
Francesco Pederiva

LISC, Interdisciplinary Laboratory for Computationsal Science, FBK and University of Trento
INFN, Gruppo Collegato di Trento

Scuola “R. Anni” – Otranto, 30/05-04/06/2011

Outline

  Variational Monte Carlo
 Many-dimensional integrals
 Stochastic integration
 Metropolis algorithm
 Wave Functions (Bosons and Fermions)

  Diffusion Monte Carlo for Many Boson Systems
 Propagation in imaginary time
  Importance sampling
 General treatment in terms of Green’s Functions

Monte Carlo methods

Investigating the properties of nuclei and nuclear matter implies the solution of a
many-body problem. Let us consider the non relativistic version. In general, we must
solve a many-body Schroedinger equation:

€

−
2

2mii=1

N

∑ ∇ i
2Ψ(r1…rN ,α1…αN) + ˆ V (r1…rN ,σ1…σN)Ψ(r1…rN ,α1…αN) = EnΨ(r1…rN ,α1…αN)

Where ri are the space coordinates of the particles, and αi are other possible
degrees of freedom (e.g. the spin/isospin states of nucleons). The potential V is in
general an operator that acts on both the space and/or spin/isospin degrees of
freedom.
Many forms of approximate solutions exist.

IS IT POSSIBLE TO ACCURATELY SOLVE THE PROBLEM FOR AN ARBITRARY N?

MONTE CARLO METHODS

Let us assume that:

  We are at zero temperature (almost ok for most systems of interest);
  We are interested only in ground state properties.

Monte Carlo methods give us two options:

VARIATIONAL APPROACH

The method is based on assuming a given functional form of the
wavefunction (necessarily approximate), depending on some parameters
{p}. The variational theorem tells us that:

€

Ψ(R,{p}) ˆ H Ψ(R,{p})

Ψ(R,{p})Ψ(R,{p})
= ET ({p}) ≥ E0

The expectation of the Hamiltonian is a multi-dimensional integral
in the degrees of freedom of the system (coordinates, spin and
isospin).

MULTI-DIMENSIONAL INTEGRALS

STANDARD APPROACH
-Divide the integration domain in “small” hypercubes of side h.
- Compute the function in one representative point within each hypercube.
- Sum up the function values and multiply by the volume of the hypercube.

h x

f(x)

€

I = f (x)dx
a

b

∫ ≅ f (xi)
i=1

(b−a) / h

∑
⎡

⎣
⎢

⎤

⎦
⎥ h

x1=a b xi

~f’(x)h

€

ΔIi ≅
1
2
f '(x)⋅ h2

More clever methods can be used, but
the error is always proportional to hα

MULTI-DIMENSIONAL INTEGRALS

In d dimensions the situation becomes even worse.
The important question is the following:

HOW MANY POINTS DO WE NEED TO REACH A GIVEN RELATIVE
ERROR ON THE ESTIMATE OF THE INTEGRAL?

€

ΔIi
Ii

= ε ∇f (xi)⋅ h
d +1

f (xi)⋅ h
d ∝ h

€

N =
L
h
⎛

⎝
⎜
⎞

⎠
⎟
d

⇒ h ∝ N
1
d

€

ε ∝ N
1
d ⇒ N ∝

1
ε d

but

e.g.: 16O, central potential, d=48
Require ε=0.1

N=1048
With a Pflop machine TCPU>1033s!!!!!

CENTRAL LIMIT THEOREM

Consider a set of N continuum random variables, each one described by the
same probability density P(x), and a function f(x). We define a new random
variable SN as:

€

SN =
1
N

f (xi)
i=1

N

∑

where each of the xi is sampled from the probability density P(x).
ALL SAMPLES MUST BE STATISTICALLY INDEPENDENT

CENTRAL LIMIT THEOREM

Under the hypothesis that the samples are independent,the
Central Limit Theorem proves that:

€

P(SN) =
1
2πσN

2
e
(SN − f)2

2σN
2

where:

€

f =
P(x) f (x)dx∫
P(x)dx∫

 σN =
1
N

f 2 − f 2()

THIS RESULT HOLDS FOR ANY DIMENSIONALITY OF
THE SPACE IN WHICH x IS DEFINED!

should P not be
normalized….

Estimate of the
error on the
estimate of <f>…

STOCHASTIC INTEGRATION

The CLT prescribes a very simple way to integrate a multi-dimensional
function F(x).

1) Choose a probability density P(x) that can be sampled, defined on a
domain including the domain of F(x). Because P(x) has to be positive definite,
we can always rewrite the integral of F as:

€

I = P(x) f (x)dx = P(x) F(x)
P(x)

dx∫∫

2) Sample N (with N “large”) points from the probability density P(x)

3) Average the N values of the function f(xi) and the N values of f(xi)2 . The
estimate of the integral will be:

€

I ≅ 1
N

f (xi) ±
1
N

1
N

f (xi)
2

i=1

N

∑
⎛

⎝
⎜

⎞

⎠
⎟ −

1
N

f (xi)
i=1

N

∑
⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ i=1

N

∑

STOCHASTIC INTEGRATION

The previous expression gives us a very important indication:

THE ERROR ON THE ESTIMATE OF THE INTEGRAL
DECREASES AS 1/N1/2 REGARDLESS OF THE

DIMENSIONALITY!

This means that for reaching a given
accuracy ε one needs a number of points N
growing as 1/ε2. For d larger than a few
units this is an enormous gain in
computational time.

SAMPLING

How to sample a generic probability density?

Computers provide us with a generator of
uniformly distributed random numbers
between 0 and 1

0 1 x

P(x)

#include <math.h>!
#include <stdio.h>!
#include <stdlib.h> /* necessary for the rand() function*/!
int main()!
{!

……!

srand(3);!

……!

y=y+(double)rand()/(double)RAND_MAX;!

}!

Normalization. In C rand()
produces integer numbers
uniformly distributed between 0 and
RAND_MAX

SAMPLING

In general we need to sample more complex P(X), such as the square modulus
of a variational wavefunction.

€

xi+1 = t(xi)

Pi+1(xi+1) = T(xi+1← xi)Pi(xi)dxi∫

If we apply the same transformation k times to some initial value we obtain:

€

Pk (xk) = T(xk← xk−1)T(x3← x2)T(x2← x1)P1(x1)dx1dx2dxk−1∫

SAMPLING

It can be proved that under some very general conditions the probability density
Pk converges to a limiting distribution, which depends only on T

Is it possible to build a T such that we eventually sample the P that we are
interested in? Let us assume a further condition, i.e. that the asymptotic
distribution is an “equilibrium” state (meaning that point by point there is no
net flux of probability):

€

lim
k→∞

Pk (xk) = P∞(x)

€

T(y← x)P(x) = T(x← y)P(y)

SAMPLING

Now, quite arbitrarily, we split T in two factors: one factor G that we can sample,
and another unknown part A. Then, the detailed balance condition reads:

that we can rewrite in the following form:

€

G(y← x)A(y← x)P(x) =G(x← y)A(x← y)P(y)

€

A(y← x)
A(x← y)

=
G(x← y)P(y)
G(y← x)P(x)

METROPOLIS ALGORITHM

There are some very simple and obvious choices for G. The easier thing to do
is to shift a point in the configuration space of a random vector having
components uniformly distributed in some interval [-Δ/2,Δ/2]

€

 x i+1 =
 x i +

ξ

-Δ/2 Δ/2

METROPOLIS ALGORITHM

€

A(xi+1← xi)
A(xi← xi+1)

=
P(xi+1)
P(xi)

So the only thing we need to do is to compute the probability density we want
to sample in the new and old position and take the ratio.

METROPOLIS ALGORITHM

Now, how do we exploit the computed ratio?

€

A(xi+1← xi)
A(xi← xi+1)

>1 The probability of arriving at the new position is
larger than that of going back. Let’s stay there!

€

A(xi+1← xi)
A(xi← xi+1)

<1 We have a finite probability of going back, and
we need to SAMPLE this probability.

0.76345..

0 1

Roll the dice…. Extract a random number 0<θ<1

ACCEPT!
Move on…

REJECT!
Stay there…

0.76345..

AUTOCORRELATIONS

The Metropolis prescription explicitly violates one of the requests of the
central limit theorem:

THE SAMPLED CONFIGURATIONS ARE IN GENERAL NOT
STATISTICALLY INDEPENDENT!!!!

€

f (xi) f (x j) = P(xi,x j) f (xi) f (x j)dxidx j =
???

∫
= P(xi)P(x j) f (xi) f (x j)dxidx j∫ =

= P(xi) f (xi)dxi∫ P(x j) f (x j)dx j =∫
= f (xi) f (x j) = f (xi)

2

Only if
independent
samples

AUTOCORRELATIONS

It is convenient to introduce an estimate of the autocorrelation normalized
to the variance. We assume that it depends only on the difference t=j-i.

€

c t =
f (xi) f (xi+ t) − f (x) 2

f 2(x) − f (x) 2

ct
_ _

1

t

It is easy to prove that data correlated
over a “time” t lead to an underestimate
of the error. The error must be corrected
in the following way:

€

σN
true = σN

2 ⋅ t

AVERAGES

IMPORTANT EXAMPLE:
EXPECTATION OF THE HAMILTONIAN

€

Ψ(R,{p}) ˆ H Ψ(R,{p})

Ψ(R,{p})Ψ(R,{p})
=

Ψ(R,{p}) 2 ˆ H Ψ(R,{p})
Ψ(R,{p})

dR∫
Ψ(R,{p}) 2 dR∫

≅

≅
1
N

ˆ H Ψ(Ri,{p})
Ψ(Ri,{p})i=1

N

∑ ±
1
N

1
N

ˆ H Ψ(Ri,{p})
Ψ(Ri,{p})

⎛

⎝
⎜

⎞

⎠
⎟

i=1

N

∑
2

−
1
N

ˆ H Ψ(Ri,{p})
Ψ(Ri,{p})i=1

N

∑
⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

“Local” energy
P(x)

EXERCISES

EASY:

Using the Metropolis algorithm compute:

Discuss how the variance changes by changing the Metropolis step.

ALMOST EASY:

Find the optimal variational parameters x0 and σ for the following
approximation of the first excited state of the 1D harmonic oscillator
(h=m=1):

€

P(x)[ex −1]dx
0

1

∫ P(x) =1, P(x) = 2x

€

ψ(x) = e
−
(x−x0)

2

2σ 2 − e
−
(x+x0)

2

2σ 2

Francesco Pederiva

LISC, Interdisciplinary Laboratory for Computationsal Science, FBK and University of Trento
INFN, Gruppo Collegato di Trento

Scuola “R. Anni” – Otranto, 30/05-04/06/2011

Wave Functions

Example: the Lennard Jones potential seen in O. Benhar lectures:

4He (atomic)

€

Ψ(r1rN) = exp[− 1
2
u(rij)]

i< j

N

∏

Let’s consider a homogeneous liquid of 4He
atoms at T=0. What might be a reasonable
wavefunction? Let’s assume

In general we would like that even when the
potential diverges the local energy does not
diverge! (cusp condition)

€

ˆ H Ψ(r1rN)
Ψ(r1rN)

=

ˆ H exp[− 1
2

u(rij)]
i< j

N

∏

exp[− 1
2

u(rij)]
i< j

N

∏
→

some rij → 0
< ∞

€

u(rij) =
b
rij

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

5

σ=0.2556 nm

ε=0.9 meV

€

V (r1rN) = 4ε σ
rij

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

12

−
σ
rij

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

6⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥ i< j

∑

€

EB

N
≈ 7.14K = 6.15meV (Exp.)

Exercise (some algebra)

METROPOLIS ALGORITHM

advance(struct particle walker[npmax])!

{!
 ……!
uo=pair_wf(j,walker[j].x,walker[j].y,walker[j].z,walker);!
 for(j=0;j<npart;j++)!
 {!
 dx=delta*(0.5-(double)rand()/(double)RAND_MAX);!
 new.x=walker[j].x+dx;!
 dy=delta*(0.5-(double)rand()/(double)RAND_MAX);!
 new.y=walker[j].y+dy;!
 dz=delta*(0.5-(double)rand()/(double)RAND_MAX);!
 new.z=walker[j].z+dz;!
 }!

 un=pair_wf(j,new.x,new.y,new.z,walker);!
 arg=un-uo;!
 p=exp(-arg);!
 csi=(double)rand()/(double)RAND_MAX;!

 if(p>csi)!
 {!
 acc=acc+1.;!
 walker[j].x=new.x;!
 walker[j].y=new.y;!
 walker[j].z=new.z; !
 };!
}!

€

Ψ(r1rN) = exp[− 1
2
u(rij)]

i< j

N

∏

€

u(rij)
i< j
∑

OLDMove
walkers

€

u(rij)
i< j
∑

NEW

€

Ψ(Rnew)
2

Ψ(Rold)
2 = exp u(rij)

i< j
∑

OLD

− u(rij)
i< j
∑

NEW

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Acceptance/
rejection

Wave Functions

An easy way to implement the cusp condition is to solve numerically the two-
body problem:

€

−
2

2m
∇2e

−
1
2
u(r)

+ [V (r) − E]e
−
1
2
u(r)

= 0

in the interval [0,h]. h is a variational parameter (healing distance) and
represents the distance at which u(r) becomes 0.

u(r)

exp[-u(r)]

FERMIONS

When we deal with a many-Fermion system the trial wavefunction must be
antisymmetric under particle permutations.

€

Ψ(PR) = (−1)PΨ(R)

This is usually achieved by using a Slater determinant of single particle
wavefunctions

€

Ψ(R) = exp −
1
2

u(rij)
i< j
∑ −

1
6

u(rij ⋅ rik) +
i< j<k
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
×

f1(r1) f1(r2) f1(rN)
f2(r1) f2(r2) f2(rN)

fN (r1) fN (r2) fN (rN)

If the Hamiltonian commutes with σz it is convenient to write a product of two
determinants, one for spin-up particles and one of spin-down particles.

FERMIONS

The computation of the determinant is expensive, scaling is with N3. It is
possible to save some time if we compute at first the inverse of the Slater
matrix. Then we remember that:

€

A −1 =
1
A

CT()ij =
1
A

C ji()

where C is the matrix of the co-factors.
If we change the coordinates of only one of the particles in a Metropolis step,
the ratio of the Slater determinants can be computed by multiplying just two
rows (columns) of the Slater matrix and of its inverse.

FERMIONS

Example:
Let’s move particle 2.

The ratio of the determinants simply becomes

€

A =

f1(r1) f1(r2) f1(rN)
f2(r1) f2(r2) f2(rN)

fN (r1) fN (r2) fN (rN)

⇒

f1(r1) f1(r2
new) f1(rN)

f2(r1) f2(r2
new) f2(rN)

fN (r1) fN (r2

new) fN (rN)

€

det(A new)
det(A old)

= f1
−1(r2) f1(r2) + f2

−1(r2) f2(r2) ++ fN
−1(r2) fN (r2)

The square of this quantity enters the probability to sample..

FERMIONS

The same property is used to compute gradients and Laplacians of the
wavefunction:

That is:

€

∂kA =

f1(r1) ∂k f1(r2) f1(rN)
f2(r1) ∂k f2(r2) f2(rN)

fN (r1) ∂k fN (r2) fN (rN)

€

∂k det(A new)
det(A old)

= f1
−1(rk)∂k f1(rk) + f2

−1(rk)∂k f2(rk) ++ fN
−1(rk)∂k fN (rk)

The same holds for second derivatives. These quantities enter the local energy.

FERMIONS

Are the zeros of the wavefunction a problem?
Not here. Near the nodes the wavefunction is linear in the coordinates.

€

Ψ(r1rN) 2 ˆ H Ψ(r1rN)
Ψ(r1rN)∫ dr1drN

Ψ(r1rN) 2∫ dr1drN

~ R2,
and always
positive

~ R

OK!

€

Ψ(r)

Wave Function Optimization

How do we optimize the parameters in a variational wavefunction?
We can certainly do it by hand… But if we want to be flexible in our
parametrization this is not certainly efficient!

There is a method allowing for a set of configurations sampled froma a
wavefunction with a set of parameters {p} to compute the local energy for a
different set of parameters {p’}

€

Ψ(R,{p'}) ˆ H Ψ(R,{p'})

Ψ(R,{p'})Ψ(R,{p'})
=

Ψ(R,{p'}) 2 ˆ H Ψ(R,{p'})
Ψ(R,{p'})

dR∫
Ψ(R,{p'}) 2 dR∫

=

=

Ψ(R,{p}) 2 Ψ(R,{p'}) 2

Ψ(R,{p}) 2

ˆ H Ψ(R,{p'})
Ψ(R,{p'})

dR∫

Ψ(R,{p}) 2 Ψ(R,{p'}) 2

Ψ(R,{p}) 2 dR∫
≅

wi

ˆ H Ψ(Ri,{p'})
Ψ(Ri,{p'})i

∑

wi
i
∑

Wave Function Optimization

The weight wi is simply given by:

The method is often called CORRELATED SAMPLING.

Note that if wi is not ~1 this method might become in turn very inefficient!!
However, this method is extremely useful to compute gradients and
Laplacians of the local energy in parameters space, which are the
essential ingredient in any minimization or fitting method (steepest
descent, Levemberg-Marquardt, Hessian based methods etc.)

€

wi =
Ψ(Ri,{p'})

2

Ψ(Ri,{p'})
2

DMC for central potentials

Important fact:
The Schroedinger equation in imaginary time is a
diffusion equation (a transformed Fokker-Planck
equation):

€

−
2

2m
∇2 +V (R)

⎡

⎣
⎢

⎤

⎦
⎥ Ψ(R,τ) = −

∂
∂τ
Ψ(R,τ)

where R represent the coordinates of the particles, and
τ = it is an imaginary time (would be real time in
diffusion).

DMC for central potentials

Let us consider the formal solution:

€

Ψ(R,τ) = e
−
H

τ
Ψ(R,0)

€

Ψ(R,τ) = e
−
H

τ
Ψ(R,0) =

 = e
−
H

τ

cnΨn (R)
n
∑ = e

−
En

τ
cnΨn (R)

n
∑

We can expand the initial state on a basis of
eigenfunction of the Hamiltonian, and get:

DMC for central potentials

€

Ψ(R,τ) = e
−
(H −E0)

τ
Ψ(R,0)

= e
−
(E0 −E0)

τ
c0Ψ0(R,0) + e

−
(En −E0)

τ
cnΨn (R,0)

n≠0
∑

Let us multiply by a time-dependent factor

€

e
E0

τ

This yelds:
.

“Absolute” ground state of H.
This is ALWAYS a nodeless
function!

NB: because of the properties of the ground state we must restrict for
the moment to many-Boson systems!

DMC for central potentials

For a generic Hamiltonian we do not know
neither the explicit form of the propagator, nor
the normalization (i.e. the lowest eigenvalue).

Looks useless!

BUT…
•  Maybe we could use an approximate
propagator…

•  We might try to control the normalization
“along the way”

Propagator

Case m 0

The Hamiltonian reduces to:

€

−
2

2m
∇i

2

i=1

A

∑
⎡

⎣
⎢

⎤

⎦
⎥ Ψ(R,τ) = −

∂
∂τ
Ψ(R,τ)

The lowest eigenstate is a constant, and the lowest eigenvalue is 0:
no extra normalization needed!

€

R e
−
H

τ
Ψ = R e

−
H

τ

dR'∫ R' R'Ψ = G0(R,R',τ)Ψ(R')dR'∫

€

σ2 =
2

m
τ

€

G0(R,R',τ) =
1

2πσ 2

⎡

⎣ ⎢
⎤

⎦ ⎥

3A
2
e
−
(R−R ')2

2σ 2where and

€

τ = 0
Ψ(R,0) = δ(R − R')

€

 Ψ(R,τ) =
1

2π mτ
⎡

⎣
⎢

⎤

⎦
⎥

3A
2
e
−

(R −R ')2

2 mτ

Free particle propagator

Inverse of
an energy

Propagator

Case m ∞

The Hamiltonian now reads:

€

[V (R) − E0]Ψ(R,τ) = −
∂
∂τ

Ψ(R,τ)

Here we include the normalization. The solution, once more written in terms
of eigenstates of the position, is trivial:

€

R e−[V (R)−E0]τΨ =

= R e−[V (R)−E0]τ dR'∫ R' R' Ψ = e−[V (R ')−E0]τΨ(R')δ(R − R')dR'∫
The latter expression does not imply any time evolution of the position, but

simply a “reshaping” of the wavefunction in the imaginary time interval τ	

€

τ = 0
Ψ(R,0) =1

€

 Ψ(R,τ) = e−[V (R)−E0]τΨ(R,0)

E0

V(R)

€

 =1

Probability for the walker to
generate copies of itself in a time
τ (source/sink probability)	

Trotter-Suzuki break-up

In real life we are never in either of these two limts. However, we can invoke
the Trotter-Suzuki formula in order to get closer to this situation, provided that
the propagation occurs for a short time Δτ:

€

R e
−
(H −E0)

τ
R' = R e

−
[V (R)−E0]

Δτ
2 e

−
T

τ
e
−
[V (R ')−E0]

Δτ
2 R' + o(Δτ 3)

=
1

2π mΔτ
⎡

⎣
⎢

⎤

⎦
⎥

3A
2
e
−
(R −R ')2

2 mΔτ e
−
V (R)+V (R ')

2
−ET

⎡

⎣ ⎢
⎤

⎦ ⎥
Δτ

In order to project out the ground state of the Hamiltonian, we
need a large τ. So the short-time propagator must be repeatedly

applied.

How does it work?

€

Ψ(R) = R Ψ = R dR' R' R'∫ Ψ ≈

≈ R R'k R'k Ψ
k=1

M

∑ = δ(R − R'k)
k=1

M

∑ Ψ(R'k)

How it works…

€

E0 =
ΨT

ˆ H Ψ0

ΨT Ψ0

=
Ψ0

ˆ H ΨT

Ψ0 ΨT

=

dRΨ0(R) ˆ H ΨT (R)∫
dRΨ0(R)ΨT (R)∫

≈

ˆ H ΨT (R'k)
k=1

M

∑

ΨT (R'k)
k=1

M

∑

If M is sufficiently
large this is a
Monte Carlo

average

Propagation of walkers

The propagation of the single walker is easily implemented for the Trotter-
Suzuki propagator. In fact the functions which are actually propagated are just
Delta functions.

Displace the walker
sampling from the Gaussian

€

1
2π mΔτ

e
−
(R −R ')2

2 mΔτ

(this can be easily achieved by using e.g. the Box-Muller formula)

R1

R1’

R2

R2’

€

R1 − R1
' =

Δτ

2

m
⎛

⎝
⎜

⎞

⎠
⎟ × Normally distributed

random number

Propagation of walkers

The propagator is interpreted as the “weight” the walker will have
after an imaginary time interval Δτ. This can be naively interpreted
as the probability of the walkers of “surviving” or “procreating” at
that position.

€

w = e
−
V (R)+V (R ')

2
−E0

⎡

⎣ ⎢
⎤

⎦ ⎥
Δτ

R
€

Number of walkers =
 INT(w + ξ), ξ ∈ (0,1] random

Δτ	
 Δτ	

“BRANCHING”
PROCESS

Example

€

ˆ H = − 1
2
∂ 2

∂x 2 +
1
2

x 2

Histograms of the
distribution of walkers
after 1, 10, 100, 1000,

5000 steps of 0.01 units

Normalization

€

w =
NT

N
e
−

V (R)+V (R ')
2

−E0
⎡

⎣ ⎢
⎤

⎦ ⎥
Δτ

= e
−

V (R)+V (R ')
2

− ˜ E
⎡

⎣ ⎢
⎤

⎦ ⎥
Δτ

where

€

˜ E = E0 +
1
Δτ

ln NT

N
⎛

⎝
⎜

⎞

⎠
⎟ The trial eigenvalue is

continuosly updated.

€

 =1

Importance sampling

Importance sampling

The problem can be addressed by changing the target distribution
of walker into the product of the propagated state with a trial wave
function determined, for instance, by means of a variational
calculation.

€

F(R) = 2∇ lnΨT (R) = −2∇ΨT (R)
ΨT (R)

€

f (R,τ) = ΨT (R)Ψ(R,τ)

Importance sampling

We can notice that:

€

∇ f (R,τ)F(R)[] = 2∇ΨT (R)∇Ψ(R,τ) + 2Ψ(R,τ)∇2ΨT (R)

∇2 f (R,τ) = ΨT (R)∇
2Ψ(R,τ) + 2∇ΨT (R)∇Ψ(R,τ) + Ψ(R,τ)∇2ΨT (R)

By combining the two expressions we obtain:

€

ΨT (R)∇
2Ψ(R,τ) =∇2 f (R,τ) −∇ f (R,τ)F(R)[] + f (R,τ)∇

2ΨT (R)
ΨT (R)

Importance sampling

Let us multiply the Schroedinger equation in imaginary time
by the importance function

By using the previous result we obtain

€

∂f (R,τ)
∂τ

=
2

2m
∇2 f (Ri,τ)

i
∑ −

2

2m
∇ f (Ri,τ)F(Ri)[]

i
∑ − EL f (R,τ)

€

ΨT (R) −
2

2m
∇2 +V (R)

⎡

⎣
⎢

⎤

⎦
⎥ Ψ(R,τ) = −ΨT (R)

∂
∂τ
Ψ(R,τ)

where

€

EL (R) = −
2

2m
∇2ΨT (Ri)
ΨT (Ri)i

∑ +V (R)

Importance sampling

We can repeat the same analysis (zero and infinite mass
limits). The outcome are the following propagators:

€

˜ G 0(R,R',Δτ)∝ e

−

R −R '−F(R ')
Δτ

 2

m

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

2Δτ

 2

m

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Kinetic propagator

Potential propagator

€

w = e
−
EL (R)+EL (R ')

2
−E0

⎡

⎣ ⎢
⎤

⎦ ⎥
Δτ

Drives the walkers
towards regions o
high probability

€

EL (R)

The presence of the local energy
strongly reduces fluctuations. IfΨT
(R) is exact, and E0 is exact, then

w=1

THE RESULTING ALGORITHM IS
EXTREMELY EFFICIENT

Importance sampling

It is possible to overcame these problems by modifying the
propagator.
We start from the expression:

where G is approximated by

€

ψ(R,Δτ) = G(R,R',Δτ)ψ(R',0)dR'∫

€

G(R,R',Δτ) ≈ 1
(2πΔτ)3N

e
−
(R −R ')2

2Δτ e− V (R ')−ET[]Δτ

τ = Inverse of an energy

€

From now on : = m =1

Importance sampled GF

Let us multiply the propagated wavefunction by an (variational)
approximation of the ground state wavefunction ψT(R):

which can in turn be rewritten as:

This defined a new “dressed” propagator:

€

˜ G (R,R',Δτ) = G0(R,R',Δτ) ΨT (R)
ΨT (R')

€

ψT (R)ψ(R,Δτ) = G(R,R',Δτ)ψT (R)ψ(R',0)dR'∫

€

ψT (R)ψ(R,Δτ) = G(R,R',Δτ) ψT (R)
ψT (R')

ψT (R')ψ(R',0)dR'∫

Importance sampled GF

Expanding the ratio of the importance functions (remembering that
R-R’ is order Δτ)	

€

N(R') = G(R,R',Δτ) ψT (R)
ψT (R')

dR∫

€

N(R') ≅ G(R,R'Δτ) 1+
∇ψT (R')
ψT (R')

(R − R')
⎡

⎣
⎢ +∫

+ 1
ψT (R')

∂ 2ψT (R')
∂xiα∂x jβ

(xiα − xiα
'

i, j,α ,β
∑)(x jβ − x jβ

')
⎤

⎦
⎥
⎥
dR

Importance sampled GF

Integrating one obtains:

€

N(R') ≅ 1+
Δτ
2

1
ψT (R')

∇2

i
∑ ψT (R')

⎡

⎣
⎢

⎤

⎦
⎥ e−Δτ[V (R ')−ET] ≅

≅ exp 1
2
∇2ψT (R')
ψT (R')

+ ET −V (R')
⎛

⎝
⎜

⎞

⎠
⎟ Δτ

⎡

⎣
⎢

⎤

⎦
⎥ ≅

≅ exp −Δτ
HψT (R')
ψT (R')

− ET

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥

If the trial
wavefunction satisfies
the cusp condition this is
always bound!!!

Importance sampled GF

Expanding the ratio inside the integral we can see that
importance sampling naturally leads to the appearance of a
“drift” term:

€

G(R,R',Δτ) ≅ 1+
∇ψT (R')
ψT (R')

(R − R')
⎡

⎣
⎢

⎤

⎦
⎥ exp −

(R − R')2

2Δτ
⎡

⎣
⎢

⎤

⎦
⎥ ≅

≅ exp ∇logψT (R')(R − R') −
(R − R')2

2Δτ
⎡

⎣
⎢

⎤

⎦
⎥ ≅

≅ exp 1
2Δτ

R − R'−∇logψT (R')Δτ()2 + o(Δτ)
⎡

⎣ ⎢
⎤

⎦ ⎥

Same order as the
error made when
applying the
Trotter-Suzuki
breakup

This “drift” term drives a
walker towards points
where the importance
function is large.

R2’
€

R'+Δτ ∇ΨT (R')
ΨT (R')

€

R'

€

R = R'+Δτ ∇ΨT (R')
ΨT (R')

+η and branch with the local energy

Estimators

Importance sampling does not affect the capability of
computing the exact ground state eigenvalue of the
Schroedinger equation.

€

Ψ(R,τ) ˆ H ΨT (R)dR∫
Ψ(R,τ)ΨT (R)dR∫

=
ΨT (R)Ψ(R,τ)

ˆ H ΨT (R)
ΨT (R)

dR∫
Ψ(R,τ)ΨT (R)dR∫

=

=
f (R,τ)EL (R)dR∫

f (R,τ)dR∫
=

1
M

EL (Rk)
k=1

M

∑

On the other hand, the above integral converges to:

€

Ψ(R,τ) ˆ H ΨT (R)dR∫
Ψ(R,τ)ΨT (R)dR∫ τ→∞

⎯ → ⎯ ⎯
Ψ0(R) ˆ H ΨT (R)
Ψ0(R) ΨT (R)

=
ΨT (R) ˆ H Ψ0(R)
ΨT (R) Ψ0(R)

= E0

Estimators

All estimators other than the energy will be evaluated as
matri elements between the exact and the importance
function. There are many techniques to correct this problem.

However, let us suppose that the importance function is a
good approximation of the ground state, i.e.

€

ΨT (R) O(R)Ψ0(R) = Ψ0(R) + εΨR (R) O(R)Ψ0(R)

ΨT (R) O(R)ΨT (R) = Ψ0(R) + εΨR (R) O(R) Ψ0(R) + εΨR (R)[] =

= Ψ0(R) O(R)Ψ0(R) + 2ε ΨT (R) O(R)ΨR (R)

€

ΨT (R) = Ψ0(R) + εΨR (R)
then:

Estimators

Combining the previous two expressions we get:

€

2 ΨT (R) O(R)Ψ0(R) − ΨT (R) O(R)ΨT (R) = Ψ0(R) O(R)Ψ0(R) + o(ε2)

Therefore, if we combine the result of a DMC calculation with the result
of the variational calculation, we can obtain a better estimate of
quantities other than the energy.

Biases

There are additional issues to be considered in
calculations. In particular, the results are biased
by:

•  The Trotter-Suzuki breakup is not exact for any
finite imaginary time step. It is therefore necessary
to extrapolate to Δτ0.	

•  The population control quenches necessary
fluctuations in the number of walkers. It is therefore
necessary to extrapolate for Nwalkers∞

