Jefferson Lab

Electromagnetic structure of $A=2$ and 3 nuclei in chiral effective field theory

Maria Piarulli @ R. Anni School 2013, Otranto, Italy

In collaboration with:
Rocco Schiavilla
Luca Girlanda, Laura E. Marcucci, Saori Pastore, Michele Viviani
S. Pastore, R. Schiavilla, and J.L. Goity Phys. Rev. C 78, 064002 (2008)
S. Pastore et al. Phys. Rev. C 80, 034004 (2009)
L. Girlanda et al. Phys. Rev. C 81, 034005 (2010)
S. Pastore et al. Phys. Rev. C 84, 024001 (2011)
M. Piarulli et al. Phys. Rev. C 87, 014006 (2013)

Outline

* Motivations

Nuclear χ EFT approach

* Formalism:
$>N N$ Potential
> Current Operators
$>$ Charge Operators
* Results:
$>$ Static properties and e.m. f.fs of the deuteron
$>$ Static properties and e.m. f.fs of the trinucleons
* Outlook

Motivations

* Quantitative knowledge of $N N$ forces is crucial in order to understand the properties of nuclei and nuclear matter
* QCD: •quarks, gluons
- weak at short distance (asymptotic freedom)
- strong at long distance (1 fm) or low energies (low-energy QCD)

* Nuclear physics: difficult to derive it in terms of quarks and gluons
* EFT applied to low-energy QCD (χ EFT)

Nuclear χ EFT Approach

S. Weinberg, Phys. Lett. B251, 288 (1990); Nucl. Phys. B363, 3 (1991); Phys. Lett. B295, 114 (1992)

* χ EFT uses the chiral-symmetry to constraint the interactions of π 's among themselves, N 's and γ-fields
* π 's couple by powers of its momentum Q, and the Lagrangian ($\mathcal{L}_{e f f}$) can be expanded systematically in powers of $Q / \Lambda ;(Q \ll \Lambda \approx 1 \mathrm{GeV}$ is the chiral-symmetry breaking scale) allowing for a perturbative treatment in terms of Q expansions
* χ EFT gives a perturbative expansion of the $\mathcal{L}_{\text {eff }}$ in power of Q

$$
\mathcal{L}_{e f f}=\mathcal{L}^{(0)}+\mathcal{L}^{(1)}+\mathcal{L}^{(2)}+\ldots
$$

* The unknown coefficients of the perturbative expansion are called LEC's and are determined fitting the experimental data
*The χ-expansion gives rise to chiral potentials (Entem-Machleidt, Epelbaum-Gloeckle-Meissner) and external currents can be naturally incorporated
*The χ-expansion can be used to evaluate physical observables to any desired accuracy (example e.m. form factors)

Formalism: Transition Amplitude in TOPT

. Nucleon-nucleon potential ($N N \rightarrow N N$)

* Time-ordered perturbation theory (TOPT)

$$
\left\langle N^{\prime} N^{\prime}\right| T|N N\rangle=\left\langle N^{\prime} N^{\prime}\right| H_{1} \sum_{n=1}^{\infty}\left(\frac{1}{E_{i}-H_{0}+i \eta} H_{1}\right)^{n-1}|N N\rangle
$$

$>H_{0}=$ free N 's, π 's Hamiltonians
$>H_{1}=$ interacting π, N and γ Hamiltonians implied by $\mathcal{L}_{\text {eff }}$
$>E_{i}=$ initial energy
$>$ Completeness: $\sum_{I_{i}}\left|I_{i}\right\rangle\left\langle I_{i}\right|=1$ between successive terms of H_{1}

- $\langle f| T|i\rangle=\langle f| H_{1}|i\rangle+\sum_{I_{1}}\langle f| H_{1}\left|I_{1}\right\rangle \frac{1}{E_{i}-E_{1}+i \eta}\left\langle I_{1}\right| H_{1}|i\rangle$

$$
+\sum_{I_{1}, I_{2}}\langle f| H_{1}\left|I_{2}\right\rangle \frac{1}{E_{i}-E_{2}+i \eta}\left\langle I_{2}\right| H_{1}\left|I_{1}\right\rangle \frac{1}{E_{i}-E_{1}+i \eta}\left\langle I_{1}\right| H_{1}|i\rangle+\ldots .
$$

Formalism con't

> Two kinds of diagrams: reducible and irreducible
$>n$ vertices represented by $\left\langle I_{j}\right| H_{1}\left|I_{k}\right\rangle$

$>n-1$ energy denominators $\left(E_{i}-E_{k}+i \eta\right)^{-1}, k=1, \ldots,(n-1)$ $\begin{array}{ll}n-n_{K}-1 \text { energy denominators: } & n_{K} \text { energy denominators: } \\ \text { pion and nucleonic kinetic energies } & \text { only nucleonic kinetic energies }\left(Q^{-2}\right)\end{array}$ $\frac{1 \downarrow \text { small kinetic energies }}{E_{i}-E_{j}+i \eta} \equiv \frac{1}{E_{i}-E_{I_{j}}-\omega_{k}+i \eta}=-\frac{1}{\omega_{k}}\left[1+\frac{E_{i}-E_{I_{j}}}{\omega_{k}}+\frac{\left(E_{i}-E_{I_{j}}\right)^{2}}{\omega_{k}^{2}}+\ldots\right]$
$>$ The expansion in power of Q is: $-\frac{1}{Q}[1]+\underbrace{\left.Q+Q^{2}+\ldots . .\right]}_{\substack{\text { static limit } \\\left(m_{N} \rightarrow \infty\right)}}$ non-static corrections

Power Counting

* Chiral index is determined:

$$
m=\prod_{i=1}^{n} Q^{\alpha_{i}-\beta_{i} / 2} \times Q^{-\left(n-n_{K}-1\right)} Q^{-2 n_{K}} \times Q^{3 L}
$$

$>\alpha_{i}=Q$-power associated to i vertex
$>\beta_{i}=$ number of pions at each vertex
$>L=$ number of loops in the diagram $\left(Q^{3}\right)$

* In chiral-expansion T-matrix can be expanded as:

$$
T=T^{(0)}+T^{(1)}+T^{(2)} \ldots, \text { and } T^{(m)} \equiv T^{\left(N^{m} L O\right)} \sim(Q / \Lambda)^{m} T^{(0)}
$$

From Amplitudes to Potentials

* In nuclear physics the two-nucleon potential (v) is introduced, and bound and continuum two-nucleon states are derived from solutions of Schrödinger or Lippmann-Schwinger (LS) equation:

$$
v+v G_{0} v+v G_{0} v G_{0} v+\ldots .
$$

$>$ The potential can be written: $v=v^{(0)}+v^{(1)}+v^{(2)} \ldots\left(\right.$ with $\left.v^{(m)} \sim Q^{m}\right)$
$>$ Matching expansion for T with the LS equation order by order:
$v^{(0)}=T^{(0)}$
$v^{(1)}=T^{(1)}-\left[v^{(0)} G_{0} v^{(0)}\right]$
$v^{(2)}(\nu)=T^{(2)}-\left[v^{(0)} G_{0} v^{(0)} G_{0} v^{(0)}\right]-\left[v^{(1)} G_{0} v^{(0)}+v^{(0)} G_{0} v^{(1)}\right]$
$v^{(3)}(\nu)=T^{(3)}-\left[v^{(0)} G_{0} v^{(0)} G_{0} v^{(0)} G_{0} v^{(0)}\right]-\left[v^{(1)} G_{0} v^{(0)} G_{0} v^{(0)}+\right.$ permutations $]$
$-\left[v^{(1)} G_{0} v^{(1)}\right]-\left[v^{(2)} G_{0} v^{(1)}+v^{(0)} G_{0} v^{(2)}\right]$
\Rightarrow A term like $v^{(m)} G_{0} v^{(n)} \sim Q^{m+n+1}$
$>$ Terms accounted in the LS are subtracted from the reducible amplitude
$>\nu$-dependence describes the off-the-energy shell prescription adopted for non static OPE and TPE potentials

II. Charge/Current operators $(N N \gamma \rightarrow N N)$

Similar prescription for potential $v_{\gamma}=A^{\mu} J_{\mu}=A^{0} \rho-\mathbf{A} \cdot \mathbf{J}$

* Time-ordered perturbation theory (TOPT)
$>$ In χ-expansion T-matrix: $T_{\gamma}=T_{\gamma}^{(-3)}+T_{\gamma}^{(-2)}+T_{\gamma}^{(-1)} \ldots$ (charge operators)

$$
T_{\gamma}=T_{\gamma}^{(-2)}+T_{\gamma}^{(-1)}+T_{\gamma}^{(0)} \ldots . . \text { (current operators) }
$$

with $T_{\gamma}^{(m)} \sim e Q^{m}$

* In the context of LS: $v_{\gamma}=v_{\gamma}^{(-3)}+v_{\gamma}^{(-2)}+v_{\gamma}^{(-1)} \ldots$ (charge operators)

$$
v_{\gamma}=v_{\gamma}^{(-2)}+v_{\gamma}^{(-1)}+v_{\gamma}^{(0)} \ldots . . \text { (current operators) }
$$

$>$ Determining $v_{\gamma}^{(m)}$ by matching it with the field theory $T_{\gamma}^{(m)}$ order by order
$>$ From $v_{\gamma}^{(m)} \rightarrow \rho^{(m)}, \mathbf{J}^{(m)}$ order by order in the χ-expansion

Current Operators up to N2LO (e $\left.e Q^{0}\right)$

* $\mathrm{LO}: e Q^{-2}$
* NLO $: \quad e Q^{-1}$

* Recoil corrections to the reducible diagrams obtained by expanding in power the energy denominators $\left(E_{i}-E_{I_{j}}\right) / \omega_{k}$
* Diagrams of type (e) vanish since recoil corrections (at N2LO) to the reducible diagrams cancel the static irreducible contributions

Current Operators up to N3LO ($e Q$)

N3LO : $e Q$

(p)

* Divergencies associated with loop integrals are reabsorbed by renormalization of contact terms
* C_{15}^{\prime} and d_{9}^{\prime} from expt μ_{d} and $\mu_{S}\left({ }^{3} \mathrm{He} /{ }^{3} \mathrm{H}\right)$
* C_{16}^{\prime} from expt $\mu_{V}\left({ }^{3} \mathrm{He} /{ }^{3} \mathrm{H}\right) \mathrm{m} . \mathrm{m}$. and $d_{8}^{\prime}\left(d_{21}^{\prime}\right)$ from Δ-saturation ${ }^{*}$

Charge Operators up to N3LO ($e Q^{0}$)

LO : e Q^{-3}

* N2LO : $e Q^{-1}$
* N3LO : e Q^{0}

Diagrams of type (c) vanish when six-time-ordered diagrams are summed up

* Diagrams of type (d) vanish since recoil corrections (at N2LO) to the reducible diagrams cancel the static irreducible contributions * Non static OPE charge operator $\rho_{\pi}^{(0)}(\nu)$ depends on $v_{\pi}^{(2)}(\nu)$

Charge Operators up to N4LO (eQ)

isovector operators

(k)

(I)

* N4LO : eQ

* Charge from term involving the second term in the interaction $H_{\gamma \pi N}$ vanishes (therefore no LEC's)
* Cancellations between recoil corrections to the reducible diagrams (up to N 4 LO) and static (N4LO) irreducible diagrams

Charge Operators up to N4LO (eQ)

isovector operators

(k)

(I)

* N4LO : eQ

* The loop integrals are ultraviolet divergent: the total charge at N4LO is finite since the divergencies cancel out (in line with absence of LEC's at this order)
* $\rho_{o}^{(1)}(\nu)$ depends on $v_{\pi}^{(2)}(\nu)$ and $v_{2 \pi}^{(3)}(\nu)$
* Unitary equivalence: $\rho_{o}^{(1)}(\nu)=\rho_{o}^{(1)}(\nu=0)+\left[\rho^{(-3)}, i U^{(1)}\right]$
* $\rho^{(n>-3)}(\mathbf{q}=0)=0$ as required by charge conservation

Electromagnetic Form Factors: $\mathrm{A}=2,3$

* The deuteron charge $\left(G_{C}\right)$, magnetic $\left(G_{M}\right)$, and quadrupole $\left(G_{Q}\right)$ f.f's.:
$>G_{C}(q)=\frac{1}{3} \sum_{M= \pm 1,0}\langle d ; M| \rho(q \hat{\mathbf{z}})|d ; M\rangle \longrightarrow \begin{gathered}\text { the deuteron state with } \\ \text { spin projection }(\pm 1,0)\end{gathered}$
$>G_{M}(q)=\frac{1}{\sqrt{2 \eta}} \operatorname{Im}\left[\langle d ; 1| j_{y}(q \hat{\mathbf{z}})|d ; 0\rangle\right] \quad \eta=\left(q / 2 m_{d}\right)^{2}$
$>G_{Q}(q)=\frac{1}{2 \eta}[\langle d ; 0| \rho(q \hat{\mathbf{z}})|d ; 0\rangle-\langle d ; 1| \rho(q \hat{\mathbf{z}})|d ; 1\rangle]$
$\Rightarrow G_{C}(0)=1, G_{M}(0)=\left(m_{d} / m_{N}\right) \mu_{d}, G_{Q}(0)=m_{d}^{2} Q_{d}$
* The charge (F_{C}), and magnetic (F_{M}) form factors of trinucleons:
$>F_{C}(q)=\frac{1}{Z}\langle+| \rho(q \hat{\mathbf{z}})|+\rangle$

$>F_{M}(q)=-\frac{2 m_{N}}{q} \operatorname{Im}\left[\langle-| j_{y}(q \hat{\mathbf{z}})|+\rangle\right]$
$>F_{C}(0)=1, \quad F_{M}(0)=\mu$
\longrightarrow the ${ }^{3} \mathrm{He}$ or ${ }^{3} \mathrm{H}$ magnetic moment

Technical Issue

*Two-body charge and current operators have power law behavior for large momenta
$>$ In configuration space this leads to divergencies of type $1 / r^{n}, n \geq 2$ (r is the interparticle separation), which need to be regularized to avoid divergencies in the matrix elements of these operators between nuclear wave functions
$>$ In momentum space cutoff function:

$$
C_{\Lambda}(p)=e^{-(p / \Lambda)^{4}}
$$

*The calculations use wave functions derived from either chiral or conventional (AV18/UIX) two- and three-nucleon potential

* The matrix elements of charge and current operators are calculated in momentum space with Monte Carlo methods.

Static Properties and Form Factors of the Deuteron

* The deuteron $\mathrm{A}(\mathrm{q})$ structure function and the tensor polarization T_{20} and charge $\left(G_{c}\right)$ and quadrupole $\left(G_{Q}\right)$ form factors

*. The deuteron $\mathrm{B}(\mathrm{q})$ structure function and magnetic $\left(\mathrm{G}_{\mathrm{M}}\right)$ form factor

* Deuteron root-mean-square charge radius and quadrupole moment. Resulting in parenthesis are related to the AV18 Hamiltonian

	$r_{d}(\mathrm{fm})$		$Q_{d}\left(\mathrm{fm}^{2}\right)$	
Λ	500	600	500	600
LO	$1.976(1.969)$	$1.968(1.969)$	$0.2750(0.2697)$	$0.2711(0.2697)$
N2LO	$1.976(1.969)$	$1.968(1.969)$	$0.2731(0.2680)$	$0.2692(0.2680)$
N3LO(OPE)	$1.976(1.969)$	$1.968(1.969)$	$0.2863(0.2818)$	$0.2831(0.2814)$
N3LO $(\nu=1 / 2)$	$1.976(1.969)$	$1.968(1.969)$	$\boxed{0.2851(0.2806)}$	$0.2820(0.2802)$

EXP DATA
$r_{d}=1.9734(44) \mathrm{fm}$
$Q_{d}=0.2859(3) \mathrm{fm}^{2}$

Static Properties and Form Factors of the Trinucleons

* The ${ }^{3} \mathrm{He}$ and ${ }^{3} \mathrm{H}$ charge form factors and their isocalar and isovector combinations
- The ${ }^{3} \mathrm{He}$ and ${ }^{3} \mathrm{H}$ magnetic form factors and their isocalar and isovector combinations

* The ${ }^{3} \mathrm{He}$ and ${ }^{3} \mathrm{H}$ root-mean-square charge radii. Resulting in parenthesis are related to the AV18/ UIX Hamiltonian.
UIX Hamiltonian.

	${ }^{3} \mathrm{He}$		${ }^{3} \mathrm{H}$	
Λ	500	600	500	600
LO	$1.966(1.950)$	$1.958(1.950)$	$1.762(1.743)$	$1.750(1.743)$
N2LO	$1.966(1.950)$	$1.958(1.950)$	$1.762(1.743)$	$1.750(1.743)$
N3LO	$1.966(1.950)$	$1.958(1.950)$	$1.762(1.743)$	$1.750(1.743)$
N4LO	$1.966(1.950)$	$1.958(1.950)$	$+.762(1.743)$	$1.750(1.743)$

$$
\begin{aligned}
& r_{c}\left({ }^{3} \mathrm{He}\right)=(1.959 \pm 0.030) \mathrm{fm} \\
& r_{c}\left({ }^{3} \mathrm{H}\right)=(1.755 \pm 0.086) \mathrm{fm}
\end{aligned}
$$

* The ${ }^{3} \mathrm{He}$ and ${ }^{3} \mathrm{H}$ root-mean-square magnetic radii. Resulting in parenthesis are related to the AV18/UIX Hamiltonian.

	${ }^{3} \mathrm{He}$		${ }^{3} \mathrm{H}$	
Λ	500	600	500	600
LO	$2.098(2.092)$	$2.090(2.092)$	$1.924(1.918)$	$1.914(1.918)$
NLO	$1.990(1.981)$	$1.983(1.974)$	$1.854(1.847)$	$1.845(1.841)$
N 2 LO	$1.998(1.992)$	$1.989(1.984)$	$1.865(1.859)$	$1.855(1.854)$
$\mathrm{N} 3 \mathrm{LO}(\mathrm{I})$	$1.924(1.931)$	$1.910(1.972)$	$1.808(1.800)$	$1.796(1.819)$
$\mathrm{N} 3 \mathrm{LO}(\mathrm{II})$	$1.901(1.890)$	$1.883(1.896)$	$1.789(1.774)$	$1.773(1.778)$
$\mathrm{N} 3 \mathrm{LO}(\mathrm{III})$	$1.927(1.915)$	$1.913(1.924)$	$\subset .808(1.792)$	$1.794(1.797 \mathrm{D}$

EXP DATA: $\quad r_{m}\left({ }^{3} \mathrm{He}\right)=(1.965 \pm 0.153) \mathrm{fm}$

$$
r_{m}\left({ }^{3} \mathrm{H}\right)=(1.840 \pm 0.181) \mathrm{fm}
$$

Outlook

$\%$ In the first part we described how to construct nucleon-nucleon potential and charge and current operator in χ EFT using TOPT

* In the second part of this study, we have provided predictions for the static properties and elastic form factors of the deuteron and trinucleons
* The χ EFT calculations based on chiral and conventional potentials reproduce very well the observed electromagnetic structure of $\mathrm{A}=2$ and $\mathrm{A}=3$ for momentum transfer up to $2-3 \mathrm{fm}^{-1}$

Extra Slides

Formalism: TOPT

* Degrees of freedom: pions (π) and nucleons (N)
* Time-ordered perturbation theory (TOPT)

$$
\langle f| T|i\rangle=\langle f| H_{1} \sum_{n=1}^{\infty}\left(\frac{1}{E_{i}-H_{0}+i \eta} H_{1}\right)^{n-1}|i\rangle
$$

$>H_{0}=$ free N 's, π 's Hamiltonians
$>H_{1}=$ interacting π, N and γ Hamiltonians implied by $\mathcal{L}_{\text {eff }}$
$>\mathrm{E}_{\mathrm{i}}=$ initial energy

Strong Interaction Vertices up to Q^{2}

$H_{\pi N N}$

$\sim Q$
$H_{\pi \pi N N}$

$\sim Q$
$H_{C T 0}$

$\sim Q^{0}$
$H_{C T 2}$

$\sim Q^{2}$

* $H_{\pi N N}$ and $H_{\pi \pi N N}$ are known: $g_{A} \approx 1.25$ (axial coupling constant), $F_{\pi} \approx 186$ MeV (pion decay amplitude)
$* H_{C T 0}: 4 \mathrm{~N}$ contact terms, 2 LEC's ($\mathrm{C}_{\mathrm{T}}, \mathrm{C}_{\mathrm{S}}$: fitting $n p S$-wave phase shift ${ }^{[1]}$)
$* H_{C T 2}: 4 \mathrm{~N}$ contact terms with two gradients, 7 LEC's (C_{i} : fitting $n p$ and $p p$ elastic scattering data and the deuteron binding energy ${ }^{[1]}$; relativistic corrections have been ignored)

Current Interaction Vertices up to $\mathrm{e} Q^{2}$

$\star H_{\gamma N N}, H_{\gamma N N}^{(2)}$ and $H_{\gamma \pi N N}$ depend on $\mathrm{g}_{\mathrm{A}}, \mathrm{F}_{\pi}$ and proton and neutron magnetic moments ($\mu_{p}=2.793 \mu_{N}$ and $\mu_{n}=-1.913 \mu_{N}$)

* $H_{C T \gamma}$: terms from minimal substitution in $H_{C T 2}$ known, two additional LEC's due to non minimal substitution (C_{15}^{\prime} and C_{16}^{\prime})
* $H_{\gamma \pi N N}^{(2)}$ from $\mathcal{L}_{\gamma \pi N}$ of Fettes et al. (1998) depends on F_{π} and 3 LEC's $d_{8}^{\prime}, d_{9}^{\prime}, d_{21}^{\prime}$; two multiplying isovector structure and one isoscalar structure

Charge Interaction Vertices up to $e Q^{2}$

* $H_{\gamma N N}, H_{\gamma N N}^{(2)}$ and $H_{\gamma \pi N N}$ depend on $\mathrm{g}_{\mathrm{A}}, \mathrm{F}_{\pi}$ and proton and neutron magnetic moments ($\mu_{p}=2.793 \mu_{N}$ and $\mu_{n}=-1.913 \mu_{N}$)
$* H_{\gamma \pi N N}^{(2)}$ depends on: F_{π} and 3 LEC's $\left(d_{20}, d_{21}, d_{21}\right)$

From Amplitudes to Potentials: Example up to NLO

$$
v^{(0)}=T^{(0)}=
$$

$$
v^{(1)}=T^{(1)}-\left[v^{(0)} G_{0} v^{(0)}\right]
$$

* Irreducible: first non-static corrections cancel each other
* Reducible: iterations of $v^{(0)}$, they are completely canceled by $\left[v^{(0)} G_{0} v^{(0)}\right]$
* Complete and partial cancellations persist at higher orders

OPE and TPE(box) only beyond the Static Limit

* ν-dependence in $v_{\pi}^{(2)}(\nu)$ and therefore in $v_{2 \pi}^{(3)}(\nu)$

OPE beyond the Static Limit

$v_{\pi}^{(0)} \sim Q^{0}$

$v_{\pi}^{(1)} \sim Q^{1}$

$v_{\pi}^{(2)}(\nu) \sim Q^{2}$

* On-the-shell-energy, non-static OPE at N2LO can equivalently written as

$$
\begin{aligned}
& v_{\pi}^{(2)}(\nu=0)=v_{\pi}^{(0)}(\mathbf{k}) \frac{\left(E_{1}^{\prime}-E_{1}\right)^{2}+\left(E_{2}^{\prime}-E_{2}\right)^{2}}{2 \omega_{k}^{2}} \\
& v_{\pi}^{(2)}(\nu=1)=-v_{\pi}^{(0)}(\mathbf{k}) \frac{\left(E_{1}^{\prime}-E_{1}\right)\left(E_{2}^{\prime}-E_{2}\right)}{\omega_{k}^{2}} \\
& v_{\pi}^{(0)}(\mathbf{k})=-\frac{g_{A}^{2}}{F_{\pi}^{2}} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} \frac{\boldsymbol{\sigma}_{1} \cdot \mathbf{k} \boldsymbol{\sigma}_{2} \cdot \mathbf{k}}{\omega_{k}^{2}} \longrightarrow \omega_{k}^{2}=k^{2}+m_{\pi}^{2}
\end{aligned}
$$

Unitary Equivalence of $v_{\pi}^{(2)}(\nu)$ and $v_{2 \pi}^{(3)}(\nu)$

* Different off-shell parameterizations lead to unitarily equivalent twonucleon Hamiltonians (limiting our consideration to OPE and box TPE potentials only)

$$
H(\nu)=\underbrace{K^{(-1)}}_{\text {Kinetic energy Static OPE and TPE(box) Recoil OPE and TPE(box) }}+\underbrace{v_{\pi}^{(0)}+v_{2 \pi}^{(2)}}+\underbrace{v_{\pi}^{(2)}(\nu)+v_{2 \pi}^{(3)}(\nu)}_{\pi}
$$

* The Hamiltonians are related each other by unitary transformation

$$
H(\nu)=e^{-i U(\nu)} H(\nu=0) e^{i U(\nu)} \quad i U(\nu) \simeq i U^{(0)}(\nu)+i U^{(1)}(\nu)
$$

* There exist an infinite class of $2^{\text {nd }}$ order recoil correction to OPE which are equivalent on-shell, parameterized by a parameter ν :

$$
v_{\pi}^{(2)}(\mathbf{k}, \mathbf{K} ; \nu)=(1-2 \nu) \frac{v_{\pi}^{(0)}(\mathbf{k})}{\omega_{k}^{2}} \frac{(\mathbf{k} \cdot \mathbf{K})^{2}}{4 m_{N}^{2}} \quad \begin{array}{ll}
\mathbf{k} & =\mathbf{p}^{\prime}-\mathbf{p} \\
\mathbf{K} & =\left(\mathbf{p}^{\prime}+\mathbf{p}\right) / 2
\end{array}
$$

*The off-shell ambiguities will affect successive terms: for each $v_{\pi}^{(2)}(\nu)$ there is a corresponding $v_{2 \pi}^{(3)}(\nu)$

EM Observables at N3LO: fixing LECs

* Five LECs: it is convenient to introduce the adimensional set $d_{i}^{S, V}$

$$
\begin{array}{ll}
C_{15}^{\prime}=d_{1}^{S} / \Lambda^{4}, & d_{9}^{\prime}=d_{2}^{S} / \Lambda^{2} \\
C_{16}^{\prime}=d_{1}^{V} / \Lambda^{4}, & d_{8}^{\prime}=d_{2}^{V} / \Lambda^{2},
\end{array} \quad d_{21}^{\prime}=d_{3}^{V} / \Lambda^{2}
$$

* Five LECs: fixed in A=2-3 nucleons' sector
* Isoscalar sector:
$>d_{1}^{S}$ and d_{2}^{S} from expt μ_{d} and $\mu_{S}\left({ }^{3} \mathrm{He} /{ }^{3} \mathrm{H}\right)$

Λ	d_{1}^{S}	$d_{2}^{S} \times 10$
500	$4.072(2.522)$	$2.190(-1.731)$
600	$11.38(5.238)$	$3.231(-2.033)$

EM Observables at N3LO: fixing LECs

* Two LECs left: fixed in $\mathrm{A}=2-3$ nucleons sector
* Isovector sector:
$>\mathrm{I}=d_{1}^{V}$ and d_{2}^{V} from expt $\mu_{V}\left({ }^{3} \mathrm{He} /{ }^{3} \mathrm{H}\right)$ m.m. and $n p d \gamma$ xsec.
$>\mathrm{II}=d_{1}^{V}$ from expt $n p d \gamma$ xsec. and d_{2}^{V} from Δ-saturation*
$>\mathrm{III}=d_{1}^{V}$ from expt $\mu_{V}\left({ }^{3} \mathrm{He} /{ }^{3} \mathrm{H}\right)$ m.m. and d_{2}^{V} from Δ-saturation*

Λ	$d_{1}^{V}(\mathrm{I})$	$d_{2}^{V}(\mathrm{I})$	$d_{1}^{V}(\mathrm{II})$	$d_{2}^{V}(\mathrm{II})$	$d_{1}^{V}(\mathrm{III})$	$d_{2}^{V}(\mathrm{III})$
500	$10.36(45.10)$	$17.42(35.57)$	$-13.30(-9.339)$	3.458	$-7.981(-5.187)$	3.458
600	$41.84(257.5)$	$33.14(75.00)$	$-22.31(-11.57)$	4.980	$-11.69(-1.025)$	4.980

$* d_{2}^{V}=\frac{4 \mu_{\gamma N \Delta} h_{A} \Lambda^{2}}{9 m_{N}\left(m_{\Delta}-m_{N}\right)}$

* Terms from gauging the subleading two nucleon contact Lagrangian
 (minimal substitution). These can expressed in terms of the same LECs entering the $N N$ potential (constrained by fitting $n p, p p$ elastic scattering data and the deuteron binding energy)
*Terms involving the electromagnetic field tensor $F_{\mu \nu}$ (1 isoscalar and 1 isovector terms)

$$
\mathbf{j}_{\mathrm{a}, \mathrm{~nm}}^{(1)}=-i e\left[G_{E}^{S}\left(q^{2}\right) C_{15}^{\prime} \boldsymbol{\sigma}_{1}+G_{E}^{V}\left(q^{2}\right) C_{16}^{\prime} \times\left(\tau_{1, z}-\tau_{2, z}\right) \boldsymbol{\sigma}_{1}\right] \times \mathbf{q}+1 \rightleftharpoons 2
$$

* Isovector:
$\gamma N \Delta$ - excitation current

$$
\begin{array}{r}
\mathbf{j}_{\mathrm{b}, \mathrm{IV}}^{(1)}=i e \frac{g_{A}}{F_{\pi}^{2} \frac{G_{\gamma N \Delta}\left(q^{2}\right)}{\mu_{\gamma N \Delta}} \frac{\boldsymbol{\sigma}_{2} \cdot \mathbf{k}_{2}}{\omega_{k_{2}}^{2}}\left[d_{8}^{\prime} \tau_{2, z} \mathbf{k}_{2}-d_{21}^{\prime}\left(\boldsymbol{\tau}_{1} \times \boldsymbol{\tau}_{2}\right)_{z} \boldsymbol{\sigma}_{1} \times \mathbf{k}_{2}\right] \times \mathbf{q}+1 \rightleftharpoons 2} \begin{array}{r}
\text { analysis of } \gamma N \text { data in } \\
G_{\gamma N \Delta}\left(q^{2}\right)=\frac{\mu_{\gamma N \Delta}}{\left(1+q^{2} / \Lambda_{\Delta, 1}^{2}\right)^{2} \sqrt{1+q^{2} / \Lambda_{\Delta, 2}^{2}}} \\
\text { the } \Delta \text {-resonance region } \\
\\
>\mu_{\gamma N \Delta} \sim 3 \mu_{N} \\
>\Lambda_{\Delta, 1}=0.84 \mathrm{GeV} \\
\\
>\Lambda_{\Delta, 2}=1.20 \mathrm{GeV}
\end{array}
\end{array}
$$

* Isoscalar:

$$
\begin{aligned}
& \mathbf{j}_{\mathrm{b}, \mathrm{IS}}^{(1)}=i e \frac{g_{A}}{F_{\pi}^{2}} d_{9}^{\prime}\left(G_{\gamma \pi \rho}\left(q^{2}\right) \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} \frac{\boldsymbol{\sigma}_{2} \cdot \mathbf{k}_{2}}{\omega_{k_{2}}^{2}} \mathbf{k}_{2} \times \mathbf{q}+1 \rightleftharpoons 2\right. \\
& G_{\gamma \pi \rho}\left(q^{2}\right)=\frac{1}{1+q^{2} / m_{\omega}^{2}}
\end{aligned}
$$

Deuteron E.M. Form Factors

* The deuteron charge $\left(G_{C}\right)$, magnetic $\left(G_{M}\right)$, and quadrupole $\left(G_{Q}\right)$ f.f's.:

$$
\left.\begin{array}{rl}
>G_{C}(q) & =\frac{1}{3} \sum_{M= \pm 1,0}\langle d ; M| \rho(q \hat{\mathbf{z}})|d ; M\rangle \longrightarrow \\
>G_{M}(q) & =\frac{1}{\sqrt{2 \eta^{*}}} \operatorname{Im}\left[\langle d ; 1| j_{y}(q \hat{\mathbf{z}})|d ; 0\rangle\right] \\
>G_{Q}(q) & =\frac{1}{\text { the deuteron state with }} \text { spin projection }(\pm 1,0)
\end{array}\langle d ; 0| \rho(q \hat{\mathbf{z}})|d ; 0\rangle-\langle d ; 1| \rho(q \hat{\mathbf{z}})|d ; 1\rangle\right] \quad \text {. }
$$

* Normalization:

$m_{d}=$ the deuteron mass
$m_{N}=$ the nucleon mass
$\mu_{d}, Q_{d}=$ the deuteron magnetic moment (in units of μ_{N}) and quadrupole moment
* Structure functions $\mathrm{A}(\mathrm{q})$ and $\mathrm{B}(\mathrm{q})$ and polarization tensor $\mathrm{T}_{20}(\mathrm{q})$
* $\eta=\left(q / 2 m_{d}\right)^{2}$

Trinucleons E.M. Form Factors

* The charge (F_{C}), and magnetic (F_{M}) form factors of trinucleons:

$$
\begin{aligned}
& \left.>F_{C}(q)=\frac{1}{Z}\langle+| \rho(q \hat{\mathbf{z}})(+\rangle\right) \longrightarrow \begin{array}{l}
\text { the }{ }^{3} \mathrm{He} \text { state or }{ }^{3} \mathrm{H} \text { state } \\
\text { in spin projections } \pm 1 / 2 . \\
>F_{M}(q)=-\frac{2 m_{N}}{q} \operatorname{Im}\left[\langle-| j_{y}(q \hat{\mathbf{z}})|+\rangle\right]
\end{array} .
\end{aligned}
$$

Normalization: $F_{C}(0)=1, F_{M}(0)=\mu \longrightarrow$ the ${ }^{3} \mathrm{He}$ or ${ }^{3} \mathrm{H}$ magnetic moment

* Isoscalar $\left(F_{M}^{S}\right)$ and isovector $\left(F_{M}^{V}\right)$ combinations
- Wave function in r-space

$$
\begin{aligned}
\Psi_{d}(M) \equiv & \equiv \Psi(\mathbf{r}, M)=\left[\frac{u(r)}{r} \mathcal{Y}_{011 M}(\hat{\mathbf{r}})+\frac{w(r)}{r} \mathcal{Y}_{211 M}(\hat{\mathbf{r}})\right] \eta_{00} \\
& \star \text { Vector spherical harmonics: } \mathcal{Y}_{L S J M}(\hat{\mathbf{r}}) \equiv\left[Y_{L M_{L}}(\hat{\mathbf{r}}) \otimes \chi_{S M_{S}}\right]_{J M}
\end{aligned}
$$

\star Radial functions: $u(r)$ and $w(r)$

* Isospin state: η_{00}
- Numerically, we solve

$$
\bar{u}_{L}(p)=\frac{1}{E_{d}-p^{2} /(2 \mu)} \frac{2}{\pi} \int_{0}^{\infty} d k k^{2} \sum_{L^{\prime}} v_{L L^{\prime}}^{S J}(p, k) \bar{u}_{L^{\prime}}(k)
$$

* $E_{d}=$ binding energy, $\mu=$ reduced mass

$$
\begin{aligned}
& \star J=S=1, L=L^{\prime}=0,2 \\
& \star v_{L L^{\prime}}^{S J}(p, k)=\int d \mathbf{r} j_{L^{\prime}}(p r) \mathcal{Y}_{L^{\prime} S J M}^{\dagger} v(\mathbf{r}) \mathcal{Y}_{L S J M} j_{L}(k r)
\end{aligned}
$$

Results 1: Deuteron properties

	$\mathrm{N} 2 \mathrm{LO}(500)$	$\mathrm{N} 2 \mathrm{LO}(600)$	$\mathrm{N} 2 \mathrm{LO}(700)$	$\mathrm{N} 4 \mathrm{LO}(500)$	$\mathrm{N} 4 \mathrm{LO}(600)$	AV18	Empirical
$B_{d}(\mathrm{MeV})$	-2.224	-2.225	-2.224	-2.225	-2.225	-2.225	$-2.224575(9)$
$r_{d}(\mathrm{fm})$	1.944	1.948	1.951	1.975	1.967	1.968	$1.97535(85)$
$P_{D}(\%)$	3.44	3.87	4.77	4.51	4.43	5.76	-

