Motivation	Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Summary

Partial Wave Analysis of Nucleon-Nucleon Scattering below pion production threshold

Rodrigo Navarro Pérez Enrique Ruiz Arriola José Enrique Amaro Soriano

University of Granada Atomic, Molecular and Nuclear Physics Department

Raimondo Anni Nuclear Physics School Otranto, May 2013

Motivation ●00	Delta Shell Potential 0000	Fitting NN observables	Calculations 0000	Chiral TPE 00	Summary
Motivat	tion				

- Study of the NN interaction for over 60 years
- More than 7800 experimental scattering data from 1950 to 2013
- Several partial wave analyses (PWA) and potentials since the 1950's
 - Hamada Johnston, Yale, Paris, Bonn, Nijmegen, Argonne, ...
- $\chi^2/{\rm d.o.f.}\sim 1$ possible by 1993

```
[Stoks et al, Phys. Rev. C 48 (1993), 792]
```

• Chiral potentials appear in the mid 1990's

Motivation 0●0	Delta Shell Potential 0000	Fitting NN observables	Calculations 0000	Chiral TPE 00	Summary
Motivat	ion				

- No unique determination of the NN interaction
- Different phenomenological potentials
 - Fitted to experimental scattering data
 - High accuracy $\chi^2/{\rm d.o.f.} \sim 1$
 - Dispersion in Phaseshifts
 - OPE as the long range interaction
 - ~ 40 parameters for the short and intermediate range
 - Repulsive core for most of them
 - Short range correlations
- Nuclear structure calculations become complicated
- No statistical uncertainties estimates

Motivation 00●	Delta Shell Potential 0000	Fitting NN observables	Calculations 0000	Chiral TPE 00	Summary
Motivat	ion				

- Effective coarse graining
 - Oscillator Shell Model
 - Euclidean Lattice EFT
 - $V_{\rm lowk}$ interaction

• Characteristic distance $\sim 0.5-1.0~{\rm fm}$

Nyquist Theorem

- Optimal sampling
- Finite Bandwidth

 $\Delta r \Delta k \sim 1$

• de Broglie wavelength of the most energetic particle

Motivation 00●	Delta Shell Potential 0000	Fitting NN observables	Calculations 0000	Chiral TPE 00	Summary
Motivat	ion				

- Effective coarse graining
 - Oscillator Shell Model
 - Euclidean Lattice EFT
 - $V_{\rm lowk}$ interaction
- Characteristic distance $\sim 0.5-1.0~{\rm fm}$
- Nyquist Theorem
 - Optimal sampling
 - Finite Bandwidth

 $\Delta r \Delta k \sim 1$

• de Broglie wavelength of the most energetic particle

Motivation 000	Delta Shell Potential ●000	Fitting NN observables	Calculations 0000	Chiral TPE 00	Summary
Delta Sl	hell Potential				

• A sum of delta functions

$$V(r) = \sum_{i} \frac{\lambda_i}{2\mu} \delta(r - r_i)$$

[Aviles, Phys.Rev. C6 (1972) 1467]

- Optimal and minimal sampling of the nuclear interaction
- Pion production threshold $\Delta k \sim 2 \text{ fm}^{-1}$
- $\bullet~{\rm Optimal}$ sampling, $\Delta r \sim 0.5 {\rm fm}$

Navarro-Pérez R. (UGR)

PWA of NN scattering below 350MeV

Coarse Graining the AV18 potential

Motivation 000	Delta Shell Potential 00●0	Fitting NN observables	Calculations 0000	Chiral TPE 00	Summary
Delta Sl	nell Potential				

• Comparison with $V_{\rm lowk}$

• Nuclear structure calculations

[Prog.Part.Nucl.Phys. 67 (2012) 359]

Navarro-Pérez R. (UGR)

Motivation 000	Delta Shell Potential 000●	Fitting NN observables	Calculations 0000	Chiral TPE 00	Summary
Delta Sł	nell Potential				

- 3 well defined regions
- Innermost region $r \leq 0.5~{\rm fm}$
 - Short range interaction
 - No delta shell (No repulsive core)
- \bullet Intermediate region $0.5 \leq r \leq 3.0~{\rm fm}$
 - Unknown interaction
 - λ_i parameters fitted to scattering data
- Outermost region $r \geq 3.0 \text{ fm}$
 - Long range interaction
 - Described by OPE and EM effects
 - Coulomb interaction V_{C1} and relativistic correction V_{C2} (pp)
 - Vacuum polarization V_{VP} (pp)
 - Magnetic moment V_{MM} (pp and np)

Motivation 000	Delta Shell Potential 000●	Fitting NN observables	Calculations 0000	Chiral TPE 00	Summary
Delta Sł	nell Potential				

- 3 well defined regions
- Innermost region $r \leq 0.5~{\rm fm}$
 - Short range interaction
 - No delta shell (No repulsive core)
- Intermediate region $0.5 \leq r \leq 3.0~{\rm fm}$
 - Unknown interaction
 - λ_i parameters fitted to scattering data
- Outermost region $r \geq 3.0 \text{ fm}$
 - Long range interaction
 - Described by OPE and EM effects
 - Coulomb interaction V_{C1} and relativistic correction V_{C2} (pp)
 - Vacuum polarization VVP (pp)
 - Magnetic moment V_{MM} (pp and np)

Motivation 000	Delta Shell Potential 000●	Fitting NN observables	Calculations 0000	Chiral TPE 00	Summary
Delta Sł	nell Potential				

- 3 well defined regions
- Innermost region $r \leq 0.5~{\rm fm}$
 - Short range interaction
 - No delta shell (No repulsive core)
- Intermediate region $0.5 \leq r \leq 3.0~{\rm fm}$
 - Unknown interaction
 - λ_i parameters fitted to scattering data
- Outermost region $r \geq 3.0 \text{ fm}$
 - Long range interaction
 - Described by OPE and EM effects
 - Coulomb interaction V_{C1} and relativistic correction V_{C2} (pp)
 - Vacuum polarization V_{VP} (pp)
 - Magnetic moment V_{MM} (pp and np)

Motivation	Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Summary
000	0000	●000	0000	00	
Fitting I	VN observabl	es			

🔀 🐻 🖬 💠 🌍 👘 👘 🕅 🖅 9:29
Search
Search NN provider Start
Channel: PP
Observable: all
Energy (MeV): 0 < E < 350
Write to file: ppdata.txt
Output format: separate data
Order by: energy 💽
Minclude star (*) data
Include excluded data

- Database of NN scattering data obtained till 2013
 - http://nn-online.org/
 - http://gwdac.phys.gwu.edu/
 - NN provider for Android
 - Google Play Store

[J.E. Amaro, R. Navarro-Perez, and E. Ruiz-Arriola]

- 2868 pp data and 4991 np data
- 3σ criterion by Nijmegen to remove possible outliers

Motivation	Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Summary
000	0000	o●oo	0000	00	
Fitting I	NN observable	es			

• Delta shell potential in every partial wave

$$V_{l,l'}^{JS}(r) = \frac{1}{2\mu_{\alpha\beta}} \sum_{n=1}^{N} (\lambda_n)_{l,l'}^{JS} \delta(r - r_n) \qquad r \le r_c = 3.0 \text{fm}$$

- Strength coefficients λ_n as fit parameters
- Fixed and equidistant concentration radii $\Delta r = 0.6$ fm
- EM interaction is crucial for pp scattering amplitude

$$V_{C1}(r) = \frac{\alpha'}{r},$$

$$V_{C2}(r) \approx -\frac{\alpha \alpha'}{M_p r^2},$$

$$V_{VP}(r) = \frac{2\alpha \alpha'}{3\pi r} \int_1^\infty dx \ e^{-2m_e r x} \left[1 + \frac{1}{2x^2} \right] \frac{(x^2 - 1)^{1/2}}{x^2},$$

$$V_{MM}(r) = -\frac{\alpha}{4M_p^2 r^3} \left[\mu_p^2 S_{ij} + 2(4\mu_p - 1) \mathbf{L} \cdot \mathbf{S} \right]$$

Motivation	Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Summary
000	0000	00●0	0000	00	
Scatteri	ng Observabl	es			

• Comparing with Potentials and Experimental data

• np data

Motivation	Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Summary
000	0000	000●	0000	00	
Scatteri	ng Observable	es			

• Comparing with Potentials and Experimental data

• pp data

• $\chi^2/d.o.f. = 1.06$ with $N = 2747|_{pp} + 3691|_{np}$

[arXiv:1304.0895]

Motivation 000	Delta Shell Potential 0000	Fitting NN observables	Calculations ●000	Chiral TPE 00	Summary
Phase s	hifts				

- Phase shifts for every partial
- Statistical uncertainty propagated directly from covariance matrix

Otranto, May 2013

13 / 19

Motivation 000	Delta Shell Potential 0000	Fitting NN observables	Calculations 0000	Chiral TPE 00	Summary
Wolfens	stein Paramet	ers			

- A complete parametrization of the on-shell scattering amplitudes
- Five independent complex quantities
- Function of Energy and Angle

$$M(\mathbf{k}_f, \mathbf{k}_i) = a + m(\sigma_1, \mathbf{n})(\sigma_2, \mathbf{n}) + (g - h)(\sigma_1, \mathbf{m})(\sigma_2, \mathbf{m}) + (g + h)(\sigma_1, \mathbf{l})(\sigma_2, \mathbf{l}) + c(\sigma_1 + \sigma_2, \mathbf{n})$$

 $\bullet\,$ Scattering observables can be calculated from $M\,$

[Bystricky, J. et al, Jour. de Phys. 39.1 (1978) 1]

Motivation	Delta Shell Potential	Fitting NN observables	Calculations	Chiral TPE	Summary
000	0000	0000	0000	00	

Wolfenstein Parameters

Navarro-Pérez R. (UGR)

PWA of NN scattering below 350MeV

Motivation 000	Delta Shell Potential 0000	Fitting NN observables	Calculations 000●	Chiral TPE 00	Summary
Deutero	n Properties				

 $q \, [MeV]$

16 / 19

 $q \, [MeV]$

Motivation 000	Delta Shell Potential 0000	Fitting NN observables	Calculations 0000	Chiral TPE ●○	Summary
Includi	ng Chiral Two	Pion Exchan	σe		

- Inclusion of χTPE interactions at long and intermediate ranges
- pp PWA by the Nijmegen group

[Rentmeester et al, Phys. Rev. Lett. 82 (1999), 4992]

- ${\, \bullet \,}$ Improvement in the χ^2 value compared to OPE only
- Reduction of the number of parameters
- Determination of chiral constants c_1, c_3, c_4
- Preliminary test using the δ -shell potential
 - OPE, TPE(I.o.) and TPE(s.o.)
 - Different cut radius, $r_c =$ 3.0, 2.4, 1.8fm

Motivation 000	Delta Shell Potential 0000	Fitting NN observables	Calculations 0000	Chiral TPE 0●	Summary

Comparing OPE and χ TPE

• Fitting all NN data

r_c [fm]	1.8		2.4		3.0	
	$N_{\rm p}$	χ^2/ u	$N_{\rm p}$	χ^2/ u	$N_{\rm p}$	χ^2/ u
OPE	31	1.80	39	1.56	46	1.54
TPE(I.o.)	31	1.72	38	1.56	46	1.52
TPE(s.o.)	30+3	1.60	38+3	1.56	46+3	1.52
	•					

• Fitting 3σ compatible NN data

	N_{Data}	$N_{\rm p}$	χ^2/ u	N_{Data}	$N_{\rm P}$	χ^2/ u	N_{Data}	$N_{\rm P}$	χ^2/ u
OPE	5766	31	1.10	6363	39	1.09	6438	46	1.06
TPE(I.o.)	5841	31	1.10	6432	38	1.10	6423	46	1.06
TPE(s.o.)	6220	30+3	1.07	6439	38+3	1.10	6422	46+3	1.06

- OPE only at 3.0fm describes the data
- 1.8 \leq r \leq 3.0fm OPE + something else
- $\chi {\rm TPE}$ most of that something else

Motivation 000	Delta Shell Potential 0000	Fitting NN observables	Calculations 0000	Chiral TPE 00	Summary
Summar	.y				

• Sampling of the NN interaction by a delta shell potential

$$1/\sqrt{m_{\pi}M} \lesssim \Delta r \lesssim 1/m_{\pi}$$

- 3 well defined regions
- Fit to NN scattering data
- Good description of scattering observables (over 6400 data)
- Statistical uncertainty propagation possible
- δ -shell representation allows straightforward calculations
 - Separable in momentum space
 - Finite nuclei Binding Energy
 - Phaseshifts
 - Scattering amplitudes
 - Deuteron properties and form factors
- Comparing OPE and χ TPE
 - χTPE reduces number of parameters
 - Less 3σ compatible data

