Superscaling in neutrino/antineutrino CCQE scattering from MiniBooNE to NOMAD energies

<u>G. D. Megias</u>¹, J. E. Amaro², M. B. Barbaro³, J. A. Caballero¹, T. W. Donnelly⁴

¹Dpto. de FAMN, Universidad de Sevilla, Sevilla, Spain.
 ²Dpto. de FAMN and Instituto Carlos I, Universidad de Granada, Granada, Spain.
 ³Dpto. di FT, Università di Torino and INFN, Torino, Italy
 ⁴Center for Theoretical Physics, M.I.T., Cambridge, Massachusetts, USA.

Nuclear Physics School 2013, Otranto (Italy) May 27-31 2013

Contents

Introduction

- Motivation
- Experimental Status
- Theoretical Models and Description

2 Results

- SuSA and RFG
- Form Factors' Parametrizations
- Monopole vs. Dipole Axial Form Factor
- u_{μ} vs. u_{e} CCQE Cross Section

- Summary and Main Conclusions
- Further Work

Motivation Experimental Status Theoretical Models and Description

Contents

1 Introduction

Motivation

- Experimental Status
- Theoretical Models and Description

2 Results

- SuSA and RFG
- Form Factors' Parametrizations
- Monopole vs. Dipole Axial Form Factor
- u_{μ} vs. u_e CCQE Cross Section

- Summary and Main Conclusions
- Further Work

Motivation Experimental Status Theoretical Models and Description

Quasielastic Regime

CCQE scattering

$$u_{\mu}(\bar{\nu}_{\mu}) + A \rightarrow \mu^{-}(\mu^{+}) + p(n) + (A-1)$$

Impulse Approximation (IA)

Motivation Experimental Status Theoretical Models and Description

Quasielastic Regime

CCQE scattering

$$u_{\mu}(\bar{\nu}_{\mu}) + A \rightarrow \mu^{-}(\mu^{+}) + p(n) + (A - 1)$$

Impulse Approximation (IA)

Motivation Experimental Status Theoretical Models and Description

Quasielastic Regime

CCQE scattering

$$\nu_{\mu}(\bar{\nu}_{\mu}) + A \rightarrow \mu^{-}(\mu^{+}) + p(n) + (A - 1)$$

Impulse Approximation (IA)

Motivation Experimental Status Theoretical Models and Description

Quasielastic Regime

CCQE scattering

$$u_{\mu}(\bar{\nu}_{\mu}) + A \rightarrow \mu^{-}(\mu^{+}) + p(n) + (A - 1)$$

Impulse Approximation (IA)

Motivation Experimental Status Theoretical Models and Description

Quasielastic Regime

CCQE scattering

$$u_{\mu}(\bar{\nu}_{\mu}) + A \rightarrow \mu^{-}(\mu^{+}) + p(n) + (A - 1)$$

Impulse Approximation (IA)

Motivation Experimental Status Theoretical Models and Description

Motivation

Two main related objectives:

- Complete theoretical description of the CCQE neutrino-nucleus interaction and the weak structure of the nucleon.
- ² Full analysis of the experimental data in all range of energies from intermediate $E_{\nu} \sim 1 \text{ GeV}$ (MiniBooNE) to high values $E_{\nu} \sim 10 100 \text{ GeV}$ (NOMAD).

Motivation Experimental Status Theoretical Models and Description

Motivation

Two main related objectives:

- Complete theoretical description of the CCQE neutrino-nucleus interaction and the weak structure of the nucleon.
- ² Full analysis of the experimental data in all range of energies from intermediate $E_{\nu} \sim 1 \text{ GeV}$ (MiniBooNE) to high values $E_{\nu} \sim 10 100 \text{ GeV}$ (NOMAD).

Relevance of this investigation:

- To know better the hadronic structure of the nucleon and other nuclear properties such as correlations or 2p-2h MEC contributions.
- To analyze better neutrino oscillations experiments.

Motivation Experimental Status Theoretical Models and Description

Contents

1 Introduction

Motivation

Experimental Status

• Theoretical Models and Description

2 Results

- SuSA and RFG
- Form Factors' Parametrizations
- Monopole vs. Dipole Axial Form Factor
- u_{μ} vs. u_e CCQE Cross Section

- Summary and Main Conclusions
- Further Work

Motivation Experimental Status Theoretical Models and Description

MiniBooNE

MiniBooNE (Fermilab)

 \Im Measurement of CCQE ν_{μ} $(\bar{\nu}_{\mu})$ cross sections on a $^{12}{\rm C}$ target in the 1 GeV region.

⊃ Discrepancy between the data and traditional nuclear models.

Motivation Experimental Status Theoretical Models and Description

MiniBooNE

MiniBooNE (Fermilab)

 \supset Measurement of CCQE ν_{μ} $(\bar{\nu}_{\mu})$ cross sections on a $^{12}{\rm C}$ target in the 1 GeV region.

⊃ Discrepancy between the data and traditional nuclear models.

Two options to solve this puzzle:

- MiniBooNE proposed a higher nucleon axial mass value: M_A = 1,35 GeV/c² ⇒ It does not work at high energy data (NOMAD).
- Omega Microscopic explanations based on multi-nucleon excitations, such as the evaluation of the Meson Exchange Currents (MEC) within the 2p-2h approach are Do not give a full account for the discrepancy.
 - A consistent evaluation of MEC is hard to achieve.

Motivation Experimental Status Theoretical Models and Description

NOMAD

NOMAD (CERN)

 \supset CCQE $\nu_{\mu}(\bar{\nu}_{\mu})^{-12}$ C cross sections measurements go from 3 to 100 GeV.

 \supset Results do not call for a large axial-vector mass (M_A) and do not seem to match with the MiniBooNE results.

Motivation Experimental Status Theoretical Models and Description

NOMAD

NOMAD (CERN)

 \supset CCQE $\nu_{\mu}(\bar{\nu}_{\mu})$ -¹²C cross sections measurements go from 3 to 100 GeV.

 \supset Results do not call for a large axial-vector mass (M_A) and do not seem to match with the MiniBooNE results.

Main goal

► To perform a consistent theoretical analysis of the CCQE neutrino-nucleus interaction in the entire 0-100 GeV region.

Motivation Experimental Status Theoretical Models and Description

Contents

1 Introduction

- Motivation
- Experimental Status

• Theoretical Models and Description

2 Results

- SuSA and RFG
- Form Factors' Parametrizations
- Monopole vs. Dipole Axial Form Factor
- u_{μ} vs. u_e CCQE Cross Section

- Summary and Main Conclusions
- Further Work

Theoretical descriptions: Nuclear model dependence

For this purpose we need to employ a nuclear model which can be applied up to very high energies.

Two basic requirements: it has to be relativistic and it must describe QE electron scattering data from intermediate up to high energies.

SuperScaling Approach (SuSA)

- Based on the superscaling function extracted from QE electron scattering data.
- \bullet This model does not account for the ${\sim}10\,\%$ scaling violations of the transverse channel, which are associated with 2p-2h MEC. This should therefore be added.
- An evaluation of MEC is very hard to achieve. Our present MEC parametrization does not work well for $E_{\nu} \gtrsim 2$ GeV (work in progress).

Theoretical descriptions: Nuclear model dependence

For this purpose we need to employ a nuclear model which can be applied up to very high energies.

Two basic requirements: it has to be relativistic and it must describe QE electron scattering data from intermediate up to high energies.

SuperScaling Approach (SuSA)

- Based on the superscaling function extracted from QE electron scattering data.
- \bullet This model does not account for the ${\sim}10\,\%$ scaling violations of the transverse channel, which are associated with 2p-2h MEC. This should therefore be added.
- An evaluation of MEC is very hard to achieve. Our present MEC parametrization does not work well for $E_{\nu} \gtrsim 2$ GeV (work in progress).

 $\begin{array}{l} \textbf{SuSA and RFG} \\ \textbf{Form Factors' Parametrizations} \\ \textbf{Monopole vs. Dipole Axial Form Factor} \\ \nu_{\mu} \text{ vs. } \nu_{e} \text{ CCQE Cross Section} \end{array}$

Contents

Introduction

- Motivation
- Experimental Status
- Theoretical Models and Description

2 Results

SuSA and RFG

- Form Factors' Parametrizations
- Monopole vs. Dipole Axial Form Factor
- u_{μ} vs. u_e CCQE Cross Section

- Summary and Main Conclusions
- Further Work

SuSA and RFG Form Factors' Parametrizations Monopole vs. Dipole Axial Form Factor ν_{μ} , vs. ν_{ϕ} CCQE Cross Section

ν_{μ} -¹²C CCQE scattering

Superscaling in neutrino/antineutrino CCQE scattering

SuSA and RFG Form Factors' Parametrizations Monopole vs. Dipole Axial Form Factor ν_{μ} vs. ν_{ϕ} CCQE Cross Section

ν_{μ} -¹²C CCQE scattering

 $\begin{array}{l} \textbf{SuSA and RFG} \\ \textbf{Form Factors' Parametrizations} \\ \textbf{Monopole vs. Dipole Axial Form Factor} \\ \nu_{lt} \text{ vs. } \nu_{e} \text{ CCQE Cross Section} \end{array}$

ν_{μ} -¹²C CCQE scattering

G.D. Megias (University of Seville)

Superscaling in neutrino/antineutrino CCQE scattering

 $\begin{array}{l} \textbf{SuSA and RFG} \\ \textbf{Form Factors' Parametrizations} \\ \textbf{Monopole vs. Dipole Axial Form Factor} \\ \nu_{lt} \text{ vs. } \nu_{e} \text{ CCQE Cross Section} \end{array}$

ν_{μ} -¹²C CCQE scattering

 $\begin{array}{l} \textbf{SuSA and RFG} \\ \textbf{Form Factors' Parametrizations} \\ \textbf{Monopole vs. Dipole Axial Form Factor} \\ \nu_{\mu} \text{ vs. } \nu_{e} \text{ CCQE Cross Section} \end{array}$

$\bar{\nu}_{\mu}$ -¹²C CCQE scattering

 $\begin{array}{l} \textbf{SuSA and RFG} \\ \textbf{Form Factors' Parametrizations} \\ \textbf{Monopole vs. Dipole Axial Form Factor} \\ \nu_{\mu} \text{ vs. } \nu_{e} \text{ CCQE Cross Section} \end{array}$

Separated Contributions in the SuSA Model

SuSA and RFG Form Factors' Parametrizations Monopole vs. Dipole Axial Form Factor ν_{μ} vs. ν_{e} CCQE Cross Section

Contents

Introduction

- Motivation
- Experimental Status
- Theoretical Models and Description

2 Results

SuSA and RFG

• Form Factors' Parametrizations

- Monopole vs. Dipole Axial Form Factor
- u_{μ} vs. u_e CCQE Cross Section

- Summary and Main Conclusions
- Further Work

SuSA and RFG Form Factors' Parametrizations Monopole vs. Dipole Axial Form Factor ν_{μ} vs. ν_{e} CCQE Cross Section

Parametrization of the nucleon EM form factors

G.D. Megias (University of Seville)

Superscaling in neutrino/antineutrino CCQE scattering

SuSA and RFG Form Factors' Parametrizations Monopole vs. Dipole Axial Form Factor ν_{μ} vs. ν_{e} CCQE Cross Section

Contents

1 Introduction

- Motivation
- Experimental Status
- Theoretical Models and Description

2 Results

- SuSA and RFG
- Form Factors' Parametrizations

• Monopole vs. Dipole Axial Form Factor

• u_{μ} vs. u_e CCQE Cross Section

- Summary and Main Conclusions
- Further Work

SuSA and RFG Form Factors' Parametrizations Monopole vs. Dipole Axial Form Factor ν_{μ} vs. ν_{e} CCQE Cross Section

Dipolar axial form factor

SuSA and RFG Form Factors' Parametrizations Monopole vs. Dipole Axial Form Factor ν_{μ} vs. ν_{e} CCQE Cross Section

Monopolar axial form factor

SuSA and RFG Form Factors' Parametrizations Monopole vs. Dipole Axial Form Factor ν_{μ} vs. ν_{e} CCQE Cross Section

Monopolar axial form factor

SuSA and RFG Form Factors' Parametrizations Monopole vs. Dipole Axial Form Factor ν_{μ} vs. ν_{e} CCQE Cross Section

Contents

- Motivation
- Experimental Status
- Theoretical Models and Description

2 Results

- SuSA and REG
- Form Factors' Parametrizations
- Monopole vs. Dipole Axial Form Factor
- ν_{μ} vs. ν_{e} CCQE Cross Section

- Summary and Main Conclusions
- Further Work

SuSA and RFG Form Factors' Parametrizations Monopole vs. Dipole Axial Form Factor ν_{μ} vs. ν_{e} CCQE Cross Section

ν_{μ} vs. ν_{e} CCQE Cross Section

SuSA and RFG Form Factors' Parametrizations Monopole vs. Dipole Axial Form Factor ν_{μ} vs. ν_{e} CCQE Cross Section

ν_{μ} vs. ν_{e} CCQE Cross Section

SuSA and RFG Form Factors' Parametrizations Monopole vs. Dipole Axial Form Factor ν_{μ} vs. ν_{e} CCQE Cross Section

ν_{μ} vs. ν_{e} CCQE Cross Section

Summary and Main Conclusions Further Work

Contents

1 Introduction

- Motivation
- Experimental Status
- Theoretical Models and Description

2 Results

- SuSA and RFG
- Form Factors' Parametrizations
- Monopole vs. Dipole Axial Form Factor
- u_{μ} vs. u_e CCQE Cross Section

- Summary and Main Conclusions
- Further Work

Summary and Main Conclusions

arXiv:1305.6884 [nucl-th]

C First SuSA results from intermediate to high energies. In spite of similar results between RFG and SuSA, RFG fails to reproduce (e, e') data whereas SuSA agrees with them by construction.

⊃ SuSA model has to be completed with effects that go beyond the Impulse Approximation (correlations, MEC) \Rightarrow increase of the cross sections at low energies (10-15%) \Rightarrow better data explanation without increasing M_A .

 \supset Moreover, our predictions corresponding to ν STORM kinematics can be useful to get information about the electroweak nuclear matrix elements and the dipole or monopole nature of the axial-vector form factor.

G.D. Megias (University of Seville) Superscaling in neutrino/antineutrino CCQE scattering

Summary and Main Conclusions Further Work

Contents

1 Introduction

- Motivation
- Experimental Status
- Theoretical Models and Description

2 Results

- SuSA and RFG
- Form Factors' Parametrizations
- Monopole vs. Dipole Axial Form Factor
- u_{μ} vs. u_e CCQE Cross Section

- Summary and Main Conclusions
- Further Work

Summary and Main Conclusions Further Work

Further Work

Summary and Main Conclusions Further Work

Further Work

C Recent CCQE $\nu_{\mu}(\bar{\nu}_{\mu})$ -¹²C data from the Miner ν a Collaboration reject $M_A = 1,35$ GeV in favor of using $M_A \approx 1$ GeV and a TEM enhancement.

Summary and Main Conclusions Further Work

Further Work

C Recent CCQE $\nu_{\mu}(\bar{\nu}_{\mu})$ -¹²C data from the Miner ν a Collaboration reject $M_A = 1,35$ GeV in favor of using $M_A \approx 1$ GeV and a TEM enhancement.

⊃ SuSAv2: two different scaling functions for the longitudinal and the transverse channel, taking into account the isovector structure of the CC.

Summary and Main Conclusions Further Work

Further Work

C Recent CCQE $\nu_{\mu}(\bar{\nu}_{\mu})$ -¹²C data from the Miner ν a Collaboration reject $M_A = 1,35$ GeV in favor of using $M_A \approx 1$ GeV and a TEM enhancement.

 \supset SuSAv2: two different scaling functions for the longitudinal and the transverse channel, taking into account the isovector structure of the CC.

 \supset Evaluation of MEC at higher energies and extension to the VA interference channel (T').

Summary and Main Conclusions Further Work

Further Work

Constitution Recent CCQE $\nu_{\mu}(\bar{\nu}_{\mu})$ -¹²C data from the Miner ν_{a} Collaboration reject $M_{A} = 1,35$ GeV in favor of using $M_{A} \approx 1$ GeV and a TEM enhancement.

 \supset SuSAv2: two different scaling functions for the longitudinal and the transverse channel, taking into account the isovector structure of the CC.

 \supset Evaluation of MEC at higher energies and extension to the VA interference channel (T').

\supset Study of future ν STORM, Miner ν a and T2K results.

G.D. Megias (University of Seville)

Superscaling in neutrino/antineutrino CCQE scattering