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Core Collapse
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(important in determining a neutron star’s maximum mass), symmetry energies
(important in determining the typical stellar radius and in the relative proton
fraction) and specific heats (important in determining the local temperature).
These characteristics play important roles in determining the matter’s compo-
sition, in particular the possible presence of additional components (such as
hyperons, a pion or kaon condensate, or quark matter), and also significantly
affect calculated neutrino opacities and diffusion time scales.

The evolution of a PNS proceeds through several distinct stages [1,2] and
with various outcomes, as shown schematically in Fig. 1. Immediately following
core bounce and the passage of a shock through the outer PNS’s mantle, the
star contains an unshocked, low entropy core of mass Mc ! 0.7 M! in which
neutrinos are trapped (the first schematic illustration, labelled (1) in the figure).
The core is surrounded by a low density, high entropy (5 < s < 10) mantle
that is both accreting matter from the outer iron core falling through the shock
and also rapidly losing energy due to electron captures and thermal neutrino
emission. The mantle extends up to the shock, which is temporarily stationary
at a radius of about 200 km prior to an eventual explosion.

Fig. 1. The main stages of evolution of a neutron star. Shading indicates approximate
relative temperatures.

After a few seconds (stage 2), accretion becomes less important if the super-
nova is successful and the shock lifts off the stellar envelope. Extensive neutrino
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Is it big as... a star?

Birth of a neutron star

The birth of a neutron star
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Neutrino cross section at nuclear density

νl + N → l + X
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Figura 4.1: Diffusione anelastica neutrino-nucleone.

evitiamo la dettagliata descrizione della transizione del bersaglio dagli stati iniziali

agli stati finali per effetto dell’interazione. La dinamica che sottende il vertice adroni-

co è descritta, in analogia al caso di diffusione quasi-elastica, in termini di funzioni

scalari, funzioni di struttura adroniche, che dipendono da variabili cinematiche come

l’energia e il momento trasferiti.

4.1 Calcolo della sezione d’urto inclusiva

Analizziamo la reazione di corrente carica:

ν + N → l + X (4.1)
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N(p)

X(p′)

W±(q, w)

Lepton Trace
(
− 2

1− e−βw
Im

[
W̃µν

])

Low energy process (w !MW ),
similar to

Correlation Functional of hadronic current

density response spin-density response

θ

Non-relativistic limit p! mN , for neutral current:



Landau Theory: Dynamic Response

Supposing a scalar probe

Microscopic theory

Boltzmann-Landau equation

λ =
w

q vF

collective mode

multipair
excitations

incoherent excitations

w

λ < 1

λ > 1

−Im χ(q ∼ 0, w) Fermi Gas

δρ(q, w) = χ(q, w)Uex(q, w)
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Sum on single p-h states
(non-int. hamiltonian)
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they can be taken
once an interacting hamiltonian is introduced

from experiments (as for 3He)...

Landau Theory: Landau parameters

We need a realistic, low-energy, interaction potential instead of QCD

H = T̃0 +
N∑

i<j=1

ṽ18
ij = T̃0 +

N∑

i<j=1

(
18∑

n=1

fn(r)Õn(r̂)

)

(Nijmegen data)

fits with χ2/Ndat ∼ 1
elastic N −N scattering

in q → 0, only the static part :

Argonne potential

Simply related to macroscopic observables
(like specific heat, suscept. ecc) so

ṽ6 → [ 1, (!σ1 · !σ2) , S12(r̂) ]⊗ [ 1 , (!τ1 · !τ2) ]

(Neutron Matter)



2.3 – Effective interaction

Figure 2.2. Comparison between the components of the bare Argonne v′8 poten-
tial (dashed lines) and the effective potential defined by Eq.(2.53) (solid lines),
calculated at nuclear matter equilibrium density.
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〈ij|Ṽ (0)− Ṽ (ki − kj)|ij〉

]
ni(ki)nj(kj)

2.3 – Effective interaction
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Effective potential (pink) Vs Bare one (Blue)
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Landau Parameter for Neutron Star matter
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*thanks to E. Cammarota

fij =
δ2E

δniδnj
=

1
L3

〈ij|Ṽ (0)− Ṽ (q)|ij〉 q = ki − kj

F a(q) = (F↑↑ − F↑↓)/2F s(q) = (F↑↑ + F↑↓)/2

The effective q-p interactions is defined:

Non-central interaction on Fermi surface



Landau Parameter for Neutron Star matter
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we have another degree of freedom
(tensor term)

dependence on q̂

On Fermi surface, with |k| ∼ |k′| ∼ kF and q = 2kF sin(ξ/2))
we can be defined:

fs,a(cos ξ) =
∑

l
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l Pl(cos ξ) F s,a

l = V D(εF )fs,a
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Results
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Susceptibility
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F3 is negligible
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Summary and Perspective

We use a nuclear many-body theory (CBF) to model ”low-energy”
hamiltonian Hint in dense matter

Dynamic response is evaluated within Landau framework
for different channel:

Extension to asymmetric nuclear matter in β-equilibrium

Neutrino mean free path and finite-temperature effects

neutron Landau parameters


