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MONTE CARLO METHODS

Let us assume that:

v We are at zero temperature (almost ok for most systems of interest);
v We are interested only in ground state properties.

Monte Carlo methods give us two options:




VARIATIONAL APPROACH

The method is based on assuming a given functional form of the
wavefunction (necessarily approximate), depending on some parameters
{p}. The variational theorem tells us that:

(WRAP))
(W(RAPHW(RAp})

W(R’{p};> - E,({p)) = E,

The expectation of the Hamiltonian is a multi-dimensional integral
in the degrees of freedom of the system (coordinates, spin and
isospin).




MULTI-DIMENSIONAL INTEGRALS

STANDARD APPROACH

-Divide the integration domain in “small” hypercubes of side h.
-Compute the function in one representative point within each hypercube.
-Sum up the function values and multiply by the volume of the hypercube.

A b (b-a)lh
fix) I=[fdc=| Y fx)|h
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~F(x)h
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More clever methods can be used, but
the error is always proportional to h®



MULTI-DIMENSIONAL INTEGRALS

In d dimensions the situation becomes even worse.
The important question is the following:

HOW MANY POINTS DO WE NEED TO REACH A GIVEN RELATIVE
ERROR ON THE ESTIMATE OF THE INTEGRAL?

AI Vf(x )' hd+1 L d l
L=¢ ——— o h  but N=|—| =hxN¢
Ii f(xi). h h
e.g.: 180, central potential, d=48
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CENTRAL LIMIT THEOREM

Fortunately we can rely on stochastic processes to speed up the
convergence....

The key ingredient is the Central Limit Theorem.

Consider a set of N continuum random variables, each one described by the
same probability density P(x), and a function f(x). We define a new random
variable S as:

SN = %éf(x,)

where each of the x; is sampled from the probability density P(x).
ALL SAMPLES MUST BE STATISTICALLY INDEPENDENT



CENTRAL LIMIT THEOREM

Under the hypothesis that the samples are independent,the
Central Limit Theorem proves that:

2
(Sy =(f D) Estimate of the

1

P(S,) = e error on the
27‘5(7]%, estimate of <f>...
where: should P not be
' normalized.... :
J P f(x)dx Ll
/)= [ P(x)dx N N(<f >_<f>)

THIS RESULT HOLDS FOR ANY DIMENSIONALITY OF
THE SPACE IN WHICH x IS DEFINED!



STOCHASTIC INTEGRATION

The CLT prescribes a very simple way to integrate a multi-dimensional
function F(x).

1) Choose a probability density P(x) that can be sampled, defined on a
domain including the domain of F(x). Because P(x) has to be positive definite,
we can always rewrite the integral of F as:

(X)

I= [ PO f()dx = [ P(x)~

2) Sample N (with N “large”) points from the probability density P(x)

3) Average the N values of the function f(x,) and the N values of f(x;)2 . The
estimate of the integral will be:

1 < (1 (1<
NE “—“\‘N N;f(x,-) - le:lf(x,-)
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STOCHASTIC INTEGRATION

The previous expression gives us a very important indication:

THE ERROR ON THE ESTIMATE OF THE INTEGRAL
DECREASES AS 1/N'/2 REGARDLESS OF THE
DIMENSIONALITY!

This means that for reaching a given
accuracy ¢ one needs a number of points N
growing as 1/¢2 For d larger than a few
units this is an enormous gain in
computational time.

-~




SAMPLING

How to sample a generic probability density?

Computers provide us with a generator of
uniformly distributed random numbers
between 0 and 1

#include <math.h>

#include <stdio.h>

#include <stdlib.h> /* necessary for the rand() function*/
int main()

Normalization. In C rand()
produces integer numbers P(X)

uniformly distributed between 0 and
srand(3); RAND_MAX

y=y+(double)rand()/(double)RAND MAX;




SAMPLING

In general we need to sample more complex P(X), such as the square modulus
of a variational wavefunction.

The simplest and most reliable method is based on the concept of “random
walk”. The game consists of generating a random variable applying a
transformation to another. This “moving” point is called

X,y =1(x;)

P (x;,,) = fT(Xme x)P(x,)dx,
If we apply the same transformation k times to some initial value we obtain:

P (x,) = fT(xke X, ) T(x;< x)T(x,< x)P,(x)dxdx,---dx,_,



SAMPLING

It can be proved that under some very general conditions the probability density
P, converges to a limiting distribution, which depends only on T

l}im P (x,) =P (x)

Is it possible to build a T such that we eventually sample the P that we are
interested in? Let us assume a further condition, i.e. that the asymptotic
distribution is an “equilibrium” state (meaning that point by point there is no

net flux of probability):
I(y<= x)P(x) =T(x<=y)P(y)

This is called DETAILED BALANCE CONDITION, and any T satisfying this condition
will eventually sample P(x). It is called “detailed” because it does not hold only on

average, but POINT BY POINT!



SAMPLING

Now, quite arbitrarily, we split T in two factors: one factor G that we can sample,
and another unknown part A. Then, the detailed balance condition reads:

G(y< x)A(y< x)P(x) =G(x<= y)A(x<y)P(y)

that we can rewrite in the following form:

A< x) _Glx< y)P(y)
Alx==y) Gy 0)Px)

The quotient on the l.h.s. of the equation can be read as a probability
of accepting the new proposed value y as the next member of the
chain versus its complementary, which means “coming back” to x from
y , and therefore keeping x as the next element,



METROPOLIS ALGORITHM

There are some very simple and obvious choices for G. The easier thing to do
is to shift a point in the configuration space of a random vector having
components uniformly distributed in some interval [-A/2,A/2]

—_

—_—
X, +§
Xigg =X; F
S~ \\
for(j=0; j<nparticles; j++) ; g

dx=delta* (0.5-(double)rand()/(double) RAND MAX):;
new.x=walker[j].x+dx;
dy=delta*(0.5-(double)rand()/(double)RAND MAX);

new.y=walker[]j].y+dy; .
dz=delta*(0.5-(double)rand()/(double)RAND MAX); -A/2 A/2
new.z=walker[j].z+dz;



METROPOLIS ALGORITHM

At this point we have to decide which point (old or new) is to be kept as next
point in the chain.

First, notice that the proposed move is symmeilric in the old and new
positions. This means that:

A(‘xi+le xi) — P(‘xi+1)
A(x;<= x,,,) P(x,)

So the only thing we need to do is to compute the probability density we want
to sample in the new and old position and take the ratio.

Notice that the fact that only the ratio of the P(x) appears makes the results
INDEPENDENT OF THE NORMALIZATION of P(x).




METROPOLIS ALGORITHM

Now, how do we exploit the computed ratio?

A(xi+1 < xi) o1 The probability of arriving at the new position is
A(Xl- - xi+1) larger than that of going back. Let’s stay there!
A(x,,, < x,
L L 1 We have a finite probability of going back, and
A(Xl- < Xl-+1) we need to SAMPLE this probability.
Roll the dice.... Extract a random number 0<6<1
0.76345..
ACCEPT! REJECT!
0 \/\/ A N 1

0.76345..



AUTOCORRELATIONS

The Metropolis prescription explicitly violates one of the requests of the
central limit theorem:

THE SAMPLED CONFIGURATIONS ARE IN GENERAL NOT
STATISTICALLY INDEPENDENT!!

297

(D f ) = [ PG ) f ) fx el =

. fP(xi)P(xj)f(xi)f(xj)dxidxj =

B fP(xi)f(xi)dxifP(xJ')f(xj)dxj - ia(rj]leypi;ndent
= (FE)f @) =(F(x)) samples



AUTOCORRELATIONS

It is convenient to introduce an estimate of the autocorrelation normalized
to the variance. We assume that it depends only on the difference t=j-i.

; (Fe)f ) -(f)) &

() = (f) 1

It is easy to prove that data correlated
over a “time” t lead to an underestimate
of the error. The error must be corrected

in the following way:

03 = oy 1




AVERAGES

As we saw, integrals are estimate by averaging the integrand function on the
sampled configurations. Beware that configurations repeated in the
sequence because of rejection must be included in the averages each
and every time they appear.

IMPORTANT EXAMPLE: P(‘x) -
EXPECTATION OF THE HAMILTONIAN ocal” energy
) » H¥(R{p})
(WRApH|AWRp}) JI¥R AP} WR L) K
(WRAPHIF(RAPD)) [W(R Ay dr )

N

LS EWR Y 1|1 SR )
Y Ps) E( P

N4 WR{pY N |NE| WRLpH

- (LE ﬁl*P(R,-,{pD)z'
N2 WR {p))

i=1



EXERCISES

EASY:
Using the Metropolis algorithm compute:

[Pl -1ldx  P(x)=1, P(x)=2x

Discuss how the variance changes by changing the Metropolis step.

ALMOST EASY:

Find the optimal variational parameters x,and o for the following
approximation of the first excited state of the 1D harmonic oscillator
(h=m=1):

(x-x)? (x+xg)?

w(x) =e 20 _ e 20°
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Wave Functions

Example: the Lennard Jones potential seen in O. Benhar lectures:

\
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i<j

Yy - N 1
(”1 T'N) Hexp[_a u(rlj)]

i<j

5
b
— < 00 u(rlj) = | —
some r;; —0 I,

Let’'s consider a homogeneous liquid of “He

atoms at T=0. What might be a reasonable
wavefunction? Let’'s assume

N
1
W(r-eemy) = HeXp[—E u(r;)]
i<j
In general we would like that even when the

potential diverges the local energy does not
diverge! (cusp condition)

ij
Exercise (some algebra)



METROPOLIS ALGOR

advance(struct particle walker[npmax])

ITHM

~ 1
{ WG 1y) = | Jexpl=ury)]

uo=pair wf(j,walker[j].x,walker[j].y,walker([j].z,walker);
for(j=0; j<npart;j++)
{

dx=delta*(0.5-(double)rand()/(double)RAND MAX);
new.x=walker[j].x+dx;

Move dy=delta*(0.5-(double)rand()/(double)RAND MAX);
new.y=walker[j].y+dy;

Walkers dz=delta*(0.5-(double)rand()/(double)RAND MAX);
new.z=walker[j].z+dz;

un=pair wf(j,new.x,new.y,new.z,walker);
arg=un-uo;

p=exp(-arqg);
csi=(double)rand()/(double)RAND=MAX:

if (p>csi) NG
{ WR,,)
acc=acc+l.; 2
walker([j].x=new.x; PIJ(I? ki)‘
o

walker[j].y=new.y:
walker[j].z=new.z;

) & “Acceptance/

rejection

i<j

| E”(rz‘j)

i<j

= EXPp E u(rij)

i<j

_ Eu(rij)

i<j

NEW

oLp  <J

OLD

E u(ry)

NEW



Wave Functions

An easy way to implement the cusp condition is to solve numerically the two-
body problem:
h Lutr Lutr)

—— V% 2 +[V(r)- E]e_zu( =0
2m

in the interval [0,h]. h is a variational parameter (healing distance) and
represents the distance at which u(r) becomes 0.

500 — _ U(r)

exp[-u(r)]

v(r) (MeV)
(r)

200 |-
05 -




FERMIONS

When we deal with a many-Fermion system the trial wavefunction must be
antisymmetric under particle permutations.

W(PR) = (-1)"W(R)

This is usually achieved by using a Slater determinant of single particle
wavefunctions

fl(rl) fl(rz) f1(rN)

W) =exp| L utr) - Sute, e x|[HO L B0

i<j i< j<k

fN(r1) fN(rz) fN(rN)

If the Hamiltonian commutes with o, it is convenient to write a product of two
determinants, one for spin-up particles and one of spin-down particles.




FERMIONS

The computation of the determinant is expensive, scaling is with N3. It is

possible to save some time if we compute at first the inverse of the Slater
matrix. Then we remember that:

where C is the matrix of the co-factors.
If we change the coordinates of in a Metropolis step,

the ratio of the Slater determinants can be computed by multiplying just two
rows (columns) of the Slater matrix and of its inverse.



FERMIONS

Example:
Let's move particle 2.

L) fi(r)
L) ()

Tv@) fy@y) -

Si(@xy)
J2(y)

Ju(y)

fir)  fi()
L) f,0)

Sv@) fy@™)

The ratio of the determinants simply becomes

det(A
det(A ;)

The square of this quantity enters the probability to sample..

Si(Ty)
fr(xy)

Jn(ry)

) ) )+ L7 0 o) 4+ [ ) f ()




FERMIONS

The same property is used to compute gradients and Laplacians of the
wavefunction:

LHa)  dfiy) - filry)
fz(rl) é)kf2(r2) fZ(rN)

fN(r1) é)ka(rz) fN(rN)

That is:

dydet(A,,) § o
det(Aold) - fl (rk)(?kfl(rk) + fz (rk)é)kfz(rk) +-0+ fN (l'k)&ka (l’k)

The same holds for second derivatives. These quantities enter the local energy.



FERMIONS

Are the zeros of the wavefunction a problem?
Not here. Near the nodes the wavefunction is linear in the coordinates.

W) i O,

f‘lll(r1 .. -rN)iza’n ---dry,

~R2, ~R

and always OKI!
positive



Wave Function Optimization

How do we optimize the parameters in a variational wavefunction?
We can certainly do it by hand... But if we want to be flexible in our
parametrization this is not certainly efficient!

There is a method allowing for a set of configurations sampled froma a
wavefunction with a set of parameters {p} to compute the local energy for a
different set of parameters {p }

<

, H¥(R{p'})
WY(R{p' dR
) SR () WRAP'Y)

WRpPDWRAPY)  [[WRAp D[ aR
WRAPD] HYRAPY) e HY(R,{p'})
WR{pY) PRPY) "WR.{pY

} MRV T v
WR{p}) l.
[wRAip)) PR AD })‘

[Iw@RAipH




Wave Function Optimization

The weight w; is simply given by:

L CCRO)
R

The method is often called CORRELATED SAMPLING.

Note that if w; is not ~1 this method might become in turn very inefficient!!
However, this method is extremely useful to compute gradients and
Laplacians of the local energy in parameters space, which are the
essential ingredient in any minimization or fitting method (steepest
descent, Levemberg-Marquardt, Hessian based methods etc.)



DMC for central potentials
-

Important fact:

The Schroedinger equation in imaginary time is a
diffusion equation (a transformed Fokker-Planck
equation):

/ -

where R represent the coordinates of the particles, and
T = it is an imaginary time (would be real time in
diffusion).



DMC for central potentials

Let us consider the formal solution:
H

W(RT)=e " W(R,0)

We can expand the initial state on a basis of

eigenfunction of the Hamiltonian, and get:
H

W(RT)=¢ " W(R,0) =

_ e';I’E ¢ W (R) = Ee‘%fcann (R)



DMC for central potentials

Eg
eh

T

Let us multiply by a time-dependent factor
This yelds:

“Absolute” ground state of H.
(H-E,) This is ALWAYS a nodeless

‘P(R,T) =e i TLP(R,()) function!
_(Eo -E, )1: _(En _E, )T
—e " ¢, W (R0)+ Ee e W (RO)

n=0

The expression now converges to the lowest enerqy eigenstate provided
that the initial and final states are not orthogonal.

NB: because of the properties of the ground state we must restrict for
the moment to many-Boson systems!




DMC for central potentials

For a generic Hamiltonian we do not know
neither the explicit form of the propagator, nor
the normalization (i.e. the lowest eigenvalue).

Looks useless!

* Maybe we could use an approximate
propagator...

* We might try to control the normalization
“along the way”



Propagator r0

Y(R,0)=0(R-R')

34 )
5 _(R-R)
21/ mz

Case m 0 W(R.D) =

2nh/mt
The Hamiltonian reduces to:

hz A
-3V

The lowest eigenstate is a constant, and the lowest eigenvalue is O:
no extra normalization needed!
<R

H H
e hqr> =(Rle " [dRIRYRW) = [ G,(R.R T)W(R)dR
where  G,(R,R',T) =

Y(R,7) = —hi‘P(R,r)
0T

3A

| T2 SRR hl Inverse of
20° d
e an o =— an energy
m

Free particle propagator

2n0°



Propagator WRD)=e " EUR) i~

- W(R0) =1

Case m 0 h =1 E.

The Hamiltonian now reads: - =

[V(R)- E,|¥(R,T) = -ailp(R,r)
T

Here we include the normalization. The solution, once more written in terms
of eigenstates of the position, is trivial:

Probability for the walker to

ies of itself in a time
-[V(R)-E, ]t generate copies o
<R ‘ € W) = T (source/sink probability)

_ <R‘e—[V(R)—Eo]Tfde‘R|><Rv‘LP> _ fe—[V(R‘)—Eo]TqJ(R')(S(R - R"YdR'

The latter expression does not imply any time evolution of the position, but
simply a “reshaping” of the wavefunction in the imaginary time interval T



Trotter-Suzuki break-up

In real life we are never in either of these two limts. However, we can invoke
the Trotter-Suzuki formula in order to get closer to this situation, provided that
the propagation occurs for a short time At:

_(H-Ey)_ _VR)-E¢JAr T _[V(R)-Ey]AT
(Rle " R)=(Rle " 2e%e " 2RY+0(AT’)
34 ,
- 1— (R-R" V(R)+V(R") At
1 TVl ~Ep |~
2h/mAT 2 h
= e e
2 h/m At

In order to project out the ground state of the Hamiltonian, we
need a large 7. So the short-time propagator must be repeatedly
applied.



How does it work?

There are many different ways to achieve a propagation
in imaginary time (see e.g. PIGS or reptation methods).

Diffusion Monte Carlo is based on the approximation of
the wavefunction in terms of an

W(R) = (R|W) = (R|[ dR|R'}(R'|¥) ~

- <R\E\R'k><R'k W) = Eé(R R )¥(R')
‘\ k=1 k=1 /




How it works...

Once more can be easily computed
starting from the walkers positions. Let us assume that the propagation
has been carried out for a sufficiently long imaginary time. Then the
walkers will be distributed proportionnaly to the

. As for the VMC case, the expectation of the Hamiltonian

will become:
(W, |Aw,) (@, |Aw,)
E 0= — = If M is sufficiently
<‘PT | ‘P0> <1PO |‘PT > large this is a
Monte Carlo
average

[ dR®,(R)H¥, (R) ZmT(R!k) .
f dRY(R)¥;.(R) EIIJT(R',C)

N




Propagation of walkers

The propagation of the single walker is easily implemented for the Trotter-
Suzuki propagator. In fact the functions which are actually propagated are just
Delta functions.

Displace the walker 1 —(J;;SZ,

sampling from the Gaussian 27/ m AT

(this can be easily achieved by using e.g. the Box-Muller formula)

2
R' AT h Normally distributed
] A random number ./LW




Propagation of walkers

The propagator is interpreted as the “weight” the walker will have

after an imaginary time interval At. This can be naively interpreted

as the probability of the walkers of “surviving” or “procreating” at
that position.

) V(R)+V(R')_E At Number of walkers =

2 0 h >
w=e INT(w+ &), E&€ (0,1] random

Each walker generates descendants
that can multiply in turn or die off.
Obviously

‘BRANCHING”
PROCESS

AT AT



Histograms of the
distribution of walkers
after 1, 10, 100, 1000,

5000 steps of 0.01 units




Normalization

What about the normalization of the state?
A possible way of fixing the energy shift E, is to attempt to

This can be achieved by artificially modifying the weight of the walkers in
order to react to population fluctuations.

V(R)+V(R")

hel wolNegd s

_EO]AT —[V(R )+V(R‘)—E]A1:

=€ 2

E — E + 1 11'1 N T The trial eigenvalue is
— 0 AT N continuosly updated.




Importance sampling

The algorithm as it was shown so far, does not work for
potentials presenting a divergent behavior.

» A strongly repulsive potential will result in a very fast
absorption of walkers, eventually killing the whole

population. (e.g. Repulsive Coulomb potential,
Lennard-Jones, N-N hard core...)

* An attractive potential will generate an exponentially
growing population (e.g. Coulomb attraction between
the nucleus and electrons in an atom)




Importance sampling

The problem can be addressed by changing the target distribution
of walker into the product of the propagated state with a trial wave
function determined, for instance, by means of a variational

calculation.

VY, (R)

Let us define a pseudoforce F(R)=2VIn¥, (R)=-2
W (R)

and the f(R,7)=W¥.(R)Y(R,T)



Importance sampling

We can notice that:

V[ f(RT)F(R)|=2V¥,(R)V¥(R,7) + 2¥(R,T)V°¥,(R)
V’f(R,T) = V. (R)V'W(R,T) + 2VW. (R)VY¥(R,T) + ¥(R,T)V W, (R)

By combining the two expressions we obtain:

VW (R)

W (R)VW(R,T) = V' f(R,T) - V| f(ROF(R)]+ f(R,T) W (R)




Importance sampling

Let us multiply the Schroedinger equation in imaginary time
by the importance function

2

W (R) -;—mvz +V(R) |[¥(R,7) = -W. (R)h%lll(R,t)

By using the previous result we obtain

SR I
gt 2m

Fokker Planck equation I

SV R0 -2 SV R OFR)] - E, f(R:)

7’ VW.(R)
2

here  E (R)=—
where  E,(R)==7" W (R)

+V(R) isthe

i



Importance sampling

We can repeat the same analysis (zero and infinite mass
limits). The outcome are the following propagators:

Kinetic propagator Al 2”2
R-R'-F(R)—| —
h\ m
“U A R?
- 2? m Drives the walkers
GO(R,R',A‘L') e - ' towards regions o
high probability

Potential propagator
At
h

E;, (R)+E; (R'
_[ L ( )‘; L ( )_EO

w=e
The presence of the local energy

" THE RESULTING ALGORITHM IS strongly reduces fluctuations. If ¥
EXTREMELY EEFICIENT | (R) is exact, and E, is exact, then

w=1




Importance sampling

It is possible to overcame these problems by modifying the
propagator.
We start from the expression:

Y(RAT) = [ G(R,R ,ATW(R' 0)dR

where G is approximated by Fromnowon: A=m=1

(R-R')
1 e_ INT e—[V(R')—ET]AT

G(R,R" A7) =

QAT

T = Inverse of an energy



Importance sampled GF

Let us multiply the propagated wavefunction by an (variational)
approximation of the ground state wavefunction y(R):

Y, (RY(RAT) = [ GR.R AT, (RWY(R 0)dR’

which can in turn be rewritten as:

Y, (RY(R,AT) = f G(R,R',AT) IZJT((S)) Y, (RW(R',0)dR'
This defined a new “dressed” propagator:
¥ (R)

G(R.R'.At) =G . (R,R' AT
( ) =G, ( )‘PT R



Importance sampled GF

The smearing of the initial density (which is a sum of delta

functions) made by the propagator does not conserve in
general the normalization of the wavefunction. We should

then compute it as the integral over all the possible arrival
points starting from a given point R’

¥, (R)
N(R") = | G(R,R',A dR
(R) = [ G( D R)

T

Expanding the ratio of the importance functions (remembering that
R-R’is order At)

1+V¢T—(R')(R—R')+

Yr(R')

N(R)= [ G(R,R A7)

1 .. (R") . .
+ ‘ E oY ) (Xi = X)X 5y =X ) |dR
Yr(RY) s 0%, 0




Importance sampled GF

Integrating one obtains:
At 1

NR) =1+ Y Vi, (R eV EE] o
T i

(1 V2, (R .

=exp|| = l/}T( ) + ET _V(Rv) AT | = If the trial
2 Y. (R) wavefunction satisfies

: ' \ 1 _ the cusp condition this is

=exp| -A Hy,(R') —E, always bound!!!
¥ (R)

Note that we could sample the dressed propagator by using the
simple Gaussian propagator and using the ratio of the importance
functions as a probability of acceptance rejection. In some cases (e.g.

in nuclear physics calculations) this might be a better procedure!




Importance sampled GF

Expanding the ratio inside the integral we can see that
importance sampling naturally leads to the appearance of a

“drift” term:
Vi, (R R-R)’
G(R,R',AT) = 1+M(R—R') exp —( ) =
Y, (R QAT Same order as the
(R R')2 error made when
=exnl Vo RYR—-R') — —— = applying the
b i gy (R)( ) 2AT Trotter-Suzuki
| , 7 breakup
= exp E(R - R'-Vlogy.,. (R')Ar) +0(AT)
i T
R'+Ar%§§)) This “drift” term drives a
! o walker towards points
where the importance
function is large.
R VY. (R'")

R =R'+AT

—+1 and branch with the local ener
¥, (R) ay



Estimators

Importance sampling does not affect the capability of
computing the exact ground state eigenvalue of the
Schroedinger equation.

. HY,(R)
Ry, ®ar T OVRO R

[W(R, DY, (R)dR [W(R )Y, (R)dR

_JIROE,RAR | $ £ k)
- [rRovaR ME T

On the other hand, the above integral converges to:

HY,.(R)) (W (R)

[YRDA,®R  (R) HY,(R))

[wROW(R)YAR T (F,B®[WR)  (¥[R)|¥R)

0



Estimators

All estimators other than the energy will be evaluated as
matri elements between the exact and the importance
function. There are many techniques to correct this problem.

However, let us suppose that the importance function is a
good approximation of the ground state, i.e.

W (R) = ¥,(R) + W, (R)
then:

(W, (R)|O(R)¥, (R))
(W, (R)|O(R) W, (R))

(W,(R) + €W, (R)|O(R)W,(R))
(W, (R) + £%, (R)|O(R)[ W, (R) + eW,(R)]) =
(W, (R)| O(R) W, (R)) + 2&(¥; (R)| O(R) ¥, (R))



Estimators

Combining the previous two expressions we get:

2(¥, (R)|O(R)Y¥,(R)) - (¥, (R)|O(R)Y,(R)) = (¥,(R)|O(R)¥,(R)) + o(£”)

Therefore, if we combine the result of a DMC calculation with the result
of the variational calculation, we can obtain a better estimate of
quantities other than the energy.



Biases

There are additional issues to be considered in
calculations. In particular, the results are biased

by:

« The Trotter-Suzuki breakup is not exact for any
finite imaginary time step. It is therefore necessary
to extrapolate to AT=>»0.

* The population control quenches necessary
fluctuations in the number of walkers. It is therefore
necessary to extrapolate for N, ...



