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Sun White dwarf Neutron Star Black Hole

mass M


1–1.4 M


1–2 M


arbitrary

radius R


~ 10 –2 R


~ 10 km 2GM/c2

R/Rg 2.4  10 5 ~ 2  10 3 ~ 2 – 4 1

av. dens ~ 1 g/cm3 ~107-8 g/cm3 2–9 10 14 g/cm3 =

M


= 1.989  1033 g R


= 6.96  105 km      Rg = 2.95 km

0  = 2.8  1014 g/cm3 (nuclear saturation density)

Rg  2GM/c2 (Schwarzschild radius)

x  R/Rg (compactness parameter)

When   x is ―small‖ gravity must be described by 

the Einstein  theory  of   General Relativity



Relativistic equations for stellar structure

Consider a self-gravitating mass distribution under the following assumpions:

 Spherical symmetry 

 Static (no time dependence: e.g. non-rotating configurations)

 No magnetic field (―weak‖ magnetic field)

Line element
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Coordinates: x0 = ct ,   x1 = r ,   x2=  ,   x3 = 

 = ( r),     = ( r) metric functions
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Relativistic equations for stellar structure

Consider a self-gravitating mass distribution under the following assumpions:

 Spherical symmetry 

 Static (no time dependence: e.g. non-rotating configurations)

 No magnetic field (―weak‖ magnetic field)

Line element
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Coordinates: x0 = ct ,   x1 = r ,   x2=  ,   x3 = 

 = ( r),     = ( r) metric functions

One can introduce a  new metric function m(r)  related to  ( r) by:
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 m(r) = gravitational mass  

contained inside a    

sphere of radial coordinate r



Proper volume of a spherical shell with radial coorinate   r  r +dr 

Proper radial lenght (fix  t, , ) 
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Energy–momentum tensor of stellar matter

Perfect fluid    (no shear stresses and heath transport)

   PguuPT 

P = pressure,    = energy density,                            4-velocity of the fluid element





 uugdxdxgds  12

For a static star :  (fluid rest-frame)
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One needs P and 
i.e. the stellar matter EOS
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Einstein equations

R


RgR = Ricci tensor,                                             =  scalar curvature
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for the present static, spherical symmetric case the Einstein’s field equations take 

the form called the Tolman – Oppenheimer – Volkov  equations (TOV)



In the limit: r
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Newtonian case
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Boundary 

conditions:

m(r=0) =  0    

P(r=R) = Psurf     

P =  P(r, c ) 

m = m(r, c )

The solutions of the TOV 

eq.s depend parametrically 

on the central density

c  =   (r=0)

(Density is finite at the star center)

define the stellar surface  (surface area 4R2)

R = stellar radius

Role of the Equation of State (EOS)

The key input to solve the TOV equations EOS of dense matter.             

In the following we assume matter in the Neutron Star to be a perfect fluid 

(this assumption has been already done to derive the TOV eq.) in a cold (T = 0)

and  catalyzed state (state of minimum energy per baryon)  
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 = total mass density                              

0 =  rest mass density                               

 = total energy density                          

’ = internal energy density (includes the 

kinetic plus the potential energy density 

due to interactions (not gravity)



Structural 

properties  of 

compact stars  
(―Neutron stars‖)

Dense matter 

EOS

Quantum mechanical 

many-body system  

under                        

strong interactions

Space-time in strong 

gravity (GR) ―measured‖ 

properties of 

Neutron Stars

Observational data 

(E.M. spectra)

Emission models 

(PSR mechanism, 

NS atmosphere).  

ISM composition. 

Distance. 

Matter’s constituents  
(baryonic degrees of freedom)



Gravitational mass


R

G dr)r(r)R(mM
0

2
4 

MG  is the mass measured by a distant keplerian observer

MG c
2 = total energy in the star (rest mass + internal energy + gravitational energy)

)(
2

4 rr
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R

M
―stiff‖ EOS

―soft‖ 

―soft‖   

density

P
re

ss
u

re ―stiff‖ EOS

Mmax = (1.4 – 2.5) M


The Oppenheimer-Volkoff maximum mass

There is a maximum value for the gravitational mass of a Neutron Star that 

a given EOS can support. This mass is called the Oppenheimer-Volkoff  mass

EOS dependent

The OV mass represent the key physical quantity to separate              

(and distinguish) Neutrons Stars from Black Holes.



Proper mass

Baryonic mass
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NB  1057
mu = baryon mass unit (average nucleon mass)

n(r)  = baryon number density 

is the rest mass of the NB baryons (dispersed 

at infinity) which form the star 

is equal to the sum of 

the mass elements on 

the whole volume of 

the star, it includes the 

contributions of the 

rest mass and internal 

energy of the 

constituents of the star



Gravitational energy: EG = (MG – MP) c2  0  

Gravitational binding energy: BG = – EG

BG is the gravitational energy released moving the infinitesimal mass elements   dV from  

infinity to form the star.

In the  Newtonian 

limit

Newt

G

R

G Edr
r

rrm
rGE  

)()(
4 2

0




Internal energy: EI = (MP – MB) c2 = dVr
R

)(
0 

’ = ( - 0) c
2

Internal binding energy: BI = – EI

Total binding energy: B = BG + BI =  (MB – MG) c2

Total energy: MG c
2 = MB c2 + EI + EG = MP c2 + EG 

B is the total energy released during the formation of a static neutron star from a rarified 

gas of NB baryons



Masses and binding energies of a Neutron Star

BPAL22  EOS Total binding energy: B = BG + BI

Neutron Stars are     

bound by gravity

Bombaci (1995)



Stability of the solutions of the TOV equations

 The solutions of the TOV eq.s represent static equilibrium configurations

 Stability of the solutions of TOV eq.s with respect to small perturbations

Assumption: the time-dependent stellar configuration, which undergoes 

small radial perturbations, could be described by the EOS of a perfect fluid

in ―chemical‖ equilibrium (catalyzed matter)

Stable configurations must have

dMG/dc > 0

This is a necessary  

but not sufficient condition for stability

MG

Central density

MG

radius

Unstable  

branch

stable  

branch

stable  

branch



The first calculation of the Neutron Stars structure

 Neutron ideal relativistic Fermi gas                     

(Oppenheimer, Volkoff, 1939).

Mmax = 0.71 M


,     R = 9.5 km ,        nc/n0 =  13.75  



The first calculation of the Neutron Stars structure

 Neutron ideal relativistic Fermi gas                     

(Oppenheimer, Volkoff, 1939).

Mmax = 0.71 M


,     R = 9.5 km ,        nc/n0 =  13.75  

Mmax <  MPSR1913+16 =  1.4408  0.0003 M


Too soft EOS :  needs repulsions from nn strong interaction ! 



The first calculation of the Neutron Stars structure

 Neutron ideal relativistic Fermi gas                     

(Oppenheimer, Volkoff, 1939).

Mmax = 0.71 M


,     R = 9.5 km ,        nc/n0 =  13.75  

Mmax <  MPSR1913+16 =  1.4408  0.0003 M


Too soft EOS :  needs repulsions from nn strong interaction ! 

 Role of the weak interaction

n   p   +  e– + e

Some protons must be present in dense matter to balance this  reaction. 

The core of a Neutron Star can not be made of                 

pure neutron matter



Before we start a systematic study of neutron star properties using  

different models for the EOS of dense matter, we want to answer 

the following question:

Is it possible to establish an upper bound 

for the maximum mass of a Neutron Star

which does not depend on the deatils of the 

high density equation of state? 



Upper bound on Mmax

Assumpions:

(a) General Relativity is the correct theory of gravitation.   

(b) The stellar matter is a perfect fluid described by a one-parameter EOS,  

P = P().

(c)   0  (gravity is attractive)

(d) ―microscopic stability‖ condition:         dP/d  0

(e) The EOS is known below some fiducial density    

(f) Causality  condition   

s = (dP/d) 1/2     c

s = speed of sound in dense matter



Under the assumpions  (a)—(f) is has been shown                                               

by Rhoades and Ruffini, (PRL 32,  1974) that:

The upper bound   Mupper is independent on the details of the EOS 

below the fiducial density 

Mupper scales with  as:

sun

/

upper
M.M

21
314

g/cm10
86




















 Mupper/Msun

0 4.06

2 

0

2.87

0 = 2.8 1014 g/cm3 = saturation density of nuclear matter

if         M > Mupper

The compact star is a 

Black Hole



General features of a ―realistic‖ EOS 

Any ―realistic‖ EOS must satisfy the following basic requirements: 

(a) saturation properties of symmetric nuclear 

n0 = 0.16 — 0.18 fm-3 (E/A)0 =  – 16  1 MeV

(b) Nuclear Symmetry Energy                  Esym(n0) = 28 — 32 MeV,           

Esym(n) ―well behaved‖ at high density

(c)   Nuclear incompressibility     K0 =  220  20 MeV

(e) Causality  condition:    

speed of sound                s = (dP/d) 1/2     c



Observational determination 

of the mass of  Neutron Stars



Determination of the masses of neutron stars

1) X-ray binaries

The method  makes use of the Kepler’s Third Law.                              

Consider two spherical masses M1 and M2 in circular orbit around their center 

of mass (the method is valid in the general case of elliptic orbits).   

Earth

M1
M

2

CM
a2a1

i

Orbital plane

i

i

a = a1 + a2

In the CM frame:   

M1 a1  = M2 a2

v1,p

v1

v1,p = 2a1/Pb =
velocity of M1 in the orb. 

plane                                      

Pb = orbital period

i
P

i
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Any spectral feature emitted by the star M1 will be Doppler shifted. 

measurig         Pb , v1   a1 sin i  

Kepler’s Third Law:  
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Mass function   for  the star M1



For some X-ray binaries its has been possible to measure both the mass functions 

for the optical companion star as well as the X-ray (NS) 
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The determination of the stellar masses depends on the value of  sin i.

Geometrical constraints can be given  on the possible values of sin i:

in some case the X-ray component is eclipsed   by the              

companion star   i ~ 90o ,     sin i ~ 1



2) Radio binary pulsar

Tight binary systems:    Pb =  a few hours. 

General Relativistic effects are crucial to describe the orbital motion

measure of                       

post Keplerian parameters

high precision                  

NS mass determination

Periastron advance :  0

e.g.  Perielium advance for mercury,  = 43 arcsec/100 yr

Orbital decay: 0bP evidence for    

gravitational waves



to Earth

periastron

x



line of nodes

y

z

i

CM

Pulsar orbit



Post-Keplerian Parameters

The expressions for post-Keplerian parameters depend on theory of gravity.                        In 

the case of  General Relativity:

: Periastron precession

: Time dilation and grav. redshift

r: Shapiro delay ―range‖

s: Shapiro delay ―shape‖

Pb: Orbit decay due to GW emission

geod: Frequency of geodetic 

precession resulting from spin-orbit 

coupling

mp = Mp/M


pulsar mass

mc = Mc/ M
companion star mass 
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PSR 1913+16 (Hulse and Taylor 1974)

NS (radio PSR) + NS(―silent‖)

PPSR = 59 ms                    Pb= 7 h 45 min   yr/22.4 0



PSR 1913+16

The parabola indicates the 

predicted accumulated shift in the 

time of periastron caused by the 

decay of the orbit. The measured 

value at the epoch of periastron 

are indicated by the data points

Test of  General Relativity                           

and                          

indirect evidence for         

gravitational radiation



PSR 1913+16



PSR J0737-3039 (Burgay, D’Amico,  Possenti, et al., Nature, 2003)

NS(PSR) + NS(PSR) first double pulsar

PPSR1 =   22.7 ms                 PPSR2 =   2.77 s                         

Pb =   2 h 24 min   

e ~ 0.088

Rorb  ~  5.6  105 km           (R


= 6.96  105 km) 

dPb/dt = - 1.24  10–12 Tmerg ~ 85 Myr

yr/.
0

8816

M1 = 1.34 M


M2 = 1.25 M


EVIDENCE FOR GRAVITATIONAL WAVE EMISSION

dPb/dt = - 1.24  10–12 Tmerg ~ 85 Myr         



The VIRGO gravitational waves antenna - Cascina (Pisa)



Measured Neutron Star Masses

Mmax  1.44 M


―very soft‖ EOS 

are ruled out

Mmax  Mmeasured

PSR J0737-3039
PSR J0737-3039 comp



Measured Neutron Star Masses

Mmax  1.44 M


―very soft‖ EOS 

are ruled out

Mmax  1.57 M


=  Mlow(Vela X-1)

Quaintrell et al., 2003,       

Astron. & Astrophys., 401,  313

Mmax  Mmeasured

PSR J0737-3039
PSR J0737-3039 comp



PRS J1614–2230 a ―heavy‖ Neutron Star

NS – WD      binary system                  (He WD) 

MWD =  0.5 M


(companion mass)

Pb  = 8.69 hr                                  (orbital period)

P  =  3.15 ms                             (PRS spin period)

i  =  89.17  0.02 (inclination angle)

MNS =  1.97 ± 0.04  M


P. Demorest et al.,   Nature 467 (2010) 1081



Measured Neutron Star Masses

Mmax  1.97 M


Demorest et al., 2010

Mmax  Mmeasured

PSR J0737-3039
PSR J0737-3039 comp

PSR J1614-2230

Very stringent 

constrain on the 

EOS



swiss cheese lasagne   spaghetti   meet-balls

The internal structure 

of  Neutron Stars



Schematic cross section of a Neutron Star

outer crust

nuclei,  e-

inner crust

nuclei, n,  e-

Nuclear matter core 

n, p, e- , -

drip = 4.3 1011 g/cm3

~1.5 1014 g/cm3

M  1.4 M


R  10 km



Schematic cross section of a Neutron Star

outer crust

nuclei,  e-

inner crust

nuclei, n,  e-

Nuclear matter layer

n, p, e- , -

exotic core   

(a) hyperonic matter

drip = 4.3 1011 g/cm3

~1.5 1014 g/cm3

M  1.4 M


R  10 km



Schematic cross section of a Neutron Star

outer crust

nuclei,  e-

inner crust

nuclei, n,  e-

Nuclear matter layer

n, p, e- , -

exotic core   

(a) hyperonic matter

(b) quark matter

drip = 4.3 1011 g/cm3

~1.5 1014 g/cm3

M  1.4 M


R  10 km



Neutron Stars with a nuclear matter core

As we have already seen due to the  weak interaction,        

the core of a Neutron Star can not be made of pure neutron 

matter. 

Core constituents: n,  p,   e–,  –

outer crust

nuclei,  e-

inner crust

nuclei, n,  e-

Nuclear matter core 

n, p, e- , -

drip = 4.3 1011 g/cm3

~1.5 1014 g/cm3



-stable nuclear matter

 Equilibrium with 

respect to the weak 

interaction processes e

epn





 



 Charge neutrality
nnn ep 

To be solved for any given value of the total baryon number density  nB

e

e

epn

nep
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e

MeVm

e

e 6.105if

0
  neutrino-free matter



Proton fraction in -stable nuclear matter and role of 

the nuclear symmetry energy

 = (nn – np )/n = 1 – 2x asymmetry paramter x  = np/n proton fraction

n = nn + np total baryon density
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Proton fraction in -stable nuclear matter and role of 

the nuclear symmetry energy

 = (nn – np )/n = 1 – 2x asymmetry paramter x  = np/n proton fraction

n = nn + np total baryon density

Energy per nucleon for asymmetric nuclear matter(*)

E(n,)/A  =  E(n, =0)/A  + Esym(n) 2

 = 0 symm nucl matter      

 = 1 pure neutron matter

 xnEsym 21)(4ˆ 

32 (ħc)3 n x(n) – [4 Esym(n) (1 – 2 x(n))]3 = 0

Chemical equil. + charge neutrality (no muons)

The composition of 

-stable nuclear 

matter is strongly 

dependent on the 

nuclear symmetry 

energy.

0

2

2 )/(

2

1
)(










AE
nEsym

(*) Bombaci, Lombardo, Phys. Rev: C44 (1991)

Esym(n) = E(n,=1)/A – E(n, =0)/A
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Schematic behaviour of the nuclear symmetry energy

Esym

n/n0

Skyrme

CBF

BHF

Rel. M.F.

DBHF

1

30 MeV



Microscopic EOS for nuclear matter: Brueckner-Bethe-Goldstone theory
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V is the nucleon-nucleon interaction (e.g. the Argonne v14, Paris, 

Bonn potential) plus a density depependent Three-Body Force (TBF)

necessary to reproduce the empirical saturation on nuclear matter

 Energy per baryon  in the Brueckner-Hartree-Fock (BHF) approximation

(k)U
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k

AA
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τ k

τ

τ k
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Energy per baryon
(two body forces only)

Upper curves: neutron matter                  

lower curves: symmetric nuclear matter

BHF with A14                   

BHF with Paris    

WFF: CBF with U14

WFF: CBF with A14 

Baldo, Bombaci, Burgio, Astr. & Astrophys. 328, (1997)

Empirical saturation point



Energy per baryon
(two body forces only)

Upper curves: neutron matter                  

lower curves: symmetric nuclear matter

BHF with A14                   

BHF with Paris    

WFF: CBF with U14

WFF: CBF with A14 

Baldo, Bombaci, Burgio, Astr. & Astrophys. 328, (1997)

Empirical saturation point

Three Body Forces (TBF)

are necessary to get the 

correct saturation point     

of nuclear matter in              

non-relativistic          

many-body  calculations



Energy per baryon

BBB1:  BHF with A14+TBF

BBB2:  BHF with Paris+TBF  

DBHF:  Bonn A

WFF: CBF with A14+TBF 

Baldo, Bombaci, Burgio, Astr. & Astrophys. 328, (1997)



EOS n0            

(fm-3)

E0/A 

(MeV)
K 

(MeV)

A14+TBF 0.178 -16.46 253

Paris+TBF 0.176 -16.01 281

empirical 

saturation
0.17  0.1 – 16  1 220  20 

Saturation properties BHF EOS (with TBF)

The parameters of this TBF are chosen to reproduce the empirical sauration point, 

nevertheless the values of these parameters are almost the same of the Urbana VII TBF 

model, where the fit was done on the energy and radii of few body nuclei (3H, 3He). 



Speed of sound 

BBB1:  BHF with A14+TBF

BBB2:  BHF with Paris+TBF  

DBHF:  Bonn A

WFF: CBF with A14+TBF 

Baldo, Bombaci, Burgio,  A&A 328, (1997)

At high density extrapolation using

E/A =Q(n) / (1 + b n)

Q(n) = polinomial of degree 



BBB1:  BHF with A14+TBF

BBB2:  BHF with Paris+TBF  

DBHF:  Bonn A

WFF: CBF with A14+TBF 

Symmetry energy

Proton fraction in   

-stable nucl. matter

Baldo, Bombaci, Burgio, Astr. & Astrophys. 328, (1997)



E/A in -stable nuclear matter

BBB1:  BHF with A14+TBF BBB2:  

BHF with Paris+TBF  DBHF:  

Bonn A WFF: CBF 

with A14+TBF 

Baldo, Bombaci, Burgio, Astr. & Astrophys. 328, (1997)



The EOS for -stable matter

Pressure: 

lepnucl
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AEd
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Mass density:
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Leptons are treated as non-interacting relativistic fermionic gases



Mass-Radius relation for nucleonic Neutron Stars

WFF: Wiringa-Ficks-Fabrocini, 1988. 

BPAL: Bombaci, 1995.                            

BBB: Baldo-Bombaci-Burgio, 1997.



Mass-Radius relation for nucleonic Neutron Stars

WFF: Wiringa-Ficks-Fabrocini, 1988. 

BPAL: Bombaci, 1995.                            

BBB: Baldo-Bombaci-Burgio, 1997.

PSR 1913 +16

PSR J1614 -2230



EOS MG/M


R(km) nc / n0

BBB1 1.79 9.66 8.53

BBB2 1.92 9.49 8.45

WFF 2.13 9.40 7.81

BPAL12 1.46 9.04 10.99

BPAL22 1.74 9.83 9.00

BPAL32 1.95 10.54 7.58

Maximum mass configuration  of pure 

nucleonic Neutron Stars for different EOS 

KS 2.24 10.79 6.30

KS:  Krastev, Sammarruca, 2006, Phys. Rev. C74, (2006) 025808. DBHF with Bonn – B potential



EOS
c              

(1015 g/cm3)
R(km) Rcore Rinner Router Rcrust

BPAL12 2.5 9.98 8.56 1.15 0.27 1.42

BPAL22 1.2 11.81 9.63 1.75 0.43 2.18

BPAL32 0.9 12.60 10.06 2.05 0.49 2.54

EOS R(km) nc / n0 xc 

BBB1 11.0 4.06 0.139

BBB2 11.1 4.00 0.165

WFF 10.41 4.13 0.066

Properties of neutron stars with   MG = 1.4 M


Crustal properties of neutron stars with   MG = 1.4 M




Rotating Neutron Stars
M

G
/M



log()

M
G
/M



R(km)

Datta, Thampan, Bombaci, Astron. and Astrophys. 334 (1998)

EOS  BBB1 
(Av14+TBF)

Mass shed

P = 1.558 ms

= 0

MB= const

Supramassive 

sequences





j 

Mass shed    

frequency

MB= cosnt

Supramassive                  

sequences

Collapse 

to BH



Neutron Stars or Hyperon Stars 

Why is it very likely to have hyperons in the core of a 

Neutron Star? 

(1) The central density of a Neutron Star is ―high‖           

c  (4 – 10) 0 (0 = 0.17 fm-3)  

(2) The nucleon chemical potentials increase very rapidly as 

function of density.  

Above a threshold density (c  (2 – 3) 0 )            

hyperons are created in the stellar interior.

A. Ambarsumyan, G.S. Saakyan, (1960)                                     

V.R. Pandharipande (1971)



Threshold density for hyperons in neutron matter

Non-relativistic free Fermi neutron gas
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m= 1115.68 MeV/c2 mn= 939.56 MeV/c2

ncr= 0.837 fm-3 ncr /n0 = 5.23 n0= 0.16 fm-3



I. Vidaña, Ph.D.  thesis (2001)

Baryon chemical potentials in dense hyperonic matter
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Microscopic EOS for hyperonic matter: extended Brueckner theory
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V is the baryon--baryon interaction for the baryon octet  (n,  p,  ,     


-
,   0,  +

,   
-
,   0 )    (e.g. the Nijmegen potential).
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 Energy per baryon in the BHF approximation

Baldo, Burgio, Schulze, Phys.Rev. C61 (2000) 055801;                                                  

Vidaña, Polls, Ramos, Engvik, Hjorth-Jensen, Phys.Rev. C62 (2000) 035801;

Vidaña, Bombaci, Polls, Ramos, Astron. Astrophys. 399, (2003) 687. 



Isospin  and Strangeness  channels 



-stable hadronic matter

 Equilibrium with 

respect to the weak 

interaction processes

 Charge neutrality

For any given value of the total baryon number density  nB
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The Equation of State of Hyperonic Matter

I. Vidaña et al., Phys. Rev: C62 (2000) 035801NSC97e

The presence of 

hyperons produces a

softening in the EOS



Composition of hyperonic beta-stable matter

I. Vidaña, I. Bombaci, 

A. Polls, A. Ramos,     

Astron. and Astrophys. 

399 (2003) 687 

Hyperonic Star

MB = 1.34 M


Baryon number density b [fm-3]

Radial coordinate [km ]



Composition of hyperonic beta-stable matter

I. Vidaña, I. Bombaci, 

A. Polls, A. Ramos,     

Astron. and Astrophys. 

399 (2003) 687 

Hyperonic Star

MB = 1.34 M


Baryon number density b [fm-3]

Radial coordinate [km ]

Hyperonic  core
NM 

shell



M. Baldo, G.F. Burgio, H.-J. Schulze, Phys.Rev. C61 (2000)

EOS of  Hyperonic Matter: Paris (Av18) + Nijm_SC89 + TBF



M. Baldo, G.F. Burgio, H.-J. Schulze, Phys.Rev. C61 (2000)



PSR B1913+16

M. Baldo, G.F. Burgio, H.-J. Schulze, Phys.Rev. C61 (2000)



Estimation of the effect of hyperonic three-body 

forces on the maximum mass of neutron stars

Vidaña, Logoteta, Providencia, Polls, Bombaci, EPL 94 (2011) 11002

phenomenological density dependent contact 

terms that mimic the effects of three-body 

forces



The parameters  aNN    bNN    NN

are fixed to reproduce the 

empirical saturation point           

of nuclear matter                       

0.16 fm-3, -16 MeV

YNNNYNNNYNNN bbbaaa  

Assume that TBF involving  and   are the same, i.e.:

1,3/2,3/1,0 xxbxbaxa NYNNNYNNNYN 
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Vidaña, Logoteta, Providencia, Polls, Bombaci, EPL 94 (2011) 11002

effect of hyperonic TBF on the maximum mass of neutron stars



Vidaña, Logoteta, Providencia, Polls, Bombaci, EPL 94 (2011) 11002

effect of hyperonic TBF on the maximum mass of neutron stars



Relativistic Quantum Field Theory in the mean field 

approximation for Hyperonic Matter and Hyperon Stars

Parameters fixed to:

Empirical saturation point of symmetric nuclear matter

Nuclear incompressibility : K = 210 – 300 MeV

Nuclear symmetry energy at saturation density

Binding energy of  in nuclear matter (B = - 28 MeV)

Measured masses of neutron stars: Mmax  1.50 M


Glendenning, Astrophys. Jour. 293 (1985)                               

Glendenning and Moszkowski, Phys. Rev. Lett. 67, (1991) (GM EOS)





GM3 EOS: Glendenning, Moszkowsky, PRL 67(1991)
Relativistic Mean Field Theory of hadrons interacting via meson exchange





Hyperons in Neutron Stars: implications for the stellar structure

The presence of hyperons  reduces the maximum mass of 

neutron stars:     Mmax   (0.5 – 0.8) M


Therefore, to neglect hyperons always leads to an overstimate of 

the maximum mass of neutron stars

Microscopic EOS for hyperonic matter:

―very soft‖ EOS    non compatible with measured NS masses.  

Need for extra pressure  

at high density

Improved  NY, YY 

two-body interaction

Three-body forces: 

NNY, NYY, YYY



Quark Matter  in  Neutron Stars

QCD    

Ultra-Relativistic                                                                    

Heavy Ion Collisions

Quark-deconfinement  phase 

transition   expected at                 

c  (3 – 5) 0

The core of the most 

massive  Neutron Stars

is one of the best candidates 

in the Universe where such 

a deconfined phase of 

quark matter can be found
2SC



What quark flavors are 

expected in a Neutron Star?

flavor Mass Q/|e|

u 5 3 MeV 2/3

d 10 5 MeV -1/3

s 200 100 MeV -1/3

c 1.3  0.3 GeV 2/3

b 4.3 0.2 GeV -1/3

t 175  6 GeV 2/3

Suppose: mu = md  = ms   = 0 () 

u,d,s non-interacting   

(ideal ultrarelativ. Fermi gas)

Threshold density for the  c quark

eecs   u,d,s in beta-equil.               

Qtot = 0
nB= nu= nd= ns

()

EFq = ħc kFq = ħc (2 nq)1/3 = ħc (2 nB)1/3  mc = 1.3 GeV nB  29 fm-3                  

 180 n0

Only  u, d, s quark flavors  are expected in Neutron Stars. 



Grand canonical potential (per unit volume)

In the following we assume:                               

mu = md = 0,  ms  0  
(0)  = u

(0) + d
(0) + s

(0)
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The expression for the linear (in c ) perturbative contribution (1) to the grand 

canonical  potential can be found in Farhi and Jaffe, Phys. Rev. D30 (1984) 2379

u    d       s :    chemical potentials for quarks

A simple  model for the  EOS of Strange Quark Matter



Equation of State  (T = 0)
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B = bag constant



-stable Strange Quark Matter
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 Equilibrium with 

respect to the weak 

interaction processes
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 Charge neutrality 0
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To be solved for any given value of the total baryon number density  nB

-stable Strange Quark Matter



Hybrid  Stars (neutron stars with a quark matter core)

inner crust 
nuclei, n, e-

Hadronic matter layer 

.  n, p, hyperons, e- , -

Quark matter core  

Mixed  

hadron-quark 

phase

outer crust
nuclei,  e-

drip = 4.3 1011 g/cm3



 Hadronic phase :
Relativistic Mean Field 

Theory of hadrons 

interacting via meson exch.    

[e.g. Glendenning, 

Moszkowsky, PRL 67(1991)]

Quark phase :
EOS based on the MIT bag 

model for hadrons. [Farhi, 

Jaffe, Phys. Rev. D46(1992)]

Mixed phase :
Gibbs construction for a 

multicomponent system with 

two conserved ―charges‖.  

[Glendenning, Phys. Rev. D46 

(1992)]

The EOS for Hybrid Stars



GM3+Bag model                   

ms=150 MeV, B=13.6.6Mev/fm3

Hybrid  Star

I. Bombaci, I. Parenti, I. Vidaña (2004)



GM3+Bag model                   

ms=150 MeV, B=13.6.6Mev/fm3

Hybrid  Star

NM shell

crust

Pure 

quark 

matter 

core

Mixed hadron-quark 

phase

I. Bombaci, I. Parenti, I. Vidaña (2004)



Hadronic Stars   
(no quark matter)

Hybrid Stars

R

M

The mixed quark-hadron 

phase starts at the central 

density for this stellar 

configuration

The mass-radius relation



EOS:  GM3 + Bag model                                                       

(B=136 MeV/fm3, ms=150 MeV

Hybrid Stars

I. Bombaci, I. Parenti, I. Vidaña (2004)



M
G
/M



log()

M
G
/M



R(km)

Datta, Thampan, Bombaci, Astron. and Astrophys. 334 (1998)

EOS  BBB1 
(Av14+TBF)

Mass shed limit

P = 1.558 ms

= 0

MB= const

Supramassive 

sequences

Possible signature for the deconfinement phase transition                         

in isolated spinning-down neutron stars



Possible signature for the deconfinement phase transition                         

in isolated spinning-down neutron stars

Spin-down

MB= const

a a
b b

c < 
c > 

QM core

HyS

HM core
crust

Spin-down:  J decreases,      decreases           

c increases,       I  decreases

 = critical density for quark deconfinement



apparent braking index
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measured large value 

of the braking index   

|n| >> 3

Observational signature for 

quark deconfinement phase 

transition in compact stars

Glendenning, Pei, Weber, 1997



apparent braking index
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measured large value 

of the braking index   

|n| >> 3

Observational signature for 

quark deconfinement phase 

transition in compact stars

Glendenning, Pei, Weber, 1997

Effects of magnetic field decay on the braking index
(see the first lecture)     



braking index
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Astron. and Astrophys. 376 

(2001)
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The Strange Matter hypothesis

Strange Stars                                   
new family of compact stars made of  

strange quark matter  (u,d,s quark matter)



The Strange Matter hypothesis

Bodmer (1971), Terazawa (1979), Witten (1984):   BTW hypothesis

Three-flavor u,d,s quark matter, in equilibrium with respect 

to the weak interactions, could be the true ground state of 

strongly interacting matter, rather than 56Fe

E/A|SQM  E(56Fe)/56  ~ 930.4 MeV
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Stability of Nuclei with respect to  u,d quark matter

The success of traditional nuclear physics provides a clear 

indication that quarks in the atomic Nucleus are confined 

within protons and neutrons                                      

E/A|ud   E(56Fe)/56 



The Strange Matter hypothesis

Bodmer (1971), Terazawa (1979), Witten (1984):   BTW hypothesis

Three-flavor u,d,s quark matter, in equilibrium with respect 

to the weak interactions, could be the true ground state of 

strongly interacting matter, rather than 56Fe

E/A|SQM  E(56Fe)/56  ~ 930.4 MeV

Stability of Nuclei with respect to  u,d quark matter

The success of traditional nuclear physics provides a clear 

indication that quarks in the atomic Nucleus are confined 

within protons and neutrons                                      

E/A|ud   E(56Fe)/56 

E/A 

(MeV)

n
n0

930.4

u,d,s

u,d

Fe



 = K n4/3 +B                                  

P = (1/3)K n4/3 - B 

P = (1/3) ( - 4B)

EOS  for SQM: massless quarks
(ultra-relativistic ideal gas +bag constant) 

E/A = K n1/3 +B/n
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u,d,s QM :  deg.fact.= 233

u,d (isospin-symm.)QM :  deg.fact.= 223

(nu= nd= ns)
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of QM



Saturation energy of quark matter



BTW hypothesis 

(Strange Stars)

(Hybrid Stars)



Stability of atomic nuclei                                           

against decay to SQM droplets

If the SQM hypothesis is true, why nuclei do 

not decay into SQM droplets (strangelets) ?

One should explain the existence of atomic 

nuclei in Nature.



a) Direct decay to a SQM droplet    

56Fe 56(SQM)                         (1)

weak process u    s  +  e+ +  e                                     

d  + u    s  +  u                               

To have the direct decay to  56(SQM) one needs  ~ 56 simultaneous 

strangeness changing weak processes  (2). 

The probability for the direct decay (1) is :    P ~  (GF
2)A ~ 0 

The mean-life time of  56Fe  with respect to the 

direct decay to a drop of SQM is

 >> age of the Universe

(2)



b) Step by step decay to a SQM droplet    

56Fe  56X1


56Y2 . . . .  56(SQM) 

56Fe 

56Fe

56Mn

These processes are not energetically 

possible since

Q  =  M(56Fe)  - M(56X1) < 0

Thus, according to the BTW hypothesis, nuclei are metastable 

states of strong interacting matter with a mean-life time

 >> age of the Universe



―Neutron Stars‖

―traditional‖            

Neutron Stars 

Hyperon Stars

Hadronic 

Stars

Hybrid Stars

Strange Stars

Quark 

Stars



The Mass-Radius relation for Strange Stars

bare SS

NS

R

M

M  1/R3M  R3

―low‖ mass Strange stars are self-bound bodies                                                                       

i.e.  they are bound by the strong interactions.  

Neutron Stars (Hadronic Stars) are bound by gravity.  



Gravitational energy: EG = (MG – MP) c2  0  

Gravitational binding energy: BG = – EG

BG is the gravitational energy released moving the infinitesimal mass elements   dV from  

infinity to form the star.

In the  Newtonian 

limit

Newt

G

R

G Edr
r

rrm
rGE  

)()(
4 2

0




Internal energy: EI = (MP – MB) c2 = dVr
R

)(
0 

’ = ( - 0) c
2

Internal binding energy: BI = – EI

Total binding energy: B = BG + BI =  (MB – MG) c2

Total energy: MG c
2 = MB c2 + EI + EG = MP c2 + EG 

B is the total energy released during the formation of a static neutron star from a rarified 

gas of NB baryons



Masses and binding energies of  Neutron Stars

BPAL22  EOS

B = BG + BI = total binding energy

bound by gravity

Bombaci (1995)

BG = gravit. binding energy

BI = internal. binding energy



Masses and binding energies of  Strange Stars

Self-bound 



X.D. Li, I. Bombaci, M. Dey, J. Dey, E.P.J. Van den Heuvel, Phys. Rev. Lett. 83 (1999) 3776

A strange star candidate: SAX J1808.4 –3658

SS1, SS2: M. Dey, I. Bombaci, J. Dey, S. Ray, B.C. Samanta, Phys. Lett. B438 (1998) 123



X.D. Li, I. Bombaci, M. Dey, J. Dey, E.P.J. Van den Heuvel, Phys. Rev. Lett. 83 (1999) 3776

A strange star candidate: SAX J1808.4 –3658

SS1, SS2: M. Dey, I. Bombaci, J. Dey, S. Ray, B.C. Samanta, Phys. Lett. B438 (1998) 123

Hadronic Star models are not 

compatible with the mass and 

radius extracted from 

observational data for             

SAX J1808.4 –3658


