Microscopic approach to shell model

Luigi Coraggio

Istituto Nazionale di Fisica Nucleare - Sezione di Napoli

May, 31st 2011

Luigi Coraggio

Bibliography

E. M. Krenciglowa, C. L. Kung, and T. T. S. Kuo, Ann. Phys. **101** (1976) 154

J. Shurpin, T. T. S. Kuo, and D. Strottman, Nucl. Phys. A **208** (1983) 310

M. Hjorth-Jensen, E. Osnes, and T. T. S. Kuo, Phys. Rep. **261** (1995) 125

INFN, Napoli

L. Coraggio, A. Covello, A. Gargano, and T. T. S. Kuo, Prog. Part. Nucl. Phys. 62 (2008) 135

Luigi Coraggio

What should we consider as fully microscopic shell-model calculations?

The starting point is a realistic potential V_{NN}

- An effective shell-model hamiltonian H_{eff} is then derived by way of the many-body theory of the effective hamiltonian
- The shell model calculation is performed using only quantities obtained from the shell-model hamiltonian, both single-particle energies and residual two-body interaction are derived from the theory

Nuclear Physics School "Raimondo Anni", 5th course

What should we consider as fully microscopic shell-model calculations?

- The starting point is a realistic potential V_{NN}
- An effective shell-model hamiltonian H_{eff} is then derived by way of the many-body theory of the effective hamiltonian
- The shell model calculation is performed using only quantities obtained from the shell-model hamiltonian, both single-particle energies and residual two-body interaction are derived from the theory

Nuclear Physics School "Raimondo Anni", 5th course

What should we consider as fully microscopic shell-model calculations?

- The starting point is a realistic potential V_{NN}
- An effective shell-model hamiltonian H_{eff} is then derived by way of the many-body theory of the effective hamiltonian
- The shell model calculation is performed using only quantities obtained from the shell-model hamiltonian, both single-particle energies and residual two-body interaction are derived from the theory

- To understand if it is possible to perform a shell-model calculations without parameters
- To test the many-body theory that underlies the derivation of a theoretical shell-model hamiltonian
- Without phenomenological parameters, the predictive power is enhanced
- Such an approach, pursued with only a two-body force, reveals what is the role of three-body forces within the shell-model framework

Luigi Coraggio

- To understand if it is possible to perform a shell-model calculations without parameters
- To test the many-body theory that underlies the derivation of a theoretical shell-model hamiltonian
- Without phenomenological parameters, the predictive power is enhanced
- Such an approach, pursued with only a two-body force, reveals what is the role of three-body forces within the shell-model framework

Luigi Coraggio

- To understand if it is possible to perform a shell-model calculations without parameters
- To test the many-body theory that underlies the derivation of a theoretical shell-model hamiltonian
- Without phenomenological parameters, the predictive power is enhanced
- Such an approach, pursued with only a two-body force, reveals what is the role of three-body forces within the shell-model framework

INFN, Napoli

- To understand if it is possible to perform a shell-model calculations without parameters
- To test the many-body theory that underlies the derivation of a theoretical shell-model hamiltonian
- Without phenomenological parameters, the predictive power is enhanced
- Such an approach, pursued with only a two-body force, reveals what is the role of three-body forces within the shell-model framework

INFN, Napoli

T. T. S. Kuo and G. E. Brown

T. T. S. Kuo and G. E. Brown, Nucl. Phys. 85 (1966) 40

Luigi Coraggio

There are a plenty of V_{NN} s on the market: most of the modern ones reproduce quite well the physics of the two-nucleon system

- CD-Bonn
- Nijmegen I,II,93
- Argonne V18
- "chiral" potentials

INFN, Napoli

Luigi Coraggio

There are a plenty of V_{NN} s on the market: most of the modern ones reproduce quite well the physics of the two-nucleon system

CD-Bonn

- Nijmegen I,II,93
- Argonne V18
- "chiral" potentials

INFN, Napoli

Luigi Coraggio

There are a plenty of V_{NN} s on the market: most of the modern ones reproduce quite well the physics of the two-nucleon system

- CD-Bonn
- Nijmegen I,II,93
- Argonne V18
- "chiral" potentials

INFN, Napoli

Luigi Coraggio

There are a plenty of V_{NN} s on the market: most of the modern ones reproduce quite well the physics of the two-nucleon system

- CD-Bonn
- Nijmegen I,II,93
- Argonne V18
- "chiral" potentials

INFN, Napoli

Luigi Coraggio

There are a plenty of V_{NN} s on the market: most of the modern ones reproduce quite well the physics of the two-nucleon system

- CD-Bonn
- Nijmegen I,II,93
- Argonne V18
- "chiral" potentials

Luigi Coraggio

The trouble with realistic V_{NN} s is the strong short-range repulsion

This is a notable shortcoming since we will derive the shell-model effective hamiltonian from such potentials using the time-dependent degenerate linked-diagram perturbation theory

It is necessary to manage the short-range repulsion

Luigi Coraggio

The trouble with realistic V_{NN} s is the strong short-range repulsion

This is a notable shortcoming since we will derive the shell-model effective hamiltonian from such potentials using the time-dependent degenerate linked-diagram perturbation theory

It is necessary to manage the short-range repulsion

Luigi Coraggio

The trouble with realistic V_{NN} s is the strong short-range repulsion

This is a notable shortcoming since we will derive the shell-model effective hamiltonian from such potentials using the time-dependent degenerate linked-diagram perturbation theory

It is necessary to manage the short-range repulsion

Luigi Coraggio

As we said before, the short-range component of the free nucleon-nucleon potential V_{NN} has to be renormalized in order to fit with a perturbative scheme

The reaction matrix G

The standard way to renormalize the short-range repulsion is to resort to the theory of the Brueckner reaction matrix G

It can be written by way of an integral equation:

 $G(ab, cd) = V_{NN}(ab, cd) + \frac{1}{2} \sum \frac{V_{NN}(ab, \alpha\beta)G(\alpha\beta, cd)}{\epsilon_c + \epsilon_d - \epsilon_{\alpha} - \epsilon_{\beta}}$

INFN, Napoli

Luigi Coraggio

As we said before, the short-range component of the free nucleon-nucleon potential V_{NN} has to be renormalized in order to fit with a perturbative scheme

The reaction matrix G

The standard way to renormalize the short-range repulsion is to resort to the theory of the Brueckner reaction matrix G

It can be written by way of an integral equation:

INFN, Napoli

Luigi Coraggio

The action of *G* on the non-correlated wave function Φ_{ab} , which is eigenfunction of the unperturbed hamiltonian H_0 , is equal to the action of V_{NN} on the correlated wave function Ψ_{ab} ($\Psi_{ab} \rightarrow 0$ when $r \rightarrow r_c$)

INFN, Napoli

Luigi Coraggio

The action of *G* on the non-correlated wave function Φ_{ab} , which is eigenfunction of the unperturbed hamiltonian H_0 , is equal to the action of V_{NN} on the correlated wave function Ψ_{ab} ($\Psi_{ab} \rightarrow 0$ when $r \rightarrow r_c$)

INFN, Napoli

Luigi Coraggio

Shortcomings:

- Energy dependent
- Model space dependent it depends on the Pauli operator Q_{2p}
- No direct connection to the original V_{NN} potential

Luigi Coraggio Nuclear Physics School "Raimondo Anni", 5th course

Shortcomings:

Energy dependent

Model space dependent - it depends on the Pauli operator Q_{2p}

No direct connection to the original V_{NN} potential

Luigi Coraggio

Shortcomings:

- Energy dependent
- Model space dependent it depends on the Pauli operator Q_{2p}
- No direct connection to the original V_{NN} potential

Luigi Coraggio

Shortcomings:

- Energy dependent
- Model space dependent it depends on the Pauli operator Q_{2p}
- No direct connection to the original V_{NN} potential

Luigi Coraggio

Low-momentum nucleon-nucleon potentials: the V_{low-k}

Inspiration to renormalize V_{NN} :

- Effective field theory (EFT)
- Renormalization group (RG)

from EFT: we restrict the configurations of $V_{NN}(k, k')$ to those with $k, k' < k_{\text{cutoff}} = \Lambda$

S. Bogner, T. T. S. Kuo, L. Coraggio, A. Covello, and N. Itaco, Phys. Rev. C 65, 051301(R) (2002)

INFN, Napoli

Luigi Coraggio

Low-momentum nucleon-nucleon potentials: the V_{low-k}

Inspiration to renormalize V_{NN} :

- Effective field theory (EFT)
- Renormalization group (RG)

from EFT: we restrict the configurations of $V_{NN}(k, k')$ to those with $k, k' < k_{\text{cutoff}} = \Lambda$

S. Bogner, T. T. S. Kuo, L. Coraggio, A. Covello, and N. Itaco, Phys. Rev. C 65, 051301(R) (2002)

INFN, Napoli

Luigi Coraggio

Low-momentum nucleon-nucleon potentials: the V_{low-k}

Inspiration to renormalize V_{NN} :

- Effective field theory (EFT)
- Renormalization group (RG)

from EFT: we restrict the configurations of $V_{NN}(k, k')$ to those with $k, k' < k_{\text{cutoff}} = \Lambda$

INFN, Napoli

S. Bogner, T. T. S. Kuo, L. Coraggio, A. Covello, and N. Itaco, Phys. Rev. C 65, 051301(R) (2002)

The two-nucleon hamiltonian: In the full momentum space

$$\int_{0}^{\infty} [H_{0}(k,k') + V_{NN}(k,k')] \langle k | \Psi_{\nu} \rangle k^{2} dk = E_{\nu} \langle k' | \Psi_{\nu} \rangle$$

a reduced model space $P = \int_{0}^{\Lambda} |k\rangle \langle k | k^{2} dk$
$$\int_{0}^{\Lambda} [H_{0}(k,k') + V_{\text{low}-k}(k,k')] \langle k | \Phi_{\mu} \rangle k^{2} dk = \tilde{E_{\mu}} \langle k' | \Phi_{\mu} \rangle$$

Fundamental constraint: $\tilde{E}_{\mu} \in \{E_{\nu}\}$

How to construct $\langle k | H_{\text{eff}} | k' \rangle$?

Unitary transformation: Lee-Suzuki approach

INFN, Napoli

Luigi Coraggio

The two-nucleon hamiltonian: In the full momentum space

$$\int_{0}^{\infty} [H_{0}(k,k') + V_{NN}(k,k')] \langle k | \Psi_{\nu} \rangle k^{2} dk = E_{\nu} \langle k' | \Psi_{\nu} \rangle$$

reduced model space $P = \int_{0}^{\Lambda} |k\rangle \langle k | k^{2} dk$
$$\int_{0}^{\Lambda} [H_{0}(k,k') + V_{\text{low}-k}(k,k')] \langle k | \Phi_{\mu} \rangle k^{2} dk = \tilde{E}_{\mu} \langle k' | \Phi_{\mu} \rangle$$

Fundamental constraint: $\tilde{E}_{\mu} \in \{E_{\nu}\}$

How to construct $\langle k | H_{eff} | k' \rangle$? Unitary transformation: Lee-Suzuki approach

Luigi Coraggio

In a i

The two-nucleon hamiltonian: In the full momentum space

$$\int_{0}^{\infty} [H_{0}(k,k') + V_{NN}(k,k')] \langle k | \Psi_{\nu} \rangle k^{2} dk = E_{\nu} \langle k' | \Psi_{\nu} \rangle$$

In a reduced model space $P = \int_{0}^{\Lambda} |k\rangle \langle k | k^{2} dk$
$$\int_{0}^{\Lambda} [H_{0}(k,k') + V_{\text{low}-k}(k,k')] \langle k | \Phi_{\mu} \rangle k^{2} dk = \tilde{E}_{\mu} \langle k' | \Phi_{\mu} \rangle$$

Fundamental constraint: $\tilde{E}_{\mu} \in \{E_{\nu}\}$

Luigi Coraggio

It is necessary to construct a new hamiltonian $\ensuremath{\mathcal{H}}$ by way of a similarity transformation

$\mathcal{H} = \Omega^{-1} H \Omega$

It is also necessary that the operator Ω satisfies the decoupling condition between the model space *P* and its coplementary space Q = 1 - P:

$QHP = Q\Omega^{-1}H\Omega P = 0$

INFN, Napoli

Luigi Coraggio

It is necessary to construct a new hamiltonian $\ensuremath{\mathcal{H}}$ by way of a similarity transformation

 $\mathcal{H} = \Omega^{-1} H \Omega$

It is also necessary that the operator Ω satisfies the decoupling condition between the model space *P* and its coplementary space Q = 1 - P:

 $Q\mathcal{H}P=Q\Omega^{-1}H\Omega P=0$

INFN, Napoli

Luigi Coraggio

The decoupling equation

 ${\cal QHP}=0 \ ,$

is not able to identify the wave operator Ω uniquely

Lee and Suzuki suggested that, without loss of generality, the wave operator could have the following form

Luigi Coraggio

The decoupling equation

 $Q\mathcal{H}P=0$,

is not able to identify the wave operator Ω uniquely

Lee and Suzuki suggested that, without loss of generality, the wave operator could have the following form

 $\Omega P = \mathbf{1}_P \qquad P\Omega Q = \mathbf{0}$ $Q\Omega P = \omega \qquad Q\Omega Q = \mathbf{1}_Q$ $\square P = \mathbb{E} P = \mathbb{$

Nuclear Physics School "Raimondo Anni", 5th course
Using this form for Ω , then \mathcal{H} will satisfy the following identities in the P and Q subspaces

 $PHP = PHP + PHQ\omega ,$ PHQ = PHQ , $QHQ = QHQ - \omega PHQ ,$ $QHP = QHP + QHQ\omega - \omega PHP - \omega PHQ\omega$

< ロ > < 同 > < 三 > < 三 >

INFN, Napoli

In the last identity we will explicitly into account the decoupling condition QHP = 0

Luigi Coraggio

Using this form for Ω , then \mathcal{H} will satisfy the following identities in the P and Q subspaces

 $P\mathcal{H}P = PHP + PHQ\omega ,$ $P\mathcal{H}Q = PHQ ,$ $Q\mathcal{H}Q = QHQ - \omega PHQ ,$ $Q\mathcal{H}P = QHP + QHQ\omega - \omega PHP - \omega PHQ\omega .$

INFN, Napoli

In the last identity we will explicitly into account the decoupling condition QHP = 0

Luigi Coraggio

Finally we rewrite decoupling equation for the operator ω

$QHP + QHQ\omega - \omega PHP - \omega PHQ\omega = 0$.

The latter is a non-linear matrix equation in ω that can be solved with iterative techniques, and whose solution allows to construct the wave operator Ω , and consequently any effective operator in the model space *P*

Nuclear Physics School "Raimondo Anni", 5th course

Luigi Coraggio

Finally we rewrite decoupling equation for the operator ω

 $QHP + QHQ\omega - \omega PHP - \omega PHQ\omega = 0$.

The latter is a non-linear matrix equation in ω that can be solved with iterative techniques, and whose solution allows to construct the wave operator Ω , and consequently any effective operator in the model space *P*

Luigi Coraggio

A numerical test: deuteron binding energy with the CD-Bonn potential

Λ (in fm ⁻¹)	PV _{eff} P (in MeV)	V _{NN} (in MeV)
1.6	-2.225	-2.225
1.8	-2.225	
2.0	-2.225	
2.2	-2.225	

Luigi Coraggio

A numerical test: phase shifts in the ${}^{1}S_{0}$ channel (in degrees)

E _{lab} (MeV)	CD-Bonn	$V_{\text{low}-k}$	Expt.
1	62.1	62.1	62.1
10	60.0	60.0	60.0
25	50.9	50.9	50.9
50	40.5	40.5	40.5
100	26.4	26.4	26.8
150	16.3	16.3	16.9
200	8.3	8.3	8.9
250	1.6	1.6	2.0
300	-4.3	-4.3	-4.5

Luigi Coraggio

INFN, Napoli

G matrix vs V_{low-k}

G matrix

- Energy dependent
- Model space dependent it depends on the Pauli operator Q_{2p}
- No direct connection to the original V_{NN}

- ▶ <u>No</u> energy-dependence
- No model-space dependence
- In the k-space it reproduces all the two-body problem data - it is a real effective potential

Luigi Coraggio

G matrix vs V_{low-k}

G matrix

Energy dependent

- Model space dependent it depends on the Pauli operator Q_{2p}
- No direct connection to the original V_{NN}

- No energy-dependence
 - No model-space dependence
- In the k-space it reproduces all the two-body problem data - it is a real effective potential

Luigi Coraggio

G matrix

- Energy dependent
- Model space dependent it depends on the Pauli operator Q_{2p}
- No direct connection to the original V_{NN}

- <u>No</u> energy-dependence
 No model space depender
 - No model-space dependence
 - In the *k*-space it reproduces all the two-body problem data - it is a real effective potential

Luigi Coraggio

G matrix

- Energy dependent
- Model space dependent it depends on the Pauli operator Q_{2p}
- No direct connection to the original V_{NN}

- No energy-dependence
- No model-space dependence
- In the k-space it reproduces all the two-body problem data - it is a real effective potential

Luigi Coraggio

G matrix

 V_{low-k}

- Energy dependent
- Model space dependent it depends on the Pauli operator Q_{2p}
- No direct connection to the original V_{NN}

No energy-dependence

- No model-space dependence
- In the k-space it reproduces all the two-body problem data - it is a real effective potential

Luigi Coraggio

G matrix

- Energy dependent
- Model space dependent it depends on the Pauli operator Q_{2p}
- No direct connection to the original V_{NN}

- No energy-dependence
- No model-space dependence

 V_{low-k}

In the k-space it reproduces all the two-body problem data - it is a real effective potential

< < >> < <</>

Luigi Coraggio

G matrix

- Energy dependent
- Model space dependent it depends on the Pauli operator Q_{2p}
- No direct connection to the original V_{NN}

- V_{low-k}
- No energy-dependence
- No model-space dependence
- In the k-space it reproduces all the two-body problem data - it is a real effective potential

INFN, Napoli

Luigi Coraggio

Schrödinger equation for A-nucleon system:

 $H|\Psi_{
u}
angle=E_{
u}|\Psi_{
u}
angle$

Rewrite the above equation in terms of the wave operator Ω

$$\Omega^{-1}H\Omega\Omega^{-1}|\Psi_{\nu}\rangle = \mathcal{H}\Omega^{-1}|\Psi_{\nu}\rangle = E_{\nu}\Omega^{-1}|\Psi_{\nu}\rangle$$

We want Ω so that

 $\mathcal{H}|\Psi_i^P
angle = E_i|\Psi_i^P
angle$

 $|\Psi_i^P\rangle$ eigenfunctions of the model space P

INFN, Napoli

<ロ> <回> <回> < 回> < 回> < 回>

Luigi Coraggio

Schrödinger equation for A-nucleon system:

 $|H|\Psi_{
u}
angle=E_{
u}|\Psi_{
u}
angle$

Rewrite the above equation in terms of the wave operator Ω

$$\Omega^{-1}H\Omega\Omega^{-1}|\Psi_{\nu}\rangle = \mathcal{H}\Omega^{-1}|\Psi_{\nu}\rangle = \mathcal{E}_{\nu}\Omega^{-1}|\Psi_{\nu}\rangle$$

We want Ω so that

 ${\cal H}|\Psi^P_i
angle=E_i|\Psi^P_i
angle$

INFN, Napoli

 $|\Psi_i^P\rangle$ eigenfunctions of the model space P

Schrödinger equation for A-nucleon system:

 $|H|\Psi_{
u}
angle=E_{
u}|\Psi_{
u}
angle$

Rewrite the above equation in terms of the wave operator Ω

$$\Omega^{-1}H\Omega\Omega^{-1}|\Psi_{\nu}\rangle = \mathcal{H}\Omega^{-1}|\Psi_{\nu}\rangle = \mathcal{E}_{\nu}\Omega^{-1}|\Psi_{\nu}\rangle$$

We want Ω so that

 $|\mathcal{H}|\Psi_i^P\rangle = E_i|\Psi_i^P\rangle$

 $|\Psi_i^P\rangle$ eigenfunctions of the model space $P = E_i \in \{E_\nu\}$

INFN Mitter Nationale d'Phile Nationale

INFN, Napoli

< ロ > < 同 > < 三 > < 三 >

Luigi Coraggio

Let us consider again the Lee-Suzuki approach to the derivation of the effective hamiltonian in terms of the operator ω

First of all we consider that our hamiltonian H can be written as a sum of an unperturbed term H_0 and an interaction one H_1

 $H=H_0+H_1$

A basic assumption we make is that H_0 is degenerate in the model space

 $PH_0P = \epsilon P$

<ロ> <同> < 回> < 回> < 回>

INFN, Napoli

Luigi Coraggio

Let us consider again the Lee-Suzuki approach to the derivation of the effective hamiltonian in terms of the operator ω

First of all we consider that our hamiltonian H can be written as a sum of an unperturbed term H_0 and an interaction one H_1

 $H=H_0+H_1$

A basic assumption we make is that H_0 is degenerate in the model space

 $PH_0P = \epsilon P$

<ロ> <同> < 回> < 回> < 回>

INFN, Napoli

Luigi Coraggio

Let us consider again the Lee-Suzuki approach to the derivation of the effective hamiltonian in terms of the operator ω

First of all we consider that our hamiltonian H can be written as a sum of an unperturbed term H_0 and an interaction one H_1

 $H=H_0+H_1$

A basic assumption we make is that H_0 is degenerate in the model space

 $PH_0P = \epsilon P$

<ロ> <同> < 回> < 回> < 回>

INFN, Napoli

Luigi Coraggio

Under the above conditions, and taking into account of the decoupling equation, we can write H_1^{eff} in terms of ω

$$H_{1}^{\text{eff}} = H^{\text{eff}} - PH_{0}P = P\mathcal{H}P - PH_{0}P = PH_{1}P + PH_{1}Q\omega$$

We now use the above equation to write ω as a function of H_1^{eff} :

$$\omega = Q rac{1}{\epsilon - QHQ} QH_1 P - Q rac{1}{\epsilon - QHQ} \omega H_1^{ ext{eff}}$$

INFN, Napoli

Luigi Coraggio

Under the above conditions, and taking into account of the decoupling equation, we can write H_1^{eff} in terms of ω

$$H_{1}^{\text{eff}} = H^{\text{eff}} - PH_{0}P = P\mathcal{H}P - PH_{0}P = PH_{1}P + PH_{1}Q\omega$$

We now use the above equation to write ω as a function of H_1^{eff} :

$$\omega = Q \frac{1}{\epsilon - QHQ} QH_1 P - Q \frac{1}{\epsilon - QHQ} \omega H_1^{\text{eff}}$$

INFN, Napoli

Luigi Coraggio

We insert last relation for ω into the identity that defines H_1^{eff} , in order to obtain a recursive equation

$$H_{1}^{\text{eff}}(\omega) = PH_{1}P + PH_{1}Q \frac{1}{\epsilon - QHQ}QH_{1}P - PH_{1}Q \frac{1}{\epsilon - QHQ}\omega H_{1}^{\text{eff}}(\omega)$$

The blue term in the above equation is the so-called \hat{Q} -box:

$$\hat{Q}(\epsilon) = PH_1P + PH_1Q \frac{1}{\epsilon - OHO}QH_1$$

INFN, Napoli

Luigi Coraggio

We insert last relation for ω into the identity that defines H_1^{eff} , in order to obtain a recursive equation

$$H_{1}^{\text{eff}}(\omega) = PH_{1}P + PH_{1}Q \frac{1}{\epsilon - QHQ}QH_{1}P - PH_{1}Q \frac{1}{\epsilon - QHQ}\omega H_{1}^{\text{eff}}(\omega)$$

The blue term in the above equation is the so-called \hat{Q} -box:

$$\hat{Q}(\epsilon) = PH_1P + PH_1Q \frac{1}{\epsilon - OHO}QH_1$$

INFN, Napoli

Luigi Coraggio

We insert last relation for ω into the identity that defines H_1^{eff} , in order to obtain a recursive equation

$$H_{1}^{\text{eff}}(\omega) = PH_{1}P + PH_{1}Q \frac{1}{\epsilon - QHQ}QH_{1}P - PH_{1}Q \frac{1}{\epsilon - QHQ}\omega H_{1}^{\text{eff}}(\omega)$$

The blue term in the above equation is the so-called \hat{Q} -box:

$$\hat{Q}(\epsilon) = PH_1P + PH_1Q \frac{1}{\epsilon - QHQ}QH_1P$$

INFN, Napoli

Luigi Coraggio

The \hat{Q} -box is calculated by way of a perturbative expansion and can be expressed as a sum of Goldstone diagrams

$$\hat{Q}(\epsilon) = PH_1P + PH_1Q \frac{1}{\epsilon - QHQ}QH_1P$$

The diagrams belonging to the perturbative expansion have to satisfy the following requirements:

INFN, Napoli

they need to be "valence linked", i.e. the incoming and outcoming lines should belong to the model space P

they should be "irreducible"

Luigi Coraggio

The \hat{Q} -box is calculated by way of a perturbative expansion and can be expressed as a sum of Goldstone diagrams

$$\hat{Q}(\epsilon) = PH_1P + PH_1Q \frac{1}{\epsilon - QHQ}QH_1P$$

The diagrams belonging to the perturbative expansion have to satisfy the following requirements:

INFN, Napoli

- they need to be "valence linked", i.e. the incoming and outcoming lines should belong to the model space P
- they should be "irreducible"

Nuclear Physics School "Raimondo Anni", 5th course

Luigi Coraggio

The \hat{Q} -box is calculated by way of a perturbative expansion and can be expressed as a sum of Goldstone diagrams

$$\hat{Q}(\epsilon) = PH_1P + PH_1Q rac{1}{\epsilon - QHQ}QH_1P$$

The diagrams belonging to the perturbative expansion have to satisfy the following requirements:

INFN, Napoli

- they need to be "valence linked", i.e. the incoming and outcoming lines should belong to the model space P
- they should be "irreducible"

Luigi Coraggio

The \hat{Q} -box is calculated by way of a perturbative expansion and can be expressed as a sum of Goldstone diagrams

$$\hat{Q}(\epsilon) = PH_1P + PH_1Qrac{1}{\epsilon - QHQ}QH_1P$$

The diagrams belonging to the perturbative expansion have to satisfy the following requirements:

INFN, Napoli

- they need to be "valence linked", i.e. the incoming and outcoming lines should belong to the model space P
- they should be "irreducible"

Luigi Coraggio

M. Hjorth-Jensen, E. Osnes, and T. T. S. Kuo, Phys. Rep. **261** (1995) 125

INFN, Napoli

Luigi Coraggio

Since our single-particle energies are calculated theoretically, we need to include a certain class of diagrams that are usually neglected: the so-called self-consistency corrections

The sum at all orders of this class of diagrams makes results independent from the choice of the unperturbed hamiltonian $H_0 = T + U = \sum_i (p_i^2/2M + M\omega^2 r_i^2/2)$ and is equivalent to employ a Hartree-Fock basis

(日)

INFN, Napoli

Luigi Coraggio

Since our single-particle energies are calculated theoretically, we need to include a certain class of diagrams that are usually neglected: the so-called self-consistency corrections

The sum at all orders of this class of diagrams makes results independent from the choice of the unperturbed hamiltonian $H_0 = T + U = \sum_i (p_i^2/2M + M\omega^2 r_i^2/2)$ and is equivalent to employ a Hartree-Fock basis

INFN, Napoli

Luigi Coraggio

Since our single-particle energies are calculated theoretically, we need to include a certain class of diagrams that are usually neglected: the so-called self-consistency corrections

The sum at all orders of this class of diagrams makes results independent from the choice of the unperturbed hamiltonian $H_0 = T + U = \sum_i (p_i^2/2M + M\omega^2 r_i^2/2)$ and is equivalent to employ a Hartree-Fock basis

INFN, Napoli

Luigi Coraggio

Ð τo X. 0.~ X ~~® 1000 6 ~ ® -0-00 -000 --0-00 --00 m®

INFN, Napoli

Luigi Coraggio

Luigi Coraggio

Nuclear Physics School "Raimondo Anni", 5th course

INFN, Napoli

Q-box diagrams and all effective operators (electric quadrupole transitions, magnitic dipole transitions, ...) up to third order in perturbation theory.

We calculate the Padè approximant [2|1] of the \hat{Q} -box, in order to obtain a better estimate of the value to which the perturbation series should converge

$$[2|1] = V_{Qbox}^0 + V_{Qbox}^1 + V_{Qbox}^2 (1 - (V_{Qbox}^2)^{-1} V_{Qbox}^3)^{-1} ,$$

We include enough intermediate states so that the ${\it H}_{\rm eff}$ has a flat dependence on them

KEN KEDOLÍ

Luigi Coraggio
\hat{Q} -box diagrams and all effective operators (electric quadrupole transitions, magnitic dipole transitions, ...) up to third order in perturbation theory.

We calculate the Padè approximant [2|1] of the \hat{Q} -box, in order to obtain a better estimate of the value to which the perturbation series should converge

$$[2|1] = V_{Qbox}^{0} + V_{Qbox}^{1} + V_{Qbox}^{2} (1 - (V_{Qbox}^{2})^{-1} V_{Qbox}^{3})^{-1} ,$$

INFN, Napoli

We include enough intermediate states so that the ${\it H}_{\rm eff}$ has a flat dependence on them

Luigi Coraggio

 \hat{Q} -box diagrams and all effective operators (electric quadrupole transitions, magnitic dipole transitions, ...) up to third order in perturbation theory.

We calculate the Padè approximant [2|1] of the \hat{Q} -box, in order to obtain a better estimate of the value to which the perturbation series should converge

$$[2|1] = V_{Qbox}^{0} + V_{Qbox}^{1} + V_{Qbox}^{2} (1 - (V_{Qbox}^{2})^{-1} V_{Qbox}^{3})^{-1} ,$$

INFN, Napoli

We include enough intermediate states so that the ${\it H}_{\rm eff}$ has a flat dependence on them

Luigi Coraggio

Once we have calculated the \hat{Q} -box perturbatively, we solve the equation:

$$H_{1}^{\text{eff}}(\omega) = \hat{Q}(\epsilon) - PH_{1}Q \frac{1}{\epsilon - QHQ} \omega H_{1}^{\text{eff}}(\omega)$$

We can use two iterative procedure, both based on the calculation of $\hat{\mathbf{Q}}\text{-}\mathsf{box}$ derivatives

- Krenciglowa-Kuo technique
- Lee-Suzuki technique

Luigi Coraggio

Once we have calculated the \hat{Q} -box perturbatively, we solve the equation:

$$H_1^{\text{eff}}(\omega) = \hat{Q}(\epsilon) - PH_1Q rac{1}{\epsilon - QHQ} \omega H_1^{ ext{eff}}(\omega)$$

We can use two iterative procedure, both based on the calculation of $\hat{\mathbf{Q}}\text{-box}$ derivatives

- Krenciglowa-Kuo technique
- Lee-Suzuki technique

Luigi Coraggio

<u>A benchmark calculation</u>: shell-model deals with open-shell nuclei, a basic test is a nucleus that can be described as 2 nucleons outside a close-shell core

We have chosen to test our calculations with those of NCSM for ⁶Li with N³LO potential: its structure should be made up by the ⁴He core plus one valence proton and one valence neutron

The comparison with NCSM needs another upgrade for our calculations, we have to start from a purely intrinsic many-body hamiltonian, so to avoid center-of-mass spurious motion:

Luigi Coraggio

INFN, Napoli

<u>A benchmark calculation</u>: shell-model deals with open-shell nuclei, a basic test is a nucleus that can be described as 2 nucleons outside a close-shell core

We have chosen to test our calculations with those of NCSM for ⁶Li with N³LO potential: its structure should be made up by the ⁴He core plus one valence proton and one valence neutron

The comparison with NCSM needs another upgrade for our calculations, we have to start from a purely intrinsic many-body hamiltonian, so to avoid center-of-mass spurious motion:

$$H = (1 - \frac{1}{A}) \sum_{i} \frac{p_{i}^{2}}{2M} + \sum_{i < j} (V_{ij} - \frac{\mathbf{p}_{i} \cdot \mathbf{p}_{j}}{MA}) =$$

$$\sum_{i} (\frac{p_{i}^{2}}{2M} + \frac{1}{2}M\omega^{2}r_{i}^{2}) + \sum_{i < j} (V_{ij} - \frac{1}{2}M\omega^{2}r_{i}^{2} - \frac{p_{i}^{2}}{2MA} - \frac{\mathbf{p}_{i} \cdot \mathbf{p}_{j}}{MA}) = H_{0} + H_{1}$$

Luigi Coraggio

INFN, Napoli

<u>A benchmark calculation</u>: shell-model deals with open-shell nuclei, a basic test is a nucleus that can be described as 2 nucleons outside a close-shell core

We have chosen to test our calculations with those of NCSM for ⁶Li with N³LO potential: its structure should be made up by the ⁴He core plus one valence proton and one valence neutron

The comparison with NCSM needs another upgrade for our calculations, we have to start from a purely intrinsic many-body hamiltonian, so to avoid center-of-mass spurious motion:

$$H = (1 - \frac{1}{A})\sum_{i} \frac{p_{i}^{2}}{2M} + \sum_{i < j} (V_{ij} - \frac{\mathbf{p}_{i} \cdot \mathbf{p}_{j}}{MA}) = \sum_{i} (\frac{p_{i}^{2}}{2M} + \frac{1}{2}M\omega^{2}r_{i}^{2}) + \sum_{i < j} (V_{ij} - \frac{1}{2}M\omega^{2}r_{i}^{2} - \frac{p_{i}^{2}}{2MA} - \frac{\mathbf{p}_{i} \cdot \mathbf{p}_{j}}{MA}) = H_{0} + H_{1}$$

Luigi Coraggio

(a) intrinsic many-body hamiltonian(b) non-intrinsic many-body hamiltonian

INFN, Napoli

Luigi Coraggio

Calculation of ⁶Li energy spectrum with N³LO

- Calculation I: effective shell-model hamiltonian without self-energy corrections
- Calculation II: effective shell-model hamiltonian with self-energy corrections
- NCSM: P. Navrátil and E. Caurier, Phys. Rev. C 69, 014311 (2004)

Nuclear Physics School "Raimondo Anni", 5th course

Luigi Coraggio

Calculation of ⁶Li energy spectrum with N³LO

- Calculation I: effective shell-model hamiltonian without self-energy corrections
- Calculation II: effective shell-model hamiltonian with self-energy corrections
- NCSM: P. Navrátil and E. Caurier, Phys. Rev. C 69, 014311 (2004)
- NCSM: P. Navrátil et al., Phys. Rev. Lett. 99, 042501 (2007)

Luigi Coraggio

INFN, Napoli

Results: the carbon isotopic chain

g.s. energies of even-mass isotopes

Luigi Coraggio

Results: the carbon isotopic chain

 $B(E2; 2_1^+ \rightarrow 0_1^+)$ transiton rates

Nucleus	Calc.	Expt.
¹⁶ C	1.8	$2.6 \pm 0.2 \pm 0.7$ ^a 4 15 + 0 73 ^b
¹⁸ C ²⁰ C	3.0 3.7	$4.3 \pm 0.2 \pm 1.0$ < 3.7

<きょくきょ きょうくの INFN, Napoli

Luigi Coraggio

Results: the *sd*-shell region

g.s. energies of even-mass isotopes

Luigi Coraggio

Results: the sd-shell region

Energy spectra of even-mass fluorine isotopes

INFN, Napoli

Luigi Coraggio

Results: the calcium isotopes

Luigi Coraggio

INFN, Napoli

Results: the titanium isotopes

Excitation energies of 2⁺ yrast states and their $B(E2; 2^+ \rightarrow 0^+)$

INFN, Napoli

Luigi Coraggio

Results: heavy chromium isotopes

Excitation energies of 2⁺ yrast states and their $B(E2; 2^+ \rightarrow 0^+)$

INFN, Napoli

Luigi Coraggio

Nuclear Physics School "Raimondo Anni", 5th course

Results: the N = 82 isotones

INFN, Napoli

Luigi Coraggio

Results: the N = 82 isotones

INFN, Napoli

- Blue triangles: microscopic shell-model calculations
- Black squares: fitted 2s_{1/2} single-particle energy
- Red dots: experimental data

Luigi Coraggio

- The agreement of our results with the experimental data testifies the reliability of a fully microscopic shell-model calculation
- Pure three-body forces seem to contribute mainly to the ground-state energy relative to the closed core of single-particle spectra
- Role of three-body correlations should be investigated

Luigi Coraggio

- The agreement of our results with the experimental data testifies the reliability of a fully microscopic shell-model calculation
- Pure three-body forces seem to contribute mainly to the ground-state energy relative to the closed core of single-particle spectra
- Role of three-body correlations should be investigated

Luigi Coraggio

- The agreement of our results with the experimental data testifies the reliability of a fully microscopic shell-model calculation
- Pure three-body forces seem to contribute mainly to the ground-state energy relative to the closed core of single-particle spectra
- Role of three-body correlations should be investigated

Nuclear Physics School "Raimondo Anni", 5th course

Luigi Coraggio

These terms introduce density dependence into the effective shell-model hamiltonian

INFN, Napoli

Luigi Coraggio

- The agreement of our results with the experimental data testifies the reliability of a fully microscopic shell-model calculation
- Pure three-body forces seem to contribute mainly to the ground-state energy relative to the closed core of single-particle spectra
- Role of three-body correlations should be investigated

INFN, Napoli

Perspectives: benchmark calculations with other many-body approaches (p-shell nuclei)

Luigi Coraggio