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 Chiral expansion of nuclear forces
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Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung
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Is there any evidence 
from NN data?



 Chiral two-pion exchange and NN data 

b
EM  +  [Nijm78; 1π; 1π+2π]

Energy-dependent 
boundary condition

Nijmegen Partial Wave Analysis

Number of BC parameters needed to achieve 
χ2datum ~ 1 for a given long-range part (input)

31 (1π)  ➙  28 (1π + 2π [NLO])  ➙  23 (1π + 2π [N2LO])

Rentmeester et al.ʼ99,ʻ03

Birse, McGovern ʼ06„Deconstructing“ neutron-proton phase shufts
Idea: Subtract effects of the long-range intersction from phase shufts (DWBA) and look at the 
residual energy dependence 

1D2

only 1π exchange  
subtracted

1π + 2π exchange  
subtracted



Nuclear Physics with Chiral Effective Field Theory Evgeny Epelbaum
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Figure 2: Neutron-proton phase shifts and mixing angles calculated using N3LO χEFT potentials of
Ref. [10] (shaded bands) and Ref. [9] (dashed lines) in comparison with the Nijmegen [11] (filled circles)
and SAID [12] (open triangles) partial wave analyses. Also shown are leading-order cutoff-independent
results of Ref. [13] (dotted lines).

The most interesting part of the novel chiral NN force is two-pion (2π-) exchange which con-
stitutes the second-longest contribution to the NN potential and, therefore, has significant impact
on the energy dependence of the scattering amplitude. Indeed, its evidence has been confirmed
in the partial wave analysis of the Nijmegen group [14], see also [15]. In agreement with expec-
tations based on phenomenological studies, one observes a very strong attractive isoscalar central
potential. This by far the strongest 2π-exchange contribution emerges, however, only at next-to-
next-to-leading order (N2LO) as a correction to the nominally dominant 2π-exchange potential at
next-to-leading order (NLO). This peculiar pattern is well understood and can be traced back to
the intermediate excitation of the ∆(1232) isobar at one of the nucleons which gives rise to a very
strong attractive isoscalar central NN force [8, 16, 17]. In the standard formulation of χEFT based
on pions and nucleons as the only explicit DOFs, all effects of the ∆ (and heavier resonances as
well as heavy mesons) are hidden in the (renormalized) values of (some of the) LECs starting from
the subleading effective Lagrangian. As a consequence, the phenomenologically important 2π-
exchange mechanism driven by the ∆ excitation appears only at subleading order from diagrams
involving one insertion of the subleading pion-nucleon vertex. The values of the corresponding
LECs c3,4 are, to a large extent, driven by the ∆ isobar [18] and turn out to be rather large in magni-
tude. It is possible to improve the convergence of the EFT expansion by treating the ∆-isobar as an
explicit DOF in the effective Lagrangian and counting m∆ −mN ∼ Mπ = O(Q) [19], see also [20]
for an alternative counting scheme. In such a ∆-full theory, the major part of the strong attractive
2π-exchange potential is shifted from N2LO to NLO, while the LECs c3,4 take more natural values
[17].

Having developed χEFT for the NN system, it is natural to address the question of the light
quark-mass- (mq-) dependence of the nuclear force and observables such as e.g. the deuteron bind-

4

 
Entem, Machleidt ’04;  E.E., Glöckle, Meißner ‘05

Neutron-proton phase shifts at N3LO

N3LO, EGM
N3LO, EM
LO, Λ ➙ ∞



 The challenge: 
Understanding the 3N force

Kalantar-Nayestanaki, EE, Messchendorp, Nogga, Rev. Mod. Phys. 75 (2012) 016301 

Todayʻs few- and many-body calculations have reached the 
level of accuracy at which it is necessary to include 3NFs 

Inspite of decades of efforts, the structure of the 3NF is still 
poorely understood 



 Most general structure of a local 3NF
Krebs, Gasparyan, EE, arXiv:1302.2872 [nucl-th]
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where we made a change of variable P ′′ = P ′P in the last line. This equation has the form of Eq. (5.39) with

Fi :=
∑

P∈S3







1

36
P−1(Mi) +

1

36
(−1)w(P )P−1(Ni) +

2
∑

j,k=1

1

18
Djk(P )P−1(Li

jk)







. (5.42)

VI. CHIRAL EXPANSION OF THE LONG-RANGE TAIL OF THE 3NF

With these preparations we are now in the position to address the convergence of the chiral expansion for the long-
range tail of the 3NF. It is clear that all arguments of the previous section can also be applied to operators in
coordinate space. Here and in what follows, we use the following basis of 22 operators:

G̃1 = 1 ,

G̃2 = τ 1 · τ 3 ,

G̃3 = !σ1 · !σ3 ,

G̃4 = τ 1 · τ 3 !σ1 · !σ3 ,

G̃5 = τ 2 · τ 3 !σ1 · !σ2 ,

G̃6 = τ 1 · (τ 2 × τ 3)!σ1 · (!σ2 × !σ3) ,

G̃7 = τ 1 · (τ 2 × τ 3)!σ2 · (r̂12 × r̂23) ,

G̃8 = r̂23 · !σ1 r̂23 · !σ3 ,

G̃9 = r̂23 · !σ3 r̂12 · !σ1 ,

G̃10 = r̂23 · !σ1 r̂12 · !σ3 ,

G̃11 = τ 2 · τ 3 r̂23 · !σ1 r̂23 · !σ2 ,

G̃12 = τ 2 · τ 3 r̂23 · !σ1 r̂12 · !σ2 ,

G̃13 = τ 2 · τ 3 r̂12 · !σ1 r̂23 · !σ2 ,

G̃14 = τ 2 · τ 3 r̂12 · !σ1 r̂12 · !σ2 ,

G̃15 = τ 1 · τ 3 r̂13 · !σ1 r̂13 · !σ3 ,

G̃16 = τ 2 · τ 3 r̂12 · !σ2 r̂12 · !σ3 ,

G̃17 = τ 1 · τ 3 r̂23 · !σ1 r̂12 · !σ3 ,

G̃18 = τ 1 · (τ 2 × τ 3)!σ1 · !σ3 !σ2 · (r̂12 × r̂23) ,

G̃19 = τ 1 · (τ 2 × τ 3)!σ3 · r̂23 r̂23 · (!σ1 × !σ2) ,

G̃20 = τ 1 · (τ 2 × τ 3)!σ1 · r̂23 !σ2 · r̂23 !σ3 · (r̂12 × r̂23) ,

G̃21 = τ 1 · (τ 2 × τ 3)!σ1 · r̂13 !σ3 · r̂13 !σ2 · (r̂12 × r̂23) ,

G̃22 = τ 1 · (τ 2 × τ 3)!σ1 · r̂23 !σ3 · r̂12 !σ2 · (r̂12 × r̂23) , (6.43)

where r̂ij ≡ !rij/|!rij| and !rij = !ri −!rj denotes the position of nucleon i with respect to nucleon j. The 3NF is a linear

combination of the operators G̃i with the coefficients given by scalar functions Fi(r12, r23, r31). These functions have
the dimension of energy and can be interpreted as the potential energy between three static nucleons projected onto
the corresponding operator. The profile functions Fi receive contributions from the long-range and the intermediate-
range 3NF topologies and are predicted (at long distances) in terms of the chiral expansion. In order to explore the
convergence, we plot these functions for the equilateral triangle configuration of the nucleons given by the condition

r12 = r23 = r31 = r . (6.44)

Restricting ourselves to this particular configuration allows us to stay with simple one-dimensional plots. We em-
phasize, however, that the conclusions about the convergence of the chiral expansion for the 3NF drawn in this
section apply to this particular configuration. We begin with the longest-range 2π exchange topology. Projecting the
coordinate-space expressions given in section II onto the operators in Eq. (6.43) and evaluating the three-dimensional
integrals in Eqs. (2.8) and (2.13) numerically we compute the corresponding contributions to the profile functions
F (3)(r), F (4)(r) and F (5)(r) at N2LO, N3LO and N4LO, respectively. Our results for the 3NF profile functions

22 independent operators (coord. space)
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c∆3 = −2c∆4 = − 4h2
A

9(m∆ −mN)
� −2.7 GeV−1 (10)

Q ∼ Mπ (11)

∼ 1
m∆−mN

(12)

∼ 1
(m∆−mN )2

, . . . (13)

∼ 1
m∆−mN

, 1
(m∆−mN )2

, . . . (14)

1

Constraints: 
− locality,
− isospin symmetry, 
− parity and time-reversal invariance 
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22�
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m2
N
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� d3k

(2 π)3
V (0)
2N (�p �,�k)T (�k, �p)

(k2 +m2
N) (E −

�
k2 +m2

N + i �)
, (5)

��
(23 + 32)2 − 168− 1

�2

(6)

a+ = (7.6± 3.1)× 10−3M−1
π (7)

a− = (86.1± 0.9)× 10−3M−1
π (8)

m∆ −mN ∼ Mπ (9)

V static
3N =

22�

i=1

Gi(�σ1,�σ2,�σ3, τ 1, τ 2, τ 3,�r12,�r23) Fi(r12, r23, r31) + permutations

(10)

c∆3 = −2c∆4 = − 4h2
A

9(m∆ −mN)
� −2.7 GeV−1 (11)

Q ∼ Mπ (12)

∼ 1
m∆−mN

(13)

∼ 1
(m∆−mN )2

, . . . (14)
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derivable in ChPT; long-range 
terms parameter-free 

predictions
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are being investigated
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FIG. 3: Results of the fit for πN s, p and d-wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid curves
correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2

calculation.

which reflects the absence of inelasticity below the two-pion production threshold.

We performed a combined fit for all s-, p-, and d-waves since d-waves are the highest partial waves where the order-Q4

counter terms contribute. The results of the fits using the GW and KH partial wave analyses are visualized in Figs. 3
and 4, respectively. In these figures we show the full, order-Q4 results (solid curves) as well as the phase shifts
calculated up to the order Q3 (dashed curves) and Q2 (dashed-dotted curves) using the same parameters (from the
order-Q4 fit) in all curves. In the fitted region (from threshold up to pLab = 150 MeV/c), a good description of the
data is achieved. As one would expect the convergence pattern when going from Q2 to Q4 is getting worse with
increasing the pion momenta. Interestingly, the d-waves are rather well reproduced already at the order Q3 where
there are no counter terms or other contributions depending on free parameters. Both the tree-level and finite loop
contributions are important for those four partial waves. Our results for the phase shifts are similar and of a similar
quality as the ones reported in Ref. [45].

We finally turn to the discussion of the extracted parameters. The obtained values of the low energy constants are
collected in Table I. As one can see from the table, the LECs ci and d̄i turn out to come out rather similar for the
two partial wave analyses. The difference does not exceed 30% except for the LECs c1 and d̄5 which are, however,
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quality as the ones reported in Ref. [45].

We finally turn to the discussion of the extracted parameters. The obtained values of the low energy constants are
collected in Table I. As one can see from the table, the LECs ci and d̄i turn out to come out rather similar for the
two partial wave analyses. The difference does not exceed 30% except for the LECs c1 and d̄5 which are, however,
considerably smaller than the other ci’s and d̄i’s, respectively. The same conclusion about stability can be drawn for
the LECs ē14 and ē17. These are the only counter terms contributing to d-waves, which is why these two constants
are strongly constrained by the threshold behavior of the d-wave phase shifts. In contrast, the other ēi’s are very
sensitive to the energy dependence of the s- and p-wave amplitudes and, therefore, vary strongly from one analysis to
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10

0 50 100 150 200
0

5

10

! 
[d

eg
re

e]

0 50 100 150 200
-10

-5

0

0 50 100 150 200
-2

0

2

0 50 100 150 200

-2
-1
0

! 
[d

eg
re

e]

0 50 100 150 200
-2

-1

0

0 50 100 150 200
0

15

30

0 50 100 150 200
pLab [MeV/c]

0

0.1

0.2

! 
[d

eg
re

e]

0 50 100 150 200
0

0.04

0.08

0 50 100 150 200
pLab [MeV/c]

0

0.1

0.2

0 50 100 150 200
pLab [MeV/c]

-0.2

-0.1

0

S11
S31

P11

P33P13P31

D13 D33 D15

D35

FIG. 3: Results of the fit for πN s, p and d-wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid curves
correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2

calculation.

which reflects the absence of inelasticity below the two-pion production threshold.
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calculated up to the order Q3 (dashed curves) and Q2 (dashed-dotted curves) using the same parameters (from the
order-Q4 fit) in all curves. In the fitted region (from threshold up to pLab = 150 MeV/c), a good description of the
data is achieved. As one would expect the convergence pattern when going from Q2 to Q4 is getting worse with
increasing the pion momenta. Interestingly, the d-waves are rather well reproduced already at the order Q3 where
there are no counter terms or other contributions depending on free parameters. Both the tree-level and finite loop
contributions are important for those four partial waves. Our results for the phase shifts are similar and of a similar
quality as the ones reported in Ref. [45].

We finally turn to the discussion of the extracted parameters. The obtained values of the low energy constants are
collected in Table I. As one can see from the table, the LECs ci and d̄i turn out to come out rather similar for the
two partial wave analyses. The difference does not exceed 30% except for the LECs c1 and d̄5 which are, however,
considerably smaller than the other ci’s and d̄i’s, respectively. The same conclusion about stability can be drawn for
the LECs ē14 and ē17. These are the only counter terms contributing to d-waves, which is why these two constants
are strongly constrained by the threshold behavior of the d-wave phase shifts. In contrast, the other ēi’s are very
sensitive to the energy dependence of the s- and p-wave amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of a natural size except for the combination d̄14 − d̄15 and
ē15 which appear to be somewhat large.
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which reflects the absence of inelasticity below the two-pion production threshold.

We performed a combined fit for all s-, p-, and d-waves since d-waves are the highest partial waves where the order-Q4

counter terms contribute. The results of the fits using the GW and KH partial wave analyses are visualized in Figs. 3
and 4, respectively. In these figures we show the full, order-Q4 results (solid curves) as well as the phase shifts
calculated up to the order Q3 (dashed curves) and Q2 (dashed-dotted curves) using the same parameters (from the
order-Q4 fit) in all curves. In the fitted region (from threshold up to pLab = 150 MeV/c), a good description of the
data is achieved. As one would expect the convergence pattern when going from Q2 to Q4 is getting worse with
increasing the pion momenta. Interestingly, the d-waves are rather well reproduced already at the order Q3 where
there are no counter terms or other contributions depending on free parameters. Both the tree-level and finite loop
contributions are important for those four partial waves. Our results for the phase shifts are similar and of a similar
quality as the ones reported in Ref. [45].

We finally turn to the discussion of the extracted parameters. The obtained values of the low energy constants are
collected in Table I. As one can see from the table, the LECs ci and d̄i turn out to come out rather similar for the
two partial wave analyses. The difference does not exceed 30% except for the LECs c1 and d̄5 which are, however,
considerably smaller than the other ci’s and d̄i’s, respectively. The same conclusion about stability can be drawn for
the LECs ē14 and ē17. These are the only counter terms contributing to d-waves, which is why these two constants
are strongly constrained by the threshold behavior of the d-wave phase shifts. In contrast, the other ēi’s are very
sensitive to the energy dependence of the s- and p-wave amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of a natural size except for the combination d̄14 − d̄15 and
ē15 which appear to be somewhat large.
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which reflects the absence of inelasticity below the two-pion production threshold.

We performed a combined fit for all s-, p-, and d-waves since d-waves are the highest partial waves where the order-Q4

counter terms contribute. The results of the fits using the GW and KH partial wave analyses are visualized in Figs. 3
and 4, respectively. In these figures we show the full, order-Q4 results (solid curves) as well as the phase shifts
calculated up to the order Q3 (dashed curves) and Q2 (dashed-dotted curves) using the same parameters (from the
order-Q4 fit) in all curves. In the fitted region (from threshold up to pLab = 150 MeV/c), a good description of the
data is achieved. As one would expect the convergence pattern when going from Q2 to Q4 is getting worse with
increasing the pion momenta. Interestingly, the d-waves are rather well reproduced already at the order Q3 where
there are no counter terms or other contributions depending on free parameters. Both the tree-level and finite loop
contributions are important for those four partial waves. Our results for the phase shifts are similar and of a similar
quality as the ones reported in Ref. [45].

We finally turn to the discussion of the extracted parameters. The obtained values of the low energy constants are
collected in Table I. As one can see from the table, the LECs ci and d̄i turn out to come out rather similar for the
two partial wave analyses. The difference does not exceed 30% except for the LECs c1 and d̄5 which are, however,
considerably smaller than the other ci’s and d̄i’s, respectively. The same conclusion about stability can be drawn for
the LECs ē14 and ē17. These are the only counter terms contributing to d-waves, which is why these two constants
are strongly constrained by the threshold behavior of the d-wave phase shifts. In contrast, the other ēi’s are very
sensitive to the energy dependence of the s- and p-wave amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of a natural size except for the combination d̄14 − d̄15 and
ē15 which appear to be somewhat large.
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which reflects the absence of inelasticity below the two-pion production threshold.

We performed a combined fit for all s-, p-, and d-waves since d-waves are the highest partial waves where the order-Q4

counter terms contribute. The results of the fits using the GW and KH partial wave analyses are visualized in Figs. 3
and 4, respectively. In these figures we show the full, order-Q4 results (solid curves) as well as the phase shifts
calculated up to the order Q3 (dashed curves) and Q2 (dashed-dotted curves) using the same parameters (from the
order-Q4 fit) in all curves. In the fitted region (from threshold up to pLab = 150 MeV/c), a good description of the
data is achieved. As one would expect the convergence pattern when going from Q2 to Q4 is getting worse with
increasing the pion momenta. Interestingly, the d-waves are rather well reproduced already at the order Q3 where
there are no counter terms or other contributions depending on free parameters. Both the tree-level and finite loop
contributions are important for those four partial waves. Our results for the phase shifts are similar and of a similar
quality as the ones reported in Ref. [45].

We finally turn to the discussion of the extracted parameters. The obtained values of the low energy constants are
collected in Table I. As one can see from the table, the LECs ci and d̄i turn out to come out rather similar for the
two partial wave analyses. The difference does not exceed 30% except for the LECs c1 and d̄5 which are, however,
considerably smaller than the other ci’s and d̄i’s, respectively. The same conclusion about stability can be drawn for
the LECs ē14 and ē17. These are the only counter terms contributing to d-waves, which is why these two constants
are strongly constrained by the threshold behavior of the d-wave phase shifts. In contrast, the other ēi’s are very
sensitive to the energy dependence of the s- and p-wave amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of a natural size except for the combination d̄14 − d̄15 and
ē15 which appear to be somewhat large.
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which reflects the absence of inelasticity below the two-pion production threshold.

We performed a combined fit for all s-, p-, and d-waves since d-waves are the highest partial waves where the order-Q4

counter terms contribute. The results of the fits using the GW and KH partial wave analyses are visualized in Figs. 3
and 4, respectively. In these figures we show the full, order-Q4 results (solid curves) as well as the phase shifts
calculated up to the order Q3 (dashed curves) and Q2 (dashed-dotted curves) using the same parameters (from the
order-Q4 fit) in all curves. In the fitted region (from threshold up to pLab = 150 MeV/c), a good description of the
data is achieved. As one would expect the convergence pattern when going from Q2 to Q4 is getting worse with
increasing the pion momenta. Interestingly, the d-waves are rather well reproduced already at the order Q3 where
there are no counter terms or other contributions depending on free parameters. Both the tree-level and finite loop
contributions are important for those four partial waves. Our results for the phase shifts are similar and of a similar
quality as the ones reported in Ref. [45].

We finally turn to the discussion of the extracted parameters. The obtained values of the low energy constants are
collected in Table I. As one can see from the table, the LECs ci and d̄i turn out to come out rather similar for the
two partial wave analyses. The difference does not exceed 30% except for the LECs c1 and d̄5 which are, however,
considerably smaller than the other ci’s and d̄i’s, respectively. The same conclusion about stability can be drawn for
the LECs ē14 and ē17. These are the only counter terms contributing to d-waves, which is why these two constants
are strongly constrained by the threshold behavior of the d-wave phase shifts. In contrast, the other ēi’s are very
sensitive to the energy dependence of the s- and p-wave amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of a natural size except for the combination d̄14 − d̄15 and
ē15 which appear to be somewhat large.
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which reflects the absence of inelasticity below the two-pion production threshold.

We performed a combined fit for all s-, p-, and d-waves since d-waves are the highest partial waves where the order-Q4

counter terms contribute. The results of the fits using the GW and KH partial wave analyses are visualized in Figs. 3
and 4, respectively. In these figures we show the full, order-Q4 results (solid curves) as well as the phase shifts
calculated up to the order Q3 (dashed curves) and Q2 (dashed-dotted curves) using the same parameters (from the
order-Q4 fit) in all curves. In the fitted region (from threshold up to pLab = 150 MeV/c), a good description of the
data is achieved. As one would expect the convergence pattern when going from Q2 to Q4 is getting worse with
increasing the pion momenta. Interestingly, the d-waves are rather well reproduced already at the order Q3 where
there are no counter terms or other contributions depending on free parameters. Both the tree-level and finite loop
contributions are important for those four partial waves. Our results for the phase shifts are similar and of a similar
quality as the ones reported in Ref. [45].

We finally turn to the discussion of the extracted parameters. The obtained values of the low energy constants are
collected in Table I. As one can see from the table, the LECs ci and d̄i turn out to come out rather similar for the
two partial wave analyses. The difference does not exceed 30% except for the LECs c1 and d̄5 which are, however,
considerably smaller than the other ci’s and d̄i’s, respectively. The same conclusion about stability can be drawn for
the LECs ē14 and ē17. These are the only counter terms contributing to d-waves, which is why these two constants
are strongly constrained by the threshold behavior of the d-wave phase shifts. In contrast, the other ēi’s are very
sensitive to the energy dependence of the s- and p-wave amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of a natural size except for the combination d̄14 − d̄15 and
ē15 which appear to be somewhat large.
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which reflects the absence of inelasticity below the two-pion production threshold.

We performed a combined fit for all s-, p-, and d-waves since d-waves are the highest partial waves where the order-Q4

counter terms contribute. The results of the fits using the GW and KH partial wave analyses are visualized in Figs. 3
and 4, respectively. In these figures we show the full, order-Q4 results (solid curves) as well as the phase shifts
calculated up to the order Q3 (dashed curves) and Q2 (dashed-dotted curves) using the same parameters (from the
order-Q4 fit) in all curves. In the fitted region (from threshold up to pLab = 150 MeV/c), a good description of the
data is achieved. As one would expect the convergence pattern when going from Q2 to Q4 is getting worse with
increasing the pion momenta. Interestingly, the d-waves are rather well reproduced already at the order Q3 where
there are no counter terms or other contributions depending on free parameters. Both the tree-level and finite loop
contributions are important for those four partial waves. Our results for the phase shifts are similar and of a similar
quality as the ones reported in Ref. [45].

We finally turn to the discussion of the extracted parameters. The obtained values of the low energy constants are
collected in Table I. As one can see from the table, the LECs ci and d̄i turn out to come out rather similar for the
two partial wave analyses. The difference does not exceed 30% except for the LECs c1 and d̄5 which are, however,
considerably smaller than the other ci’s and d̄i’s, respectively. The same conclusion about stability can be drawn for
the LECs ē14 and ē17. These are the only counter terms contributing to d-waves, which is why these two constants
are strongly constrained by the threshold behavior of the d-wave phase shifts. In contrast, the other ēi’s are very
sensitive to the energy dependence of the s- and p-wave amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of a natural size except for the combination d̄14 − d̄15 and
ē15 which appear to be somewhat large.
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10

0 50 100 150 200
0

5

10

! 
[d

eg
re

e]
0 50 100 150 200

-10

-5

0

0 50 100 150 200
-2

0

2

0 50 100 150 200

-2
-1
0

! 
[d

eg
re

e]

0 50 100 150 200
-2

-1

0

0 50 100 150 200
0

15

30

0 50 100 150 200
pLab [MeV/c]

0

0.1

0.2

! 
[d

eg
re

e]

0 50 100 150 200
0

0.04

0.08

0 50 100 150 200
pLab [MeV/c]

0

0.1

0.2

0 50 100 150 200
pLab [MeV/c]

-0.2

-0.1

0

S11
S31

P11

P33P13P31

D13 D33 D15

D35

FIG. 3: Results of the fit for πN s, p and d-wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid curves
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calculation.

which reflects the absence of inelasticity below the two-pion production threshold.

We performed a combined fit for all s-, p-, and d-waves since d-waves are the highest partial waves where the order-Q4

counter terms contribute. The results of the fits using the GW and KH partial wave analyses are visualized in Figs. 3
and 4, respectively. In these figures we show the full, order-Q4 results (solid curves) as well as the phase shifts
calculated up to the order Q3 (dashed curves) and Q2 (dashed-dotted curves) using the same parameters (from the
order-Q4 fit) in all curves. In the fitted region (from threshold up to pLab = 150 MeV/c), a good description of the
data is achieved. As one would expect the convergence pattern when going from Q2 to Q4 is getting worse with
increasing the pion momenta. Interestingly, the d-waves are rather well reproduced already at the order Q3 where
there are no counter terms or other contributions depending on free parameters. Both the tree-level and finite loop
contributions are important for those four partial waves. Our results for the phase shifts are similar and of a similar
quality as the ones reported in Ref. [45].

We finally turn to the discussion of the extracted parameters. The obtained values of the low energy constants are
collected in Table I. As one can see from the table, the LECs ci and d̄i turn out to come out rather similar for the
two partial wave analyses. The difference does not exceed 30% except for the LECs c1 and d̄5 which are, however,
considerably smaller than the other ci’s and d̄i’s, respectively. The same conclusion about stability can be drawn for
the LECs ē14 and ē17. These are the only counter terms contributing to d-waves, which is why these two constants
are strongly constrained by the threshold behavior of the d-wave phase shifts. In contrast, the other ēi’s are very
sensitive to the energy dependence of the s- and p-wave amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of a natural size except for the combination d̄14 − d̄15 and
ē15 which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and ēi from of our fits to the ones obtained in Refs. [32],[45]
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two partial wave analyses. The difference does not exceed 30% except for the LECs c1 and d̄5 which are, however,
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Pion-nucleon phase shifts in HB ChPT up to Q4 (KH PWA)

Values of low-energy constants extracted at Q4 (in powers of GeV)



 
Summary: chiral nuclear forces

Chiral NN potentials are available at N3LO and provide accurate description of NN 
scattering up to Elab ~ 200 MeV.

3NF: promising results at N2LO; corrections are under investigation

4NF: starts contributing at N3LO; probably small (expectation value for the α-particle 
about a few 100 keV...)
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 Nuclear lattice simulations

Lattice QCD Chiral EFT on the lattice

p

n

∼ 0.1 fm

1

L ∼ 10 . . . 20 fm

1

a ∼ 1 . . . 2 fm

1

fundamental, the only 
parameters are mq, αstrong

hard to go beyond 1 hadron... 

effective hadronic description, LECs to 
be determined from the data/LQCD

much more efficient for atomic nuclei

Discretized version of 
chiral EFT for nuclear 
dynamics
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Other LO lattice actions used in the simulations:
LO1:  no smearing,   LO2: Gaussian smearing in all waves
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Generalization to coupled channels straightforward...

Impose a spherical-wall boundary condition 
(standing waves) and determine the energy spectrum
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Do the same thing on the lattice            two-particle phase shifts from the energy spectrum! 
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interaction switched off: δL = 0, j0(kfreeRWall) = 0
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Example: a toy-model potential



 Two-nucleon phase shifts (LO3)
E.E., Krebs, Lee, Meißner, EPJA 45 (10) 335

9 LECs fitted to S- and P-waves and the deuteron quadrupole moment

Accurate results, deviations consistent with the expected size of higher-order terms

, np , pp

Coulomb repulsion and isospin-breaking effects taken into account



 Calculation strategy 
Eucl.-time propagation of A nucleons        transition amplitude 

ground-state energies                                                
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Fig. 1. AFQMC data for the deuteron as a function of Nt,

along with the extrapolation to Nt → ∞.

observe an excellent agreement between the extrapolated

and exact values which gives us confidence that the ex-

trapolation procedure employed in our analysis is indeed

reliable.

Having varified the reliability of the infinite-time ex-

trapolation for the deuteron binding energy, we now calcu-

late the energies E4, E8, E12 and E�
12 and the correspond-

ing derivatives. AFQMC data for the α-particle, 8
Be and

12
C are shown in Figs. 2, 3 and 4, respectively, along with

the extrapolation to Nt → ∞. All results correspond to

L = 11.84 fm (N = 6). The extrapolated observables

for E4, E8 and E12, E�
12 are given in Tables 3 and 4, re-

spectively. As explained in section 2, the EM energy shift

is also treated as a perturbation with ∆E(cpp) denoting

the energy shift due to the proton-proton contact inter-

action on the lattice, and ∆E(αem) the shift due to the

long-range Coulomb interaction.

We now combine the AFQMC and two-nucleon scat-

tering results in order to obtain predictions for the de-

pendence of the various states involved in the triple-alpha

process on Mπ. Here and in what follows, we adopt the

values

x1 = 0.73+0.24
−0.16 , x2 = −0.024+0.032

−0.034 l.u., (42)
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Fig. 2. AFQMC data for
4
He as a function of Nt, along with

the extrapolation to Nt → ∞. Previously obtained AFQMC

data for E with lower statistics is shown for comparison.

as explained in section 3. Substituting the calculated val-

ues for the derivatives of Ei with respect to M̃π, mN , g̃πN ,

C0 and CI into Eq. (28) and using Eq. (38) to eliminate

x3,4 in favor of Ās,t we obtain the following results for the

individual energies:

∂E4

∂Mπ

= −0.339(5)Ās − 0.697(4)Āt + 0.0380(14)+0.008
−0.006,

∂E8

∂Mπ

= −0.794(32)Ās − 1.584(23)Āt + 0.089(9)+0.017
−0.011,

∂E12

∂Mπ

= −1.52(3)Ās − 2.88(2)Āt + 0.159(7)+0.023
−0.018,
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243, L = 47.36 fm 323, L = 63.14 fm
Es [MeV] −0.0440956 −0.0218593
Et [MeV] 0.0369820 0.0142463
Ed [MeV] −2.2244401 −2.2443719
∂Es/∂M̃π −2.0261727× 10−4 −1.1927443× 10−4

∂Et/∂M̃π −5.5518808× 10−5 −1.9921726× 10−5

∂Es/∂mN −2.0081283× 10−4 −1.2224536× 10−4

∂Et/∂mN −1.6013626× 10−4 −5.8480992× 10−5

∂Es/∂g̃πN [l.u.] 9.9946261× 10−4 5.8797858× 10−4

∂Et/∂g̃πN [l.u.] 3.5402207× 10−4 1.2691192× 10−4

qs [l.u.] 0.00379650 0.00223108
qt [l.u.] 0.00165886 5.9467427× 10−4

Table 1. Various energies of the two-nucleon states and
the corresponding derivatives calculated by solution of the
Schrödinger equation in a cubic box of size N = 24 (sec-
ond column) and N = 32 (third column). Quantities labeled
“[l.u.]” are given in units of the inverse (spatial) lattice spacing
a−1
l ≡ 100 MeV. All derivatives are evaluated at the physical

value of the quark mass. Timo: Are all digits in the table
really relevant?

with i = {s, t}. Table 1 summarizes our results for the en-
ergies Ei, the corresponding derivatives and the quantities
qs,t computed from numerical solution of the two-nucleon
problem on a spatial lattice. As the objective is to take
the box size N large enough to make finite volume effects
negligible, two different box sizes (N = 24 and N = 32)
have been considered in order to determine the magnitude
of residual finite volume effects on the Lüscher analysis.
Timo: I did not find any discussion of the finite-
volume effects in the notes... Using the values given
in Table 1 and solving the system of equations (35) for
x3,4 allows us to express these quantities in terms of Ās,t

for a given values of x1,2. Timo: I think, it would be
helpful for a reader if we would be more explicit at
this stage and would provide the relation between
xs,t and Ās,t. This could be done in the following
way: We obtain the follwing relations

x3 = XXXx1 +XXXx2 +XXXĀs +XXXĀt ,

x4 = XXXx1 +XXXx2 +XXXĀs +XXXĀt ,(37)

for the smaller lattice size of L = 47.36 fm and

x3 = XXXx1 +XXXx2 +XXXĀs +XXXĀt ,

x4 = XXXx1 +XXXx2 +XXXĀs +XXXĀt ,(38)

for the larger lattice size of L = 63.14 fm. Notice that
the dimensionful quantities x2, x3 and x4 in the above
equations are to be takein in units of the corresponding
powers of inverse lattice spacing.

5 Quantum Monte Carlo analysis

We now turn to the AFQMC analysis of the various ener-
gies. In the results presented in this section, all AFQMC
data have been extrapolated to Nt = ∞. An accurate

2H (extr.) 2H (exact)
E(LO) [MeV] −9.070(12) −9.078
∆E(∆M̃π) [MeV] −0.003548(12) −0.003569
∆E(∆M IB

π ) [MeV] −0.002372(8) −0.002379
∂E/∂mN −0.00382(2) −0.003809
∂E/∂g̃πN [l.u.] 0.01024(11) 0.01017
∂E/∂C0 [l.u.] 0.13897(15) 0.138867
∂E/∂CI [l.u.] −0.4171(4) −0.41660

Table 2. Deuteron energy and the corresponding energy shifts
and derivatives calculated using the AFQMC method and ex-
trapolated to Lt → ∞ in comparison with the exact values.
The energy E and the energy shifts ∆E are given in MeV,
derivatives with respect to Mπ and mN are dimensionless, and
the remaining derivatives are given in lattice units. All deriva-
tives are evaluated at the physical value of the quark mass.
Timo: do we really need ∆E(∆M IB

π ) here? If not, maybe
it is better to remove it (also from the plot).

extrapolation is necessary for reliable conclusions. For ex-
ample, the results for the 4He binding energy for N = 6
deviate by up to ∼ 15 % from the extrapolated values at
the finite values of Nt employed in our calculations (which
are limited by the sign problem). The results for heavier
nuclei converge faster to the values at Nt = ∞, although
the extrapolation remains important due to the worsening
sign problem which prohibits calculations at Nt > 12. The
energy E is fitted with

E(Nt) = E(∞) + cE exp(−Nt/τ), (39)

and the matrix elements with

Xi(Nt) = Xi(∞) + ci exp(−Nt/(2τ)). (40)

All observables are fitted simultaneously with a common
exponent τ . Matrix element data with Nt < 6 has been
excluded from the extrapolation.

Monte Carlo simulations are performed with a single
value of Mπ equal to the neutral pion mass, with isospin
symmetry breaking treated as a perturbation. Here and
in what follows, ∆Ei(∆M̃π) denotes the shift in the en-
ergy Ei induced by changing the neutral and charged
pion masses in the propagator of the OPE potential by
∆Mπ = 4.59 MeV. The corresponding derivatives enter-
ing Eq. (28) are approximately given by

∂Ei

∂M̃π

����
Mph

π

� ∆Ei(∆M̃π)

∆Mπ

. (41)

Timo: do you want to say something about the way
the other derivatives in Eq. (28) are calculated?

Due to the importance of the extrapolation toNt = ∞,
it is crucial to validate this procedure against known re-
sults. Such a comparison is given in Table 2, where the
results obtained from extrapolated AFQMC data for the
deuteron, see Fig. 1, are compared with a numerical so-
lution of the Schrödinger equation. The deuteron results
are computed for a box size of L = 5.92 fm (N = 3). We
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number of time steps

AFQMC calculation of the 4He BE

Large-t extrapolated and exact results for 2H (33, L=5.92 fm)
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Transfer matrix with only nucleon fields (without smearing) 
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 Auxiliary Field QMC method
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Hubbard-Stratonovich transformation:

Transfer matrix with (instantaneous) 
pion and auxiliary fields
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Gij(s, sI , πI) = �i|e−H(s,sI ,πI)t|j�

1

�Ψinit|e−H(s,sI ,πI)t|Ψinit� = detGij(s, sI , πI)

1

For a given configuration of the auxilliary & pion fields:

with

 Auxiliary Field QMC method



 Ground states of 8Be and 12C
E.E., Krebs, Lee, Meißner, PRL 106 (11) 192501 

Simulations for 8Be and 12C, L=11.8 fm

Ground state energies (L=11.8 fm) of 4He, 8Be, 12C & 16O

4He 8Be 12C 16O

LO [Q0], in MeV −28.0(3) −57(2) −96(2) −144(4)
NLO [Q2], in MeV −24.9(5) −47(2) −77(3) −116(6)
NNLO [Q3], in MeV −28.3(6) −55(2) −92(3) −135(6)
Experiment, in MeV −28.30 −56.5 −92.2 −127.6
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Ground state of Beryllium-8 

Epelbaum, Krebs, D.L, Meißner, PRL 106 (2011) 192501 

31 

Ground state of Carbon-12 

Epelbaum, Krebs, D.L, Meißner, PRL 104 (2010) 142501;  
EPJA 45 (2010) 335; PRL 106 (2011) 192501 

33 



 The Hoyle state

4

TABLE III: Lattice results at leading order and experimen-
tal values for the root-mean-square charge radius and the
quadrupole moments for 12C.

LO Experiment

r(0+
1 ) [fm] 2.2(2) 2.47(2) [26]

r(2+
1 ) [fm] 2.2(2) −

Q(2+
1 ) [e fm2] 6(2) 6(3) [27]

r(0+
2 ) [fm] 2.4(2) −

r(2+
2 ) [fm] 2.4(2) −

Q(2+
2 ) [e fm2] −7(2) −

TABLE IV: Lattice results at leading order and experimen-
tal values for electromagnetic transitions involving the even-
parity states of 12C.

LO Experiment

B(E2, 2+
1 → 0+

1 ) [e2 fm4] 5(2) 7.6(4) [29]

B(E2, 2+
1 → 0+

2 ) [e2 fm4] 1.5(7) 2.6(4) [29]

B(E2, 2+
2 → 0+

1 ) [e2 fm4] 2(1) −
B(E2, 2+

2 → 0+
2 ) [e2 fm4] 6(2) −

m(E0, 0+
2 → 0+

1 ) [e fm2] 3(1) 5.5(1) [17]

moments of the two spin-2 states reflects the oblate shape

of the 2
+
1 state and prolate shape of the 2

+
2 state.

The leading order results for the electromagnetic tran-

sitions among the even-parity states of
12

C are shown in

Table IV. The definitions for these quantities can be

found in Ref. [28]. The agreement with available ex-

perimental values is reasonable. The lattice results at

leading order have a tendency to be somewhat smaller

than experimental values. This presumably reflects the

greater binding energies and smaller radii of the nuclei at

leading order. We also predict electromagnetic decays

involving the 2
+
2 state that may be measured experimen-

tally in the near future.

In summary we have presented ab initio lattice cal-

culations which show the structure of the Hoyle state

and find evidence for a low-lying spin-2 rotational ex-

citation. For the ground state and first spin-2 state,

we find mostly a compact triangular configuration of al-

pha clusters. For the Hoyle state and second spin-2

state, we find a bent-arm or obtuse triangular config-

uration of alpha clusters. We have calculated charge

radii, quadrupole moments, and electromagnetic transi-

tions among the low-lying even-parity states of
12

C at

leading order. All of the results are in reasonable agree-

ment with experimental values. More work is still needed

such as calculations using smaller lattice spacings. How-

ever these results provide a deeper understanding of the

structure and rotations of the Hoyle state starting from

first principles.
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Figure 7: Left panel: Lattice results of Ref. [83] for the ener-
gies of low-lying even-parity states of 12C compared to exper-
imental values (in units of MeV). Right panel: “Survivability
bands” of carbon-oxigen based life obtained from lattice sim-
ulations of Ref. [84] as explained in the text.
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The crucial quantity that controls the production rate is the energy ε of the Hoyle state relative to
the triple-alpha threshold which is experimentally known to be ε = 397.47(18) keV. Changing ε
by an amount of ±100 keV results in a strong reduction of the formation of 12C and 16O in the
universe making the emergence of carbon-based life impossible. It is, therefore, very interesting
to investigate how this seemingly fine-tuned quantity depends on the fundamental constants of
nature such as mq. We have studied the sensitivity of ε to variations of mq within nuclear lattice
simulations in Ref. [84]. Fig. 7 shows the survivability bands of carbon-based life under 1% and
5% changes of mq. Here, Ās,t ≡ (∂a−1

1S0,3S1/∂Mπ)Mphys
π

denote the slope of the inverse NN S-wave
scattering lengths as functions of the pion mass. These quantities can, in principle, be computed
in lattice-QCD. The data point in the right panel of Fig. 7 corresponds to the recent N2LO results
of Ref. [28] for chiral extrapolations of a−1

1S0,3S1 shown in Fig. 3. These findings suggest that the
formation of carbon and oxygen in our universe would survive a ∼ 2% change in the light quark
mass.
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Lattice results for low-lying even-parity states of 12C
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tice spacing a = 1.97 fm and total length L = 12 fm. In
the time direction, we use lattice time step at = 1.32 fm
and vary the propagation time Lt to extrapolate to the
limit Lt → ∞. The nucleons are treated as point-like
particles on lattice sites, and interactions due to the ex-
change of pions and multi-nucleon operators are gener-
ated using auxiliary fields. Lattice effective field theory
was originally used to calculate the many-body proper-
ties of homogeneous nuclear and neutron matter [19, 20].
Since then the properties of several atomic nuclei have
been investigated [21, 22]. A recent review of the liter-
ature can be found in Ref. [23].

Euclidean time propagation is used to project on to
low-energy states of our interacting system. Let H be
the Hamiltonian. For any initial quantum state Ψ, the
projection amplitude is defined as the expectation value�
e
−Ht

�
Ψ
. For large Euclidean time t, the exponential

operator e
−Ht enhances the signal of low-energy states.

Energies can be determined from the exponential decay
of these projection amplitudes. The first few time steps
and last few time steps are evaluated using a simpler
Hamiltonian HSU(4) based upon Wigner’s SU(4) symme-
try for protons and neutrons [24]. This Hamiltonian is
computationally inexpensive and is used as a low-energy
filter before starting the main calculation. This tech-
nique is described in Ref. [23].

In Table I we present lattice results for the ground
state energies of 4He and 8Be up to NNLO. The method
of calculation is nearly the same as that described in
Ref. [13, 22, 25]. The higher-order corrections are com-
puted using perturbation theory. The coefficients of
the nucleon-nucleon interactions are set by fitting to low-
energy scattering data. In our calculations the NNLO
corrections correspond with three-nucleon forces. A de-
tailed description of the interactions at each order can
be found in Ref. [25]. We have used the triton binding
energy and the weak axial vector current to fix the low-
energy constants cD and cE entering the three-nucleon
interaction.

In comparison with the calculations in Ref. [13], some
improvements have been made using higher-derivative
lattice operators which eliminate the overbinding of the
leading order action when calculating larger nuclei such
as 16O. The details of this improved action will be dis-
cussed in a forthcoming publication. The error bars in
Table I are one standard deviation estimates which in-
clude both Monte Carlo statistical errors and uncertain-
ties due to extrapolation at large Euclidean time. We
see that the binding energy results for 4He and 8Be at
NNLO are in agreement with experimental values.

In our projection Monte Carlo calculations we use a
larger class of initial and final states than considered in
previous work. For the calculation of 4He we use an
initial state with four nucleons, each at zero momentum.
For the calculation of 8Be we use the same initial state
as 4He, but then apply creation operators after the first

TABLE I: Lattice results and experimental values for the
ground state energies of 4He and 8Be. All energies are in
units of MeV.

4He 8Be

LO [O(Q0)] −28.0(3) −57(2)

NLO [O(Q2)] −24.9(5) −47(2)

NNLO [O(Q3)] −28.3(6) −55(2)

Experiment −28.30 −56.50
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FIG. 1: Lattice results for the 12C spectrum at leading order.
In Panel I we show results from three different initial states, A,
B, and ∆, each approaching the ground state energy. In Panel
II we show results starting from three other initial states, C,
D, and Λ. These trace out an intermediate plateau at energy
about 7 MeV above the ground state.

time step to inject four more nucleons at zero momentum.
The analogous process is done to extract four nucleons
before the last step. This injection and extraction pro-
cess of nucleons at zero momentum helps to eliminate
directional biases caused by initial and final state mo-
menta.

We make use of many different initial and final states
to probe the structure of the 12C states. In all of the 12C
states investigated here we measure four-nucleon correla-
tions by calculating the expectation value of ρ4, where ρ
is the total nucleon density. We find strong four-nucleon
correlations consistent with the formation of alpha clus-
ters. In Fig. 1 we present lattice results for the energy
of 12C at leading order versus Euclidean projection time
t. For each of the initial states A, B, C, and D, we
start with delocalized nucleon standing waves and use a
strong attractive interaction in HSU(4) to allow the nu-
cleons to self-organize into a nucleus. For initial states
∆ and Λ, we use alpha cluster wavefunctions to recover
the same states found using initial states A, B, C, and D.
For these calculations, the interaction in HSU(4) is not as
strong and the projected states retain their original alpha
cluster character.

In Panel I, we show results from three different initial
states, A, B, and ∆, each approaching the ground state

3

FIG. 2: This shows initial state ∆, a wavefunction consisting

of three alpha clusters formed by Gaussian packets centered

on the vertices of a compact triangle. There are a total of 12

equivalent orientations of this configuration.

energy, −96(2) MeV. For initial state A, we start with
four nucleons each at zero momentum, apply creation
operators after the first time step to inject four more
nucleons at rest, and then inject four more nucleons at
rest after the second time step. The reverse process
is used to extract nucleons for final state A. The same
scheme is used for initial state B, though the interactions
in HSU(4) used are not as strongly attractive as those for
A.

For initial state ∆, we use a wavefunction consisting
of three alpha clusters as shown in Fig. 2. The alpha
clusters are formed by Gaussian packets centered on the
vertices of a compact triangle. In order to construct
eigenstates of total momentum and lattice cubic rota-
tions, we consider all possible translations and rotations
of the initial state. There are a total of 12 equivalent
orientations of this configuration. We do not find fast
convergence to the ground state when starting from any
other configuration of alpha clusters. From this we con-
clude that the alpha cluster configurations in Fig. 2 have
the strongest overlap with the 0+

1 ground state of 12C.
The fact that it is an isosceles right triangle rather than
an equilateral triangle is just an artifact of the lattice
spacing.

In Panel II of Fig. 1 we show leading-order energies
for three different initial states, C, D, and Λ, each ap-
proaching an intermediate plateau at −89(2) MeV. If
Euclidean time is taken to infinity, these curves eventu-
ally approach the ground state energy like the curves in
Panel I. However it is clear that a different state is first
being formed which is not the ground state. We identify
the 0+ state in this plateau region as the 0+

2 Hoyle state.
The common thread connecting each of the initial states
C, D, and Λ, is that each produces a state which has an
extended or prolate geometry. This is in contrast to the
oblate triangular configuration in Fig. 2.

For initial state C, we take four nucleons at rest, four
with momenta (2π/L, 2π/L, 2π/L), and four with mo-
menta (−2π/L,−2π/L,−2π/L). For initial state D,
we use a similar configuration with four at rest, four
with momenta (2π/L, 2π/L, 0), and four with momenta
(−2π/L,−2π/L, 0). For initial state Λ, we use a set
three alpha clusters formed by Gaussian packets centered
on the vertices of a bent-arm or obtuse triangular con-

FIG. 3: This shows initial state Λ, a wavefunction consisting

of three alpha clusters formed by Gaussian packets centered

on the vertices of a bent-arm or obtuse triangular configura-

tion. There are a total of 24 equivalent orientations of this

configuration.

TABLE II: Lattice results for the low-lying even-parity states

of
12

C compared with the experimental results in units of

MeV.

0
+
1 2

+
1 (E

+
) 0

+
2 2

+
2 (E

+
)

LO [O(Q
0
)] −96(2) −94(2) −89(2) −88(2)

NLO [O(Q
2
)] −77(3) −74(3) −72(3) −70(3)

NNLO [O(Q
3
)] −92(3) −89(3) −85(3) −83(3)

Experiment −92.16 −87.72 −84.51

−82.6(1) [8, 10]

−82.32(6) [11]

−81.1(3) [9]

figuration as shown in Fig. 3. There are a total of 24
equivalent orientations of this configuration. We do not
find the same plateau starting from other configurations
of alpha clusters. We conclude that the configurations
in Fig. 3 have the strongest overlap with the 0+

2 Hoyle
state of 12C.

We use the same multi-channel method developed in
Ref. [13] to find a spin-2 excitation above the ground state
as well as a spin-2 excitation above the Hoyle state. In
both cases we are taking the E

+ representation of the cu-
bic rotation group on the lattice. We show the results for
the binding energies of the low-lying even-parity states of
12C in Table II. We find that the binding energies at
NNLO are in agreement with experimental values.

In Table III we present results at leading order for the
root-mean-square charge radius and quadrupole moment
of the even-parity states of 12C. We also show experi-
mental values where available. In this study we compute
electromagnetic moments only at leading order. We note
that moments such as the charge radius for resonances
above threshold are dependent on boundary conditions
used to regulate the continuum-state asymptotics of the
wavefunction. We avoid this problem because all of the
low-lying states are bound at leading order. One expects
that as the higher-order corrections push the binding en-
ergies closer to the triple alpha threshold, the correspond-
ing radii will increase accordingly. A detailed study of
these resonances as a function of finite volume size will
be investigated in future work. We find good agreement
with the experimental value for the 2+

1 quadrupole mo-
ment. The difference in signs for the electric quadrupole

3

FIG. 2: This shows initial state ∆, a wavefunction consisting

of three alpha clusters formed by Gaussian packets centered

on the vertices of a compact triangle. There are a total of 12

equivalent orientations of this configuration.

energy, −96(2) MeV. For initial state A, we start with
four nucleons each at zero momentum, apply creation
operators after the first time step to inject four more
nucleons at rest, and then inject four more nucleons at
rest after the second time step. The reverse process
is used to extract nucleons for final state A. The same
scheme is used for initial state B, though the interactions
in HSU(4) used are not as strongly attractive as those for
A.

For initial state ∆, we use a wavefunction consisting
of three alpha clusters as shown in Fig. 2. The alpha
clusters are formed by Gaussian packets centered on the
vertices of a compact triangle. In order to construct
eigenstates of total momentum and lattice cubic rota-
tions, we consider all possible translations and rotations
of the initial state. There are a total of 12 equivalent
orientations of this configuration. We do not find fast
convergence to the ground state when starting from any
other configuration of alpha clusters. From this we con-
clude that the alpha cluster configurations in Fig. 2 have
the strongest overlap with the 0+

1 ground state of 12C.
The fact that it is an isosceles right triangle rather than
an equilateral triangle is just an artifact of the lattice
spacing.

In Panel II of Fig. 1 we show leading-order energies
for three different initial states, C, D, and Λ, each ap-
proaching an intermediate plateau at −89(2) MeV. If
Euclidean time is taken to infinity, these curves eventu-
ally approach the ground state energy like the curves in
Panel I. However it is clear that a different state is first
being formed which is not the ground state. We identify
the 0+ state in this plateau region as the 0+

2 Hoyle state.
The common thread connecting each of the initial states
C, D, and Λ, is that each produces a state which has an
extended or prolate geometry. This is in contrast to the
oblate triangular configuration in Fig. 2.

For initial state C, we take four nucleons at rest, four
with momenta (2π/L, 2π/L, 2π/L), and four with mo-
menta (−2π/L,−2π/L,−2π/L). For initial state D,
we use a similar configuration with four at rest, four
with momenta (2π/L, 2π/L, 0), and four with momenta
(−2π/L,−2π/L, 0). For initial state Λ, we use a set
three alpha clusters formed by Gaussian packets centered
on the vertices of a bent-arm or obtuse triangular con-

FIG. 3: This shows initial state Λ, a wavefunction consisting

of three alpha clusters formed by Gaussian packets centered

on the vertices of a bent-arm or obtuse triangular configura-

tion. There are a total of 24 equivalent orientations of this

configuration.

TABLE II: Lattice results for the low-lying even-parity states

of
12

C compared with the experimental results in units of

MeV.

0
+
1 2

+
1 (E

+
) 0

+
2 2

+
2 (E

+
)

LO [O(Q
0
)] −96(2) −94(2) −89(2) −88(2)

NLO [O(Q
2
)] −77(3) −74(3) −72(3) −70(3)

NNLO [O(Q
3
)] −92(3) −89(3) −85(3) −83(3)

Experiment −92.16 −87.72 −84.51

−82.6(1) [8, 10]

−82.32(6) [11]

−81.1(3) [9]

figuration as shown in Fig. 3. There are a total of 24
equivalent orientations of this configuration. We do not
find the same plateau starting from other configurations
of alpha clusters. We conclude that the configurations
in Fig. 3 have the strongest overlap with the 0+

2 Hoyle
state of 12C.

We use the same multi-channel method developed in
Ref. [13] to find a spin-2 excitation above the ground state
as well as a spin-2 excitation above the Hoyle state. In
both cases we are taking the E

+ representation of the cu-
bic rotation group on the lattice. We show the results for
the binding energies of the low-lying even-parity states of
12C in Table II. We find that the binding energies at
NNLO are in agreement with experimental values.

In Table III we present results at leading order for the
root-mean-square charge radius and quadrupole moment
of the even-parity states of 12C. We also show experi-
mental values where available. In this study we compute
electromagnetic moments only at leading order. We note
that moments such as the charge radius for resonances
above threshold are dependent on boundary conditions
used to regulate the continuum-state asymptotics of the
wavefunction. We avoid this problem because all of the
low-lying states are bound at leading order. One expects
that as the higher-order corrections push the binding en-
ergies closer to the triple alpha threshold, the correspond-
ing radii will increase accordingly. A detailed study of
these resonances as a function of finite volume size will
be investigated in future work. We find good agreement
with the experimental value for the 2+

1 quadrupole mo-
ment. The difference in signs for the electric quadrupole
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tice spacing a = 1.97 fm and total length L = 12 fm. In
the time direction, we use lattice time step at = 1.32 fm
and vary the propagation time Lt to extrapolate to the
limit Lt → ∞. The nucleons are treated as point-like
particles on lattice sites, and interactions due to the ex-
change of pions and multi-nucleon operators are gener-
ated using auxiliary fields. Lattice effective field theory
was originally used to calculate the many-body proper-
ties of homogeneous nuclear and neutron matter [19, 20].
Since then the properties of several atomic nuclei have
been investigated [21, 22]. A recent review of the liter-
ature can be found in Ref. [23].

Euclidean time propagation is used to project on to
low-energy states of our interacting system. Let H be
the Hamiltonian. For any initial quantum state Ψ, the
projection amplitude is defined as the expectation value�
e
−Ht

�
Ψ
. For large Euclidean time t, the exponential

operator e
−Ht enhances the signal of low-energy states.

Energies can be determined from the exponential decay
of these projection amplitudes. The first few time steps
and last few time steps are evaluated using a simpler
Hamiltonian HSU(4) based upon Wigner’s SU(4) symme-
try for protons and neutrons [24]. This Hamiltonian is
computationally inexpensive and is used as a low-energy
filter before starting the main calculation. This tech-
nique is described in Ref. [23].

In Table I we present lattice results for the ground
state energies of 4He and 8Be up to NNLO. The method
of calculation is nearly the same as that described in
Ref. [13, 22, 25]. The higher-order corrections are com-
puted using perturbation theory. The coefficients of
the nucleon-nucleon interactions are set by fitting to low-
energy scattering data. In our calculations the NNLO
corrections correspond with three-nucleon forces. A de-
tailed description of the interactions at each order can
be found in Ref. [25]. We have used the triton binding
energy and the weak axial vector current to fix the low-
energy constants cD and cE entering the three-nucleon
interaction.

In comparison with the calculations in Ref. [13], some
improvements have been made using higher-derivative
lattice operators which eliminate the overbinding of the
leading order action when calculating larger nuclei such
as 16O. The details of this improved action will be dis-
cussed in a forthcoming publication. The error bars in
Table I are one standard deviation estimates which in-
clude both Monte Carlo statistical errors and uncertain-
ties due to extrapolation at large Euclidean time. We
see that the binding energy results for 4He and 8Be at
NNLO are in agreement with experimental values.

In our projection Monte Carlo calculations we use a
larger class of initial and final states than considered in
previous work. For the calculation of 4He we use an
initial state with four nucleons, each at zero momentum.
For the calculation of 8Be we use the same initial state
as 4He, but then apply creation operators after the first

TABLE I: Lattice results and experimental values for the
ground state energies of 4He and 8Be. All energies are in
units of MeV.

4He 8Be

LO [O(Q0)] −28.0(3) −57(2)

NLO [O(Q2)] −24.9(5) −47(2)

NNLO [O(Q3)] −28.3(6) −55(2)

Experiment −28.30 −56.50

-110

-100

-90

-80

-70

-60

-50

 0  0.02  0.04  0.06  0.08  0.1  0.12

E
(t)

 (M
eV

)

t (MeV-1)

(I)

LO [A]
LO [B]
LO [!]

-110

-100

-90

-80

-70

-60

-50

 0  0.02  0.04  0.06  0.08  0.1  0.12
t (MeV-1)

(II)

LO [C]
LO [D]
LO ["]

FIG. 1: Lattice results for the 12C spectrum at leading order.
In Panel I we show results from three different initial states, A,
B, and ∆, each approaching the ground state energy. In Panel
II we show results starting from three other initial states, C,
D, and Λ. These trace out an intermediate plateau at energy
about 7 MeV above the ground state.

time step to inject four more nucleons at zero momentum.
The analogous process is done to extract four nucleons
before the last step. This injection and extraction pro-
cess of nucleons at zero momentum helps to eliminate
directional biases caused by initial and final state mo-
menta.

We make use of many different initial and final states
to probe the structure of the 12C states. In all of the 12C
states investigated here we measure four-nucleon correla-
tions by calculating the expectation value of ρ4, where ρ
is the total nucleon density. We find strong four-nucleon
correlations consistent with the formation of alpha clus-
ters. In Fig. 1 we present lattice results for the energy
of 12C at leading order versus Euclidean projection time
t. For each of the initial states A, B, C, and D, we
start with delocalized nucleon standing waves and use a
strong attractive interaction in HSU(4) to allow the nu-
cleons to self-organize into a nucleus. For initial states
∆ and Λ, we use alpha cluster wavefunctions to recover
the same states found using initial states A, B, C, and D.
For these calculations, the interaction in HSU(4) is not as
strong and the projected states retain their original alpha
cluster character.

In Panel I, we show results from three different initial
states, A, B, and ∆, each approaching the ground state

Probing (α-cluster) structure of the 01+, 02+ states 
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tice spacing a = 1.97 fm and total length L = 12 fm. In
the time direction, we use lattice time step at = 1.32 fm
and vary the propagation time Lt to extrapolate to the
limit Lt → ∞. The nucleons are treated as point-like
particles on lattice sites, and interactions due to the ex-
change of pions and multi-nucleon operators are gener-
ated using auxiliary fields. Lattice effective field theory
was originally used to calculate the many-body proper-
ties of homogeneous nuclear and neutron matter [19, 20].
Since then the properties of several atomic nuclei have
been investigated [21, 22]. A recent review of the liter-
ature can be found in Ref. [23].

Euclidean time propagation is used to project on to
low-energy states of our interacting system. Let H be
the Hamiltonian. For any initial quantum state Ψ, the
projection amplitude is defined as the expectation value�
e
−Ht

�
Ψ
. For large Euclidean time t, the exponential

operator e
−Ht enhances the signal of low-energy states.

Energies can be determined from the exponential decay
of these projection amplitudes. The first few time steps
and last few time steps are evaluated using a simpler
Hamiltonian HSU(4) based upon Wigner’s SU(4) symme-
try for protons and neutrons [24]. This Hamiltonian is
computationally inexpensive and is used as a low-energy
filter before starting the main calculation. This tech-
nique is described in Ref. [23].

In Table I we present lattice results for the ground
state energies of 4He and 8Be up to NNLO. The method
of calculation is nearly the same as that described in
Ref. [13, 22, 25]. The higher-order corrections are com-
puted using perturbation theory. The coefficients of
the nucleon-nucleon interactions are set by fitting to low-
energy scattering data. In our calculations the NNLO
corrections correspond with three-nucleon forces. A de-
tailed description of the interactions at each order can
be found in Ref. [25]. We have used the triton binding
energy and the weak axial vector current to fix the low-
energy constants cD and cE entering the three-nucleon
interaction.

In comparison with the calculations in Ref. [13], some
improvements have been made using higher-derivative
lattice operators which eliminate the overbinding of the
leading order action when calculating larger nuclei such
as 16O. The details of this improved action will be dis-
cussed in a forthcoming publication. The error bars in
Table I are one standard deviation estimates which in-
clude both Monte Carlo statistical errors and uncertain-
ties due to extrapolation at large Euclidean time. We
see that the binding energy results for 4He and 8Be at
NNLO are in agreement with experimental values.

In our projection Monte Carlo calculations we use a
larger class of initial and final states than considered in
previous work. For the calculation of 4He we use an
initial state with four nucleons, each at zero momentum.
For the calculation of 8Be we use the same initial state
as 4He, but then apply creation operators after the first

TABLE I: Lattice results and experimental values for the
ground state energies of 4He and 8Be. All energies are in
units of MeV.

4He 8Be

LO [O(Q0)] −28.0(3) −57(2)

NLO [O(Q2)] −24.9(5) −47(2)

NNLO [O(Q3)] −28.3(6) −55(2)

Experiment −28.30 −56.50
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FIG. 1: Lattice results for the 12C spectrum at leading order.
In Panel I we show results from three different initial states, A,
B, and ∆, each approaching the ground state energy. In Panel
II we show results starting from three other initial states, C,
D, and Λ. These trace out an intermediate plateau at energy
about 7 MeV above the ground state.

time step to inject four more nucleons at zero momentum.
The analogous process is done to extract four nucleons
before the last step. This injection and extraction pro-
cess of nucleons at zero momentum helps to eliminate
directional biases caused by initial and final state mo-
menta.

We make use of many different initial and final states
to probe the structure of the 12C states. In all of the 12C
states investigated here we measure four-nucleon correla-
tions by calculating the expectation value of ρ4, where ρ
is the total nucleon density. We find strong four-nucleon
correlations consistent with the formation of alpha clus-
ters. In Fig. 1 we present lattice results for the energy
of 12C at leading order versus Euclidean projection time
t. For each of the initial states A, B, C, and D, we
start with delocalized nucleon standing waves and use a
strong attractive interaction in HSU(4) to allow the nu-
cleons to self-organize into a nucleus. For initial states
∆ and Λ, we use alpha cluster wavefunctions to recover
the same states found using initial states A, B, C, and D.
For these calculations, the interaction in HSU(4) is not as
strong and the projected states retain their original alpha
cluster character.

In Panel I, we show results from three different initial
states, A, B, and ∆, each approaching the ground state
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Summary: nuclear lattice simulations

combining EFT and lattice simulations           access to (light) nuclei 

exciting results for the 12C spectrum, first ab initio calculation of the Hoyle state

Work in progress: spectrum of 16O, volume dependence, reactions ...


