



# Evgeny Epelbaum, RUB Nuclear Physics School 2013, Otranto, Italy, May 27-31, 2013 Modern Theory of nuclear forces

#### Lectures 1+2: Foundations

- History
- Introduction
- Chiral Perturbation Theory
- Pionless EFT for two nucleons
- NN beyond effective range expansion
- KSW vs Weinberg
- From effective Lagrangian to nuclear forces

Lecture 3: Chiral nuclear forces: State of the art and applications

**Lecture 4: Nuclear lattice simulations** 





# **Historical overview**

|                                                                                                   | Yukawa's<br>theory | Proca<br>Kemmer<br>Moller<br>Rosenfeld<br>Schwinger<br>Pauli | discovery<br>of pions                                                    | two-pion<br>exchange,<br>meson<br>theory | discovery<br>of heavy<br>mesons |
|---------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------|---------------------------------|
|                                                                                                   | 1930               | 1940                                                         | 1950                                                                     | 1960                                     | 1970                            |
| BE models<br>inverse scattering<br>dispersion theory<br>quark cluster models<br>phenomenology<br> |                    | AV18<br>CD Bonn<br>Nijm I,II<br>Reid93<br>                   | (Chiral) Effective Field Theory<br>Lattice QCD<br>V <sub>low-k</sub><br> |                                          |                                 |
|                                                                                                   | 1980               | 1990                                                         | 2000                                                                     | 2010                                     |                                 |

# **Effective Theories**



# **Effective Theories**



# **Effective Theories**



### → it is crucial to choose a proper resolution !

### **Example from electrostatics**

The goal: compute electric potential generated by a localized charge distribution  $\rho(\vec{r})$ 



### **Example from electrostatics**

The goal: compute electric potential generated by a localized charge distribution  $\rho(\vec{r})$ 

• The ultimate answer:  $V(\vec{R}) \propto \int d^3r \, \frac{\rho(\vec{r})}{|\vec{R} - \vec{r}|}$ 



### **Example from electrostatics**

The goal: compute electric potential generated by a localized charge distribution  $\rho(\vec{r})$ 

- The ultimate answer:  $V(\vec{R}) \propto \int d^3r \, \frac{\rho(\vec{r})}{|\vec{R} \vec{r}|}$
- For  $R \gg a$ , only moments of  $\rho(\vec{r})$  are needed:

$$V(\vec{R}) = \frac{q}{R} + \frac{1}{R^3} \sum_{i} R_i P_i + \frac{1}{6R^5} \sum_{ij} (3R_i R_j - \delta_{ij} R^2) Q_{ij} + \dots$$

with multipole moments ("low-energy constants"):

$$q = \int d^3r \,\rho(\vec{r}), \qquad P_i = \int d^3r \,\rho(\vec{r}) \,r_i, \qquad Q_{ij} = \int d^3r \,\rho(\vec{r})(3r_ir_j - \delta_{ij}r^2)$$



observer

### **Example from electrostatics**

The goal: compute electric potential generated by a localized charge distribution  $\rho(\vec{r})$ 

- The ultimate answer:  $V(\vec{R}) \propto \int d^3r \, \frac{\rho(\vec{r})}{|\vec{R} \vec{r}|}$
- For  $R \gg a$ , only moments of  $\rho(\vec{r})$  are needed:

$$V(\vec{R}) = \frac{q}{R} + \frac{1}{R^3} \sum_{i} R_i P_i + \frac{1}{6R^5} \sum_{ij} (3R_i R_j - \delta_{ij} R^2) Q_{ij} + \dots$$

with multipole moments ("low-energy constants"):

$$\boldsymbol{q} = \int d^3 r \,\rho(\vec{r}), \qquad \boldsymbol{P}_i = \int d^3 r \,\rho(\vec{r}) \,r_i, \qquad \boldsymbol{Q}_{ij} = \int d^3 r \,\rho(\vec{r}) (3r_i r_j - \delta_{ij} r^2)$$

• Getting the right answer without making calculations (and even without knowing  $\rho(\vec{r})$ )



### **Example from electrostatics**

The goal: compute electric potential generated by a localized charge distribution  $\rho(\vec{r})$ 

- The ultimate answer:  $V(\vec{R}) \propto \int d^3r \frac{\rho(\vec{r})}{|\vec{R} \vec{r}|}$
- For  $R \gg a$ , only moments of  $\rho(\vec{r})$  are needed:

$$V(\vec{R}) = \frac{q}{R} + \frac{1}{R^3} \sum_{i} R_i P_i + \frac{1}{6R^5} \sum_{ij} (3R_i R_j - \delta_{ij} R^2) Q_{ij} + \dots$$

with multipole moments ("low-energy constants"):

$$\boldsymbol{q} = \int d^3 r \,\rho(\vec{r}), \qquad \boldsymbol{P}_i = \int d^3 r \,\rho(\vec{r}) \,r_i, \qquad \boldsymbol{Q}_{ij} = \int d^3 r \,\rho(\vec{r}) (3r_i r_j - \delta_{ij} r^2)$$

- Getting the right answer without making calculations (and even without knowing  $ho(\vec{r})$ )
  - write down the most general rotationally invariant (symmetry!) expression for  $V(\vec{R})$



### **Example from electrostatics**

The goal: compute electric potential generated by a localized charge distribution  $\rho(\vec{r})$ 

- The ultimate answer:  $V(\vec{R}) \propto \int d^3r \frac{\rho(\vec{r})}{|\vec{R} \vec{r}|}$
- For  $R \gg a$ , only moments of  $\rho(\vec{r})$  are needed:

$$V(\vec{R}) = \frac{q}{R} + \frac{1}{R^3} \sum_{i} R_i P_i + \frac{1}{6R^5} \sum_{ij} (3R_i R_j - \delta_{ij} R^2) Q_{ij} + \dots$$

with multipole moments ("low-energy constants"):

$$\boldsymbol{q} = \int d^3 r \,\rho(\vec{r}), \qquad \boldsymbol{P}_i = \int d^3 r \,\rho(\vec{r}) \,r_i, \qquad \boldsymbol{Q}_{ij} = \int d^3 r \,\rho(\vec{r}) (3r_i r_j - \delta_{ij} r^2)$$

- Getting the right answer without making calculations (and even without knowing  $\rho(\vec{r})$ )
  - write down the most general rotationally invariant (symmetry!) expression for  $V(\vec{R})$
  - expected natural size of the LECs (dimensional analysis):  $q \sim a^0$ ,  $P_i \sim a$ ,  $Q_{ij} \sim a^2$ , ...



observer

### **Example from electrostatics**

The goal: compute electric potential generated by a localized charge distribution  $\rho(\vec{r})$ 

- The ultimate answer:  $V(\vec{R}) \propto \int d^3r \frac{\rho(\vec{r})}{|\vec{R} \vec{r}|}$
- For  $R \gg a$ , only moments of  $\rho(\vec{r})$  are needed:

$$V(\vec{R}) = \frac{q}{R} + \frac{1}{R^3} \sum_{i} R_i P_i + \frac{1}{6R^5} \sum_{ij} (3R_i R_j - \delta_{ij} R^2) Q_{ij} + \dots$$

with multipole moments ("low-energy constants"):

$$q = \int d^3 r \,\rho(\vec{r}), \qquad P_i = \int d^3 r \,\rho(\vec{r}) \,r_i, \qquad Q_{ij} = \int d^3 r \,\rho(\vec{r}) (3r_i r_j - \delta_{ij} r^2)$$

- Getting the right answer without making calculations (and even without knowing  $\rho(\vec{r})$ )
  - write down the most general rotationally invariant (symmetry!) expression for  $V(\vec{R})$
  - expected natural size of the LECs (dimensional analysis):  $q \sim a^0$ ,  $P_i \sim a$ ,  $Q_{ij} \sim a^2$ , ...
  - measure LECs & compute  $V(\vec{R})$  via expansion in  $\frac{a}{R}$  (power counting, separation of scales)



### NN interaction at different resolutions

virtual quarks glueballs

u

d

valence quarks

u

Resolution scale << 1 fm: probing the structure of the nucleons...

antiquark

quark

### NN interaction at different resolutions



### NN interaction at different resolutions



# **Chiral Perturbation Theory**

Weinberg, Gasser, Leutwyler, Bernard, Kaiser, Meißner, Bijnens, ...

#### Some recent review articles

- Bernard, Kaiser, Meißner, Int. J. Mod. Phys. E4 (1995) 193
- Pich, Rep. Prog. Phys. 58 (1995) 563
- Bernard, Prog. Part. Nucl. Phys. 60 (2007) 82
- Scherer, Prog. Part. Nucl. Phys. 64 (2010) 1

#### **Lecture notes**

- Scherer, Adv. Nucl. Phys. 27 (2003) 277
- Gasser, Lect. Notes Phys. 629 (2004) 1



# Chiral symmetry of QCD



Light quark masses ( $\overline{MS}$ ,  $\mu = 2 \text{ GeV}$ ):

$$m_u = 1.5...3.3 \text{ MeV}$$
  
 $m_d = 3.5...6.0 \text{ MeV}$   $\ll \Lambda_{QCD} \sim 220 \text{ MeV}$ 

 $\longrightarrow \mathcal{L}_{QCD}$  is approx. SU(2)<sub>L</sub> x SU(2)<sub>R</sub> invariant

spontaneous breakdown to  $SU(2)_V \subset SU(2)_L \times SU(2)_R \longrightarrow$  Goldston Bosons (pions)

### Chiral perturbation theory

- Ideal world [ $m_u = m_d = 0$ ], zero-energy limit: non-interacting massless GBs (+ strongly interacting massive hadrons)
- Real world [ $m_u$ ,  $m_d \ll \Lambda_{QCD}$ ], low energy: weakly interacting light GBs (+ strongly interacting massive hadrons)

expand about the ideal world (ChPT)

Pions transform linearly under isospin (isotriplet):  $|\pi_1\rangle = \frac{|\pi^+\rangle - |\pi^-\rangle}{\sqrt{2}}, \quad |\pi_2\rangle = \frac{|\pi^+\rangle + |\pi^-\rangle}{\sqrt{2}i}, \quad |\pi^3\rangle = |\pi^0\rangle$ 

Pions have to transform nonlinearly under chiral rotations

 $(SU(2)_L \times SU(2)_R \sim SO(4) \longrightarrow$  pion fields as coordinates on a 4-dimentional sphere)

Nonlinear field redefinitions of the kind  $\vec{\pi} \rightarrow \vec{\pi}' = \vec{\pi} F[\vec{\pi}], F[0] = 1$  do not change physics  $\rightarrow$  all nonlinear realizations of  $\chi$  symmetry are equivalent  $\rightarrow$  use most convenient one! Haag '58; Coleman, Callan, Wess, Zumino '69

Pions transform linearly under isospin (isotriplet):  $|\pi_1\rangle = \frac{|\pi^+\rangle - |\pi^-\rangle}{\sqrt{2}}, \quad |\pi_2\rangle = \frac{|\pi^+\rangle + |\pi^-\rangle}{\sqrt{2}i}, \quad |\pi^3\rangle = |\pi^0\rangle$ 

Pions have to transform nonlinearly under chiral rotations

 $(SU(2)_L \times SU(2)_R \sim SO(4) \longrightarrow$  pion fields as coordinates on a 4-dimentional sphere)

Nonlinear field redefinitions of the kind  $\vec{\pi} \rightarrow \vec{\pi}' = \vec{\pi} F[\vec{\pi}], F[0] = 1$  do not change physics  $\rightarrow$  all nonlinear realizations of  $\chi$  symmetry are equivalent  $\rightarrow$  use most convenient one! Haag '58; Coleman, Callan, Wess, Zumino '69

# Example of an explicit construction: Infinitesimal SO(4) rotation of the 4-vector $(\pi_1, \pi_2, \pi_3, \sigma)$ : $\begin{pmatrix} \pi \\ \sigma \end{pmatrix} \xrightarrow{SO(4)} \begin{pmatrix} \pi' \\ \sigma' \end{pmatrix} = \left[ \mathbf{1}_{4 \times 4} + \sum_{i=1}^3 \theta_i^V V_i + \sum_{i=1}^3 \theta_i^A A_i \right] \begin{pmatrix} \pi \\ \sigma \end{pmatrix}$ where: $\sum_{i=1}^{3} \theta_{i}^{V} V_{i} = \begin{pmatrix} 0 & -\theta_{3}^{V} & \theta_{2}^{V} & 0 \\ \theta_{3}^{V} & 0 & -\theta_{1}^{V} & 0 \\ -\theta_{2}^{V} & \theta_{1}^{V} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad \sum_{i=1}^{3} \theta_{i}^{A} A_{i} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \theta_{2}^{A} \\ 0 & 0 & 0 & \theta_{3}^{A} \\ -\theta_{1}^{A} & -\theta_{2}^{A} & -\theta_{3}^{A} & 0 \end{pmatrix}$ Switch to nonlinear realization: only 3 out of 4 components of the vector $(\pi, \sigma)$ are independent, i.e. $\pi^2 + \sigma^2 = F^2$ $\pi \xrightarrow{\theta^{V}} \pi' = \pi + \theta^{V} \times \pi, \qquad \longleftarrow \quad \text{linear under } \vec{\theta}^{V}$ $\pi \xrightarrow{\theta^{A}} \pi' = \pi + \theta^{A} \sqrt{F^{2} - \pi^{2}} \qquad \longleftarrow \quad \text{nonlinear under } \vec{\theta}^{A}$

Can be rewritten in terms of a 2 x 2 matrix:

$$U = \frac{1}{F} \left( \sigma \, \mathbf{1}_{2 \times 2} + i \boldsymbol{\pi} \cdot \boldsymbol{\tau} \right) \xrightarrow{\text{nonlinear realization}} U = \frac{1}{F} \left( \sqrt{F^2 - \boldsymbol{\pi}^2} \, \mathbf{1}_{2 \times 2} + i \boldsymbol{\pi} \cdot \boldsymbol{\tau} \right)$$
  
Chiral rotations:  $U \longrightarrow U' = LUR^{\dagger}$  with  $L = \exp[-i(\boldsymbol{\theta}^V - \boldsymbol{\theta}^A) \cdot \boldsymbol{\tau}/2], \quad R = \exp[-i(\boldsymbol{\theta}^V + \boldsymbol{\theta}^A) \cdot \boldsymbol{\tau}/2]$ 

Can be rewritten in terms of a 2 x 2 matrix:

 $U = \frac{1}{F} \left( \sigma \, \mathbf{1}_{2 \times 2} + i \boldsymbol{\pi} \cdot \boldsymbol{\tau} \right) \xrightarrow{\text{nonlinear realization}} U = \frac{1}{F} \left( \sqrt{F^2 - \boldsymbol{\pi}^2} \, \mathbf{1}_{2 \times 2} + i \boldsymbol{\pi} \cdot \boldsymbol{\tau} \right)$ Chiral rotations:  $U \longrightarrow U' = LUR^{\dagger}$  with  $L = \exp[-i(\boldsymbol{\theta}^V - \boldsymbol{\theta}^A) \cdot \boldsymbol{\tau}/2], \quad R = \exp[-i(\boldsymbol{\theta}^V + \boldsymbol{\theta}^A) \cdot \boldsymbol{\tau}/2]$ 

**Derivative expansion for the effective Lagrangian**  $\mathcal{L}_{eff} = \mathcal{L}_{\pi}^{(2)} + \mathcal{L}_{\pi}^{(4)} + \dots$ 

0 derivatives:  $UU^{\dagger} = U^{\dagger}U = 1$  - irrelevant  $\leftarrow$  only derivative couplings of GBs

2 derivatives:  $\operatorname{Tr}(\partial_{\mu}U\partial^{\mu}U^{\dagger}) \xrightarrow{g\in G} \operatorname{Tr}(L\partial_{\mu}UR^{\dagger}R\,\partial^{\mu}U^{\dagger}L^{\dagger}) = \operatorname{Tr}(\partial_{\mu}U\partial^{\mu}U^{\dagger})$ 

 $\longrightarrow \mathcal{L}_{\pi}^{(2)} = \frac{F^2}{4} \operatorname{Tr}(\partial_{\mu} U \partial^{\mu} U^{\dagger})$ 

4 derivatives act only on the next U 4 derivatives:  $[\text{Tr}(\partial_{\mu}U\partial^{\mu}U^{\dagger})]^{2}$ ,  $\text{Tr}(\partial_{\mu}U\partial_{\nu}U^{\dagger})\text{Tr}(\partial^{\mu}U\partial^{\nu}U^{\dagger})$ ,  $\text{Tr}(\partial_{\mu}U\partial^{\mu}U^{\dagger}\partial_{\nu}U\partial^{\nu}U^{\dagger})$ (terms with  $\partial_{\mu}\partial_{\nu}U$ ,  $\partial_{\mu}\partial_{\nu}\partial_{\rho}U$ ,  $\partial_{\mu}\partial_{\nu}\partial_{\rho}\partial_{\sigma}U$  can be eliminated via EOM/partial integration) ...

#### **Chiral symmetry breaking terms**

 $\delta \mathcal{L}_{\text{QCD}} = -\bar{q}_L \mathcal{M} q_R - \bar{q}_R \mathcal{M}^{\dagger} q_L \text{ can be made } \chi \text{-invariant by requiring: } \mathcal{M} \to L \mathcal{M} R^{\dagger}$   $\longrightarrow \text{ construct all possible } \chi \text{-invariant terms involving } \mathcal{M} \text{ and freeze out } \mathcal{M} \text{ at the end}$   $\text{LO term: } \delta \mathcal{L}_{\text{SB}} = \frac{BF^2}{2} \text{Tr}[\mathcal{M} U^{\dagger} + U \mathcal{M}^{\dagger}] = 2BF^2 m_q - Bm_q \vec{\pi}^2 + \dots \implies M_{\pi}^2 = 2m_q B + \mathcal{O}(m_q^2)$ 

#### The leading and subleading effective Lagrangians for pions

$$\mathcal{L}_{\pi}^{(2)} = \frac{F^{2}}{4} \langle \partial_{\mu} U \partial^{\mu} U^{\dagger} + 2B(\mathcal{M}U + \mathcal{M}U^{\dagger}) \rangle,$$

$$\mathcal{L}_{\pi}^{(4)} = \frac{l_{1}}{4} \langle \partial_{\mu} U \partial^{\mu} U^{\dagger} \rangle^{2} + \frac{l_{2}}{4} \langle \partial_{\mu} U \partial_{\nu} U^{\dagger} \rangle \langle \partial^{\mu} U \partial^{\nu} U^{\dagger} \rangle + \frac{l_{3}}{16} \langle 2B\mathcal{M}(U + U^{\dagger}) \rangle^{2} + \dots$$

$$- \frac{l_{7}}{16} \langle 2B\mathcal{M}(U - U^{\dagger}) \rangle^{2} \qquad \text{Gasser, Leutwyler '84}$$

#### Low-energy constants of $\mathcal{L}^{(2)}_{\pi}$

• *F* is related to the pion decay constant  $F_{\pi}$ :  $\langle 0|J_{A_{\mu}}^{i}(0)|\pi^{j}(\vec{p}\,)\rangle = ip_{\mu}F_{\pi}\delta^{ij}$ axial current from  $\mathcal{L}_{\pi}^{(2)}$ :  $J_{A\mu}^{i} = i \operatorname{Tr}[\tau^{i}(U^{\dagger}\partial_{\mu}U - U\partial_{\mu}U^{\dagger})] = -F\partial_{\mu}\pi^{i} + \dots$ 

 $\longrightarrow$  F is  $F_{\pi}$  in the chiral limit:  $F_{\pi} = F + \mathcal{O}(m_q) \simeq 92.4 \text{ MeV}$ 

• B is related to the chiral quark condensate

#### Tree-level multi-pion connected diagrams from $\mathcal{L}^{(2)}_{\pi}$

 $Q^2$   $Q^2$   $Q^2$ 

$$U(\pi) = \mathbf{1}_{2\times 2} + i\frac{\tau \cdot \pi}{F} - \frac{\pi^2}{2F^2} - i\alpha \frac{\pi^2 \tau \cdot \pi}{F^3} + \mathcal{O}(\pi^4) \longrightarrow \mathcal{L}_{\pi}^{(2)} = \frac{\partial_{\mu} \pi \cdot \partial^{\mu} \pi}{2} - \frac{M^2 \pi^2}{2} + \frac{(\partial_{\mu} \pi \cdot \pi)^2}{2F^2} - \frac{M^2 \pi^4}{8F^2} + \dots$$

$$= \text{ all diagrams scale as } Q^2$$

$$= \text{ insertions from } \mathcal{L}_{\pi}^{(4)}, \mathcal{L}_{\pi}^{(6)}, \dots$$

$$= \text{ suppressed by powers of } Q^2$$

$$= \text{ remarkable predictive power!}$$

remarkable predictive power!

W

Tree-level diagrams with higher-order vertices are suppressed at low energy.

Typical example of a loop integral:

$$I = \int \frac{d^4l}{(2\pi)^4} \frac{i}{l^2 - M^2 + i\epsilon} \xrightarrow{\text{DR}} \mu^{4-d} \int \frac{d^dl}{(2\pi)^d} \frac{i}{l^2 - M^2 + i\epsilon}$$
  
=  $\frac{M^2}{16\pi^2} \ln\left(\frac{M^2}{\mu^2}\right) + 2M^2 L(\mu) + \dots$  terms vanishing in d=4

The infinite quantity  $L(\mu) = \frac{\mu^{d-4}}{16\pi^2} \left( \frac{1}{d-4} + \text{const} \right)$  can be absorbed into  $l_i$ 's of  $\mathcal{L}_{\pi}^{(4)}$ :  $l_i \to l_i^{r}(\mu)$ 

 $\mathcal{L}_{\pi}^{(4)}$ 

<u>The bottom line</u>: after renormalization, all momenta flowing through loop graphs are soft,  $\sim Q$ 

Tree-level diagrams with higher-order vertices are suppressed at low energy.

Typical example of a loop integral:

$$I = \int \frac{d^4l}{(2\pi)^4} \frac{i}{l^2 - M^2 + i\epsilon} \xrightarrow{\text{DR}} \mu^{4-d} \int \frac{d^dl}{(2\pi)^d} \frac{i}{l^2 - M^2 + i\epsilon}$$
$$= \frac{M^2}{16\pi^2} \ln\left(\frac{M^2}{\mu^2}\right) + 2M^2 L(\mu) + \dots \checkmark \text{ terms vanishing in } d=$$

The infinite quantity  $L(\mu) = \frac{\mu^{d-4}}{16\pi^2} \left( \frac{1}{d-4} + \text{const} \right)$  can be absorbed into  $l_i$ 's of  $\mathcal{L}_{\pi}^{(4)}$ :  $l_i \to l_i^{r}(\mu)$ 

 $\mathcal{L}_{\pi}^{(4)}$ 

<u>The bottom line</u>: after renormalization, all momenta flowing through loop graphs are soft,  $\sim Q$ 



#### **Examples**:

$$D = 2 + 2L + \sum_{d} N_d(d-2)$$



$$D = 2 + 0 + 2 = 4$$



 $D = 2 + 2 + 0 = 4 \qquad D = 2 + 4 + 0 = 6$ 

#### **Examples**:



Scattering amplitude is obtained via an expansion in  $Q/\Lambda_{\chi}$ . What is the value of  $\Lambda_{\chi}$ ?

• Chiral expansion breaks down for  $E \sim M_{
ho} \rightarrow \Lambda_{\chi} \sim M_{
ho} = 770 \text{ MeV}$ 

#### **Examples**:



Scattering amplitude is obtained via an expansion in  $Q/\Lambda_{\chi}$ . What is the value of  $\Lambda_{\chi}$ ?

- Chiral expansion breaks down for  $E \sim M_{\rho} \rightarrow \Lambda_{\chi} \sim M_{\rho} = 770 \text{ MeV}$
- An upper bound for  $\Lambda_\chi$  from pion loops:  $\Lambda_\chi \sim 4\pi F_\pi$  Manohar, Georgi '84

$$\frac{M^2}{F^2} \int \frac{d^4l}{(2\pi)^4} \frac{i}{l^2 - M^2 + i\epsilon} \xrightarrow{\text{DR}} M^2 \frac{M^2}{(4\pi F)^2} \left[ \ln \frac{M^2}{\mu^2} + 2\mu^{d-4} \left( \frac{1}{d-4} + \text{const} \right) \right]$$

#### **Examples**:



Scattering amplitude is obtained via an expansion in  $Q/\Lambda_{\chi}$ . What is the value of  $\Lambda_{\chi}$ ?

- Chiral expansion breaks down for  $E \sim M_{\rho} \rightarrow \Lambda_{\chi} \sim M_{\rho} = 770 \text{ MeV}$
- An upper bound for  $\Lambda_{\chi}$  from pion loops:  $\Lambda_{\chi} \sim 4\pi F_{\pi}$  Manohar, Georgi '84

$$\frac{M^2}{F^2} \int \frac{d^4l}{(2\pi)^4} \frac{i}{l^2 - M^2 + i\epsilon} \xrightarrow{\text{DR}} M^2 \frac{M^2}{(4\pi F)^2} \left[ \ln \frac{M^2}{\mu^2} + 2\mu^{d-4} \left( \frac{1}{d-4} + \text{const} \right) \right]$$

dimensional arguments

#### Examples:



Scattering amplitude is obtained via an expansion in  $Q/\Lambda_{\chi}$ . What is the value of  $\Lambda_{\chi}$ ?

- Chiral expansion breaks down for  $E \sim M_{
  ho} \rightarrow \Lambda_{\chi} \sim M_{
  ho} = 770 \; {
  m MeV}$
- An upper bound for  $\Lambda_\chi$  from pion loops:  $\Lambda_\chi \sim 4\pi F_\pi$  Manohar, Georgi '84

$$\frac{M^2}{F^2} \int \frac{d^4l}{(2\pi)^4} \frac{i}{l^2 - M^2 + i\epsilon} \xrightarrow{\text{DR}} M^2 \frac{M^2}{(4\pi F)^2} \left[ \ln \frac{M^2}{\mu^2} + 2\mu^{d-4} \left( \frac{1}{d-4} + \text{const} \right) \right]$$

angular integration in 4 dimensions

dimensional arguments

$$\int \frac{d^d l}{(2\pi)^d} = \int \frac{d\Omega_d}{(2\pi)^d} \int l^{d-1} dl = \frac{1}{2^{d-1} \pi^{d/2} \Gamma(d/2)} \int l^{d-1} dl \xrightarrow{d \to 4} \frac{2}{(4\pi)^2} \int l^3 dl$$

#### **Chiral Perturbation Theory**

 Most general effective Lagrangian for pions [and matter fields], chiral symmetry!

$$\mathcal{L}_{\pi}^{(2)} = \frac{F^2}{4} \langle \partial_{\mu} U \partial^{\mu} U^{\dagger} + 2B(\mathcal{M}U + \mathcal{M}U^{\dagger}) \rangle,$$
  
$$\mathcal{L}_{\pi}^{(4)} = \frac{l_1}{4} \langle \partial_{\mu} U \partial^{\mu} U^{\dagger} \rangle^2 + \frac{l_2}{4} \langle \partial_{\mu} U \partial_{\nu} U^{\dagger} \rangle \langle \partial^{\mu} U \partial^{\nu} U^{\dagger} \rangle + \dots$$

#### **Electric potential**

Most general expression for the electric potential (rotational invariance)

#### **Chiral Perturbation Theory**

 Most general effective Lagrangian for pions [and matter fields], chiral symmetry!

$$\mathcal{L}_{\pi}^{(2)} = \frac{F^2}{4} \langle \partial_{\mu} U \partial^{\mu} U^{\dagger} + 2B(\mathcal{M}U + \mathcal{M}U^{\dagger}) \rangle,$$
  
$$\mathcal{L}_{\pi}^{(4)} = \frac{l_1}{4} \langle \partial_{\mu} U \partial^{\mu} U^{\dagger} \rangle^2 + \frac{l_2}{4} \langle \partial_{\mu} U \partial_{\nu} U^{\dagger} \rangle \langle \partial^{\mu} U \partial^{\nu} U^{\dagger} \rangle + \dots$$

• The size of (ren.) LECs governed by the hard scale  $\Lambda_{\chi} \sim 1$  GeV, LECs can be calculated (lattice-QCD) or fixed from experiment

#### **Electric potential**

Most general expression for the electric potential (rotational invariance)

LECs (multipoles) governed by the size *a* of  $\rho(\vec{r})$ , they can be calculated or determined from exp.

#### **Chiral Perturbation Theory**

 Most general effective Lagrangian for pions [and matter fields], chiral symmetry!

$$\mathcal{L}_{\pi}^{(2)} = \frac{\mathbf{F}^{2}}{4} \langle \partial_{\mu} U \partial^{\mu} U^{\dagger} + 2B(\mathcal{M}U + \mathcal{M}U^{\dagger}) \rangle,$$
  
$$\mathcal{L}_{\pi}^{(4)} = \frac{\mathbf{l}_{1}}{4} \langle \partial_{\mu} U \partial^{\mu} U^{\dagger} \rangle^{2} + \frac{\mathbf{l}_{2}}{4} \langle \partial_{\mu} U \partial_{\nu} U^{\dagger} \rangle \langle \partial^{\mu} U \partial^{\nu} U^{\dagger} \rangle + \dots$$

- The size of (ren.) LECs governed by the hard scale  $\Lambda_{\chi} \sim 1$  GeV, LECs can be calculated (lattice-QCD) or fixed from experiment
- Separation of scales: [soft]  $Q \sim M_{\pi} \ll \Lambda_{\chi} \sim M_{\rho}$  [hard]

$$M_{\omega}$$
 hard scales  
$$M_{\rho}$$
 mass gap  
$$M_{\pi}$$
 soft scale

#### **Electric potential**

Most general expression for the electric potential (rotational invariance)

LECs (multipoles) governed by the size *a* of  $\rho(\vec{r})$ , they can be calculated or determined from exp.

[soft]  $1/R \ll 1/a$  [hard]

#### **Chiral Perturbation Theory**

 Most general effective Lagrangian for pions [and matter fields], chiral symmetry!

$$\mathcal{L}_{\pi}^{(2)} = \frac{\mathbf{F}^{2}}{4} \langle \partial_{\mu} U \partial^{\mu} U^{\dagger} + 2B(\mathcal{M}U + \mathcal{M}U^{\dagger}) \rangle,$$
  
$$\mathcal{L}_{\pi}^{(4)} = \frac{\mathbf{l}_{1}}{4} \langle \partial_{\mu} U \partial^{\mu} U^{\dagger} \rangle^{2} + \frac{\mathbf{l}_{2}}{4} \langle \partial_{\mu} U \partial_{\nu} U^{\dagger} \rangle \langle \partial^{\mu} U \partial^{\nu} U^{\dagger} \rangle + \dots$$

- The size of (ren.) LECs governed by the hard scale  $\Lambda_{\chi} \sim 1 \text{ GeV}$ , LECs can be calculated (lattice-QCD) or fixed from experiment
- Separation of scales: [soft]  $Q \sim M_{\pi} \ll \Lambda_{\chi} \sim M_{\rho}$  [hard]



• Chiral expansion of S-matrix elements (Feynman graphs, power counting, renorm.)

$$\begin{array}{c} \overbrace{p_{2}}^{p_{3}}, \overbrace{p_{1}}^{p_{n-2}}, \overbrace{p_{n}}^{p_{n-2}} = E^{D} f\left(\frac{E}{\mu}, g^{r}\right) \end{array}$$

#### **Electric potential**

Most general expression for the electric potential (rotational invariance)

LECs (multipoles) governed by the size *a* of  $\rho(\vec{r})$ , they can be calculated or determined from exp.

[soft]  $1/R \ll 1/a$  [hard]

Multipole expansion for  $V(\vec{R})$  in powers of a/R

### Inclusion of the nucleons

Lowest-order  $(\mathcal{O}(|\vec{q}|) = \mathcal{O}(M_{\pi}))$  effective Lagrangian for a single nucleon:

known functions of the pion fields

$$\mathcal{L}_{\pi N}^{(1)} = \bar{N} \left( i \gamma^{\mu} D_{\mu} - m + \frac{g_A}{2} \gamma^{\mu} \gamma_5 u_{\mu} \right) N$$

<u>Problem (?)</u>: new hard mass scale  $m \rightarrow$  power counting ??



### Inclusion of the nucleons



### Inclusion of the nucleons


### Inclusion of the nucleons



### (Some) Current topics in and beyond ChPT

#### Resumming leading Log's

Weinberg, Bijnens, Colangelo, Bissiger, Fuhrer, Kivel, Polyakov, Vladimirov, ...

Leading logs can be computed for higher loops, all orders possible in certain cases

#### Combining ChPT and dispersion theory

Colangelo, Gasser, Leutwyler, Bernard, Meißner, Descotes Genon, Knecht, Stern, Pelaez, Lutz, ...

#### Covariant baryon ChPT

Becher, Leutwyler, Bernard, Meißner, Kubis, Gegelia, Scherer, Higa, Robilotta, ...

HB expansion has a very limited convergence range for some types of diagrams  $\rightarrow$  better to resum 1/m recoil corrections up to infinite order (IR-ChPT). Alternatively, use manifestly covariant framework + appropriate subtraction (EOMS) to enforce power counting



#### • ChPT with explicit spin-3/2 degrees of freedom

Hemmert, Bernard, Fettes, Meißner, Pascalutsa, Vanderhaeghen, Kaiser, Weise, Gegelia, Scherer, EE, Krebs, ...

 $\Delta$ (1232) has low excitation energy ~ 300 MeV  $\rightarrow$  better to include as an explicit DOF...

#### ChPT and/for lattice QCD

Colangelo, Beane, Savage, Jiang, Tiburzi, Procura, Weise, Walker Loud, Bernard, Meißner, Rusetsky, Hemmert, ...

Chiral extrapolations, finite volume corrections, quenched ChPT, ...

#### Unitarized ChPT and resonance physics

Oeller, Meißner, Dobado, Pelaez, Oset, Hanhart, Llanes-Estrada, Kaiser, Weise, ,...

# From one nucleon to few: Not so easy... 1, 2,...MANY

# From one nucleon to few: Not so easy... 1, 2,...MANY



The presence of shallow bound states (<sup>2</sup>H, <sup>3</sup>H, <sup>3</sup>He, <sup>4</sup>He, ...) indicates breakdown of perturbation theory even at very low energy!

How to organize EFT in the non-perturbative regime?









# **Pionless effective field theory**

Goal: EFT for NN scattering at typical momenta  $Q \ll M_{\pi}$ 

Formulation

- Kaplan, Savage, Wise, Phys. Lett. B424 (98) 390; Nucl. Phys. B534 (98) 329
- Bedaque, Hammer, van Kolck, Phys. Rev. Lett. 92 (99) 463; Nucl. Phys. A646 (99) 444

(Some) recent review articles

- Beane et al., arXiv:nucl-th/0008064, in Boris loffe Festschrift, ed. By M. Shifman, World Scientific
- Bedaque, van Kolck, Ann. Rev. Nucl. Part. Sci. 52 (02) 339
- Braaten, Hammer, Phys. Rept. 428 (06) 259
- Hammer, Platter, arXiv:1102.3789

### **Effective Range Expansion**

Blatt, Jackson '49; Bethe '49

| Nonrelativistic nucleon-nucleon                           | n scatte | ring (uncou               | pled case):                         |     | effective-range function                  |
|-----------------------------------------------------------|----------|---------------------------|-------------------------------------|-----|-------------------------------------------|
| $S_l(k) = e^{2i\delta_l(k)} = 1 + i\frac{mk}{2\pi}T_l(k)$ | where    | $T_l(k) = \frac{4\pi}{m}$ | $\frac{k^{2l}}{F_l(k) - ik^{2l+1}}$ | and | $F_l(k) \equiv k^{2l+1} \cot \delta_l(k)$ |

### Effective Range Expansion

Blatt, Jackson '49; Bethe '49

Nonrelativistic nucleon-nucleon scattering (uncoupled case):  

$$S_{l}(k) = e^{2i\delta_{l}(k)} = 1 + i\frac{mk}{2\pi}T_{l}(k) \text{ where } T_{l}(k) = \frac{4\pi}{m}\frac{k^{2l}}{F_{l}(k) - ik^{2l+1}} \text{ and } F_{l}(k) \equiv k^{2l+1}\cot\delta_{l}(k)$$

If V(r) satisfies certain conditions,  $F_l$  is a meromorphic function of  $k^2$  near the origin



The analyticity domain depends on the range  $M^{-1}$  of V(r) defined as  $M = \min(\mu)$ such that  $\int_{R>0}^{\infty} |V(r)| e^{\mu r} dr = \infty$  (for strongly interacting nucleons  $M = M_{\pi}$ )

### **Pionless EFT: natural scattering length**

Effective Lagrangian: for  $Q \ll M_{\pi}$  only point-like interactions

$$\mathcal{L}_{\text{eff}} = N^{\dagger} \left( i \partial_0 + \frac{\vec{\nabla}^2}{2m} \right) N - \frac{1}{2} C_1^0 (N^{\dagger} N)^2 - \frac{1}{2} C_2^0 (N^{\dagger} \vec{\sigma} N)^2 - \frac{1}{4} C_1^2 (N^{\dagger} \vec{\nabla}^2 N) (N^{\dagger} N) + \text{h.c.} + \dots$$

Scattering amplitude (S-waves):

$$S = e^{2i\delta} = 1 - i\left(\frac{km}{2\pi}\right)T, \qquad T = -\frac{4\pi}{m}\frac{1}{k\cot\delta - ik} = -\frac{4\pi}{m}\frac{1}{\left(-\frac{1}{a} + \frac{1}{2}r_0k^2 + v_2k^4 + v_3k^6 + \dots\right) - ik}$$

### **Pionless EFT: natural scattering length**

Effective Lagrangian: for  $Q \ll M_{\pi}$  only point-like interactions

$$\mathcal{L}_{\text{eff}} = N^{\dagger} \left( i \partial_0 + \frac{\vec{\nabla}^2}{2m} \right) N - \frac{1}{2} C_1^0 (N^{\dagger} N)^2 - \frac{1}{2} C_2^0 (N^{\dagger} \vec{\sigma} N)^2 - \frac{1}{4} C_1^2 (N^{\dagger} \vec{\nabla}^2 N) (N^{\dagger} N) + \text{h.c.} + \dots$$

Scattering amplitude (S-waves):

$$S = e^{2i\delta} = 1 - i\left(\frac{km}{2\pi}\right)T, \qquad T = -\frac{4\pi}{m}\frac{1}{k\cot\delta - ik} = -\frac{4\pi}{m}\frac{1}{\left(-\frac{1}{a} + \frac{1}{2}r_0k^2 + v_2k^4 + v_3k^6 + \dots\right) - ik}$$

#### Natural case

$$|a| \sim M_{\pi}^{-1}, \ |r| \sim M_{\pi}^{-1}, \ \dots \quad \twoheadrightarrow \quad T = T_0 + T_1 + T_2 + \dots = \frac{4\pi a}{m} \begin{bmatrix} 1 - iak + \left(\frac{ar_0}{2} - a^2\right)k^2 + \dots \end{bmatrix}$$



Using e.g. dimensional or subtractive ragularization yields:

- perturbative expansion for *T*;
- scaling of the LECs:  $C^i \sim Q^0$



### **Pionless EFT: natural scattering length**

Effective Lagrangian: for  $Q \ll M_{\pi}$  only point-like interactions

 $T_0 = \sum c^0$   $T_1 = \sum \int d^3l \, \frac{m}{p^2 + l^2 + i\epsilon} \sim mQ$ 

 $T_2 = + + + +$ 

$$\mathcal{L}_{\text{eff}} = N^{\dagger} \left( i \partial_0 + \frac{\vec{\nabla}^2}{2m} \right) N - \frac{1}{2} C_1^0 (N^{\dagger} N)^2 - \frac{1}{2} C_2^0 (N^{\dagger} \vec{\sigma} N)^2 - \frac{1}{4} C_1^2 (N^{\dagger} \vec{\nabla}^2 N) (N^{\dagger} N) + \text{h.c.} + \dots$$

Scattering amplitude (S-waves):

$$S = e^{2i\delta} = 1 - i\left(\frac{km}{2\pi}\right)T, \qquad T = -\frac{4\pi}{m}\frac{1}{k\cot\delta - ik} = -\frac{4\pi}{m}\frac{1}{\left(-\frac{1}{a} + \frac{1}{2}r_0k^2 + v_2k^4 + v_3k^6 + \dots\right) - ik}$$

#### Natural case

$$|a| \sim M_{\pi}^{-1}, \ |r| \sim M_{\pi}^{-1}, \ \dots \quad \twoheadrightarrow \quad T = T_0 + T_1 + T_2 + \dots = \frac{4\pi a}{m} \begin{bmatrix} 1 - iak + \left(\frac{ar_0}{2} - a^2\right)k^2 + \dots \end{bmatrix}$$



Using e.g. dimensional or subtractive ragularization yields:

- perturbative expansion for *T*;
- scaling of the LECs:  $C^i \sim Q^0$

In reality:  $a_{^{1}S_{0}} = -23.741 \text{ fm} = -16.6 M_{\pi}^{-1}$   $a_{^{3}S_{1}} = -5.42 \text{ fm} = 3.8 M_{\pi}^{-1}$ 

### Pionless EFT: large scattering length

#### • Large scattering length: $|a| \gg M_{\pi}^{-1}$ Kaplan, Savage, Wise '97

Keep ak fixed, i.e. count  $a \sim Q^{-1}$ :

$$T = -\frac{4\pi}{m} \frac{1}{\left(-\frac{1}{a} + \frac{1}{2}r_0k^2 + v_2k^4 + v_3k^6 + \dots\right) - ik} = \frac{4\pi}{m} \frac{1}{(1+iak)} \begin{bmatrix} a + \frac{ar_0}{2(a^{-1} + ik)}k^2 + \dots \\ c + \frac{2(a^{-1} + ik)}{2(a^{-1} + ik)}k^2 + \dots \end{bmatrix}.$$

<u>Notice</u>: perturbation theory for T breaks down as it has a pole at  $|k| \sim |a|^{-1} \ll M_{\pi}$ 

KSW expansion (DR+PDS or subtractive renormalization  $C^0 \sim 1/Q, \ C^2 \sim 1/Q^2, \ \cdots$ )

$$T^{(-1)} = \underbrace{}_{C^{0}} + \underbrace{}_{C^{0}} + \underbrace{}_{C^{0}} + \underbrace{}_{C^{0}} = \frac{-C^{0}(\mu)}{\left[1 + \frac{C^{0}(\mu)m}{4\pi}(\mu + ik)\right]},$$
$$T^{(0)} = \underbrace{}_{C^{2}} = \frac{-C^{2}(\mu)k^{2}}{\left[1 + \frac{C^{0}(\mu)m}{4\pi}(\mu + ik)\right]^{2}}$$
where: 
$$= \underbrace{}_{C^{2}} + \underbrace{}_$$

### **Pionless EFT: (some) applications**

- Astrophysical reactions Butler, Chen, Kong, Ravndal, Rupak, Savage, ...
- Efimov physics and universality in few-body systems with large 2-body scatt. length (e.g. Phillips/Tjon "lines") Braaten, Hammer, Meißner, Platter, von Stecher, Schmidt, Moroz, ...
- Halo-nuclei Bedaque, Bertulani, Hammer, Higa, van Kolck, Phillips, ...
- Many other topics...



Efimov effect (3-body spectrum)



Phillips line

Braaten, Hammer, Phys. Rept 428 (06) 259

# Two nucleons beyond ERE

#### Goal: EFT for NN scattering at typical momenta Q ~ $M_{\pi}$

From pion-less to pion-full: possible scenarios

KSW: treat pion exchange in perturbation theory straightforward, analytical calculations, but poor convergence...



#### Weinberg: both LO contacts & OPEP must be resummed

numerical results, phenomenologically successful, but renormalization rather intransparent...



#### How to judge whether pion dynamics is properly included?

### Modified Effective Range Expansion (MERE)

Both ERE &  $\pi$ -EFT provide an expansion of NN observables in powers of  $k/M_{\pi}$ , have the same validity range and incorporate the same physics

 $\rightarrow$  ERE ~ $\pi$ -EFT

#### Beyond $\pi$ -less EFT: higher energies, <u>LETs</u>...

Two-range potential  $V(r) = V_L(r) + V_S(r), M_L^{-1} \gg M_H^{-1}$ 

•  $F_l(k^2)$  is meromorphic in  $|k| < M_L/2$ 

• 
$$F_l^M(k^2) \equiv M_l^L(k) + \frac{k^{2l+1}}{|f_l^L(k)|^2} \cot\left[\delta_l(k) - \delta_l^L(k)\right]$$

$$\int_{l}^{L}(k) = \lim_{r \to 0} \left(\frac{l!}{(2l)!}(-2ikr)^l f_l^L(k,r)\right)$$
Jost function for  $V_L(r)$ 

$$M_l^L(k) = Re\left[\frac{(-ik/2)^l}{l!}\lim_{r \to 0} \left(\frac{d^{2l+1}}{dr^{2l+1}}\frac{r^l f_l^L(k,r)}{f_l^L(k)}\right)\right]$$
Per construction,  $F_l^M$  reduces to  $F_l$  for  $V_L = 0$ 

Per construction,  $F_l^{M}$  reduces to  $F_l$  for  $V_L$  = and is meromorphic in  $|k| < M_H/2$ 



modified effective range function
 Haeringen, Kok '82



### **MERE and Low-Energy Theorems**

#### **Example: proton-proton scattering**

$$F_{C}(k^{2}) = C_{0}^{2}(\eta) k \operatorname{cot}[\delta(k) - \delta^{C}(k)] + 2k \eta h(\eta) = -\frac{1}{a^{M}} + \frac{1}{2}r^{M}k^{2} + v_{2}^{M}k^{4} + \dots$$
where  $\delta^{C} \equiv \arg \Gamma(1 + i\eta)$ ,  $\eta = \frac{m}{2k}\alpha$ ,  $C_{0}^{2}(\eta) = \frac{2\pi\eta}{e^{2\pi\eta} - 1}$ ,  $h(\eta) = \operatorname{Re}\left[\Psi(i\eta)\right] - \ln(\eta)$ 
Coulomb phase shift Sommerfeld factor Digamma function  $\Psi(z) \equiv \Gamma'(z)/\Gamma(z)$ 

### **MERE and Low-Energy Theorems**

#### **Example: proton-proton scattering**

$$F_{C}(k^{2}) = C_{0}^{2}(\eta) \ k \ \cot[\delta(k) - \delta^{C}(k)] + 2k \ \eta \ h(\eta) = -\frac{1}{a^{M}} + \frac{1}{2}r^{M}k^{2} + v_{2}^{M}k^{4} + \dots$$
where  $\delta^{C} \equiv \arg \Gamma(1 + i\eta)$ ,  $\eta = \frac{m}{2k}\alpha$ ,  $C_{0}^{2}(\eta) = \frac{2\pi\eta}{e^{2\pi\eta} - 1}$ ,  $h(\eta) = \operatorname{Re}\left[\Psi(i\eta)\right] - \ln(\eta)$ 
Coulomb phase shift Sommerfeld factor Digamma function  $\Psi(z) \equiv \Gamma'(z)/\Gamma(z)$ 

#### **MERE and low-energy theorems**

Long-range forces impose correlations between the ER coefficients (low-energy theorems) Cohen, Hansen '99; Steele, Furnstahl '00

The emergence of the LETs can be understood in the framework of MERE:

$$F_l^M(k^2) \equiv M_l^L(k) + \frac{k^{2l+1}}{|f_l^L(k)|^2} \cot \left[\delta_l(k) - \delta_l^L(k)\right]$$
meromorphic for
$$k^2 < (M_H/2)^2$$
can be computed if the long-range force is known

- approximate  $F_l^M(k^2)$  by first 1,2,3,... terms in the Taylor expansion in  $k^2$
- calculate all "light" quantities
- reconstruct  $\delta_{l}^{L}(k)$  and predict all coefficients in the ERE

$$V(r) = \underbrace{v_L e^{-M_L r} f(r)}_{V_L} + \underbrace{v_H e^{-M_H r} f(r)}_{V_H}$$

where  $f(r) = \frac{(M_H r)^2}{1 + (M_H r)^2}$ 



and  $M_L = 1.0$ ,  $v_L = -0.875$ ,  $M_H = 3.75$ ,  $v_H = 7.5$  (all in fm<sup>-1</sup>)

**ERE and MERE** 

|                            | a     | r      | $v_2$                | $v_3$              | $v_4$              |
|----------------------------|-------|--------|----------------------|--------------------|--------------------|
| $F_0$ [fm <sup>n</sup> ]   | 5.458 | 2.432  | 0.113                | 0.515              | -0.993             |
| $F_0^M$ [fm <sup>n</sup> ] | 6.413 | -3.986 | $-2.289\times10^{1}$ | $-5.043\times10^2$ | $2.736 	imes 10^4$ |
| $F_0^M [M_S^{-n}]$         | 1.710 | -1.063 | -0.434               | -0.680             | 2.624              |

$$V(r) = \underbrace{v_L e^{-M_L r} f(r)}_{V_L} +$$

where  $f(r) = \frac{(M_H r)^2}{1 + (M_H r)^2}$ 

and  $M_L = 1.0$ ,  $v_L = -0.875$ ,

#### **ERE and MERE**

|                                 | a     | r      | $v_2$                | $v_3$              | $v_4$              |
|---------------------------------|-------|--------|----------------------|--------------------|--------------------|
| $F_0 \; [\mathrm{fm}^n]$        | 5.458 | 2.432  | 0.113                | 0.515              | -0.993             |
| $F_0^M$ [fm <sup>n</sup> ]      | 6.413 | -3.986 | $-2.289\times10^{1}$ | $-5.043\times10^2$ | $2.736 	imes 10^4$ |
| $F_0^M \left[ M_S^{-n} \right]$ | 1.710 | -1.063 | -0.434               | -0.680             | 2.624              |

|                                                          | LO                                              | NLO                                                                                 | NNLO                                                                                | "Exp"                                                                       |
|----------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| $ \begin{vmatrix} r \\ v_2 \\ v_3 \\ v_4 \end{vmatrix} $ | $2.447(38) \\ 0.12(11) \\ 0.61(12) \\ -0.95(5)$ | $\begin{array}{c} 2.432197161 \\ 0.1132(29) \\ 0.517(16) \\ -0.991(14) \end{array}$ | $\begin{array}{c} 2.432197161\\ 0.112815751\\ 0.51533(20)\\ -0.9925(11)\end{array}$ | $\begin{array}{r} 2.432197161\\ 0.112815751\\ 0.51529\\ -0.9928\end{array}$ |

$$V(r) = \underbrace{v_L e^{-M_L r} f(r)}_{V_L} +$$

where  $f(r) = \frac{(M_H r)^2}{1 + (M_H r)^2}$ 

and  $M_L = 1.0$ ,  $v_L = -0.875$ ,

#### **ERE and MERE**

|                            | a     | r      | $v_2$                | $v_3$              | $v_4$              |
|----------------------------|-------|--------|----------------------|--------------------|--------------------|
| $F_0 \; [\mathrm{fm}^n]$   | 5.458 | 2.432  | 0.113                | 0.515              | -0.993             |
| $F_0^M$ [fm <sup>n</sup> ] | 6.413 | -3.986 | $-2.289\times10^{1}$ | $-5.043\times10^2$ | $2.736\times 10^4$ |
| $F_0^M [M_S^{-n}]$         | 1.710 | -1.063 | -0.434               | -0.680             | 2.624              |

|                                                        | LO                                              | NLO                                                                                 | NNLO                                                                                | "Exp"                                                                       |
|--------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| $\begin{bmatrix} r \\ v_2 \\ v_3 \\ v_4 \end{bmatrix}$ | $2.447(38) \\ 0.12(11) \\ 0.61(12) \\ -0.95(5)$ | $\begin{array}{c} 2.432197161 \\ 0.1132(29) \\ 0.517(16) \\ -0.991(14) \end{array}$ | $\begin{array}{c} 2.432197161\\ 0.112815751\\ 0.51533(20)\\ -0.9925(11)\end{array}$ | $\begin{array}{r} 2.432197161\\ 0.112815751\\ 0.51529\\ -0.9928\end{array}$ |

$$V(r) = \underbrace{v_L e^{-M_L r} f(r)}_{V_L} + \underbrace{v_L e^{-M_L r} f(r)}_{V_L}$$

where  $f(r) = \frac{(M_H r)^2}{1 + (M_H r)^2}$ 

and  $M_L = 1.0$ ,  $v_L = -0.875$ ,

#### **ERE and MERE**

|                            | a     | r      | $v_2$                | $v_3$              | $v_4$              |
|----------------------------|-------|--------|----------------------|--------------------|--------------------|
| $F_0$ [fm <sup>n</sup> ]   | 5.458 | 2.432  | 0.113                | 0.515              | -0.993             |
| $F_0^M$ [fm <sup>n</sup> ] | 6.413 | -3.986 | $-2.289\times10^{1}$ | $-5.043\times10^2$ | $2.736\times 10^4$ |
| $F_0^M [M_S^{-n}]$         | 1.710 | -1.063 | -0.434               | -0.680             | 2.624              |

|                                                  | LO                                                                           | NLO                                                                                 | NNLO                                                                                    | "Exp"                                                                       |
|--------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| $egin{array}{c} r \ v_2 \ v_3 \ v_4 \end{array}$ | $\begin{array}{c} 2.447(38) \\ 0.12(11) \\ 0.61(12) \\ -0.95(5) \end{array}$ | $\begin{array}{c} 2.432197161 \\ 0.1132(29) \\ 0.517(16) \\ -0.991(14) \end{array}$ | $\begin{array}{c} 2.432197161 \\ 0.112815751 \\ 0.51533(20) \\ -0.9925(11) \end{array}$ | $\begin{array}{r} 2.432197161\\ 0.112815751\\ 0.51529\\ -0.9928\end{array}$ |

$$V(r) = \underbrace{v_L e^{-M_L r} f(r)}_{V_L} +$$

where  $f(r) = \frac{(M_H r)^2}{1 + (M_H r)^2}$ 

and  $M_L = 1.0$ ,  $v_L = -0.875$ ,

#### **ERE and MERE**

|                                 | a     | r      | $v_2$                | $v_3$               | $v_4$              |
|---------------------------------|-------|--------|----------------------|---------------------|--------------------|
| $F_0$ [fm <sup>n</sup> ]        | 5.458 | 2.432  | 0.113                | 0.515               | -0.993             |
| $F_0^M$ [fm <sup>n</sup> ]      | 6.413 | -3.986 | $-2.289\times10^{1}$ | $-5.043 	imes 10^2$ | $2.736\times 10^4$ |
| $F_0^M \left[ M_S^{-n} \right]$ | 1.710 | -1.063 | -0.434               | -0.680              | 2.624              |

|                                                          | LO                                              | NLO                                                                                 | NNLO                                                                                | "Exp"                                                                       |
|----------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| $ \begin{vmatrix} r \\ v_2 \\ v_3 \\ v_4 \end{vmatrix} $ | $2.447(38) \\ 0.12(11) \\ 0.61(12) \\ -0.95(5)$ | $\begin{array}{c} 2.432197161 \\ 0.1132(29) \\ 0.517(16) \\ -0.991(14) \end{array}$ | $\begin{array}{c} 2.432197161\\ 0.112815751\\ 0.51533(20)\\ -0.9925(11)\end{array}$ | $\begin{array}{r} 2.432197161\\ 0.112815751\\ 0.51529\\ -0.9928\end{array}$ |

### Toy model: phase shifts & error plots



Error plots for  $\delta^M(k)$ 





### Toy model: The "chiral expansion"

Expansion of the long-range potential:

$$V_L = v_L e^{-M_L r} \frac{(M_H r)^2}{1 + (M_H r)^2} = v_L e^{-M_L r} \left[ 1 - \frac{1}{M_H^2 r^2} - \frac{1}{M_H^4 r^4} - \dots \right]$$



### Toy model: The "chiral expansion"

Expansion of the long-range potential:

$$V_L = v_L e^{-M_L r} \frac{(M_H r)^2}{1 + (M_H r)^2} = v_L e^{-M_L r} \left[ 1 - \frac{1}{M_H^2 r^2} - \frac{1}{M_H^4 r^4} - \dots \right]$$

#### Low-energy theorems (long-range@NNLO, R=0.5fm)

|       | LO        | NLO         | NNLO        | "Exp"       |
|-------|-----------|-------------|-------------|-------------|
| r     | 2.446(44) | 2.432197161 | 2.432197161 | 2.432197161 |
| $v_2$ | 0.16(13)  | 0.1135(31)  | 0.112815751 | 0.112815751 |
| $v_3$ | 0.58(13)  | 0.519(17)   | 0.51536(22) | 0.51529     |
| $v_4$ | -0.93(5)  | -0.987(13)  | -0.9925(12) | -0.9928     |





For an analytical model see: EE, Gegelia, EPJA 41 (2009) 341

# One-pion exchange: perturbative or nonperturbative?

Equipped with these tools, one can rigorously test the proper inclusion of the long-range force in various pion-full formulations (Trust but verify... ⓒ)



"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO,"

### KSW approach (perturbative pions)



Low Energy Theorems at NLO Cohen, Hansen '99

$$k \cot \delta = -a^{-1} + \frac{1}{2}rk^2 + v_2k^4 + v_3k^6 + v_4k^8 + \dots$$

### KSW approach (perturbative pions)



Low Energy Theorems at NLO Cohen, Hansen '99

$$k \cot \delta = -a^{-1} + \frac{1}{2}rk^2 + v_2k^4 + v_3k^6 + v_4k^8 + \dots$$

| $v_2 =$ | ${g_A^2 m\over 16\pi F_\pi^2} \Big( -$   | $-\frac{16}{3a^2M_{\pi}^4}$ | $+ \frac{32}{5aM_\pi^3} -$   | $-\frac{2}{M_{\pi}^2}\Big)$     |
|---------|------------------------------------------|-----------------------------|------------------------------|---------------------------------|
| $v_3$ = | $\frac{g_A^2 m}{16\pi F_\pi^2} \bigg( -$ | $-\frac{16}{3a^2M_\pi^6}$   | $-\frac{128}{7aM_{\pi}^5}$ - | $+ \frac{16}{3M_{\pi}^4} \Big)$ |

|                           | v <sub>2</sub> (fm <sup>3</sup> ) | v <sub>3</sub> (fm <sup>5</sup> ) | v <sub>4</sub> (fm <sup>7</sup> ) | $v_2$ (fm <sup>3</sup> ) | v <sub>3</sub> (fm <sup>5</sup> ) | $v_4^{}$ (fm <sup>7</sup> ) |
|---------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------------------|-----------------------------------|-----------------------------|
| theory                    | -3.3                              | 18.                               | -108.                             | -0.95                    | 4.6                               | -25.                        |
| NPWA                      | -0.5                              | 4.0                               | -20.                              | 0.04                     | 0.67                              | -4.0                        |
| spin-singlet spin-triplet |                                   |                                   |                                   |                          |                                   |                             |

### KSW approach (perturbative pions)



Low Energy Theorems at NLO Cohen, Hansen '99

$$k \cot \delta = -a^{-1} + \frac{1}{2}rk^2 + v_2k^4 + v_3k^6 + v_4k^8 + \dots$$

| $v_2 =$   | $\frac{g_A^2 m}{16\pi F_\pi^2} \Big( -$ | $-\frac{16}{3a^2M_{\pi}^4}$ | $+ \frac{32}{5aM_{\pi}^3} -$ | $-\frac{2}{M_{\pi}^2}\Big)$     |
|-----------|-----------------------------------------|-----------------------------|------------------------------|---------------------------------|
| $v_{3} =$ | $\frac{g_A^2 m}{16\pi F_\pi^2} \Big( -$ | $-\frac{16}{3a^2M_{\pi}^6}$ | $-\frac{128}{7aM_{\pi}^5}$ - | $+ \frac{16}{3M_{\pi}^4} \Big)$ |

|                           | v <sub>2</sub> (fm <sup>3</sup> ) | v <sub>3</sub> (fm <sup>5</sup> ) | $v_4 ({\rm fm^7})$ | $v_2$ (fm <sup>3</sup> ) | v <sub>3</sub> (fm <sup>5</sup> ) | $v_4^{}$ (fm <sup>7</sup> ) |
|---------------------------|-----------------------------------|-----------------------------------|--------------------|--------------------------|-----------------------------------|-----------------------------|
| theory                    | -3.3                              | 18.                               | -108.              | -0.95                    | 4.6                               | -25.                        |
| NPWA                      | -0.5                              | 4.0                               | -20.               | 0.04                     | 0.67                              | -4.0                        |
| spin-singlet spin-triplet |                                   |                                   |                    |                          |                                   |                             |

Shin-2ndar

150 NNLO LO 100  $\overline{\delta}_0(deg)$ NLO 50 Nijmegen PSA 0 0 100 200

p(MeV)

300

Higher-order calculations also show problems in S=1 channels Mehen, Stewart '00

it seems necessary to treat pions non-perturbatively at  $p\sim M_{\pi}$ 

### W. approach (non-perturbative pions)



| (cutoff-independent results from EE, Gegelia PLB (2012)) |                      |                      |                        |                          |                          |  |  |
|----------------------------------------------------------|----------------------|----------------------|------------------------|--------------------------|--------------------------|--|--|
| ${}^{1}S_{0}$ partial wave                               | $a \; [\mathrm{fm}]$ | $r \; [\mathrm{fm}]$ | $v_2  [\mathrm{fm}^3]$ | $v_3 \; [\mathrm{fm}^5]$ | $v_4 \; [\mathrm{fm}^7]$ |  |  |
| KSW                                                      | fit                  | fit                  | -3.3                   | 18                       | -108                     |  |  |
| Weinberg                                                 | $\operatorname{fit}$ | 1.50                 | -1.9                   | 8.6(8)                   | -37(10)                  |  |  |
| Nijmegen PWA                                             | -23.7                | 2.67                 | -0.5                   | 4.0                      | -20                      |  |  |
|                                                          |                      |                      |                        |                          |                          |  |  |
| ${}^{3}S_{1}$ partial wave                               | $a \; [\mathrm{fm}]$ | $r  [\mathrm{fm}]$   | $v_2  [\mathrm{fm}^3]$ | $v_3 \; [\mathrm{fm}^5]$ | $v_4  [{\rm fm}^7]$      |  |  |
| KSW                                                      | fit                  | fit                  | -0.95                  | 4.6                      | -25                      |  |  |
| Weinberg                                                 | fit                  | 1.60                 | -0.05                  | 0.8(1)                   | -4(1)                    |  |  |
| Nijmegen PWA                                             | 5.42                 | 1.75                 | 0.04                   | 0.67                     | -4.0                     |  |  |
|                                                          | ·                    | •                    | •                      | ·                        | ·                        |  |  |

Notice: Lippmann-Schwinger eq. with OPE potential is non-renormalizable  $\longrightarrow$  calculations are to be done using a finite cutoff. Cutoff-independent results can be achieved in a semi-relativistic version of LS eq.

### Few-N in $\chi$ EFT: W approach in a nutshell

Write down the most general effective Lagrangian for pions and nucleons

$$\mathcal{L}_{\pi N}^{(1)} = N^{\dagger} \Big[ i\partial_0 - \frac{g_A}{2F} \boldsymbol{\tau} \vec{\sigma} \cdot \vec{\nabla} \boldsymbol{\pi} - \frac{1}{4F^2} \boldsymbol{\tau} \times \boldsymbol{\pi} \cdot \dot{\boldsymbol{\pi}} + \frac{g_A}{4F^3} \Big( (4\alpha - 1)\boldsymbol{\tau} \cdot \boldsymbol{\pi} (\boldsymbol{\pi} \vec{\sigma} \cdot \vec{\nabla} \boldsymbol{\pi}) + 2\alpha \pi^2 (\boldsymbol{\tau} \vec{\sigma} \cdot \vec{\nabla} \boldsymbol{\pi}) \Big) + \dots \Big] N$$

$$\mathcal{L}_{\pi N}^{(2)} = N^{\dagger} \Big[ 4M^2 c_1 - \frac{2c_1}{F^2} M^2 \pi^2 + \frac{c_2}{F^2} \dot{\pi}^2 + \frac{c_3}{F^2} (\partial_\mu \boldsymbol{\pi}) \cdot (\partial^\mu \boldsymbol{\pi}) - \frac{c_4}{4F^2} (\boldsymbol{\tau} \vec{\sigma} \times \vec{\nabla} \boldsymbol{\pi}) \cdot \vec{\nabla} \boldsymbol{\pi} + \dots \Big] N$$

$$\mathcal{L}_{NN}^{(0)} = \frac{1}{2} C_S N^{\dagger} N N^{\dagger} N + \frac{1}{2} C_S N^{\dagger} \vec{\sigma} N \cdot N^{\dagger} \vec{\sigma} N$$
...

Naively, power counting for a N-nucleon connected Feynman graph is: Weinberg '90

$$\nu = 2 - N + 2L + \sum_{i} V_i \Delta_i \quad \text{where} \quad \Delta_i = -2 + \frac{1}{2}n_i + d_i$$

$$\sum_{power of Q} \sum_{\# of loops}^{i} \# of vertices of type \Delta_i$$

Examples:



 $\mathcal{L}_{\scriptscriptstyle NN}^{\scriptscriptstyle (0)} \hspace{-0.5cm} \sim Q^0 \hspace{1.5cm} \mathcal{L}_{\scriptscriptstyle \pi N}^{\scriptscriptstyle (1)} \hspace{-0.5cm} \sim Q^0$ 

v = 2 [derivatives] -2 [ $\pi$ -propagator]

- $\mathcal{L}^{(1)} > \langle \mathbf{I} \rangle \sim Q^2$ 
  - $\mathbf{v} = 4$  [loop int.] +4 [derivatives] -4 [2  $\pi$ -propagators] – 2 [2 HB nucl. propagators]

### Few-N in $\chi$ EFT: W approach in a nutshell

• But... If true, NN scattering would be perturbative! Diagrams involving NN cuts (i.e. reducible) are enhanced (IR divergent in the  $m_N \rightarrow \infty$  limit)



#### • Weinberg's approach

- Use ChPT to compute irreducible graphs = nuclear forces/currents
- Resum enhanced reducible graphs by solving the Schrödinger/LS eq.

 $V_{eff}$  = / + × + ··· Veff V<sub>eff</sub>) + =

$$\left[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3})\right) + \underbrace{V_{2N} + V_{3N} + V_{4N} + \dots}_{\text{derived within ChPT}}\right] |\Psi\rangle = E|\Psi\rangle$$

# From effective Lagrangian to nuclear forces





- unified description of  $\pi\pi$ ,  $\pi N$  and NN
- consistent many-body forces and currents
- systematically improvable
- bridging different reactions (electroweak, π-prod., ...)
- precision physics with/from light nuclei