γ decay of giant resonances within the skyrme framework

Marco Brenna & Gianluca Colò

OTRANTO 2011 NUCLEAR PHYSICS SCHOOL "RAIMONDO ANNI"

Introduction

***** Formalism for the calculation of the γ decay width

Decay to the ground state

Decay to the low-lying states

Results

Giant Resonances

- Nuclear collective modes, in which almost all the nucleons are involved
- Parameters of the Equation of State of nuclear matter
 - Monopole⇒CompressibilityDipole⇒Simmetry Energy
- Over than 60 year of studies (since 1947)
- * More exclusive experiments feasible $\Rightarrow \gamma$ decay (LNL INFN, June 2010)
 - Resonances in exotic nuclei (n rich)
- Microscopically: coherent superposition of particle hole excitation
 - RPA (linear response)

Fully self – consistent calculations with microscopic interactions (Skyrme, Gogny, RMF)

Giant Resonances

Main Properties

Energy: 10 – 30 MeV
Width: 2 – 5 MeV
High percentage of EWSR

Decay

Particle emission (neutron)
 Coupling with doorway states → compound nucleus
 γ decay

Giant Resonances

- Suppressed with respect to particle emission (~10⁻³)
- Sensitive to resonace multipolarity
- Direct decay: complementary to inelastic scattering data (based on not completely under control ingredients – reaction model, optical potential...)
- Confront with experiment: γ decay from compound nucleus

Decay width

DECAY WIDTH

$$\Gamma_{\gamma}(E\lambda;i \to f) \propto E^{2\lambda+1}B(E\lambda;i \to f)$$

REDUCED TRANSITION PROBABILITY

$$B(E\lambda;i
ightarrow f)=rac{1}{2J_i+1}|\langle J_f\|Q_\lambda^{(E)}\|J_i
angle|^2$$

ELECTROMAGNETIC OPERATOR (LONG-WAVELENGTH LIMIT)

$$Q^{(E)}_{\lambda\mu} = \sum_{i=1}^{A} e^{\lambda}_{i} i^{\lambda} r^{\lambda}_{i} Y^{*}_{\lambda\mu}(\hat{\mathbf{r}}_{i})$$

Effective charge due to nuclear recoil in $E\lambda$ transitions:

$$e_p^{\lambda} = e\left[\left(1-\frac{1}{A}\right)^{\lambda}+(-)^{\lambda}\frac{Z-1}{A^{\lambda}}\right]$$
 $e_n^{\lambda} = eZ\left(-\frac{1}{A}\right)^{\lambda}$

Nuclear Field Theory

Perturbative theory that describes the interweaving between single particle (fermionic) and phonon (bosonic) degrees of freedom P. F. Bortignon et al., Phys. Rep.**30**(1977)*305*

Nuclear Field Theory

Perturbative theory that describes the interweaving between single particle (fermionic) and phonon (bosonic) degrees of freedom P. F. Bortignon et al., Phys. Rep.**30**(1977)*305*

- Single particle moments
- Multiplets of even/odd nuclei
- ullet Giant resonances width Γ
- Appropriate framework to describe the decay to low-lying states

Particle-Vibration Coupling vertex (PVC)

$$\langle i \| V \| j, nJ \rangle = \sqrt{2J+1} \sum_{ph} X_{ph}^{nJ} V_J(ihjp) + (-)^{j_h - j_p + J} Y_{ph}^{nJ} V_J(ipjh)$$
$$(ihjp) = \sum_{ph} (-)^{j_j - m_j + j_h - m_h} \langle j_j m_j j_j - m_j | JM \rangle \langle j_j m_j j_j - m_j | JM \rangle v_{ij}$$

 $V_J(ihjp) = \sum_{\{m\}} (-)^{j_j - m_j + j_h - m_h} \langle j_i m_i j_j - m_j | JM \rangle \langle j_p m_p j_h - m_h | JM \rangle v_{ihjp}$

Consistent treatment of the coupling vertex in the Skyrme framework: single particle states, RPA phonons, microscopic interaction G. Colò, H. Sagawa, P. F. Bortignon, PRC**82**(2010)*064307*

Decay to the ground state

$$\langle 0||Q_{\lambda}||GR, J\rangle = \sum_{ph} \langle p||Q_{\lambda}||h\rangle \left(\frac{\Lambda_{ph}^{J}}{E_{J} - \epsilon_{ph} + i\eta} - \frac{\Lambda_{ph}^{J}}{E_{J} + \epsilon_{ph} + i\eta'}\right)$$

Decay to low-lying states

NFT: 12 diagrams contribute to the matrix element

Decay to low-lying states

Polarization charge: External field partially screened through the interaction with intermediate states

$$Q_{ij}^{\lambda pol} = \langle i \| Q_{\lambda} \| j \rangle + \\ + \sum_{n'} \frac{1}{\sqrt{2\lambda + 1}} \left[\frac{\langle 0 \| Q_{\lambda} \| n'\lambda \rangle \langle i, n'\lambda \| V \| j \rangle}{(E_J - \hbar\omega_{J'}) - \hbar\omega_{\lambda} + i\eta} - \frac{\langle i \| V \| j, n'\lambda \rangle \langle n'\lambda \| Q_{\lambda} \| 0 \rangle}{(E_J - \hbar\omega_{J'}) + \hbar\omega_{\lambda} + i\eta} \right]$$

Results – ²⁰⁸Pb

Consistent approach to the coupling vertex:

- single particle states HF
- phonons self consistent RPA with Skyrme functional
- microscopic Skyrme interaction
- No phenomenological ingredient
- 4 Skyrme parametrizzation: SLy5, SGII, SkP, LNS

* γ decay to the ground state and to first $J^{\pi} = 3^{-}$ state of the Isoscalar Giant Quadrupole Resonance (ISGQR) in ²⁰⁸Pb

Energy and collectivity of the states

J^{π}	2^{+}		3-	
	E [MeV]	EWSR $[\%]$	E [MeV]	$B(E3)\uparrow [10^5 e^2 \mathrm{fm}^6]$
Experimental	10.9 ± 0.3	100	2.6145 ± 0.0003	6.11 ± 0.09
SLy5	12.28	69.27	3.62	6.54
SGII	11.62	69.66	2.92	6.83
SkP	10.28	81.79	3.29	5.11
LNS	12.19	64.90	3.37	5.46

Experimental data from NDS108(2007)1583

Decay to the ground state

	$E_{COP}(MeV)$	$\Gamma_{\gamma}(eV)$	
		RPA	RPA'
SLy5	12.28	231.54	160
SGII	11.62	170.09	154
SkP	10.28	119.18	169
LNS	12.19	176.19	135
Beene et al.,PRC 39 (1989)1307	10.60	146±36	<i>– exp</i> .
Speth et al., PRC85(1985)2310	10.60	112 – 1	theor.
Beene et al., PLB164(1985)19	11.20	175 — I	theor.

Consistent with the experimental value through an energy and EWSR scaling of the GQR $(\Delta E = 1 \text{ MeV} \Rightarrow \text{ increase in } \Gamma_{\gamma} \text{ of } 40 \%)$

	$E_{tran}(MeV)$	$\Gamma_{\gamma}(eV)$
SLy5	8.66	5.07
SGII	8.70	33.25
SkP	6.99	10.99
LNS	8.82	54.60
Beene et al.,PRC 39 (1989)1307	7.99	$5\pm 5-exp.$
Speth et al., PRC85(1985)2310	7.99	4.00 – <i>theor</i> .
Bortignon et al., PLB148(1984)20	8.60	3.50 – <i>theor</i> .

Γ_{γ} for a typical ph (eV) at 8.5 MeV		$1.2 \cdot 10^{3}$
	Recoupling	3
Quanching factors	$\pi - \nu$ cancellation	5
Quenching factors	p – h cancellation	3 - 4
	Polarizzation factor	4
	$\Gamma_{\gamma}(\mathbf{eV})$	5.07

Γ_{γ} for a typical ph (eV) at 8.5 MeV		$1.2 \cdot 10^{3}$
Quenching factors	Recoupling	3
	π – ν cancellation	5
	p – h cancellation	3 - 4
	Polarizzation factor	4
	$\Gamma_{\gamma}(\mathbf{eV})$	5.07
$Q_{ij} = (\tau_z -$	$-\frac{N-Z}{A}\Big)_{j}\langle i\ r^{\lambda}Y_{\lambda}\ .$	j>

Γ_{γ} for a typical ph (eV) at 8.5 MeV		$1.2 \cdot 10^{3}$
	Recoupling	3
Quanching factors	π – ν cancellation	5
Quenching factors	p – h cancellation	3 - 4
	Polarizzation factor	4
	$\Gamma_{\gamma}(\mathbf{eV})$	5.07
p' \q ML \q M	h = - p + h' JM	

Γ_{γ} for a typical ph (eV) at 8.5 MeV		$1.2 \cdot 10^{3}$
	Recoupling	3
Quanahing factors	π – ν cancellation	5
Quenching factors	p – h cancellation	3 - 4
	Polarizzation factor	4
	$\Gamma_{\gamma}(\mathbf{eV})$	5.07
×⊗ = × -	-× کر + + کر +	₇

Conclusions

- Microscopic and consistent treatment γ decay
- γ decay to the GS: not able to discriminate between models
- γ decay to the 3⁻ state: sensitive to the interaction used
 Dipole spectrum
- Comparison with the experiment at LNL INFN (June2010)
- Other closed shell nuclei: ⁹⁰Zr (LNL 2010) ...

Decay of the compound nucleus

$$\langle \Gamma_{\gamma 0}^{CN} \rangle = \frac{X(\lambda) b_{E\lambda}(E) \left(\frac{E}{\hbar c}\right)^{2\lambda + 1}}{\rho_I(E)}$$

$$X(\lambda) = \frac{8\pi(\lambda+1)}{\lambda[(2\lambda+1)!!]^2}$$

• $\rho_{I}(E)$: density of state of the compound nucleus with spin I and energy E

• $b_{E\lambda}(E)$ reduced transition probability per unit of energy

