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response to the electroweak probe 

 binding: shift of the maximum  
Fermi motion: broadening of the peak 
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one-hole spectral function  
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exclusive reaction 

joint probability of removing from the target a nucleon p1  
leaving the residual nucleus in a state with energy Em 

inclusive reaction : one-body density 

 MOMENTUM DISTRIBUTION 



ONE-NUCLEON KNOCKOUT 

p’0 

(,q) 

“out-of-plane” angle 

µ 

p0 

q// z        xz electron plane 
 
® out-of plane angle 
 
     angle between q and  p’1  
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OPEA 

hadron tensor    
plane-wave approximation for electrons:  

 L¹º  kinematic factors 



h helicity  
for unpolarised electrons 

J¹ is a 4-vector and therefore W¹º is a rank 2 tensor 
Its most general form can be built from invariance arguments 
W¹º depends on the only independent  4-vectors  
  

A, B,….. G  7 coefficients dependent on the only independent scalar  
invariants that can be built with                   :  



Conservation of nuclear current q¹ W¹º = qº W¹º = 0   3 relations 
A…….. G                     W1 W2 W3 W4  
   7                                4 
W1 = A     W2  = C     W3  = E   W4 = G  
  

Conservation of electron current   L¹º q¹ = L¹º qº =0   
 suppresses terms linear in q¹ which do not contribute when contracting 
with the hadron tensor 
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4 nuclear structure  functions 
 
their separation requires non coplanar kinematics  ®  0, 180 
  
¾ ( ®=0 ) - ¾ (® = 180) ! f01 

 

parallel kinematics  q // p’1  

f01 = f1-1 = 0 , only f00  and f11     survive  
Rosenbluth separation  
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eigenfunction of Feshbach optical 
potential               with eigenvalue T’1  
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EXCLUSIVE REACTION  

DKO MECHANISM 
   



DWIA model  

 exclusive reaction: for a missing energy value corresponding to 
a peak in the energy distr. we assume that the residual nucleus 
is in a discrete state n 

the final state is projected  

 DKO mechanism: one-body nuclear current does not connect 
different channel subspaces  

 

DKO mechanism, IA: the probe interacts through a one-body 
current with one nucleon  which is then emitted the remaining 
nucleons are spectators 

   



 j one-body nuclear current 

  (-) s.p. scattering w.f.   H+(+Em)  

  n  s.p. bound state overlap function    H(-Em) 

  n spectroscopic factor                           

  (-) and   consistently derived as eigenfunctions 
of  a  Feshbach optical model Hamiltonian             

Direct knockout DWIA (e,e’p) 
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ONE-HOLE SPECTRAL FUNCTION  

It is defined only for discrete energy values corresponding to 
bound states of the residual nucleus and for a continuum 
spectrum starting from the particle emission threshold of the 
residual nucleus   



ONE-HOLE SPECTRAL FUNCTION  

It is related to the hole s.p.  Green’s function 

and provides direct information on the propagation of proton holes in the 
target 
 
It can be calculated with the help of the hole Green’s function and 
considering its analytic structure 



Analytic  structure of the hole Green’s function Gh(z)  

Re z 

Im z 

WA –WA-1 WA –WA-1 

poles      bound states |n> of the (A-1) system 
¸n (E) =  residue of the corresponding pole  
 
left-hand cut  continuum states of the (A-1) system  

Fc(E) = <T+V(E)>         average values of the hermitean  
¡c(E) = 2 <W(E)>         and antihermitean part of the hole  
                            selfenergy operator (V + iW)   
 
  



Á®   spectroscopic amplitudes  eigenfunctions of a   
     nonlocal energy dependent Hamiltonian involving   
     the mass operator or of the Feshbach optical                                           
     model Hamiltonian                                                                          
 
 
PURE SHELL MODEL  
only  real poles at energies corresponding to the 
various bound states occupied in the target  
 
 Án         s.p. bound state wave function  
 ¸n      occupation probability of the s.p. bound state 
 
In general the calculation of the spectral function is a 
complicated many-body problem  
 



PW FSI=0 PWIA 

PW 

PW PW 

factorized c.s   



For each Em the mom. dependence of the SF is given by the mom. 
distr.  of the quasi-hole states n produced in the target nucleus at 
that energy and described by the normalized OVF  

The spectroscopic factor is the norm of the OVF and  gives the 
probability that n is a pure hole state in the target.  

IPSM                                          s.p. SM state  

                                                   1  occupied SM states 

                                                   0  empty SM states 

 

There are correlations and the strength of the quasi-hole state is 
fragmented over a set of s.p. states        

 

spectroscopic factor overlap function 



 selected transitions to discrete states with quantum numbers  l, j  

   non relativistic DWIA 

   non relativistic 1-b nuclear current with relativistic corrections 

  phenomenological ingredients for  s.p. bound and scattering w.f. 

  (-) phenomenological optical potential 

  n  phenomenological s.p. wave functions WS, HF (some calculations 
including correlations are available) 

  n extracted in comparison with data: reduction factor applied to 
the calculated c.s. to reproduce the magnitude of the experimental 
data  

DWIA calculations   

Experimental data:        and       distributions 



DWIA comparison with data   

 ¾exp (E0, E’0, µ, E’1,    , ®)                ¾exp (Em, pm)   

   for a peak in the Em distribution  

 

 

  REDUCED CROSS SECTION 

  the shapes of the reduced c.s. as a function of pm are compared, 
the exp. spectroscopic factor is extracted in comparison with data 

 the reduction factor applied to the calculated reduced c.s. in order 
to reproduce the exp reduced c.s. is identified with the spectroscopic 

factor                                                 ¸exp  <  1     

 ¸ gives a measurement of correlation effects but in these analyses 
it is extracted through a fit to the data and may include also the 
uncertainties and the approximations of the theor.  model  



U. Amaldi, Jr. et al., Phys. Rev. Lett. 13, 341 (1964). 

1964: Frascati  

12C(e,e'p) 



    1s                             1p                               pm distribution 



1964: Frascati  

U. Amaldi, Jr. et al., Phys. Rev. Lett. 13, 341 (1964). 
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Saclay  1980 

S(p,E) 
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(e,e’p) data  

information on the hole structure of target nuclei 

validity and limit of IPSM MFA  

SM orbitals  

DWIA calculations good agreement with the shape of pm 
distributions  

spectroscopic factors  about 65%  of the value predicted 
by the MFA   CORRELATIONS  

calculations able to reproduce the magnitude of the 
experimental c.s. without the need to apply a reduction 
factor not available in general for complex nuclei  

calculations including correlations ….. 



Short-Range Correlations (short-range repulsion of NN 
interaction)  give a depletion up to 10%,  15% with  tensor 
correlations 

     

The rest of the depletion is due to  Long-Range 
Correlations: (long-range part of NN interaction  

   collective excitations of nucleons at the nuclear surface) 



 

The reduction (experimental spectroscopic)  factors 
extracted from the comparison of DWIA calculations with 
(e,e’p) data can be affected by uncertainties in the 
theoretical ingredients of the calculation or by effects 
neglected or not adequately described by the model 

choice of the phen. OP: differences within e few % 

two-body MEC: very small effects in the usual kinematics 
of (e,e’p) experiments 

other effects have been evaluated CM-motion….. 
relativistic effects  
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Relativistic RDWIA models  

RDWIA models have been developed based on the 
same assumptions and approximations, but  with  

relativistic one-body current  

relativistic (Dirac spinors)  for s.p. bound (RMF) and 
scattering wave functions (ROP) 

 

RDWIA necessary for the analysis of (e,e’p) at 
higher energies (JLab)  

The relevance of relativistic effects can be 
investigated also in the kinematics of NKHEF exp.  

DWIA                   RDWIA 
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40Ca(e,e’p) 
48Ca(e,e’p) 

DWIA-WS 

DWIA-HF 

RDWIA 

C. Giusti et al. PRC 84 024615 (2011)  



40Ca(e,e’p) 
48Ca(e,e’p) 

n = 0.49 DWIA-WS 

    0.51 DWIA-HF 

 0.49 RDWIA 

 

n = 0.65 DWIA-WS 

    0.64 DWIA-HF 

 0.69 RDWIA 

 

n = 0.56 DWIA-WS 

    0.55 DWIA-HF 

 0.52 RDWIA 

 

1d3/2 

(,q) const kin  

parallel  kin  



  (e,e’p) preferential tool to study proton-hole states, bound protons, 
validity and limits of MFA 

•large amount of  exp end theor work on (e,e’p) has provided accurate 
information on stable nuclei 

• advantages of the elm probe and (e,e’p) studies can be extended to 
exotic nuclei 

• understanding the evolution of nuclear properties as a function of N/Z 
is one of the major topics of interest in modern nuclear physics  

• in the next years the advent of RIB facilities will provide data on 
unstable nuclei 

•  a new generation of electron RIB colliders that use storage rings under 
construction (GSI, RIKEN) will offer unprecedented  opportunities to 
study exotic nuclei with electron scattering (ELISe at FAIR, SCRIT at 
RIKEN)  

• elastic: global properties, nuclear density distribution   

•quasi-elastic: dynamical properties, proton-hole states, 1hSF (exclusive) 
integral of 1hSF over all the final states (inclusive)                                       



INCLUSIVE QUASIELASTIC SCATTERING 
(e,e’)   



 only scattered electron detected 

 all final nuclear states are included  

 in the QE region the main contribution is given by the 
interaction on single nucleons and direct one-nucleon 
emission 

  

 

 

 

 

  

 

  

INCLUSIVE QUASIELASTIC SCATTERING 
(e,e’)   



 c.s given by the sum over all the nucleons of incoherent 
processes involving only one-nucleon scattering  

 Fermi Gas Model (nucleus viewed as a collection of non-
interacting fermions) with two parameters: energy shift    
(accounts for nuclear binding) and Fermi momentum kF 
(width of the peak is proportional to kF) 

 

 

 

 

  

 

  

SIMPLE MODEL: FERMI GAS MODEL   



QUASIELASTIC (e,e’) CROSS SECTION  

FERMI GAS MODEL 

R.R. Whitney. et al., Phys. Rev. C 9, 2230 (1974) 



 Rosenbluth separation: 

Plot of the c.s./K at fixed !,q as a function of 

                   slope                                   RL 

                   intercept at       =0             RT 
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56Fe(e,e’) 

Z.E. Meziani  (1984) 



ROSENBLUTH SEPARATION RL RT  

FERMI GAS MODEL 

56Fe(e,e’) 

a more sophisticated 
model is needed! 

Z.E. Meziani  (1984) 



Large amount of theoretical work, different models developed with the 
aim to explain  experimental data for RL and RT  

Unified and consistent description of RL and RT data has not been 
achieved 

Experiments of separation difficult, discrepancies in the exp. results 
from different laboratories, new and more data with improved accuracy 
would be helpful to make the situation clear 

Different models based on the IA seem generally able to reproduce RL 
but underestimate RT 

Indications that effects beyond IA can be important for RT 

Role of 2-body MEC should be carefully evaluated before drawing 
conclusions  

 

In the following models based on the IA are considered…. 

 

 

 

  

 

  



  IA : c.s given by the sum of integrated direct one-nucleon 
emission  over all the nucleons 

 IPSM : n over all occupied states in the SM, all the 
nucleons are included but correlations are neglected  

partial occupancy can be included, spectral function 

INCLUSIVE SCATTERING : IMPULSE APPROXIMATION   
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INCLUSIVE SCATTERING: FSI 
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 RELATIVISTIC MEAN FIELD: same real energy-independent 
potential of bound states  
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continuity equation 
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INCLUSIVE SCATTERING: FSI 

FSI neglected 

only the real part of the OP: conserves the flux but it is 
conceptually wrong  

 RELATIVISTIC MEAN FIELD: same real energy-independent 
potential of bound states  

Orthogonalization, fulfills dispersion relations and maintains the 
continuity equation 

GREEN’S FUNCTION complex OP conserves the flux 
consistent description of FSI in exclusive and inclusive QE 
electron scattering 

 



FSI for the inclusive scattering :  
Green’s Function Model  

 

Y. Horikawa, F. Lenz, N.C. Mukhopadhyay PRC 22 (1980) 1680 
multiple scattering theory 

 

F. Capuzzi, C. Giusti, F.D. Pacati, Nucl. Phys. A 524 (1991) 281 

Feshbach projection operator formalism 



FSI for the inclusive scattering :  
Green’s Function Model  

(e,e’) nonrelativistic  

F. Capuzzi, C. Giusti, F.D. Pacati, Nucl. Phys. A 524 (1991) 281 

F. Capuzzi, C. Giusti, F.D. Pacati, D.N. Kadrev Ann. Phys. 317 (2005) 492 (AS CORR) 

(e,e’)  relativistic 

A. Meucci, F. Capuzzi, C. Giusti, F.D. Pacati, PRC (2003) 67 054601  

A. Meucci, C. Giusti, F.D. Pacati Nucl. Phys. A 756 (2005) 359 (PVES) 

A. Meucci,  J.A. Caballero, C. Giusti,  F.D. Pacati, J.M. Udias  PRC (2009) 80 024605 (RGF-RMF)  

CC relativistic 

A. Meucci, C. Giusti, F.D. Pacati Nucl. Phys. A739 (2004) 277 

A.  Meucci,  J.A Caballero, C. Giusti, J.M. Udias PRC (2011)  83 064614  (RGF-RMF)  

comparison with MiniBooNE data 

A. Meucci,  M.B. Barbaro, J.A. Caballero, C. Giusti, J.M. Udias  PRL (2011)  107 172501 

A. Meucci, C. Giusti,  F.D. Pacati  PRD (2011)  84  113003 

A. Meucci, C. Giusti, PRD (2012) 85   093002 



FSI for the inclusive scattering :  
Green’s Function Model  

 

 the components of the inclusive response are expressed in terms of the 
Green’s operator 

 under suitable approximations can be written in terms of the s.p. optical 
model Green’s function   

 the explicit calculation of the s.p. Green’s function can be avoided by its 
spectral representation that is based on a biorthogonal expansion in terms of 
the eigenfunctions of the non Herm optical potential V and V+ 

  matrix elements similar to DWIA  

 scattering states eigenfunctions of V and V+ (absorption and gain of flux): the 
imaginary part redistributes the flux and the total flux is conserved  

 consistent treatment of FSI in the exclusive and in the inclusive scattering 
 



NUCLEAR RESPONSE  

GREEN’S FUNCTION 

H   nuclear Hamiltonian 
The diagonal components of the hadron tensor are expressed in terms of 
the Green function  G+  the full A-body propagator. Only an approximate 
treatment reduces the problem to a tractable form 



with suitable approximations the components of the nuclear response are 

written in terms of the  s.p. optical model Green’s function 

  one-body current 

 non diagonal terms neglected  (high enough q) 

                                                  

 n discrete eigenstate of HA-1 or isolated resonance in the   
continuum 



          replaced by    
 
                is the s.p. Green’s function related to the 
                Feshbach  optical model Hamiltonian    



  is the OP A-body Hamiltonian  which describes the elastic 
scattering of a nucleon by an (A-1)-system in the state n  

the matrix elements of Gn  give the s.p. optical model Green’s 
function  



1.       1-body 
 

2.                                                     produces only states   
                                                      and their combination 
 
3.  

 



ALL final states are included in G+  which 
contains the total nuclear Hamiltonian H       



Spectral   decomposition of the nuclear response  

The eigenfunctions  of              and    
 
 
 
 
form a biorthogonal  system  
 
                                                                     completeness 
 
                                                                     orthogonality  



Spectral representation of Gn   and G+n  



Spectral representation of Gn   and G+n  



The components of the inclusive response are written in 
terms of the same ingredients appearing in the DWIA 
approach of the exclusive 1NKO 



DW 
 
1-body nuclear current 
 
 overlap   

The components of the inclusive response are written in 
terms of the same ingredients appearing in the DWIA 
approach of the exclusive 1NKO 
 



eigenstate of              
absorption of flux 
 
eigenstate of                             
gain of flux                                     

The imaginary part of the optical potential is 
responsible for the redistribution of the 
strength in the different channels 

INCLUSIVE SCATTERING  
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When terms  Qn G Pn are neglected a discrepancy with the 
exact relation is obtained due to the energy depen. of the 
Feshbach OP that  describes processes Pn H Qn    
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When terms  Qn G Pn are neglected a discrepancy with the 
exact relation is obtained due to the energy dependence  of 
the Feshbach OP that  describes processes  of the type   
Pn H Qn 
 
  The discrepancy can  be eliminated and the approach 
improved  
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operates in the same channel subspace and under the 
assumption of an almost linear energy dependence of the OP  
restores consistency with the exact relationship and includes 
most of the contributions of interference between different 
channels  
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is energy independent if         v’’n ( E ) ' 0 



The eigenfunctions of a non local energy independent potential 
can be written 
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eigenfunction of the local 
equivalent energy 
dependent potential  



The eigenfunctions of a non local energy independent potential 
can be written 
 

eigenfunction of the local 
equivalent energy 
dependent potential  

takes into account  terms of interference between 
different channels and removes   the whole energy 
dependence of  


