ELECTRON AND NEUTRINO SCATTERING IN THE
QUASIELASTIC REGIME

Carlotta Giusti
Universita and INFN, Pavia

Scuola di Fisica Nucleare Raimondo Anni Otranto May 27 - 31 2013



nuclear response to the electroweak probe

discrete GR
levels

|
X MV/\\J@

QE _ peak mesons

N resonances




nuclear response to the electroweak probe

discrete GR
levels

QE _ peak mesons

N resonances

i~ O\

ol




nuclear response to the electroweak probe

discrete GR
levels

QE _ peak mesons

N resonances

QE-peak dominated by one-nucleon knockout




nuclear response to the electroweak probe

discrete GR
levels

QE _ peak mesons

N resonances

QE-peak dominated by one-nucleon knockout




nuclear response to the electroweak probe

discrete GR
levels

QE _ peak mesons

N resonances

QE-peak dominated by one-nucleon knockout




nuclear response to the electroweak probe

discrete GR
levels

QE _ peak mesons

N resonances

QE-peak dominated by one-nucleon knockout




response to the electroweak probe

Elastic
Nucleus

A N*

Deep
Inelastic

Quasielastic

o O o i
Y, > S+ 300 MeV ')
Elastic Proton
Deep
* Inelastic
N

92 . 300 Mev 0

2 m 2m




response to the electroweak probe

Elastic

Nucleus | peep
A . Inelastic

Quasielastic

Elabtic Proton

Deep
* Inelastic
N

92 . 300 Mev 0

2 m 2m




response to the electroweak probe

Elastic

Nucleus

Deep
Inelastic

Quasielastic

€ | 300 MeV

binding: shift of the maximum
Fermi motion: broadening of the peak

,UW

,) —+ 300 MeV ®
m 2m



nuclear response to electrons (virtual) and
real photons

3 QUASI-=L_ASTIC
. electron ' ZLASTIC  GIANT




nuclear response to electrons (virtual) and
real photons

¢ CUASI-ZLASTIC
A | REGION /\\\
electron i SLASTIC  GIANT

RESONANCES / / \

0
"




QE e-nucleus scattering

e+ A=¢ +N+(A-1)




QE e-nucleus scattering

" both e and N detected one-nucleon-knockout (e,e'p)
" (A-1) is a discrete eigenstate n exclusive (e,e'p)



QE e-nucleus scattering

e+ A=E > N+(4A-1)

" both e and N detected one-nucleon-knockout (e,e'p)
" (A-1) is a discrete eigenstate n exclusive (e,e'p)
" only e’ detected inclusive (ee’)



QE e-nucleus scattering

e+ A=¢ +N+(A-1)
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(e,e’p) one-nucleon knockout

properties of bound protons

independent particle shell model
validity and limits

huclear correlations
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exclusive reaction

| ONE-HOLE SPECTRAL FUNCTION |

S(P1,p1; Em) = (Vila L 6(Ep — H)ag [¥;)

. ‘ joint probability of removing from the target a nucleon p;
leaving the residual nucleus in a state with energy E,,

/S(p_i,ﬁl; By )dEn, :‘P(p_i,ﬁl)‘ inclusive reaction : one-body density

(-5 ] = si.50) =[F)]
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ONE-NUCLEON KNOCKOUT
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“out-of-plane” angle _—

q// z xz electron plane
a out-of plane angle

7Y angle between g and p’;
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plane-wave approximation for electrons:
hadron tensor L,, kinematic factors

- fw ()] (@)5(E: — Ex)

JH() = f'“\lffw“ 7 | Wy)d



WHY — W[.LVS 14 W[,LVA
W[.LI/S _ WI/[,LS Wp,I/A _ _WV/J,A

L., =1L5 + hLA |hhelicity
H e "7 for unpolarised electrons Luv = Ly,

m— L, WA =0 W = WWrvs

J* is a 4-vector and therefore W*” is a rank 2 tensor
Its most general form can be built from invariance arguments
W+ depends on the only independent 4-vectors ¢“,pi", Pl

W = WP = A + Bg'q” + CP4P% + D(Piq” + Pig") +
E(Pipy + Pip{") + F(p}'q” + pY'q") + Gp{'p}’
A,B.....G 7 coefficients dependent on the only indepbendent scalar
invariants that can be built with ¢", p1", Pj: ¢, q" - PY,q" pl',p+. Pl

(Ph,pf" =m? Pa, Pl =M3)



Conservation of nuclear current q, W =q, W =0 3 relations
A ........ G ‘ Wl W2 W3 W4

q"q” Wy q- Pa q- Pa
WH = —W(gH" — + —(Ph — q" ) (P} — 7) 4
( qﬁ ) MEL( A qz )( A qz
Wa iy @Dy e 40D W3 w ¢ Pa
—(p" — q")(p q") + Py — H
mg( 1 qi )( 1 qz ) 2p/1 PA [( A qg )
4Dy, Lo q-Pa ., qp
(p) — —5¢") + (P4 — —=¢")(p/ — —5q¢")]
0 a; i

Conservation of electroncurrent L, q*=L,q" =0 (e
suppresses terms linear in g* which do not contribute when contracting
with the hadron tensor

W

WHY = — Wy g™ + P“PA + —plpy + T(Pﬁpl” + Pip,")
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Introducing spherical components
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¥ ; g.s of the target nucleus A

¥ : A-body nuclear state asymptotically corresponding to the KO

hucleon 1 (E’y, p’;) and a residual A-1 nucleus B

@ forE -w-T,-Ty=Wy* - W, corresponding to a peak in the E,,
distr. we assume that the residual nucleus is in a discrete state n

with exc energy Wg* =E, EXCLUSIVE REACTION *
@ the final state is projected |U¢) = |E7,n) ~ P, |E1n)%
P, = [dp'al|n >< nlay P2=P, P,+Q,=1
(Wg | JH | W) ~ /(rzE | aﬂ, n)(n | agJ* | O dp
: \ J

— Y
X (P1)

FINAL STATE: product of a s.p. DW () the e
outgoing proton and residual nucleus n
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¥ ; g.s of the target nucleus A

¥ : A-body nuclear state asymptotically corresponding to the KO

hucleon 1 (E’y, p’;) and a residual A-1 nucleus B

@ forE -w-T,-Ty=Wy* - W, corresponding to a peak in the E,,
distr. we assume that the residual nucleus is in a discrete state *n'

with exc energy Wg* =E, EXCLUSIVE REACTION
@ the final state is projected |W¢) = |E7,n) ~ P, |E{n) *
P, = [dPasln ><nlay  P2=P, P,+Q,=1
(Tg | JF | ;) ~ /(rzEl | (z.ﬁ, n)(n | ay JH | W) dp
| —~— eigenfunction of Feshbach optical

Xq(@}fi*(ﬂ)‘ potential H*(T7) with eigenvalue T,

1
H, (FE)=P,HP, + P, HQ,, nHP,, )
( ) * Q E — QnHQn + 1n Q




JH = E gt~ 4%  one-body nuclear current
i

interaction only on the quasi-free proton 1 *



one-body nuclear current

interaction only on the quasi-free proton 1 *
does not connect different channel subspaces
IADKO X



JH = E 7t~ 3" one-body nuclear current

interaction only on the quasi-free proton 1 *

Pnjf” P, does not connect different channel subspaces
IADKO K
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JH = E gt~ 41" one-body huclear current

interaction only on the quasi-free proton 1 *

Pnjf“ P, does not connect different channel subspaces
IADKO X
agJ" | W) = /n*(ﬁg,---,ﬁA)j“(ﬁl,q’)d(ﬂ —p1 — Q)Vi(p1, - -Pa)dpi -+ - dpia
Pnj/:UJ].Pn — — — — — — — —
= J"(p) —q@/n (P2, --,pA)\Ifi(pl,---pA)dpl---JdpA
W= 1/2 Y
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¢, eigenstate of H, (w-T;=-E,) with eigenvalue - E,_ :

An

spectroscopic factor

overlap spectroscopic amplitude




JH = E gt~ 41" one-body huclear current
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“(Pay -+, pa)i" (D1, Q) 0P — P — Q) Vi(pr, -+ - pa)dpy -+ - dpa

interaction only on the quasi-free proton 1 *
does not connect different channel subspaces
IADKO KX

—
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J

v
= JMPL, 9 A2 dn(p1)

¢, eigenstate of H, (w-T;=-E,) with eigenvalue - E,_ :

overlap spectroscopic amplitude

An  spectroscopic factor

JH(G) = Ai,,/z/x
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An  spectroscopic factor
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DWIA model

exclusive reaction: for a missing energy value corresponding to
a peak in the energy distr. we assume that the residual nucleus
is in a discrete state n

the final state is projected |U;) = P|U;) P = /dﬂ\ﬂn)(nﬂ\

DKO mechanism: one-body nuclear current does not connect
different channel subspaces

Pi*Q=0Q=1—-P

DKO mechanism, IA: the probe interacts through a one-body
current with one nucleon which is then emitted the remaining
nucleons are spectators

-

/eﬁ'FWf | PjH(r) P | W;)dr = /ei§°ix(_)*(F1) gH (71, 7) i\nl/zébn(fl)dﬁdf
Y Y
(W slrin) (rin|W;)




Direct knockout DWIA (e.e'p)

A2 T )

@ j+ one-body nuclear current

@ O s.p. scattering w.f. H*(o+E,)

@ ¢, s.p. bound state overlap function H(-E,,)
@ ), spectroscopic factor

@ yOand ¢ consistently derived as eigenfunctions
of a Feshbach optical model Hamiltonian

H(E)=PHP + PHQ—— QI;Q T QHP
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Hadron tensor Emmp Spectral function
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WHY

Hadron tensor Emmp Spectral function
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Hadron tensor Emmp Spectral function
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ONE-HOLE SPECTRAL FUNCTION
S(E;p,p) = (Vilal 6(Ha—1 — E —Wa) az¥s)

il
> [ deleaieal > [aeeaea

Zfde\P \a | ea)d(e — B — Wa)(ea | az | ¥5)
= quEa E) ¢pa(p)

It is defined only for' discrete energy values corresponding to
bound states of the residual nucleus and for a continuum
spectrum starting from the particle emission threshold of the
residual nucleus



ONE-HOLE SPECTRAL FUNCTION

S(E;p,p) = (Vilal 6(Ha—1 — E —Wa) az|¥;)
Zfdelp \a | ea)d(e — E— Wa)lea | az | Ui)

Z ¢Eoz nga(")

It is related to the hole s.p. Green's function

—_ ]_
GME —in;p,p) = (I ;| U,
( 1777p3p) < ‘ CL E 177 WA —|—HA_1ap ‘ >

_ 1 —Gh .;_,’:r_Gh_E ,;_,’:»
ﬁﬂowﬁ (E —in;p,p (—FE +in; p, p}

and provides direct information on the propagation of proton holes in the
target

It can be calculated with the help of the hole Green's function and
considering its analytic structure



Analytic structure of the hole Green's function Gh(z)
t Imz

WA -WA-]. WA -WA-]I Re Z
—_— 33 -

poles bound states |n> of the (A-1) system
A, (E) = residue of the corresponding pole

left-hand cut continuum states of the (A-1) system

1 I'.(E
AE) =5 = L.(E)
TE=Wa+ F(E)]? +[=5—]
F.(E) = <T+V(E)> average values of the hermitean
I(E) = 2 <W(E)> and antihermitean part of the hole

selfenergy operator (V + iW)



¢, spectroscopic amplitudes eigenfunctions of a
nonlocal energy dependent Hamiltonian involving
the mass operator or of the Feshbach optical
model Hamiltonian

PURE SHELL MODEL
only real poles at energies corresponding to the
various bound states occupied in the target

b, s.p. bound state wave function
A, occupation probability of the s.p. bound state
In general the calculation of the spectral function is a
complicated many-body problem






S(Eum Z A (Em) |0 (—Pm)I
@ 4

spectroscopic factor overlap function

For each E,, the mom. dependence of the SF is given by the mom.
distr. of the quasi-hole states n produced in the target nucleus at
that energy and described by the normalized OVF

The spectroscopic factor is the norm of the OVF and gives the
probability that n is a pure hole state in the target.

IPSM ¢n s.p. SM state
A\ 1 occupied SM states
"0 empty SM states

There are correlations and the strength of the quasi-hole state is
fragmented over a set of s.p. states 0 < )\, <1



DWIA calculations

% selected transitions to discrete states with quantum numbers |, j
% non relativistic DWIA

»
: hon relativistic 1-b nuclear current with relativistic corrections
N

phenomenological ingredients for s.p. bound and scattering w.f.
% 40 phenomenological optical potential

"t ¢, phenomenological s.p. wave functions WS, HF (some calculations
including correlations are available)

E ), extracted in comparison with data: reduction factor applied to
the calculated c.s. to reproduce the magnitude of the experimental
data

‘Experimen‘ral data: E,, and P, distributions




DWTIA comparison with data

W gexp (Eo. B0, 0, E', 7y, ) :> o® (Epn, Prm)

for a peak in the E, distribution
do€*P doth
Ko, <:> Ko,
/AEM dﬁédﬂ/ g AEy dﬁBdﬁl/ g

REDUCED CROSS SECTION

! the shapes of the reduced c.s. as a function of p,, are compared,
the exp. spectroscopic factor is extracted in comparison with data

= 1)
K

% the reduction factor applied to the calculated reduced c.s. in order
to reproduce the exp reduced c.s. is identified with the spectroscopic

factor :> )\exp < 1

I X\ gives a measurement of correlation effects but in these analyses
it is extracted through a fit to the data and may include also the
uncertainties and the approximations of the theor. model
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Experimental data: E,, and p,, distributions
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‘Experimen’ral data: p, distributions
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spectroscopic factors

0.6 -0.7

A
102 L 1 L 1 A\ 104 L 1 L 1
-200 0 200 -200 0 200

NIKHEF data & CDWTIA calculations
1993




‘Experimen’ral data: p, distributions

reduction factors applied:
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(e,e’p) data

m information on the hole structure of target nuclei
m validity and limit of IPSM MFA
B SM orbitals

m DWIA calculations good agreement with the shape of p,,
distributions

B spectroscopic factors about 65% of the value predicted
by the MFA CORRELATIONS

B calculations able to reproduce the magnitude of the
experimental c.s. without the need to apply a reduction
factor not available in general for complex nuclei

B calculations including correlations ...



B Short-Range Correlations (short-range repulsion of NN
interaction) give a depletion up to 10%, 15% with tensor
correlations

B The rest of the depletion is due to Long-Range
Correlations: (long-range part of NN interaction

collective excitations of nucleons at the nuclear surface)



The reduction (experimental spectroscopic) factors
extracted from the comparison of DWIA calculations with
(e.e'p) data can be affected by uncertainties in the
theoretical ingredients of the calculation or by effects
neglected or not adequately described by the model

m choice of the phen. OP: differences within e few %

B two-body MEC: very small effects in the usual kinematics
of (e.e'p) experiments

m other effects have been evaluated CM-motion.....
relativistic effects



The reduction (experimental spectroscopic) factors
extracted from the comparison of DWIA calculations with
(e.e'p) data can be affected by uncertainties in the
theoretical ingredients of the calculation or by effects
neglected or not adequately described by the model

m choice of the phen. OP: differences within e few %
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of (e.e'p) experiments
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relativistic effects

Relativistic RDWIA models




Relativistic RDWIA models

RDWIA models have been developed based on the
same assumptions and approximations, but with

relativistic one-body current

relativistic (Dirac spinors) for s.p. bound (RMF) and
scattering wave functions (ROP)

RDWIA necessary for the analysis of (e,e'p) at
higher energies (JLab)

The relevance of relativistic effects can be
investigated also in the kinematics of NKHEF exp.

DWIA <Z—)> RDWIA
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P, MeV/cl
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10 =
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P, MeV/cl



Relativistic RDWIA | 160(e,e'p) |
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Relativistic RDWIA | 160(e,e'p) |
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C. Giusti et al. PRC 84 024615 (2011)




‘ 40Ca(e,e'p) ‘

A, = 0.49 DWIA-WS
0.51 DWIA-HF
0.49 RDWIA

), = 0.65 DWIA-WS
0.64 DWIA-HF
0.69 RDWIA

| 1dse |

(w,q) const kin

parallel kin

‘ 48Ca(e,e'p) ‘

), = 0.56 DWIA-WS
0.55 DWIA-HF
0.52 RDWIA



(e,ep) preferential tool to study proton-hole states, bound protons,
validity and limits of MFA

‘large amount of exp end theor work on (e,e'p) has provided accurate
information on stable nuclei

- advantages of the elm probe and (e,e'p) studies can be extended to
exotic nuclei

- understanding the evolution of nuclear properties as a function of N/Z
is one of the major topics of interest in modern nuclear physics

* in The next years the advent of RIB facilities will provide data on
unstable nuclei

* a new generation of electron RIB colliders that use storage rings under
construction (6ST, RIKEN) will of fer unprecedented opportunities to
study exotic nuclei with electron scattering (ELISe at FAIR, SCRIT at
RIKEN)

- elastic: global properties, nuclear density distribution

-quasi-elastic: dynamical properties, proton-hole states, 1hSF (exclusive)
integral of 1hSF over all the final states (inclusive)



INCLUSIVE QUASIELASTIC SCATTERING
(e.e)




INCLUSIVE QUASIELASTIC SCATTERING
(e.e)

2 only scattered electron detected
2 all final nuclear states are included

7 in the QE region the main contribution is given by the
intferaction on single nucleons and direct one-nucleon
emission



SIMPLE MODEL: FERMI GAS MODEL

@ c.s given by the sum over all the nucleons of incoherent
processes involving only one-nucleon scattering

@ Fermi Gas Model (nucleus viewed as a collection of non-
interacting fermions) with two parameters: energy shift €
(accounts for nuclear binding) and Fermi momentum k¢
(width of the peak is proportional to kg)
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R.R. Whitney. et a/, Phys. Rev. C 9, 2230 (1974)




= K (Rr(w,q) +2cRp(w, q))

2 2
£ = Q [1 —I—Q@tan Q] Q2 — q2 — wz

Ry = W0 Ry = W 4+ WYY

Rosenbluth separation:

Plot of the c.s./K at fixed w,q as a function of €7,

#slope ) R,
intercept at €7, =0 =) R-




ROSENBLUTH SEPARATION R, Ry
FERMI GAS MODEL
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ROSENBLUTH SEPARATION R, R
FERMI GAS MODEL

© o seeee)

a more sophisticated
model is needed!
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Large amount of theoretical work, different models developed with the
aim to explain experimental data for R, and R+

Unified and consistent description of R, and R+ data has not been
achieved

Experiments of separation difficult, discrepancies in the exp. results
from different laboratories, new and more data with improved accuracy
would be helpful to make the situation clear

Different models based on the IA seem generally able to reproduce R,
but underestimate R+

Indications that effects beyond IA can be important for R+

Role of 2-body MEC should be carefully evaluated before drawing
conclusions

In the following models based on the IA are considered...



|INCLUSIVE SCATTERING : IMPULSE APPROXIMATION |

% TA: c.sgiven by the sum of integrated direct one-nucleon
emission over all the nucleons

¥ TIPSM: X, over all occupied states in the SM, all the
nucleons are included but correlations are neglected

# partial occupancy can be included, spectral function
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INCLUSIVE SCATTERING: FSI

DWIA RDWTIA|sum of 1NKO where FSI are described by a complex OP
with an imaginary absorptive part does not conserve the flux
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DWIA RDWTIA|sum of 1NKO where FSI are described by a complex OP

with an imaginary absorptive part does not conserve the flux

PWIA RPWIA | FSI neglected
REAL POTENTTIAL

rOP rROP
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only the real part of the OP: conserves the flux but it is
conceptually wrong

RELATIVISTIC MEAN FIELD: same real energy-independent
potential of bound states

Orthogonalization, fulfills dispersion relations and maintains the
continuity equation




INCLUSIVE SCATTERING: FSI

DWIA RDWTIA|sum of 1NKO where FSI are described by a complex OP
with an imaginary absorptive part does not conserve the flux

PWIA RPWIA | FSI neglected
REAL POTENTTAL
rOP rROP only the real part of the OP: conserves the flux but it is

conceptually wrong

RELATIVISTIC MEAN FIELD: same real energy-independent
potential of bound states

RMF

Orthogonalization, fulfills dispersion relations and maintains the
continuity equation

G6F RGF | GREEN'S FUNCTION complex OP conserves the flux
consistent description of FSI in exclusive and inclusive QE
electron scattering




FSI for the inclusive scattering :
Green's Function Model

Y. Horikawa, F. Lenz, N.C. Mukhopadhyay PRC 22 (1980) 1680
multiple scattering theory

F. Capuzzi, C. Giusti, F.D. Pacati, Nucl. Phys. A 524 (1991) 281
Feshbach projection operator formalism <:I



FSI for the inclusive scattering :
Green's Function Model

(e.e) nonrelativistic

F. Capuzzi, C. Giusti, F.D. Pacati, Nucl. Phys. A 524 (1991) 281

F. Capuzzi, C. Giusti, F.D. Pacati, D.N. Kadrev Ann. Phys. 317 (2005) 492 (AS CORR)
(e.e') relativistic

A. Meucci, F. Capuzzi, C. Giusti, F.D. Pacati, PRC (2003) 67 054601

A. Meucci, C. Giusti, F.D. Pacati Nucl. Phys. A 756 (2005) 359 (PVES)

A. Meucci, J.A. Caballero, C. Giusti, F.D. Pacati, J.M. Udias PRC (2009) 80 024605 (RGF-RMF)
CC relativistic

A. Meucci, C. Giusti, F.D. Pacati Nucl. Phys. A739 (2004) 277

A. Meucci, J.A Caballero, C. Giusti, J.M. Udias PRC (2011) 83 064614 (RGF-RMF)
comparison with MiniBooNE data

A. Meucci, M.B. Barbaro, J.A. Caballero, C. Giusti, J.M. Udias PRL (2011) 107 172501
A. Meucci, C. Giusti, F.D. Pacati PRD (2011) 84 113003

A. Meucci, C. Giusti, PRD (2012) 85 093002



FSI for the inclusive scattering :
Green's Function Model

® the components of the inclusive response are expressed in terms of the
Green's operator

@® under suitable approximations can be written in terms of the s.p. optical
model Green's function

® the explicit calculation of the s.p. Green's function can be avoided by its
spectral representation that is based on a biorthogonal expansion in terms of
the eigenfunctions of the non Herm optical potential V and V*

& matrix elements similar to DWIA

& scattering states eigenfunctions of V and V* (absorption and gain of flux): the
imaginary part redistributes the flux and the total flux is conserved

& consistent treatment of FSI in the exclusive and in the inclusive scattering



NUCLEAR RESPONSE

Wt = (W | TR W) (W | JH | U3)6(w + By — E)
f

= N | IS + By — H) | W) (g | JF | W)

f
= (| JFTo(w+ By — H)J" | ;) | .
— = 73(—) F imd(x)
xr L 1e x

= im(us | T B | W)
GREEN'S FUNCTION

H nuclear Hamiltonian

The diagonal components of the hadron tensor are expressed in terms of
the Green function G* [the full A-body propagator. Only an approximate

reatment reduces the problem to a tractable form



with suitable approximations the components of the nuclear response are
written in terms of the s.p. optical model Green's function

1
WHt = = Im(W; | J*T G (w + Ep) J" | ©;)

T

" one-body current JE = 235
" non dlagonal terms neglec’red (hlgh enough q) ;I TGt kA1
WHE  ~ - ZIm (W; ‘jg—i_ G ( E¢) gy | ¥5)

Z | N |
= =Im{ [ i, G (B gy, | ) + —TIm(Ws | g1 GT (B 5, | )

/s

u ]f|\Ijl>’iZPnjlf‘\Ifl> Pn:de1|’I?1n><??17’L|

n discrete eigenstate of H, ; or isolated resonance in the
continuum




G+ replacedby S GF <:|

G+( E ) is the s.p. Green's function related to ’rhe
mn
Feshbach optical model Hamiltonian ?—[



(E—H) G(E) =

A
\l
+ &n
PQ—(E P,HP,)P,G(E )Pn—PnHPn

Q,, mm=—p(F — QnHQn)Qn (E)P, — QuHQ,G(E)P, = P,
1
) Q.CE)P = g g i @ PG(E)P,

{

Pn + Pn
— — E —
P,G(E)P, = G,(E) E —HA(E) +in G (E) E—’Hﬁl+(E)_i77
1
M (E) = PuH Py + PaHQn - QP

is the OP A-body Hamiltonian which describes the elastic
scattering of a nucleon by an (A-1)-system in the state n

the matrix elements of G,, give the s.p. optical model Green's
function
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ALL final states are included in 6* which
contains the total nuclear Hamiltonian H



Spectral decomposition of the nuclear response

The eigenfunctions of 7, and 7‘[:

Hi(E) | ®F) = Bley)) | o
H(F)y 5 (F) /
Ho(Ee) | ®y7) = E|PL7)

form a biorthogonal system
/ dE | @) | = f dE | 7 (07| = 1 completeness

@F) o)) = §(FE - E) orthogonality
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Spectral representation of G,, and G+,

. 73(1) + ind(x)

xr =+ 1 €T



W K

1
T + 1€

1 | .
= —Im(Ws | §17 G (B | )

Spectral representation of G,, and G+,

_ 73(1)  ird(z)

X



W = Re[@; it (@) |5t )|
Y

- 2P [ gt @) Lt (@) 5t )
T (E)

WHE = Z [ReT“‘“’(Ef) — —77/ EdEE ImT,,’j“(Ef)]
f

mn

(B, | Pujf'Pr | W5) = f drd7; @77 X (75 (7, PO 2 6n (1)
(@5, | PaglPr | W) = f drdry 7R ) (7 (71, PN 6 (71)
The components of the inclusive response are written in

terms of the same ingredients appearing in the DWIA
approach of the exclusive INKO



The components of the inclusive response are written in
terms of the same ingredients appearing in the DWIA
approach of the exclusive INKO

y(7)x = DW

GH j‘> 1-body nuclear current

)\1/2¢ j‘> OVZF'IGP




INCLUSIVE SCATTERING

TH(E) = A / A7dFy €77 )% (7)) 47, 72 ) o (72)

< ([araren @ o)

:> eigenstate of H;
absorption of flux

XU = eigenstate of H,,
gain of flux

X(_)

The imaginary part of the optical potential is

responsible for the redistribution of the
strength in the different channels




Interference between different channels

In the model
(U; | J#TGT(Ee)j* | W) ~ Y (W | jTGE (Er)j* | ¥3)

=S PG (E) (P + Qu) = S (P + Qu)GHE)P,

n n 0, — P 4P
If weset G(E)~) G*(E) w;

; dG+(E)

The exact relation G*+%(E ) S IS hot satisfied

—|— + ,
deE —Z dG =Y GH(BE) (1 -1 (B) G} (E)
Z G#(E) - N GHEWE (B)G (E)

When terms Q, G P, are neglected a discrepancy with the
exact relation is obtained due to the energy depen. of the
Feshbach OP that describes processes P, H Q,
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When terms Q, G P, are neglected a discrepancy with the
exact relation is obtained due to the energy dependence of
the Feshbach OP that describes processes of the type

Pn H Qn

The discrepancy can be eliminated and the approach
|mproved G(E) ~ Z én (E)

Gn(E) = /1 =0 (E)Gn(E)\/1—v.(E) v/ (E)~0

GP(E) > Gr(E)=) V1-v,(E)Gu(E)(1—v,(E))Gn(E) /1, (E)



When terms Q, G P, are neglected a discrepancy with the
exact relation is obtained due to the energy dependence of
the Feshbach OP that describes processes of the type

Pn H Qn

The discrepancy can be eliminated and the approach
|mproved G(E) ~ Z én (E)

én(E) = V1=, (E)G(E)\/1 - v, (E) Un(E) =0
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When terms Q, G P, are neglected a discrepancy with the
exact relation is obtained due to the energy dependence of
the Feshbach OP that describes processes of the type

Pn H Qn

The discrepancy can be eliminated and the approach
|mproved G(E) ~ Z én (E)

Gn(E) = /1 =0 (E)Gn(E)\/1—v.(E) v/ (E)~0

n

GP(E) > Gr(E)=) V1-v,(E)Gu(E)(1—v,(E))Gn(E) /1, (E)

AG(E) d
e = —d—E;Gn(E)

= Y V10, (E)Gu(B) (1 — v, (E)) Gu(E) /1 v, (E)




Ho = (1 — 0 (B)"V2(Ho(E) — BV, (E))(1 — vl (E)"Y/?

is energy independent if vV, (E)~0

Gn(E) = én(E) = \/1 - U%(E)GH(E)\/l — v, (E)

Ho(E)= Ho = /1 =0, (E)(Ho(E) — Bv,(E)V/1 - v, (E)

) = 1l (B

(= ~(—) (=
U =X = V11— 0L (E) Xy




The eigenfunctions of a non local energy independent potential
can be written
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The eigenfunctions of a non local energy independent potential
can be written

)ZS;_) \/1 — v’ (E) elggnfuncflon of the local
equivalent energy

~(—) ,
X = \/ 1 — ! ( E) dependent potential

v (E) vL(E)




The eigenfunctions of a non local energy independent potential
can be written

eigenfunction of the local
equivalent energy
dependent potential

v (E) v (E)

=
&
|

takes into account terms of interference between
different channels and removes the whole energy

dependence of v (E) v (F)



