2 \pi} \frac{W(\theta, \phi)}{\cos \theta / 2} \\
\lambda_{\eta}=\frac{\left\langle W\left(1-3 \sin ^{4} \theta / 2 \sin ^{2} \phi\right)\right\rangle}{\langle W\rangle}
\end{gathered}
$$

* exact solution by Brooker \& Sykes (AD 1968)

$$
\begin{gathered}
\eta=\eta_{A K} C\left(\lambda_{\eta}\right) \\
C\left(\lambda_{\eta}\right)=\frac{1-\lambda_{\eta}}{4} \sum_{k=0}^{\infty} \frac{4 k+3}{(k+1)(2 k+1)\left[(k+1)(2 k+1)-\lambda_{\eta}\right]} \\
-2<\lambda_{\eta}<1 \quad, \quad 0.750<C\left(\lambda_{\eta}\right)<0.925
\end{gathered}
$$

* Similar expressions can be obtained for the other transport coefficients

Calculations of transport coefficients

* Calculation of the transport coefficients within the AK approach requires
\triangleright The quasiparticle spectrum $\epsilon_{\mathbf{p}}$, needed to calculate the effective mass from

$$
\frac{1}{m^{\star}}=\frac{1}{p} \frac{d \epsilon_{\mathbf{p}}}{d p}
$$

Calculations of transport coefficients

* Calculation of the transport coefficients within the AK approach requires
\triangleright The quasiparticle spectrum $\epsilon_{\mathbf{p}}$, needed to calculate the effective mass from

$$
\frac{1}{m^{\star}}=\frac{1}{p} \frac{d \epsilon_{\mathbf{p}}}{d p}
$$

\triangleright The scattering probability, related to the scattering cross section in the nuclear medium through

$$
\frac{d \sigma}{d \Omega}=\frac{m^{\star 2}}{16 \pi^{2}} W(\theta, \phi),
$$

Calculations of transport coefficients

* Calculation of the transport coefficients within the AK approach requires
\triangleright The quasiparticle spectrum $\epsilon_{\mathbf{p}}$, needed to calculate the effective mass from

$$
\frac{1}{m^{\star}}=\frac{1}{p} \frac{d \epsilon_{\mathbf{p}}}{d p}
$$

\triangleright The scattering probability, related to the scattering cross section in the nuclear medium through

$$
\frac{d \sigma}{d \Omega}=\frac{m^{\star 2}}{16 \pi^{2}} W(\theta, \phi),
$$

* Strategy: use the CBF formalism to obtain an effective interaction, derived from the bare potentials, allowing for a consistent calculation of all relevant quantities.

The CBF effective interaction

\star The effective interaction is defined through

$$
\langle H\rangle=\frac{\langle 0| T+V|0\rangle}{\langle 0 \mid 0\rangle}=\left\langle 0_{F G}\right| T+V_{\mathrm{eff}}\left|0_{F G}\right\rangle
$$

The CBF effective interaction

\star The effective interaction is defined through

$$
\langle H\rangle=\frac{\langle 0| T+V|0\rangle}{\langle 0 \mid 0\rangle}=\left\langle 0_{F G}\right| T+V_{\mathrm{eff}}\left|0_{F G}\right\rangle
$$

\star At two-body cluster level (recall: $\left\langle 0_{F G}\right| F V F\left|0_{F G}\right\rangle=0$)

$$
\begin{gathered}
V_{\mathrm{eff}}=\sum_{j>i} v_{\mathrm{eff}}\left(r_{i j}\right) \\
v_{\mathrm{eff}}\left(r_{i j}\right)=f\left(r_{i j}\right)\left\{-\frac{1}{m}\left[\nabla^{2} f\left(r_{i j}\right]-\frac{2}{m}\left[\nabla f\left(r_{i j}\right)\right] \cdot \nabla\right\} \approx-\frac{1}{m} f\left(r_{12}\right) \nabla^{2} f\left(r_{i j}\right)\right.
\end{gathered}
$$

* Correlation range determined requiring that the FHNC energy be reproduced in the two-body cluster approximation

Effective interaction range

Shape of the CBF effective interaction at $k_{F}=0.5 \mathrm{fm}^{-1}$

Density dependence of the shear viscosity coefficient

Extension to neutron star matter

\star NN interactions have a complex operatorial structure
\star Many-nucleon forces are known to be important (in fact critical at large density)
\star Correlation functions reflect the operatorial structure of the NN interaction, implying that $\left[f_{i j}, f_{j k}\right] \neq 0$
\star Cluster diagrams classification and FHNC equations become much more complicated. Further approximations needed. Comparison with Monte Carlo simulations suggest that the extended FHNC scheme provides accurate results.

* The CBF based effective interaction approach appears to be a viable option to circumvent some of the above difficulties. In adition, it allows for a unified description of structure and dynamics of neutron star matter based on "realistic" NN potential.

FHNC energy per particle of symmetric nuclear matter

In medium NN cross section

\star The matrix elements of G and $V_{\text {eff }}$ can be used to obtain the in medium neutron neutron cross section

In medium NN cross section

\star The matrix elements of G and $V_{\text {eff }}$ can be used to obtain the in medium neutron neutron cross section
\star Total neutron-neutron x-section. Argonne v_{6}^{\prime} potential

In medium NN cross section

\star The matrix elements of G and $V_{\text {eff }}$ can be used to obtain the in medium neutron neutron cross section
\star Total neutron-neutron x -section. Argonne v_{6}^{\prime} potential

* The effects of the three-nucleon force can be included in the CBF effective interaction, through a density-dependent two-nucleon interaction

Shear viscosity of β-stable npe matter

* Required inputs [proton (and electron) fraction, effective masses \& scattering rates] obtained from the CBF effective interaction

* Increasing the electron fraction leads to a significant modification of the balance between the different contributions to the viscosity.
* consistency is a critical issue

Shear viscosity \& thermal conductivity of neutron matter

\star Results obtained using the Argonne v_{6}^{\prime} potential

\star Medium effects are large. The model dependence is not critical, although it can be clearly seen in the case of viscosity at supranuclear density.

Emissivity due to bremsstrahlung of $v-\bar{v}$ pairs

* In Born approximation, the emission rate of the process

(A)
is driven by the trace

$$
\left.H^{i i}=16 \frac{1}{\omega^{2}} \sum_{M_{S} M_{S^{\prime}}}\left|\left\langle 1 M_{S^{\prime}}\right|\left[S_{i}, v_{e f f}(\mathbf{q})\right]\right| 1 M_{S}\right\rangle\left.\right|^{2}
$$

where S denotes the total spin

One Pion Exchange (OPEP) vs CBF effective interaction

\star Nuclear dynamics beyond OPEP: factor $\sim 4 \div 5$ (Reddy et al, AD 2001)
\star Screening due to neutron-neutron correlations: factor $\sim 6 \div 7$

