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What should we consider as fully microscopic
shell-model calculations?

I The starting point is a realistic potential VNN

I An effective shell-model hamiltonian Heff is then derived by way
of the many-body theory of the effective hamiltonian

I The shell model calculation is performed using only quantities
obtained from the shell-model hamiltonian, both single-particle
energies and residual two-body interaction are derived from the
theory
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Why to perform fully microscopic shell-model
calculations?

I To understand if it is possible to perform a shell-model
calculations without parameters

I To test the many-body theory that underlies the derivation of a
theoretical shell-model hamiltonian

I Without phenomenological parameters, the predictive power is
enhanced

I Such an approach, pursued with only a two-body force, reveals
what is the role of three-body forces within the shell-model
framework
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Phase 1: the realistic nucleon-nucleon potential

There are a plenty of VNNs on the market: most of the modern ones
reproduce quite well the physics of the two-nucleon system

I CD-Bonn

I Nijmegen I,II,93

I Argonne V18

I “chiral” potentials
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Phase 1: the realistic nucleon-nucleon potential

The trouble with realistic VNNs is the strong short-range
repulsion

This is a notable shortcoming since we will derive the
shell-model effective hamiltonian from such potentials using the
time-dependent degenerate linked-diagram perturbation theory

⇓
It is necessary to manage the short-range repulsion
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Phase 1: the realistic nucleon-nucleon potential

As we said before, the short-range component of the free nucleon-nucleon
potential VNN has to be renormalized in order to fit with a perturbative scheme

The reaction matrix G
The standard way to renormalize the short-range repulsion is to resort to the
theory of the Brueckner reaction matrix G

It can be written by way of an integral equation:

G(ab, cd) = VNN(ab, cd) +
1
2

X
αβ

VNN(ab, αβ)G(αβ, cd)

εc + εd − εα − εβ
,
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Phase 1: the realistic nucleon-nucleon potential

The action of G on the non-correlated wave function Φab, which is
eigenfunction of the unperturbed hamiltonian H0, is equal to the action of VNN

on the correlated wave function Ψab (Ψab → 0 when r → rc)
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Phase 1: the realistic nucleon-nucleon potential

Shortcomings:

I Energy dependent

I Model space dependent - it depends on the Pauli operator Q2p

I No direct connection to the original VNN potential
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Phase 1: the realistic nucleon-nucleon potential

Low-momentum nucleon-nucleon potentials: the Vlow−k

Inspiration to renormalize VNN :

I Effective field theory (EFT)

I Renormalization group (RG)

from EFT: we restrict the configurations of VNN(k , k ′) to those with
k , k ′ < kcutoff = Λ

S. Bogner, T. T. S. Kuo, L. Coraggio, A. Covello, and N. Itaco, Phys. Rev. C 65,
051301(R) (2002)

Luigi Coraggio INFN, Napoli

Nuclear Physics School “Raimondo Anni”, 5th course



Phase 1: the realistic nucleon-nucleon potential

Low-momentum nucleon-nucleon potentials: the Vlow−k

Inspiration to renormalize VNN :

I Effective field theory (EFT)

I Renormalization group (RG)

from EFT: we restrict the configurations of VNN(k , k ′) to those with
k , k ′ < kcutoff = Λ

S. Bogner, T. T. S. Kuo, L. Coraggio, A. Covello, and N. Itaco, Phys. Rev. C 65,
051301(R) (2002)

Luigi Coraggio INFN, Napoli

Nuclear Physics School “Raimondo Anni”, 5th course



Phase 1: the realistic nucleon-nucleon potential

Low-momentum nucleon-nucleon potentials: the Vlow−k

Inspiration to renormalize VNN :

I Effective field theory (EFT)

I Renormalization group (RG)

from EFT: we restrict the configurations of VNN(k , k ′) to those with
k , k ′ < kcutoff = Λ

S. Bogner, T. T. S. Kuo, L. Coraggio, A. Covello, and N. Itaco, Phys. Rev. C 65,
051301(R) (2002)

Luigi Coraggio INFN, Napoli

Nuclear Physics School “Raimondo Anni”, 5th course



Phase 1: the realistic nucleon-nucleon potential

The two-nucleon hamiltonian:
In the full momentum spaceZ ∞

0
[H0(k , k ′) + VNN(k , k ′)]〈k |Ψν〉k2dk = Eν〈k ′|Ψν〉

In a reduced model space P =

Z Λ

0
|k〉〈k |k2dkZ Λ

0
[H0(k , k ′) + Vlow−k(k , k ′)]〈k |Φµ〉k2dk = Ẽµ〈k ′|Φµ〉

Fundamental constraint: Ẽµ ∈ {Eν}

How to construct 〈k |Heff|k ′〉?

⇓
Unitary transformation: Lee-Suzuki approach
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Phase 1: the realistic nucleon-nucleon potential

It is necessary to construct a new hamiltonian H by way of a similarity
transformation

H = Ω−1HΩ

It is also necessary that the operator Ω satisfies the decoupling
condition between the model space P and its coplementary space
Q = 1 − P:

QHP = QΩ−1HΩP = 0
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Phase 1: the realistic nucleon-nucleon potential

The decoupling equation

QHP = 0 ,

is not able to identify the wave operator Ω uniquely

Lee and Suzuki suggested that, without loss of generality, the wave
operator could have the following form

ΩP = 1P PΩQ = 0

QΩP = ω QΩQ = 1Q
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Phase 1: the realistic nucleon-nucleon potential

Using this form for Ω, then H will satisfy the following identities in the
P and Q subspaces

PHP = PHP + PHQω ,

PHQ = PHQ ,

QHQ = QHQ − ωPHQ ,

QHP = QHP + QHQω − ωPHP − ωPHQω .

In the last identity we will explicitly into account the decoupling
condition QHP = 0
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Phase 1: the realistic nucleon-nucleon potential

Finally we rewrite decoupling equation for the operator ω

QHP + QHQω − ωPHP − ωPHQω = 0 .

The latter is a non-linear matrix equation in ω that can be solved with
iterative techniques, and whose solution allows to construct the wave
operator Ω, and consequently any effective operator in the model
space P
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Phase 1: the realistic nucleon-nucleon potential

A numerical test: deuteron binding energy with the CD-Bonn potential

Λ (in fm−1) PVeffP (in MeV) VNN (in MeV)
1.6 -2.225 -2.225
1.8 -2.225
2.0 -2.225
2.2 -2.225

Luigi Coraggio INFN, Napoli

Nuclear Physics School “Raimondo Anni”, 5th course



Phase 1: the realistic nucleon-nucleon potential

A numerical test: phase shifts in the 1S0 channel (in degrees)

Elab (MeV) CD-Bonn Vlow−k Expt.
1 62.1 62.1 62.1
10 60.0 60.0 60.0
25 50.9 50.9 50.9
50 40.5 40.5 40.5
100 26.4 26.4 26.8
150 16.3 16.3 16.9
200 8.3 8.3 8.9
250 1.6 1.6 2.0
300 -4.3 -4.3 -4.5
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G matrix vs Vlow−k

G matrix

I Energy dependent

I Model space dependent -
it depends on the Pauli
operator Q2p

I No direct connection to
the original VNN

Vlow−k

I No energy-dependence

I No model-space dependence

I In the k -space it reproduces all
the two-body problem data - it
is a real effective potential
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Phase 2: the shell-model effective hamiltonian

Schrödinger equation for A-nucleon system:

H|Ψν〉 = Eν |Ψν〉

Rewrite the above equation in terms of the wave operator Ω

Ω−1HΩΩ−1|Ψν〉 = HΩ−1|Ψν〉 = EνΩ−1|Ψν〉

We want Ω so that

H|ΨP
i 〉 = Ei |ΨP

i 〉

|ΨP
i 〉 eigenfunctions of the model space P Ei ∈ {Eν}

Luigi Coraggio INFN, Napoli

Nuclear Physics School “Raimondo Anni”, 5th course



Phase 2: the shell-model effective hamiltonian

Schrödinger equation for A-nucleon system:

H|Ψν〉 = Eν |Ψν〉

Rewrite the above equation in terms of the wave operator Ω

Ω−1HΩΩ−1|Ψν〉 = HΩ−1|Ψν〉 = EνΩ−1|Ψν〉

We want Ω so that

H|ΨP
i 〉 = Ei |ΨP

i 〉

|ΨP
i 〉 eigenfunctions of the model space P Ei ∈ {Eν}

Luigi Coraggio INFN, Napoli

Nuclear Physics School “Raimondo Anni”, 5th course



Phase 2: the shell-model effective hamiltonian

Schrödinger equation for A-nucleon system:

H|Ψν〉 = Eν |Ψν〉

Rewrite the above equation in terms of the wave operator Ω

Ω−1HΩΩ−1|Ψν〉 = HΩ−1|Ψν〉 = EνΩ−1|Ψν〉

We want Ω so that

H|ΨP
i 〉 = Ei |ΨP

i 〉

|ΨP
i 〉 eigenfunctions of the model space P Ei ∈ {Eν}

Luigi Coraggio INFN, Napoli

Nuclear Physics School “Raimondo Anni”, 5th course



Phase 2: the shell-model effective hamiltonian

Let us consider again the Lee-Suzuki approach to the derivation of
the effective hamiltonian in terms of the operator ω

First of all we consider that our hamiltonian H can be written as a
sum of an unperturbed term H0 and an interaction one H1

H = H0 + H1

A basic assumption we make is that H0 is degenerate in the model
space

PH0P = εP
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Phase 2: the shell-model effective hamiltonian

Under the above conditions, and taking into account of the
decoupling equation, we can write Heff

1 in terms of ω

Heff
1 = Heff − PH0P = PHP − PH0P = PH1P + PH1Qω

We now use the above equation to write ω as a function of Heff
1 :

ω = Q
1

ε− QHQ
QH1P − Q

1
ε− QHQ

ωHeff
1
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Phase 2: the shell-model effective hamiltonian

We insert last relation for ω into the identity that defines Heff
1 , in order

to obtain a recursive equation

Heff
1 (ω) = PH1P + PH1Q

1
ε− QHQ

QH1P−

−PH1Q
1

ε− QHQ
ωHeff

1 (ω)

The blue term in the above equation is the so-called Q̂-box:

Q̂(ε) = PH1P + PH1Q
1

ε− QHQ
QH1P
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Heff
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1
ε− QHQ
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ωHeff
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Phase 2: the shell-model effective hamiltonian

The Q̂-box is calculated by way of a perturbative expansion and can
be expressed as a sum of Goldstone diagrams

Q̂(ε) = PH1P + PH1Q
1

ε− QHQ
QH1P

The diagrams belonging to the perturbative expansion have to satisfy
the following requirements:

I they need to be “valence linked”, i.e. the incoming and
outcoming lines should belong to the model space P

I they should be “irreducible”
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Phase 2: the shell-model effective hamiltonian

NO!
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The states a, b, c, d belong to the model space P

The configurations p h, p1 h1 p2 h2 belong to the space Q

Luigi Coraggio INFN, Napoli

Nuclear Physics School “Raimondo Anni”, 5th course



Phase 2: the shell-model effective hamiltonian

M. Hjorth-Jensen, E. Osnes,
and T. T. S. Kuo, Phys. Rep.
261 (1995) 125
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Phase 2: the shell-model effective hamiltonian

Since our single-particle energies are calculated theoretically, we
need to include a certain class of diagrams that are usually
neglected: the so-called self-consistency corrections

j j j

jj j

h

(a) (b)

The sum at all orders of this class of diagrams makes results
independent from the choice of the unperturbed hamiltonian
H0 = T + U =

∑
i(p

2
i /2M + Mω2r2

i /2) and is equivalent to employ a
Hartree-Fock basis
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Phase 2: the shell-model effective hamiltonian
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Phase 2: the shell-model effective hamiltonian
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Phase 2: the shell-model effective hamiltonian

Q̂-box diagrams and all effective operators (electric quadrupole
transitions, magnitic dipole transitions, ...) up to third order in
perturbation theory.

We calculate the Padè approximant [2|1] of the Q̂-box, in order to
obtain a better estimate of the value to which the perturbation series
should converge

[2|1] = V 0
Qbox + V 1

Qbox + V 2
Qbox(1 − (V 2

Qbox)−1V 3
Qbox)−1 ,

We include enough intermediate states so that the Heff has a flat
dependence on them
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Phase 2: the shell-model effective hamiltonian

Once we have calculated the Q̂-box perturbatively, we solve the
equation:

Heff
1 (ω) = Q̂(ε)− PH1Q

1
ε− QHQ

ωHeff
1 (ω)

We can use two iterative procedure, both based on the calculation of
Q̂-box derivatives

I Krenciglowa-Kuo technique

I Lee-Suzuki technique
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Phase 2: the shell-model effective hamiltonian

A benchmark calculation: shell-model deals with open-shell nuclei, a
basic test is a nucleus that can be described as 2 nucleons outside a
close-shell core

We have chosen to test our calculations with those of NCSM for 6Li
with N3LO potential: its structure should be made up by the 4He core
plus one valence proton and one valence neutron

The comparison with NCSM needs another upgrade for our
calculations, we have to start from a purely intrinsic many-body
hamiltonian, so to avoid center-of-mass spurious motion:

H = (1 − 1
A

)
∑

i

p2
i

2M
+

∑
i<j

(Vij −
pi · pj

MA
) =

∑
i

(
p2

i
2M

+
1
2

Mω2r2
i ) +

∑
i<j

(Vij −
1
2

Mω2r2
i −

p2
i

2MA
−

pi · pj

MA
) = H0 + H1
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Phase 2: the shell-model effective hamiltonian
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Calculation of 6Li energy spectrum with N3LO

-3

-2

-1

0

1

2

3

E
 (

M
eV

)

1
+

3
+

0
+

2
+

ExptPert. II

1
+

3
+

2
+

6
Li

0
+

NCSM

2
+

2
+

Pert. I

I Calculation I: effective shell-model hamiltonian without self-energy corrections
I Calculation II: effective shell-model hamiltonian with self-energy corrections
I NCSM: P. Navrátil and E. Caurier, Phys. Rev. C 69, 014311 (2004)
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Calculation of 6Li energy spectrum with N3LO

-3

-2

-1

0

1

2

3
E

 (
M

eV
)

1
+

3
+

0
+

2
+

ExptPert. II

1
+

3
+

2
+

6
Li

0
+

NCSM

2
+

2
+

Pert. I

I Calculation I: effective shell-model hamiltonian without self-energy corrections
I Calculation II: effective shell-model hamiltonian with self-energy corrections
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Results: the carbon isotopic chain
g.s. energies of even-mass isotopes
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Results: the sd-shell region
g.s. energies of even-mass isotopes
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Results: the sd-shell region

Energy spectra of even-mass fluorine isotopes

0

1

2

3

4

E
 (

M
eV

)

1
+

3
+0
+

18
F

Expt Th

1
+

3
+

0
+

20
F

Expt Th

2
+

3
+4
+

2
+

3
+

1
+5

+

2
+

1
+

5
+

2
+

1
+

2
+

2
+

5
+

3
+

1
+

2
+

4
+

5
+

2
+

3
+

Luigi Coraggio INFN, Napoli

Nuclear Physics School “Raimondo Anni”, 5th course



Results: the calcium isotopes
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Results: the titanium isotopes

Excitation energies of 2+ yrast states and their B(E2; 2+ → 0+)
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Results: heavy chromium isotopes
Excitation energies of 2+ yrast states and their B(E2; 2+ → 0+)
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Results: the N = 82 isotones
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Results: the N = 82 isotones
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I Blue triangles: microscopic shell-model calculations

I Black squares: fitted 2s1/2 single-particle energy

I Red dots: experimental data

Luigi Coraggio INFN, Napoli

Nuclear Physics School “Raimondo Anni”, 5th course



Concluding remarks

I The agreement of our results with the experimental data
testifies the reliability of a fully microscopic shell-model
calculation

I Pure three-body forces seem to contribute mainly to the
ground-state energy relative to the closed core of
single-particle spectra

I Role of three-body correlations should be investigated
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These terms introduce density dependence into the effective
shell-model hamiltonian
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Concluding remarks

I The agreement of our results with the experimental data
testifies the reliability of a fully microscopic shell-model
calculation

I Pure three-body forces seem to contribute mainly to the
ground-state energy relative to the closed core of
single-particle spectra

I Role of three-body correlations should be investigated

I Perspectives: benchmark calculations with other
many-body approaches (p-shell nuclei)
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