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Outline 

  Variational Monte Carlo 
 Many-dimensional integrals 
 Stochastic integration 
 Metropolis algorithm 
 Wave Functions (Bosons and Fermions) 

  Diffusion Monte Carlo for Many Boson Systems 
 Propagation in imaginary time 
  Importance sampling 
 General treatment in terms of Green’s Functions 



Monte Carlo methods 

Investigating the properties of nuclei and nuclear matter implies the solution of a 
many-body problem. Let us consider the non relativistic version. In general, we must 
solve a many-body Schroedinger equation: 

  

€ 

−
2

2mii=1

N

∑ ∇ i
2Ψ(r1…rN ,α1…αN ) + ˆ V (r1…rN ,σ1…σN )Ψ(r1…rN ,α1…αN ) = EnΨ(r1…rN ,α1…αN )

Where ri are the space coordinates of the particles, and αi are other possible 
degrees of freedom (e.g. the spin/isospin states of nucleons). The potential V is in 
general an operator that acts on both the space and/or spin/isospin degrees of 
freedom. 
Many forms of approximate solutions exist. 

IS IT POSSIBLE TO ACCURATELY SOLVE THE PROBLEM FOR AN ARBITRARY N? 



MONTE CARLO METHODS 

Let us assume that: 

  We are at zero temperature (almost ok for most systems of interest); 
  We are interested only in ground state properties. 

Monte Carlo methods give us two options: 



VARIATIONAL APPROACH 

The method is based on assuming a given functional form of the 
wavefunction (necessarily approximate), depending on some parameters 
{p}. The variational theorem tells us that:  

€ 

Ψ(R,{p}) ˆ H Ψ(R,{p})

Ψ(R,{p})Ψ(R,{p})
= ET ({p}) ≥ E0

The expectation of the Hamiltonian is a multi-dimensional integral 
in the degrees of freedom of the system (coordinates, spin and 
isospin).  



MULTI-DIMENSIONAL INTEGRALS 

STANDARD APPROACH 
-Divide the integration domain in “small” hypercubes of side h.  
- Compute the function in one representative point within each hypercube. 
- Sum up the function values and multiply by the volume of the hypercube. 
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f(x) 
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ΔIi ≅
1
2
f '(x)⋅ h2

More clever methods can be used, but 
the error is always proportional to hα 



MULTI-DIMENSIONAL INTEGRALS 

In d dimensions the situation becomes even worse.  
The important question is the following: 

HOW MANY POINTS DO WE NEED TO REACH A GIVEN RELATIVE 
ERROR ON THE ESTIMATE OF THE INTEGRAL? 
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ΔIi
Ii

= ε      ∇f (xi)⋅ h
d +1

f (xi)⋅ h
d ∝ h
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ε ∝ N
1
d ⇒ N ∝

1
ε d

but 

e.g.: 16O, central potential, d=48 
Require ε=0.1 

N=1048 
With a Pflop machine TCPU>1033s!!!!! 



CENTRAL LIMIT THEOREM 

Consider a set of N continuum random variables, each one described by the 
same probability density P(x), and a function f(x). We define a new random 
variable SN as: 

€ 

SN =
1
N

f (xi)
i=1

N

∑

where each of the xi is sampled from the probability density P(x). 
ALL SAMPLES MUST BE STATISTICALLY INDEPENDENT 



CENTRAL LIMIT THEOREM 

Under the hypothesis that the samples are independent,the 
Central Limit Theorem proves that: 

€ 

P(SN ) =
1
2πσN

2
e
(SN − f )2

2σN
2

where: 

€ 

f =
P(x) f (x)dx∫
P(x)dx∫

               σN =
1
N

f 2 − f 2( )

THIS RESULT HOLDS FOR ANY DIMENSIONALITY OF 
THE SPACE IN WHICH x IS DEFINED! 

should P not be 
normalized…. 

Estimate of the 
error on the 
estimate of <f>… 



STOCHASTIC INTEGRATION 

The CLT prescribes a very simple way to integrate a multi-dimensional 
function F(x). 

1) Choose a probability density P(x) that can be sampled, defined on a 
domain including the domain of F(x). Because P(x) has to be positive definite, 
we can always rewrite the integral of F as: 

€ 

I = P(x) f (x)dx = P(x) F(x)
P(x)

dx∫∫

2) Sample N (with N “large”) points from the probability density P(x) 

3) Average the N values of the function f(xi) and the N values of f(xi)2 . The 
estimate of the integral will be:  
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STOCHASTIC INTEGRATION 

The previous expression gives us a very important indication: 

THE ERROR ON THE ESTIMATE OF THE INTEGRAL 
DECREASES AS 1/N1/2 REGARDLESS OF THE 

DIMENSIONALITY! 

This means that for reaching a given 
accuracy ε one needs a number of points N 
growing as 1/ε2. For d larger than a few 
units this is an enormous gain in 
computational time. 



SAMPLING 

How to sample a generic probability density? 

Computers provide us with a generator of 
uniformly distributed random numbers 
between 0 and 1 

0 1 x 

P(x) 

#include <math.h>!
#include <stdio.h>!
#include <stdlib.h> /* necessary for the rand() function*/!
int main()!
{!

……!

srand(3);!

……!

y=y+(double)rand()/(double)RAND_MAX;!

}!

Normalization. In C rand() 
produces integer numbers 
uniformly distributed between 0 and 
RAND_MAX 



SAMPLING 

In general we need to sample more complex P(X), such as the square modulus 
of a variational wavefunction. 

€ 

xi+1 = t(xi)

Pi+1(xi+1) = T(xi+1← xi)Pi(xi)dxi∫

If we apply the same transformation k times to some initial value we obtain: 

  

€ 

Pk (xk ) = T(xk← xk−1)T(x3← x2)T(x2← x1)P1(x1)dx1dx2dxk−1∫



SAMPLING 

It can be proved that under some very general conditions the probability density 
Pk converges to a limiting distribution, which depends only on T 

Is it possible to build a T such that we eventually sample the P that we are 
interested in? Let us assume a further condition, i.e. that the asymptotic 
distribution is an “equilibrium” state (meaning that point by point there is no 
net flux of probability): 

€ 

lim
k→∞

Pk (xk ) = P∞(x)

€ 

T(y← x)P(x) = T(x← y)P(y)



SAMPLING 

Now, quite arbitrarily, we split T in two factors: one factor G that we can sample, 
and another unknown part A. Then, the detailed balance condition reads: 

that we can rewrite in the following form: 

€ 

G(y← x)A(y← x)P(x) =G(x← y)A(x← y)P(y)

€ 

A(y← x)
A(x← y)

=
G(x← y)P(y)
G(y← x)P(x)



METROPOLIS ALGORITHM 

There are some very simple and obvious choices for G.  The easier thing to do 
is to shift a point in the configuration space of a random vector having 
components uniformly distributed in some interval [-Δ/2,Δ/2]    

  

€ 

 x i+1 =
 x i +
 
ξ 

-Δ/2 Δ/2 



METROPOLIS ALGORITHM 

€ 

A(xi+1← xi)
A(xi← xi+1)

=
P(xi+1)
P(xi)

So the only thing we need to do is to compute the probability density we want 
to sample in the new and old position and take the ratio.  



METROPOLIS ALGORITHM 

Now, how do we exploit the computed ratio? 

€ 

A(xi+1← xi)
A(xi← xi+1)

>1 The probability of arriving at the new position is 
larger than that of going back. Let’s stay there! 

€ 

A(xi+1← xi)
A(xi← xi+1)

<1 We have a finite probability of going back, and 
we need to SAMPLE this probability. 

0.76345.. 

0 1 

Roll the dice…. Extract a random number    0<θ<1 

ACCEPT! 
Move on… 

REJECT! 
Stay there… 

0.76345.. 



AUTOCORRELATIONS 

The Metropolis prescription explicitly violates one of the requests of the 
central limit theorem: 

THE SAMPLED CONFIGURATIONS ARE IN GENERAL NOT 
STATISTICALLY INDEPENDENT!!!! 

€ 

f (xi) f (x j ) = P(xi,x j ) f (xi) f (x j )dxidx j =
???

∫
= P(xi)P(x j ) f (xi) f (x j )dxidx j∫ =

= P(xi) f (xi)dxi∫ P(x j ) f (x j )dx j =∫
= f (xi) f (x j ) = f (xi)

2

Only if 
independent 
samples 



AUTOCORRELATIONS 

It is convenient to introduce an estimate of the autocorrelation normalized 
to the variance. We assume that it depends only on the difference t=j-i. 

€ 

c t =
f (xi) f (xi+ t ) − f (x) 2

f 2(x) − f (x) 2

ct 
_ _ 

1 

t 

It is easy to prove that data correlated 
over a “time” t lead to an underestimate 
of the error. The error must be corrected 
in the following way: 

€ 

σN
true = σN

2 ⋅ t



AVERAGES 

IMPORTANT EXAMPLE:  
EXPECTATION OF THE HAMILTONIAN 
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Ψ(R,{p}) ˆ H Ψ(R,{p})

Ψ(R,{p})Ψ(R,{p})
=

Ψ(R,{p}) 2 ˆ H Ψ(R,{p})
Ψ(R,{p})

dR∫
Ψ(R,{p}) 2 dR∫

≅
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1
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“Local” energy 
P(x) 



EXERCISES 

EASY: 

Using the Metropolis algorithm compute:  

Discuss how the variance changes by changing the Metropolis step.  

ALMOST EASY: 

Find the optimal variational parameters x0 and σ for the following 
approximation of the first excited state of the 1D harmonic oscillator 
(h=m=1): 

€ 

P(x)[ex −1]dx
0

1

∫          P(x) =1,  P(x) = 2x

€ 

ψ(x) = e
−
(x−x0 )

2

2σ 2 − e
−
(x+x0 )

2

2σ 2
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Wave Functions 

Example: the Lennard Jones potential seen in O. Benhar lectures: 

4He (atomic) 

  

€ 

Ψ(r1rN ) = exp[− 1
2
u(rij )]

i< j

N

∏

Let’s consider a homogeneous liquid of 4He 
atoms at T=0. What might be a reasonable 
wavefunction? Let’s assume 

In general we would like that even when the 
potential diverges the local energy does not 
diverge! (cusp condition) 

  

€ 

ˆ H Ψ(r1rN )
Ψ(r1rN )

=

ˆ H exp[− 1
2

u(rij )]
i< j

N

∏

exp[− 1
2

u(rij )]
i< j

N

∏
→

some rij → 0
< ∞
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u(rij ) =
b
rij

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

5

σ=0.2556 nm 

ε=0.9 meV 

  

€ 

V (r1rN ) = 4ε σ
rij

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 
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−
σ
rij
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⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

6⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ i< j

∑

€ 

EB

N
≈ 7.14K = 6.15meV (Exp.)

Exercise (some algebra) 



METROPOLIS ALGORITHM 

advance(struct particle walker[npmax])!

{!
  ……!
uo=pair_wf(j,walker[j].x,walker[j].y,walker[j].z,walker);!
      for(j=0;j<npart;j++)!
    {!
      dx=delta*(0.5-(double)rand()/(double)RAND_MAX);!
      new.x=walker[j].x+dx;!
      dy=delta*(0.5-(double)rand()/(double)RAND_MAX);!
      new.y=walker[j].y+dy;!
      dz=delta*(0.5-(double)rand()/(double)RAND_MAX);!
      new.z=walker[j].z+dz;!
    }!

      un=pair_wf(j,new.x,new.y,new.z,walker);!
      arg=un-uo;!
      p=exp(-arg);!
      csi=(double)rand()/(double)RAND_MAX;!

      if(p>csi)!
        {!
          acc=acc+1.;!
          walker[j].x=new.x;!
          walker[j].y=new.y;!
          walker[j].z=new.z; !
        };!
}!

  

€ 

Ψ(r1rN ) = exp[− 1
2
u(rij )]

i< j

N

∏

€ 

u(rij )
i< j
∑

OLDMove 
walkers 

€ 

u(rij )
i< j
∑

NEW

€ 

Ψ(Rnew )
2

Ψ(Rold )
2 = exp u(rij )

i< j
∑

OLD

− u(rij )
i< j
∑

NEW

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

Acceptance/
rejection 



Wave Functions 

An easy way to implement the cusp condition is to solve numerically the two-
body problem: 

  

€ 

−
2

2m
∇2e

−
1
2
u(r )

+ [V (r) − E]e
−
1
2
u(r)

= 0

in the interval [0,h]. h is a variational parameter (healing distance) and 
represents the distance at which u(r) becomes 0. 

u(r) 

exp[-u(r)] 



FERMIONS 

When we deal with a many-Fermion system the trial wavefunction must be 
antisymmetric under particle permutations. 

€ 

Ψ(PR) = (−1)PΨ(R)

This is usually achieved by using a Slater determinant of single particle 
wavefunctions  

  

€ 

Ψ(R) = exp −
1
2

u(rij )
i< j
∑ −

1
6

u(rij ⋅ rik ) +
i< j<k
∑

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
×

f1(r1) f1(r2)  f1(rN )
f2(r1) f2(r2)  f2(rN )
   

fN (r1) fN (r2)  fN (rN )

If the Hamiltonian commutes with σz it is convenient to write a product of two 
determinants, one for spin-up particles and one of spin-down particles. 



FERMIONS 

The computation of the determinant is expensive, scaling is with N3. It is 
possible to save some time if we compute at first the inverse of the Slater 
matrix. Then we remember that: 

€ 

A −1 =
1
A

CT( )ij =
1
A

C ji( )

where C is the matrix of the co-factors.  
If we change the coordinates of only one of the particles in a Metropolis step, 
the ratio of the Slater determinants can be computed by multiplying just two 
rows (columns) of the Slater matrix and of its inverse. 



FERMIONS 

Example: 
Let’s move particle 2. 

The ratio of the determinants simply becomes 

  

€ 

A =

f1(r1) f1(r2)  f1(rN )
f2(r1) f2(r2)  f2(rN )
   

fN (r1) fN (r2)  fN (rN )

⇒

f1(r1) f1(r2
new )  f1(rN )

f2(r1) f2(r2
new )  f2(rN )

   
fN (r1) fN (r2

new )  fN (rN )

  

€ 

det(A new )
det(A old )

= f1
−1(r2) f1(r2) + f2

−1(r2) f2(r2) ++ fN
−1(r2) fN (r2)

The square of this quantity enters the probability to sample.. 



FERMIONS 

The same property is used to compute gradients and Laplacians of the 
wavefunction: 

That is: 

  

€ 

∂kA =

f1(r1) ∂k f1(r2)  f1(rN )
f2(r1) ∂k f2(r2)  f2(rN )
   

fN (r1) ∂k fN (r2)  fN (rN )

  

€ 

∂k det(A new )
det(A old )

= f1
−1(rk )∂k f1(rk ) + f2

−1(rk )∂k f2(rk ) ++ fN
−1(rk )∂k fN (rk )

The same holds for second derivatives. These quantities enter the local energy. 



FERMIONS 

Are the zeros of the wavefunction a problem?  
Not here. Near the nodes the wavefunction is linear in the coordinates. 

  

€ 

Ψ(r1rN ) 2 ˆ H Ψ(r1rN )
Ψ(r1rN )∫ dr1drN

Ψ(r1rN ) 2∫ dr1drN

~ R2,  
and always 
positive 

~ R 

OK! 

€ 

Ψ(r)



Wave Function Optimization 

How do we optimize the parameters in a variational wavefunction? 
We can certainly do it by hand… But if we want to be flexible in our 
parametrization this is not certainly efficient! 

There is a method allowing for a set of configurations sampled froma a 
wavefunction with a set of parameters {p} to compute the local energy for a 
different set of parameters {p’}  

€ 

Ψ(R,{p'}) ˆ H Ψ(R,{p'})

Ψ(R,{p'})Ψ(R,{p'})
=

Ψ(R,{p'}) 2 ˆ H Ψ(R,{p'})
Ψ(R,{p'})

dR∫
Ψ(R,{p'}) 2 dR∫

=

=

Ψ(R,{p}) 2 Ψ(R,{p'}) 2

Ψ(R,{p}) 2

ˆ H Ψ(R,{p'})
Ψ(R,{p'})

dR∫

Ψ(R,{p}) 2 Ψ(R,{p'}) 2

Ψ(R,{p}) 2 dR∫
≅

wi

ˆ H Ψ(Ri,{p'})
Ψ(Ri,{p'})i

∑

wi
i
∑



Wave Function Optimization 

The weight wi is simply given by: 

The method is often called CORRELATED SAMPLING. 

Note that if wi  is not ~1 this method might become in turn very inefficient!!  
However, this method is extremely useful to compute gradients and 
Laplacians of the local energy in parameters space, which are the 
essential ingredient in any minimization or fitting method (steepest 
descent, Levemberg-Marquardt, Hessian based methods etc.) 

€ 

wi =
Ψ(Ri,{p'})

2

Ψ(Ri,{p'})
2



DMC for central potentials 

Important fact: 
The Schroedinger equation in imaginary time is a 
diffusion equation (a transformed Fokker-Planck 
equation): 

  

€ 

−
2

2m
∇2 +V (R)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ Ψ(R,τ) = −

∂
∂τ
Ψ(R,τ)

where R represent the coordinates of the particles, and 
τ = it is an imaginary time (would be real time in 
diffusion).  



DMC for central potentials 

Let us consider the formal solution: 

  

€ 

Ψ(R,τ) = e
−
H

τ
Ψ(R,0)

  

€ 

Ψ(R,τ) = e
−
H

τ
Ψ(R,0) =

           = e
−
H

τ

cnΨn (R)
n
∑ = e

−
En

τ
cnΨn (R)

n
∑

We can expand the initial state on a basis of 
eigenfunction of the Hamiltonian, and get: 



DMC for central potentials 

  

€ 

Ψ(R,τ) = e
−
(H −E0 )


τ
Ψ(R,0)

= e
−
(E0 −E0 )


τ
c0Ψ0(R,0) + e

−
(En −E0 )


τ
cnΨn (R,0)

n≠0
∑

Let us multiply by a time-dependent factor    

€ 

e
E0

τ

This yelds: 
. 

“Absolute” ground state of H. 
This is ALWAYS a nodeless 
function! 

NB: because of the properties of the ground state we must restrict for 
the moment to many-Boson systems! 



DMC for central potentials 

For a generic Hamiltonian we do not know 
neither the explicit form of the propagator, nor 
the normalization (i.e. the lowest eigenvalue). 

Looks useless! 

BUT… 
•  Maybe we could use an approximate 
propagator… 

•  We might try to control the normalization 
“along the way” 



Propagator 

Case m               0  

The Hamiltonian reduces to: 

  

€ 

−
2

2m
∇i

2

i=1

A

∑
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ Ψ(R,τ) = −

∂
∂τ
Ψ(R,τ)

The lowest eigenstate is a constant, and the lowest eigenvalue is 0:  
no extra normalization needed! 

  

€ 

R e
−
H

τ
Ψ = R e

−
H

τ

dR'∫ R' R'Ψ = G0(R,R',τ)Ψ(R')dR'∫

  

€ 

σ2 =
2

m
τ


€ 

G0(R,R',τ) =
1

2πσ 2

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

3A
2
e
−
(R−R ' )2

2σ 2where and 

€ 

τ = 0 
Ψ(R,0) = δ(R − R')

  

€ 

 Ψ(R,τ) =
1

2π  mτ
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

3A
2
e
−

(R −R ' )2

2 mτ

Free particle propagator 

Inverse of 
an energy 



Propagator 

Case m               ∞  

The Hamiltonian now reads: 

€ 

[V (R) − E0]Ψ(R,τ ) = −
∂
∂τ

Ψ(R,τ )

Here we include the normalization. The solution, once more written in terms 
of eigenstates of the position, is trivial:  

€ 

R e−[V (R )−E0 ]τΨ =

= R e−[V (R )−E0 ]τ dR'∫ R' R' Ψ = e−[V (R ' )−E0 ]τΨ(R')δ(R − R')dR'∫
The latter expression does not imply any time evolution of the position, but 

simply a “reshaping” of the wavefunction in the imaginary time interval τ	


€ 

τ = 0 
Ψ(R,0) =1

€ 

 Ψ(R,τ ) = e−[V (R )−E0 ]τΨ(R,0)

E0 

V(R) 

  

€ 

 =1

Probability for the walker to 
generate copies of itself in a time 
τ (source/sink probability)	




Trotter-Suzuki break-up 

In real life we are never in either of these two limts. However, we can invoke 
the Trotter-Suzuki formula in order to get closer to this situation, provided that 
the propagation occurs for a short time Δτ:  

  

€ 

R e
−
(H −E0 )


τ
R' = R e

−
[V (R )−E0 ]


Δτ
2 e

−
T

τ
e
−
[V (R ' )−E0 ]


Δτ
2 R' + o(Δτ 3)

=
1

2π  mΔτ
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

3A
2
e
−
(R −R ' )2

2 mΔτ e
−
V (R )+V (R ' )

2
−ET

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
Δτ


In order to project out the ground state of the Hamiltonian, we 
need a large τ. So the short-time propagator must be repeatedly 

applied. 



How does it work? 

€ 

Ψ(R) = R Ψ = R dR' R' R'∫ Ψ ≈

≈ R R'k R'k Ψ
k=1

M

∑ = δ(R − R'k )
k=1

M

∑ Ψ(R'k )



How it works… 

€ 

E0 =
ΨT

ˆ H Ψ0

ΨT Ψ0

=
Ψ0

ˆ H ΨT

Ψ0 ΨT

=

dRΨ0(R) ˆ H ΨT (R)∫
dRΨ0(R)ΨT (R)∫

≈

ˆ H ΨT (R'k )
k=1

M

∑

ΨT (R'k )
k=1

M

∑

If M is sufficiently 
large this is a 
Monte Carlo 

average 



Propagation of walkers 

The propagation of the single walker is easily implemented for the Trotter-
Suzuki propagator. In fact the functions which are actually propagated are just 
Delta functions. 

Displace the walker 
sampling from the Gaussian 

  

€ 

1
2π  mΔτ

e
−
(R −R ' )2

2 mΔτ

(this can be easily achieved by using e.g. the Box-Muller formula) 

R1 

R1’ 

R2 

R2’ 

  

€ 

R1 − R1
' =

Δτ

2

m
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ × Normally distributed 

random number 



Propagation of walkers 

The propagator is interpreted as the “weight” the walker will have 
after an imaginary time interval Δτ.  This can be naively interpreted 
as the probability of the walkers of “surviving” or  “procreating” at 
that position. 

  

€ 

w = e
−
V (R )+V (R ' )

2
−E0

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
Δτ


R 
€ 

Number of walkers =
 INT(w + ξ),  ξ ∈ (0,1] random

Δτ	
 Δτ	


“BRANCHING” 
PROCESS 



Example 

€ 

ˆ H = − 1
2
∂ 2

∂x 2 +
1
2

x 2

Histograms of the 
distribution of walkers 
after 1, 10, 100, 1000, 

5000 steps of 0.01 units 



Normalization 

€ 

w =
NT

N
e
−

V (R )+V (R ' )
2

−E0
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
Δτ

= e
−

V (R )+V (R ' )
2

− ˜ E 
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
Δτ

where 

€ 

˜ E = E0 +
1
Δτ

ln NT

N
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ The trial eigenvalue is 

continuosly updated. 

  

€ 

 =1



Importance sampling 



Importance sampling 

The problem can be addressed by changing the target distribution 
of walker into the product of the propagated state with a trial wave 
function determined, for instance, by means of a variational 
calculation. 

€ 

F(R) = 2∇ lnΨT (R) = −2∇ΨT (R)
ΨT (R)

€ 

f (R,τ ) = ΨT (R)Ψ(R,τ )



Importance sampling 

We can notice that: 

€ 

∇ f (R,τ )F(R)[ ] = 2∇ΨT (R)∇Ψ(R,τ) + 2Ψ(R,τ )∇2ΨT (R)

∇2 f (R,τ ) = ΨT (R)∇
2Ψ(R,τ ) + 2∇ΨT (R)∇Ψ(R,τ ) + Ψ(R,τ )∇2ΨT (R)

By combining the two expressions we obtain:  

€ 

ΨT (R)∇
2Ψ(R,τ ) =∇2 f (R,τ ) −∇ f (R,τ )F(R)[ ] + f (R,τ)∇

2ΨT (R)
ΨT (R)



Importance sampling 

Let us multiply the Schroedinger equation in imaginary time 
by the importance function 

By using the previous result we obtain 

  

€ 


∂f (R,τ )
∂τ

=
2

2m
∇2 f (Ri,τ)

i
∑ −

2

2m
∇ f (Ri,τ )F(Ri)[ ]

i
∑ − EL f (R,τ)

  

€ 

ΨT (R) −
2

2m
∇2 +V (R)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ Ψ(R,τ) = −ΨT (R)

∂
∂τ
Ψ(R,τ)

where 
  

€ 

EL (R) = −
2

2m
∇2ΨT (Ri)
ΨT (Ri)i

∑ +V (R)



Importance sampling 

We can repeat the same analysis (zero and infinite mass 
limits). The outcome are the following propagators: 

  

€ 

˜ G 0(R,R',Δτ)∝ e

−

R −R '−F(R ' )
Δτ

 2

m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

2

2Δτ

 2

m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

Kinetic propagator 

Potential propagator 

  

€ 

w = e
−
EL (R )+EL (R ' )

2
−E0

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
Δτ


Drives the walkers 
towards regions o 
high probability 

€ 

EL (R )

The presence of the local energy 
strongly reduces fluctuations. IfΨT
(R) is exact, and E0 is exact, then 

w=1 

THE RESULTING ALGORITHM IS 
EXTREMELY EFFICIENT 



Importance sampling 

It is possible to overcame these problems by modifying the 
propagator. 
We start from the expression: 

where G is approximated by 

€ 

ψ(R,Δτ) = G(R,R',Δτ)ψ(R',0)dR'∫

€ 

G(R,R',Δτ) ≈ 1
(2πΔτ)3N

e
−
(R −R ' )2

2Δτ e− V (R ' )−ET[ ]Δτ

τ = Inverse of an energy 

  

€ 

From now on :    = m =1



Importance sampled GF 

Let us multiply the propagated wavefunction by an (variational) 
approximation of the ground state wavefunction ψT(R): 

which can in turn be rewritten as: 

This defined a new “dressed” propagator: 

€ 

˜ G (R,R',Δτ ) = G0(R,R',Δτ ) ΨT (R)
ΨT (R')

€ 

ψT (R)ψ(R,Δτ) = G(R,R',Δτ)ψT (R)ψ(R',0)dR'∫

€ 

ψT (R)ψ(R,Δτ) = G(R,R',Δτ) ψT (R)
ψT (R')

ψT (R')ψ(R',0)dR'∫



Importance sampled GF 

Expanding the ratio of the importance functions (remembering that 
R-R’ is order Δτ)	


€ 

N(R') = G(R,R',Δτ) ψT (R)
ψT (R')

dR∫

€ 

N(R') ≅ G(R,R'Δτ) 1+
∇ψT (R')
ψT (R')

(R − R')
⎡ 

⎣ 
⎢ +∫

+  1
ψT (R')

∂ 2ψT (R')
∂xiα∂x jβ

(xiα − xiα
'

i, j,α ,β
∑ )(x jβ − x jβ

' )
⎤ 

⎦ 
⎥ 
⎥ 
dR



Importance sampled GF 

Integrating one obtains: 

€ 

N(R') ≅ 1+
Δτ
2

1
ψT (R')

∇2

i
∑ ψT (R')

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ e−Δτ[V (R ' )−ET ] ≅

≅ exp 1
2
∇2ψT (R')
ψT (R')

+ ET −V (R')
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Δτ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ≅

≅ exp −Δτ
HψT (R')
ψT (R')

− ET

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

If the trial 
wavefunction satisfies 
the cusp condition this is 
always bound!!! 



Importance sampled GF 

Expanding the ratio inside the integral we can see that 
importance sampling naturally leads to the appearance of a 
“drift” term: 

€ 

G(R,R',Δτ) ≅ 1+
∇ψT (R')
ψT (R')

(R − R')
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ exp −

(R − R')2

2Δτ
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ≅

≅ exp ∇logψT (R')(R − R') −
(R − R')2

2Δτ
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ≅

≅ exp 1
2Δτ

R − R'−∇logψT (R')Δτ( )2 + o(Δτ)
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

Same order as the 
error made when 
applying the 
Trotter-Suzuki 
breakup 

This “drift” term drives a 
walker towards points 
where the importance 
function is large. 

R2’ 
€ 

R'+Δτ ∇ΨT (R')
ΨT (R')

€ 

R'

€ 

R = R'+Δτ ∇ΨT (R')
ΨT (R')

+η and branch with the local energy 



Estimators 

Importance sampling does not affect the capability of 
computing the exact  ground state eigenvalue of the 
Schroedinger equation. 

€ 

Ψ(R,τ ) ˆ H ΨT (R)dR∫
Ψ(R,τ)ΨT (R)dR∫

=
ΨT (R)Ψ(R,τ)

ˆ H ΨT (R)
ΨT (R)

dR∫
Ψ(R,τ)ΨT (R)dR∫

=

=
f (R,τ )EL (R)dR∫

f (R,τ )dR∫
=

1
M

EL (Rk )
k=1

M

∑

On the other hand, the above integral converges to: 

€ 

Ψ(R,τ ) ˆ H ΨT (R)dR∫
Ψ(R,τ)ΨT (R)dR∫ τ→∞

⎯ → ⎯ ⎯ 
Ψ0(R) ˆ H ΨT (R)
Ψ0(R) ΨT (R)

=
ΨT (R) ˆ H Ψ0(R)
ΨT (R) Ψ0(R)

= E0



Estimators 

All estimators other than the energy will be evaluated as 
matri elements between the exact and the importance 
function. There are many techniques to correct this problem.  

However, let us suppose that the importance function is a 
good approximation of the ground state, i.e. 

€ 

ΨT (R) O(R)Ψ0(R) = Ψ0(R) + εΨR (R) O(R)Ψ0(R)

ΨT (R) O(R)ΨT (R) = Ψ0(R) + εΨR (R) O(R) Ψ0(R) + εΨR (R)[ ] =

= Ψ0(R) O(R)Ψ0(R) + 2ε ΨT (R) O(R)ΨR (R)

€ 

ΨT (R) = Ψ0(R) + εΨR (R)
then: 



Estimators 

Combining the previous two expressions we get: 

€ 

2 ΨT (R) O(R)Ψ0(R) − ΨT (R) O(R)ΨT (R) = Ψ0(R) O(R)Ψ0(R) + o(ε2)

Therefore, if we combine the result of a DMC calculation with the result 
of the variational  calculation, we can obtain a better estimate of 
quantities other than the energy. 



Biases 

There are additional issues to be considered in 
calculations. In particular, the results are biased 
by: 

•  The Trotter-Suzuki breakup is not exact for any 
finite imaginary time step. It is therefore necessary 
to extrapolate to Δτ0.	


•  The population control quenches necessary 
fluctuations in the number of walkers. It is therefore 
necessary to extrapolate for Nwalkers∞ 


