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The Physics of Neutron Star Interiors 

1st Lecture



The basic observational properties of PSRs 

Pulsars as magnetized rotating Neutron Stars                 

The magnetic dipole model for PSRs 

1st Lecture:   Pulsars (PSRs)



Pulsars (PSRs) are  astrophysical 

sources which emit  periodic pulses of 

electromagnetic radiation.

Number of known pulsars:

~ 1900        Radio PSRs

~ 40            X-ray PSRs        (radio-quiet)

~ 60             -ray PSR      (most recent. discov.  by LAT/Fermi)



1st discovered pulsar: PSR B1919 +21
radio pulsar at  81.5 MHz Pulse period      P = 1.337 s    

Hewish et al., 1968, Nature 217

Tony Hewish        and       Jocelyn Bell               

(Bonn, August 1980)



Pulse shape at different wavelength



Top: 100 single pulses from the 

pulsar B0950+08   (P = 0.253 s), 

demonstrating the pulse-to-pulse 

variability in shape and intensity. 

Bottom: Cumulative profile for 

this pulsar over 5 minutes (about 

1200 pulses).                                 

This averaged ―standard profile‖ is 

reproducible for a given pulsar at a 

given frequency.

The large noise which masks the 

―true‖ pulse shape is due to the 

interaction of the pulsar  elettro-

magnetic radiation with the ionized  

interstellar medium (ISM)

Observations taken with the Green 

Bank Telescope (Stairs et al. 2003)



The Arecibo Radio Telescope

d = 304.8 m



The Parkes Radio Telescope

d = 64 m



The Green Bank Radio Telescope

d = 100 m



Pulsar Period Distribution

Data from ATNF Pulsar Catalogue, V1.25

~ 10 – 3 seconds  <  P  <  a  few seconds



The ―fastest‖ Pulsar‖

PSR J1748 –2446ad (in the globular cluster Terzan 5)         

P = 1.39595482(6) ms   i.e.  = 716.3 Hz   Fa# (F#)

J.W.T. Hessel et al., march 2006, Science 311, 1901

PSR mame frequncy (Hz) Period (ms)

J1748 –2464ad 716.358 1.3959

B1937 +21 641.931 1.5578

B1957 +20 622.123 1.6074

J1748 –24460 596.435 1.6766



PSRs are remarkable astronomical clocks
extraordinary stability of the pulse period:                              

P(sec.) can be measured up to 18 significant digits!                 

e.g. on Jan 16, 1999,  PSR J0437-4715 had a period of:      

5.757451831072007  0.000000000000008 ms

Pulsar periods always (*) increase very slowly

P  dP/dt  =  10 –21 — 10 –10 s/s = 10 –14 — 10 –3 s/yr

(*)   except in the case of PSR “glitches”,     

or spin-up due to mass accretion

First Vela glitch



Pulsars 

distribution 

in the P- Pdot 

plane
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Data from:              ATNF 

Pulsar Catalogue 1704 

PSRs  (Apr. 2011)
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What is the nature of pulsars?

Due to the extraordinary stability of the pulse period the different 

parts of the source must be connected by causality condition

Rsource  c  P  9900 km (Pcrab = 0.033 s)

Pulsars are compact stars

White Dwarfs ?

or 

Neutron Stars ?

A famous whithe dwarf,  Sirius B:       R = 0.0074 R


= 5150 km



What is the nature of pulsars?

Due to the extraordinary stability of the pulse period the different 

parts of the source must be connected by causality condition

Rsource  c  P  9900 km (Pcrab = 0.033 s)

Rsource  450 km (P  1.5 ms)

Pulsars are compact stars

White Dwarfs ?

or 

Neutron Stars ?

A famous whithe dwarf,  Sirius B:       R = 0.0074 R


= 5150 km

PSR B1937+21 (P  1.5 ms)  discovered in 1982



Pulsars as rotating white dwarfs

Mass-shed limit.           

For a particle at the equator of  homogeneus uniformely rotating sphere  

P  Plim= 2 /lim ~ 6 s  (av~ 3.4  10 6 g/cm3, Sirius B)

Plim ~ 1  – 6 s

avG
R

M
G 



3

4
3lim 

Pulsars can not be rotating white dwarfs  

Earth:     Plim = 84 min.                                                        

Neutron Star (M = 1.4 M
,  R = 10 km):   Plim ~ 0.5 ms

R
R

M
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Pulsars as vibrating  white dwarfs

WD models  P  Plim  ~ 2 s

In the case of damped oscillations:

• Decreasing oscillation amplitude  

• Constant period    ( dP/dt = 0)

For  PSRs     dP/dt > 0

Pulsars can not be vibrating white dwarfs  



Pulsars as rotating Neutron Stars

The Neutron Star idea: (Baade and  Zwicky, 1934)    

―With all reserve we advance the view that supernovae represent 

the transition from ordinary stars into neutron stars, which in their 

final stages consist of extremely closely packed neutrons.”        

1st calculation of  Neutron Star properties:            

(Oppenheimer and Volkov, 1939) 

Discovery of Pulsars (Hewish et al. 1967)

Interpretation of PSRs as rotating Neutron Strar:       

(Pacini,  1967, Nature 216),      (Gold, 1968, Nature 218)
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The ―fastest‖ Pulsar‖

PSR J1748 –2446ad (in the globular cluster Terzan 5)         

P = 1.39595482(6) ms   i.e.  = 716.3 Hz   Fa# (F#)

J.W.T. Hessel et al., march 2006, Science 311, 1901

PSR mame frequncy (Hz) Period (ms)

J1748 –2464ad 716.358 1.3959

B1937 +21 641.931 1.5578

B1957 +20 622.123 1.6074

J1748 –24460 596.435 1.6766



Terrestial fast spinning bodies

Centrifuge of a modern washing machine.

  1,800 round/min = 30 round/s 

P = 0.0333 s

Engine Ferrari F2004 (F1 world champion 2004)

  19,000 round/min = 316.67 round/s

P = 3.158 ms  

Ultracentrifuge (Optima L-100 XP, Beckman-Coulter)

  100,000 round/min = 1666.67 round/s

P = 0.6 ms    

I. Bombaci, The physics of neutron star interiors, School ―R. Anni‖, Otranto 2011



The birth of a Neutron Star

Neutron stars are the compact remnants of 

type II Supernova explosions, which occur 

at the end of the evolution of massive stars 

(8 < M/M


<25).  
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Supernova Classification

Type I 

Type II

No H lines in 

the spectra

H lines in 

the spectra

Ia  (strong Si)

Ib  (strong He)

Ic  (weak He)

II (normal: P- Cygni)

II (peculiar:emission)

Thermonuclear 

explosions of 

white dwarfs

Core collapse 

of           

massive stars



―Historical‖ Supernovae

New stars (guest stars) in the sky were considered by acient people as  a possible 

signal for inauspicious events.   

Aristotele – Ptolomy vision of the World

Supra-Lunar world:    perfect,   incorruptible,   immutable.                                    

new stars interpreted as  Sub-Lunar world events      

Tyco Brahe observed a new stars in the Cassiopea constellation in 1572 and 

using his observational data demonstrated  that the star was much farther that 

the Moon (T. Brahe, De nova et nullius aevi memoria prius visa stella, 1573)



Tycho’s Supernova Remnant

Supernova observed by 

Tycho Brahe in 1572

X-ray image (Chandra satellite, sept. 2005)

No central point source has 

been so far detected.:       

Type Ia supernova



Kepler’s supernova Remnant,  SN1604

Supernova 

observed by 

Johannes Kepler  

in october 1604

Supernova type: 

unclear



The Crab Nebula

Optical (left)  and  X-ray (right)  image of  the Crab Nebula.

The Crab Nebula is the remnant of a supernova explosion 

that was seen on Earth in 1054 AD. Its distance to the Earth 

is 6000 lyr. At the center of the nebula is a pulsar which 

emits pulses of radiation with a period   P = 0.033 seconds. 



Multi wave 

lenght image   

of the Crab:

Blue: X-ray

Red: optical

Green: radio



The magnetic dipole model for pulsars 

Pacini,  Nature 216 (1967),  Nature 219 (1968)      

Gold,  Nature 218 (1968),   Nature 221 (1969)       

Ostriker and Gunn, ApJ 157 (1969) 

The lighthouse 

model

Pulsars are believed to be 

highly magnetized rotating 

Neutron Stars radiating at 

the expenses of their 

rotational energy
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The magnetic dipole model for pulsars 
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The magnetic dipole model for pulsars 
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Suppose:     = const,   |  | = const

For a sphere with a pure magnetic dipole field:

 = (1/2) Bp R3             
Bp = magnetic fiels at the poles,                        

R = radius of the sphere
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Distribution of PSRs on the P – P plane 

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Distribution of PSRs on the P – P plane 

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B ~ 1012  G    ―normal‖ PSR

B ~ 108–109 G  millisecond PSR

B ~ 1014–1015 G   ―Magnetars‖
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The magnetic dipole model for pulsars

nK


braking index

22
/2/


 PPPn

n = 3 within the magnetic dipole model

The PSR evolution differential equation can be rewritten as:

Differentiating this equation, with  K = const ,  one obtains:  

The three quantities P, P and P have been measured for a few PSRs.

  KPP
nn 12 2



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PSR name n P  (s)
Pdot

(10-15 s/s)

Dipole 

age (yr)

PSR B0531+21  (Crab) 2.515  0.005 0.03308 422.765 1238

PSR B0833-45   (Vela) 1.4  0.2 0.08933 125.008 11000

PRS B1509-58 2.839  0.005 0.1506 1536.5 1554

PSR B0540-69 2.01  0.02 0.0505 478.924 1672

PSR J1119-6127 2.91  0.05 0.40077 4021.782 1580

Measured value of the braking index n

The deviation of the breaking index from 3 could probably be  due                       
(i) to torque on the pulsar  from outflow of particles;
(ii), Change with time of the ―constant‖ K,  i.e.  I(t), or/and B(t) or/and (t)



The magnetic dipole model for pulsars

P(t)  =  P0  [2K0
2 t + 1] 1/2

Solutions of the PSR  time evolution differential equation

 (t)  =  0  [2K0
2 t + 1] –1/2

 (t)  =  0 [(n-1)K0
n-1 t  + 1] –1/(n-1)

P(t)  =  P0 [(n-1)K0
n-1 t  + 1] 1/(n-1)

n = 3

t0  = 0 (NS birth),  P0 =  P(t0) , 0 =  (t0) ;     K = const



The magnetic dipole model for pulsars

The Pulsar age

The solution of the PSR 

differential equation can be 

rewritten as:
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This determination of the PRS age is valid under the assumpion K = const. 

or,
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dipole age

The measure of   P  and   P 

gives the pulsar dipole age



Example: the age of the Crab Pulsar

SN explosion: 1054 AD

P = 0.0330847 s,          P = 4.22765  10-13 s/s

braking index:   n = 2.515  0.005 

tcrab = (2011 – 1054) yr = 957 yr ,         = 1238 yr (dipole age)

Assuming the validity of the PSR      

dipole model, using the previous   

equation (*) for the pulsar true age, we 

can infer the initial spin period of the Crab

P0 =  P (1 – tcrab /) 
½

 0.016 s

But      ncrab  3


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Pulsar evolutionary path on the P–P plane 

Pulsar death line

PSR graveyard

The pulsar ―death line‖ is 

defined as the line in the    

P-Pdot plane which 

correspond to the cessation 

of pair creation over the 

magnetic poles of the NS. 

Radio emission from rotating 

powered pulsars has its origin 

in the relativistic outflow of 

e+e– pairs along the polar 

magnetic fiel lines of the NS 

magnetic field.
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Pulsar evolutionary path on the P–P plane 

birth

millisecons PSRs have   dipole ages 

in the range   108 — 1010 yr      thus 

they are very old pulsars.

msPSR

What is the origin of              

millisecond pulsars?

Millisecond pulsar are believed 

to result from the spin-up of a 

“slow” rotating neutron star 

through mass accretion (and 

angular momentum transfer) 

from a companion star in a 

binary stellar system



The  PSR/NS  magnetic field

Based on the magnetic dipole model for PSRs:  B ~ 1014–1015 G ―Magnetars‖  

B ~ 1012  G  ―normal‖ PSR,    B ~ 108–109 G  millisecond PSR

Key questions  

1. Where does the PSR/NS  magnetic field come from?

2. Is the magnetic field constant in time?  Or, does it decay?     

If  B decays in time what are the implications for the 

determination of the pulsar age and braking index ?



Where does the NS  magnetic field come from?

 Fossil remnant magnetic field from the progenitor star:

Assuming magnetic flux conservation during the birth of the neutron star

(B)  ~ B R2 = const.

Progenitor star:       R


~  106 km,            B


~  102 G  

BNS ~  (R


/RNS)2 B


~  1012 G

Earth (at the magnetic poles):  B = 0.6 G,           Refrigerator magnet: B ~ 100 G 

Traditional answer: ―It is as it is, because it was as it was‖

There is as yet no satisfacory theory for the generation of the magnetic 

field in a Neutron Star.



Where does the NS  magnetic field come from?

 The field could be generated after the formation of the NS by some 

long living electric currents flowing in the highly conductive  neutron star 

material.  

 Spontaneus ―ferromagnetic‖ transition in the  neutron star core

Does the nuclear interaction leads to a spontaneus

ferromagnetic transition in nuclear matter

at some density and some isospin asymmetry?



Spin-unpolarized isospin-asymmetric MN

n = n + n

p = p + p

 =  n + n

Spin polarization

Baryon numb. densities

n n p p

Sn = (n - n)/n , Sp = (p - p)/p

= (n - p)/Isospin asymmetry
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Spin-polarized  isospin-asymmetric MN

n = n + n

p = p + p

 =  n + n

Spin polarization

Baryon numb. densities

n n p p

Sn = (n - n)/n , Sp = (p - p)/p

= (n - p)/Isospin asymmetry
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Brueckner–Bethe–Goldstone Theory
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Single particle energy:   BHF approximation
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Total energy per particle

Nijmegen NSC97e interaction

I. Bombaci, I. Vidaña, Phys. Rev. C66 (2002) 045801



Kinetic and potential energy contributions to E/A

Nijmegen NSC97e interaction

I. Bombaci, I. Vidaña, Phys. Rev. C66 (2002) 045801



Magnetic susceptibility:  pure Neutron Matter

The magnetic susceptibility
of a system characterize the response of 

the system to an external magnetic field H 0















H
H

M

M is the magnetization per uinit volume                                       

of the system (i.e. the magnetic moment per 

unit volume of the material) nn

nnn

S







)( M

0

2

2

2

)/(

















nSn

n

S

NE


n = -1.913 N =        
neutron magnetic dipole moment



Pauli magnetic susceptibility: free Fermi gas
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Magnetic susceptibility: asymmetric  Nucl. Matter
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Magnetic susceptibility:  asymmetric NM



Nijmegen NSC97e interaction

Magnetic susceptibility:  asymmetric NM

Miscroscopic calculations show 

no indication of 

a ferromagnetic transition  

at any density and for any 

isospin asymmetry 

in nuclear matter 



Magnetic field decay in Neutron Stars

There are strong theoretical and observational arguments which indicate  

a decay of the neutron star magnetic field.   (Ostriker and Gunn, 1969)

B(t)  =  B + [B0  – B ] exp(– t /B) 

B = residual magn. field

B  1 — 10 Myr
B=

B 3

B 2

B 1

B 1 < B 1 < B 1

B-field decay

Decrease with time of 

the magnetic braking
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Gravitational radiation from a Neutron Star

The lowest-order gravitational radiation is quadrupole. Thus in order to radiate 

gravitational energy a NS must have a time-varying quadrupole moment

Gravitational radiation from a spinning triaxial ellipsoid
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An application to the case of the  Crab pulsar

Suppose that the Crab Nebula is powered by the emission of gravitational 

radiation of a spinning Neutron Star (triaxial ellipsoid). 

We want to calculate the deformation (ellipticity ) of the Neutron Star.

Lcrab = 5  10 38 erg/s               P = 0.033 s      P = 4.227  10 –13 s/s 
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assuming:                          

I3 = 10 45 g cm2  

A = 8.38 10 44 erg/s

  7.7  10
–4

R = 10 km
a – b    R  7.7 m

A rotating neutron star with a 8 meter high  mountain at the equator

could power the Crab nebula via gravitational wave emission





Is it possible to have a 8 meter high mountain on the 

surface of a Neutron Star?

Is there a limit to the maximum  possible  height of a 

mountain on a  planet?

On the Earth: Mons Everest:  h  9 km (4 km high from the Tibet plateau)

Mauna Kea (Hawaii): h  10 km (from the ocean botton to the peak)    

R = 6380 km (equatorial terrestial radius) 

hmax will depend on: (i) inter-atomic forces (rock stress, melting point), 

(ii) the planetary gravity acceleration  g



Pressure at the base of the mountain:  P   g h < Pmax     (=const,   g = const)

g = G M/R2,   (R=planet’s radius)

For a constant density planet (M  R3), one has:
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Assuming for the Earth:  hmax  = 10 km,  using the previous eq. we can calculate 

the maximum height of a mountain in a terrestial-like planet (rocky planet):

hmax  = (R  /R)  hmax  (R = 6380 km)

The planet Mars:

R = 3400 km = 0.53 R  hmax = 19 km  

mons Olympus   h = 25 km



Exercise: using this simple argument,  estimate the   

maximum size of  a cubic Earth-like planet   
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Pressure at the base of the mountain:  P   g h < Pmax     (=const,   g = const)

g = G M/R2,   (R=planet’s radius)

For a constant density planet (M  R3), one has:
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Assuming for the Earth: hmax  = 10 km,  using the previous eq.we can calculate 

the maximum height of a mountain in a terrestial-like planet (rocky planet):                             

hmax  = (R  /R)  hmax  (R = 6380 km)

For a Neutron Star this simple formula can not be used.

More reliable calculations give:         hmax,NS ~ 1 cm

Crab pulsar:   n =  2.515  0.005

tcrab = 957 yr ,         4 = 619 yr (quadrupole age)



Time dependent moment of Inertia 

Up to now we supposed that the NS moment of inertia does nor depend on 

frequency and on  time ( changes with time as the NS spins down). 

Suppose now:   I = I(t) = I((t))       

Rotational  kinetic energy
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We can write the energy rate radiated by the star due to some general braking 

mechanism as 

n braking index
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In the case of a pure magnetic dipole braking mechanism (n = 3), this eq. 

generalizes to the case of time-dependet moment of inertia, the “standard” magnetic 

dipol model differential eq.: 

I’(t)  dI / d 
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B-field determination form P and P in the case dI/d0

The value of the magnetic field deduced from the measured values of P and 

dP/dt, when the proper frequency dependence of the moment of inertia is 

considerd, is given by 

Bp being the value obatined for constant moment of inertia I.
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I   dI/d > 0 , thus the ―true‖ value  Bp of the magnetic field  is  

larger than the value  Bp deduced assuming  I = 0. 



apparent braking index
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because  I’ > 0 and  I”  > 0 (the moment of inertia increases with  and the 

centrifugal force grows with the equatorial radius).   
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n = 3  (dipole braking)
Dramatic consequences on     

the apparent braking index 

when the stellar core 

undergoes a phase transition


