Beyond-mean-field theories and zero-range effective interactions.

Kassem Moaghrabi and Marcella Grasso

K. Moghrabi, M. Grasso, G. Colò, and N. Van Giai

Phys. Rev. Lett. 105, 262501 (2010)

Institut de Physique Nucléaire, IN2P3-CNRS, France

Dipartimento di Fisica, Università degli Studi di Milano, Italy

$$
\text { June 1, } 2011
$$

(1) Objectives
(2) Skyrme effective interaction
(3) Mean-field framework
(4) Beyond-mean-field Level
(5) Renormalization and fitting
(6) Conclusions

Objectives

- Dealing with nuclear many-body problem with in beyond-mean-field approaches.
- Evaluating beyond-mean-field corrections of the equation of state of symmetric nuclear matter with zero-range Skyrme-type interaction.
- Treating the ultraviolet divergence that exists at beyond-mean-field level due to the zero-range Skyrme interaction.
- Refitting the parameters of the effective interaction at a beyond-mean-field level.

Skyrme effective interaction

- In 1956, Skyrme proposed an approximate representation of the effective nuclear force with a zero-range two-body and three-body term:

$$
V_{12}(i, j)+\sum_{i<j<k} V_{123}(i, j, k)
$$

- The three-body term is given by:

$$
V_{123}\left(r_{1}, r_{2}, r_{3}\right)=t_{3} \delta\left(r_{1}-r_{2}\right) \delta\left(r_{2}-r_{3}\right)
$$

- Later, for spin saturated even-even nuclei, the three-body part has been replaced by a density-dependent term:

$$
\frac{1}{6} t_{3}\left(1+P^{\sigma}\right) \delta\left(r_{1}-r_{2}\right) \rho^{\alpha}\left(\frac{\overrightarrow{r_{1}}+\overrightarrow{r_{2}}}{2}\right)
$$

Skyrme effective interaction

- In general, effective interactions contain parameters that must be adjusted to reproduce a given set of observables (binding energies and radii).
- Our effective-phenomenological interaction becomes:

$$
\begin{aligned}
V_{12}\left(r_{1}, r_{2}\right) & =t_{0}\left(1+x_{0} P^{\sigma}\right) \delta\left(r_{1}-r_{2}\right) \\
& +\frac{t_{1}}{2}\left(1+x_{1} P^{\sigma}\right)\left[\delta\left(r_{1}-r_{2}\right) k^{2}+k^{\prime 2} \delta\left(r_{1}-r_{2}\right)\right] \\
& +t_{2} \cdot\left(1+x_{2} P^{\sigma}\right) k^{\prime} \cdot \delta\left(r_{1}-r_{2}\right) k \\
& +\frac{1}{6} t_{3}\left(1+x_{3} P^{\sigma}\right) \delta\left(r_{1}-r_{2}\right) \rho^{\alpha}\left(\frac{\overrightarrow{r_{1}}+\overrightarrow{r_{2}}}{2}\right) \\
& +i W_{0} \sigma \cdot k^{\prime} \times \delta\left(r_{1}-r_{2}\right) k
\end{aligned}
$$

Skyrme effective interaction

- $P^{\sigma}=\frac{1}{2}\left(1+\sigma_{1} \cdot \sigma_{2}\right)$ is the spin exchange operator.
- $k=\frac{1}{2 i}\left(\nabla_{1}-\nabla_{2}\right)$ is the operator of the relative momentum acting on the right.
- $k^{\prime}=-\frac{1}{2 i}\left(\nabla_{1}-\nabla_{2}\right)$ acting on the left.
- $\sigma=\sigma_{1}+\sigma_{2}$ is the total spin operator.

Skyrme effective interaction

- For simplicity, we will only take into considerations t_{0} and t_{3} parameters.
- we use a two-body interaction written as:

$$
v_{12}\left(r_{1}, r_{2}\right)=t_{0} \delta\left(r_{1}-r_{2}\right)+\frac{1}{6} t_{3} \delta\left(r_{1}-r_{2}\right) \rho^{\alpha}\left(\frac{r_{1}+r_{2}}{2}\right)
$$

- Taking now the relative vector $r=r_{1}-r_{2}$, we get:

$$
V_{12}(r)=\underbrace{\left(t_{0}+\frac{1}{6} t_{3} \rho^{\alpha}\right)}_{g} \delta(r)=g \delta(r)
$$

Symmetric nuclear matter

The infinite-symmetric nuclear matter which is an ideal system composed of nucleons with the following properties:

- Equal number of protons and neutrons $(N=Z)$.
- No Coulomb interaction between protons.
- No correlations between nucleons.
- Neglecting the surface forces.
- Constant density ρ_{0} at equilibrium.

Mean-field framework

- Let us suppose that the ground state is represented by a Slater determinant ϕ of single-particle states ϕ_{i} :

$$
\phi\left(x_{1} ; x_{2}, \cdots x_{A}\right)=\frac{1}{\sqrt{A!}} \operatorname{det}\left|\phi_{i}\left(x_{j}\right)\right|
$$

- The Hartree-Fock energy can be visualized by the following Feynman diagrams:

$$
E=\frac{\Omega^{2}}{(2 \pi)^{6}} \sum_{\sigma, \tau} \int_{k_{1}, k_{2}<k_{F}} d^{3} k_{1} d^{3} k_{2} v\left(k_{1}, k_{2}, k_{1}, k_{2}\right)
$$

- In symmetric nuclear matter, the mean-field equation of state becomes:

$$
\frac{E_{0}}{A}(\rho)=\frac{3 \hbar^{2}}{10 m}\left(\frac{3 \pi^{2} \rho}{2}\right)^{\frac{2}{3}}+\frac{3}{8} t_{0} \rho+\frac{1}{16} t_{3} \rho^{\alpha+1}
$$

Mean-field framework

- The "SkP" equation of state is the ground state of the zero-range Skyrme effective interaction without adding any corrections.
- The parameters t_{0}, t_{3} and α of the Skyrme interaction: $t_{0}=-2931.70 \mathrm{Mev} \mathrm{fm}^{3}, t_{3}=18708.97 \mathrm{Mev} \mathrm{fm}^{3+3 \alpha}, \alpha=1 / 6$.

The Equation of State (Mev)

Beyond-mean-field Level

- The $2^{\text {nd }}$ order correction (with exchange):

$$
\Delta E=d \frac{\Omega^{3}}{(2 \pi)^{9}} \int_{C_{1}} d^{3} k_{1} d^{3} k_{2} d^{3} q \frac{g^{2}}{\epsilon_{k_{1}}+\epsilon_{k_{2}}-\epsilon_{k_{1}+q}-\epsilon_{k_{2}-q}}
$$

where $C_{I}=\left|k_{1}\right|,\left|k_{2}\right|<k_{F},\left|k_{1}+q\right|, k_{2}-q \mid>k_{F}$.

- After long-straight forward calculations:

$$
\begin{aligned}
\frac{\Delta E}{A} & =\chi(\rho) \times I(\rho, \infty), \quad \chi(\rho)=-\frac{3 k_{f}^{7}}{4 \pi^{6}} \frac{m}{\hbar^{2}} \frac{g^{2}}{\rho} \\
I(\rho, \infty) & =\int_{0}^{1} d u u f_{1}(u)+\int_{1}^{+\infty} d u u f_{2}(u)
\end{aligned}
$$

Beyond-mean-field Level

- The integral I diverges linearly. i.e we have ultraviolet divergence because:

$$
\lim _{u \rightarrow \infty} u f_{2}(u)=\text { constant }
$$

- We will regularize this momentum integral by introducing a cutoff Λ.

$$
I(\rho, \Lambda)=\int_{0}^{1} d u u f_{1}(u)+\int_{1}^{\frac{\Lambda}{2 k_{f}}} d u u f_{2}(u)
$$

- Indeed, this cutoff Λ must take finite values in such a manner that the integral can be calculated.
- For instance, for low-energy nuclear physics problems, Λ takes a maximum value: $\Lambda_{\max } \sim 2 \mathrm{fm}^{-1}$ because Λ must be smaller than the momentum associated with the nucleon size (point-like nucleons).

An exact form of the I without any approximations:

$$
\begin{aligned}
I(\rho, \Lambda) & =\frac{1}{105}(43-46 \ln 2)-\frac{18}{35}+\frac{\Lambda}{35 k_{F}}+\frac{11 \Lambda^{3}}{210 k_{F}^{3}}+\frac{\Lambda^{5}}{840 k_{F}^{5}} \\
& +\frac{16 \ln 2}{35}+\left(\frac{\Lambda^{5}}{60 k_{F}^{5}}-\frac{\Lambda^{7}}{1680 k_{F}^{7}}\right) \ln \left(\frac{\Lambda}{k_{F}}\right) \\
& +\left(\frac{1}{35}-\frac{\Lambda^{2}}{30 k_{F}^{2}}+\frac{\Lambda^{4}}{48 k_{F}^{4}}-\frac{\Lambda^{5}}{120 k_{F}^{5}}+\frac{\Lambda^{7}}{3360 k_{F}^{7}}\right) \ln \left(-2+\frac{\Lambda}{k_{F}}\right) \\
& -\left(\frac{1}{35}-\frac{\Lambda^{2}}{30 k_{F}^{2}}+\frac{\Lambda^{4}}{48 k_{F}^{4}}+\frac{\Lambda^{5}}{120 k_{F}^{5}}-\frac{\Lambda^{7}}{3360 k_{F}^{7}}\right) \ln \left(2+\frac{\Lambda}{k_{F}}\right) .
\end{aligned}
$$

Beyond-mean-field Level

- The second-order energy-correction integral diverges because of the zero-range of the Skyrme force: (large values of Λ)

$$
I(\rho, \Lambda) \approx \frac{1}{105}(2 \log 2-11)+\frac{\Lambda}{9 k_{f}}-\frac{2 k_{f}}{45 \Lambda}-\frac{8 k_{f}^{3}}{525 \Lambda^{3}}+\mathcal{O}\left(\frac{k_{f}^{5}}{\Lambda^{5}}\right)
$$

- It should be noted that there is no divergence at very low densities due to the density dependent terms in the expression of χ.

$$
\frac{\Delta E}{A}=\chi(\rho) \times I(\rho), \quad \chi(\rho)=-\frac{3 k_{f}^{7}}{4 \pi^{6}} \frac{m}{\hbar^{2}} \frac{g^{2}}{\rho}
$$

The corrected equation of state

- The corrected equation of state is:

$$
\begin{aligned}
\frac{E}{A}(\rho, \Lambda) & =\frac{E_{0}}{A}(\rho)+\frac{\Delta E}{A}(\rho, \Lambda) \\
& =\underbrace{\frac{3 \hbar^{2}}{10 m}\left(\frac{3 \pi^{2} \rho}{2}\right)^{\frac{2}{3}}}_{\text {Kinetic energy }}+\underbrace{\frac{3}{8} t_{0} \rho+\frac{1}{16} t_{3} \rho^{\alpha+1}}_{1^{\text {st }} \text { order }}+\underbrace{\chi(\rho) \times I(\rho, \Lambda)}_{2^{\text {nd }} \text { order }}
\end{aligned}
$$

The corrected equation of state

Renormalization and fitting

- To treat this U.V divergence, we are going to refit our parameters t_{0}, t_{3} and α in such a way to recover the "SKP" mean-field equation of state.
- We will use the least square root fit program that needs an initial guess of the parameters ("SkP" parameters) and a set of points to be fitted ($\rho_{0} / 4, \rho_{0} / 2,3 \rho_{0} / 4, \rho_{0}, 3 \rho_{0} / 2$).
- The quality of the fits can be judged by the corresponding values of $\chi^{2}=\sum_{i=1}^{5} \frac{\left(E_{i}-O_{i}\right)^{2}}{O_{i}}$

Renormalization and fitting

Renormalization and fitting

- For each value of Λ we can perform a least square fit to determine a new parameter set "SkP " , such that the "EOS" including the second-order correction matches rather well the one obtained with the original force "SkP" at the mean- field level.
- For purely mathematical illustration, the refit done with the extreme value of $\Lambda=350 \mathrm{fm}^{-1}$.

Renormalization and fitting

	$t_{0}\left(\mathrm{MeV} \mathrm{fm}^{3}\right)$	$t_{3}\left(\mathrm{MeV} \mathrm{fm}^{3+3 \alpha}\right)$	α	χ^{2} / N
SkP	-2931.70	18708.97	$1 / 6$	
$\Lambda=0.5 \mathrm{fm}^{-1}$	-2352.900	15379.861	0.217	0.00004
$\Lambda=1 \mathrm{fm}^{-1}$	-1155.580	9435.246	0.572	0.00142
$\Lambda=1.5 \mathrm{fm}^{-1}$	-754.131	8278.251	1.011	0.00106
$\Lambda=2 \mathrm{fm}^{-1}$	-632.653	5324.848	0.886	0.00192
$\Lambda=350 \mathrm{fm}^{-1}$	-64.904	360.039	0.425	0.00042

- You can see that the values of $\chi^{2} \sim 0.002$ which is a very small quantity. Another definition of χ^{2} can lead to values that are comparable to 1 .
- The beyond-mean-field equation of state diverges linearly (ultraviolet divergence) with high momenta in our $t_{0}-t_{3}$ model because of the zero-range of the Skyrme force.
- We introduce a momentum cutoff Λ and do the regularization procedure for the integral loop.
- We refit the interaction's parameters using a Least Square Root fit so that the "SKP" mean-field equation of state is recovered.
- Thanks for you attention!!

