Electroweak responses of few-body systems at low energies.

M. Viviani

INFN, Sezione di Pisa & Department of Physics, University of Pisa Pisa (Italy)

LECTURE 3

Raimondo Anni School, 6th Course, May 27-31, 2013

May 30, 2013

M. Viviani (INFN-Pisa)

EW processes at low energies

Nuclear EM transition operators: $[\rho, J]$

Ir Physics Approach - SNP/

One-body current

$$\boldsymbol{J}(\boldsymbol{x}) \approx \sum_{j} J_{j}^{(1)}(\boldsymbol{x}) = \sum_{j=1}^{A} \frac{1}{2M} \boldsymbol{e}_{j} \left[\delta(\boldsymbol{x} - \boldsymbol{r}_{j}) \boldsymbol{p}_{j} + \boldsymbol{p}_{j} \delta(\boldsymbol{x} - \boldsymbol{r}_{j}) \right] + \boldsymbol{\nabla} \times \left[\sum_{j=1}^{A} \frac{1}{2M} \mu_{j} \boldsymbol{\sigma}_{j} \delta(\boldsymbol{x} - \boldsymbol{r}_{i}) \right]$$

- \rightarrow large discrepancies with data
- Two-body currents: from $\pi -$, $\rho -$, $\omega -$, ... exchanges

Problem: is current conservation (CC) verified?

$$\boldsymbol{\nabla} \cdot \boldsymbol{J}(\boldsymbol{x}) + i \Big[H_0, \rho(\boldsymbol{x}) \Big] = 0 \qquad H = \sum_i \frac{\boldsymbol{p}_i^2}{2M} + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk}$$

• v_{ij} and V_{ijk} depend on *isospin* and *momentum*: determined from fit of the NN dataset • In principle $J = \sum_{i} J_{i}^{(1)} + \sum_{i < j} J_{ij}^{(2)} + \sum_{i < j < k} J_{ijk}^{(3)}$

H₀ and J have to be derived consistently

J^{OPE,(2)}_{ii} derived from (b-d) diagrams verifies CC with OPEP v^{OPE}_{ii}

• A simple prescription: if $v_{ij} = \sum_r c_r v_{ij}^{OPE}(m_r)$ then $J_{ij} = \sum_r c_r J_{ij}^{OPE,(2)}(m_r)$ verify CC

- [Buchmann, Leidemann, & Arenhövel, 1985], [Riska, 1985]
- [Marcucci et al., PRC 72, 014001 (2005)]
- One-body operators: non-relativistic reduction of $j_i^{\mu} \rightarrow O(1/M^2)$
- Two-body operators: families of $\pi-$, $\rho-$, $\omega-$ exchanges
- Three-body operators: families of π -, ρ -, ω -exchanges

	μ (³ H)	μ (³ He)
1b	2.5745	-1.7634
E	2 0525	-2 1 200
Full	2.9525	-2.1235

AV18/UIX, ⇒ Full=1b+2b+3b [Marcucci *et al.*, PRC **72**, 014001 (2005)]

• □ ▶ • @ ▶ • E ▶ • E ▶ · ·

Nuclear EM operators from χEFT

Advantages

- NN potential and the EM current derived from the same L
- Systematic inclusion of tterm using the power counting of χPT
- Most of the LECs entering the current are fixed by NN data

	LO	NLO	N ² LO	N ³ LO
J	1B	2B	1B-RC	CT, 2B-1L

- [Koelling et al. (2009), (2011)]
- [Pastore et al., 2009], [Piarulli et al., 2012]
- In our current there are 4 undetermined LECs
- One fixed using Δ dominance
- The other three fitting $\mu(d)$, $\mu(^{3}H)$, and $\mu(^{3}He)$

n-p capture

Deuteron wave function

• Spin state $\chi_{SS_z} = [s_1 s_2]_{SS_z}$, Isospin state $\xi_{TT_z} = [t_1 t_2]_{TT_z}$

$$\Phi_{1J_d}^d(\mathbf{r}) = \sum_{\ell=0,2} \frac{u_\ell(\mathbf{r})}{r} \Big[Y_\ell(\hat{\mathbf{r}}) \chi_s \Big]_{1,J_d} \xi_{00}$$

Scattering wave function; Lab frame: p along z

j_L and y_L regular and irregular Bessel functions

$$\begin{split} \Psi_{m_{1},m_{2}}(\boldsymbol{r}) &= \frac{\sqrt{2}}{\sqrt{\Omega}} \sum_{LMSS_{z}JJ_{z}} 4\pi Y_{LM}^{*}(\hat{\boldsymbol{p}})(\frac{1}{2},m_{1},\frac{1}{2},m_{2}|S,S_{z}) \\ &\times (L,M,S,S_{z}|J,J_{z})(\frac{1}{2},+\frac{1}{2},\frac{1}{2},-\frac{1}{2}|T,0)\Psi_{LSJJ_{z}}^{(+)}(\boldsymbol{r}) \\ \Psi_{LSJJ_{z}}^{(+)}(\boldsymbol{r}) &= j_{l}(\boldsymbol{p}\boldsymbol{r})\Omega_{LSJJ_{z}} + \sum_{L'S'} \left(-\tilde{y}_{L}(\boldsymbol{p}\boldsymbol{r})+ij_{L}(\boldsymbol{p}\boldsymbol{r})\right) + \sum_{i=1}^{N} \underbrace{a_{i}f_{i}(\boldsymbol{r})}_{internal \ part} \\ \Omega_{LSJJ_{z}} &= i^{L} \left[Y_{L}(\boldsymbol{r})\chi_{S}\right]_{IJ} \xi_{TT_{z}} \qquad (-)^{L+S+T} = -1 \end{split}$$

Multipole Analysis (1)

RMEs

$$\begin{aligned} \langle \boldsymbol{q} \lambda; \Phi_{1J_d} | \mathcal{V} | 0; \Psi_{LSJJ_z}^{(+)} \rangle_L &= \\ &= \frac{\boldsymbol{e}}{\sqrt{2\omega_q \Omega}} \sum_{\ell \geq 1,m} (-i)^\ell \sqrt{2\pi} \boldsymbol{d}_{m,-\lambda}^\ell (-\theta) (-)^{1-J_d} (J,J_z,1,-J_d | \ell m) \Big[\boldsymbol{E}_{\ell}^{(LSJ)} + \lambda \boldsymbol{M}_{\ell}^{(LSJ)} \Big] \end{aligned}$$

J^{π}	Wave	RMEs
0+	¹ S ₀	<i>M</i> 1
0-	³ P ₀	<i>E</i> 1
1+	${}^{3}S_{1} - {}^{3}D_{1}$	<i>M</i> 1, <i>E</i> 2
1-	${}^{1}P_{1} - {}^{3}P_{1}$	E1, M2
2+	${}^{1}D_{2} - {}^{3}D_{2}$	M1, E2, M3
2-	${}^{3}P_{2} - {}^{3}F_{2}$	E1, M2, E3

$$\sigma_{np} = \frac{(4\pi)^2 \alpha}{2\nu} \frac{q}{1+q/M_d} \sum_{LSJJ} \left(|E_J^{(LSJ)}|^2 + |M_J^{(LSJ)}|^2 \right)$$

$$\sigma_{\gamma d} = \frac{2}{3} \left(\frac{p}{q} \right)^2 \left(1 + \frac{q}{M_d} \right) \sigma_{np}$$

M. Viviani (INFN-Pisa)

Multipole analysis (2)

- At low energies
 - L = 0 wave dominates $\rightarrow M_1^{000} \& M_1^{011}$
 - ► $|M_1^{000}| \gg |M_1^{011}|$
- As E increases
 - L > 0 waves start to be important $\rightarrow E_1^{LSJ}$ RMEs
 - Giant dipole resonance

Results at thermal energies

J^{π}	Wave	RMEs	LO	NLO	N ² LO	N ³ LO
0+	¹ S ₀	<i>M</i> 1	-0.185	-0.00445	0.00039	-0.00303
0-	³ P ₀	<i>E</i> 1	_	_	_	_
1+	${}^{3}S_{1} - {}^{3}D_{1}$	<i>M</i> 1	-0.000023	_	_	_
1-	${}^{1}P_{1} - {}^{3}P_{1}$	<i>E</i> 1	_	_	_	_
2+	${}^{1}D_{2} - {}^{3}D_{2}$	<i>M</i> 1	_	_	_	_
2-	${}^{3}P_{2} - {}^{3}F_{2}$	<i>E</i> 1	_	_	_	_

٨	LO	NLO	N ² LO	N ³ LO
500 MeV	305.1	319.9	318.6	328.9
500 MeV*	303.9	_	_	_
600 MeV	302.6	316.9	315.8	326.9
Expt.				332.6(7)

n - p radiative capture cross section at thermal energies (mb)

*: disregarding \boldsymbol{J}^{C} in the one-body current

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Results at E = 1 MeV

J^{π}	Wave	RMEs	LO+· · · +N ³ LO
0+	¹ S ₀	<i>M</i> 1	-0.044307 + <i>i</i> 0.021308
0-	³ P ₀	<i>E</i> 1	-0.048302 - <i>i</i> 0.000406
1+	³ S ₁	<i>M</i> 1	0.000093 + <i>i</i> 0.000098
1-	${}^{1}P_{1}$	<i>E</i> 1	0.000095 - <i>i</i> 0.00001
1-	³ P ₁	<i>E</i> 1	-0.089569 + i0.000450
2-	³ P ₂	<i>E</i> 1	-0.110992 - <i>i</i> 0.000118

٨	LO	NLO	N ² LO	N ³ LO
500 MeV	0.016305	0.017189	0.017148	0.017725
600 MeV	0.016285	0.017103	0.017083	0.018032

n-p radiative capture cross section at thermal energies (nb)

2

ヘロト ヘ部ト ヘヨト ヘヨト

$\gamma {\rm d}$ phodisintegration

Parity violation in n - p radiative capture

Interest

- Study of the weak interaction between u d quarks ($\Delta S = 0$)
- Interplay between weak and strong interaction
- Goal: extraction of the PV πN coupling constant

NPDGAMMA experiment

$$\vec{n} + p \to d + \gamma$$

Measurement of the A_z longitudinal asymmetry

$$A_{z}(heta) = rac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}}$$

Now there are PV component in the wave functions and in the PV terms in the current

M. Viviani (INFN-Pisa)

EW processes at low energies

meson-exchange & contact interaction

CP invariance assumed in all models

M. Viviani	(INFN-Pisa)
------------	-------------

EW processes at low energies

R. Anni School. 2013 12 / 18

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

PV interaction (1): meson exchange models

Effective Lagrangian

$$\mathcal{L}_{I}^{PV} = -rac{h_{\pi}^{1}}{\sqrt{2}}ar{N}(ec{ au} imesec{\pi})_{z}N+\ldots$$

it contains 7 unknown parameters h_{π}^1 , h_{ρ}^0 , h_{ρ}^1 , h_{ρ}^2 , h_{ω}^0 , h_{ω}^1 , $h_{\rho}'^1$

DDH potential Desplanques et al, 1980

$$V_{DDH}^{PV}(1,2) = i \frac{h_{\pi}^{1} g_{\pi NN}}{8\pi \sqrt{2}} (\vec{\tau}_{1} \times \vec{\tau}_{2})_{z} (\sigma_{1} + \sigma_{2}) \cdot \left[\frac{p_{1} - p_{2}}{2M}, \frac{e^{-m_{\pi}r}}{r} \right] + \dots$$

Parameters range

Param.	Best range	"DDH-best"	"DDH-adj" (*)
$10^7 \times h_{\pi}^1$	0 ightarrow 11.4	4.56	4.56
$10^7 \times h_{\rho}^0$	$-30.78 \rightarrow 11.4$	-16.4	-11.4
$10^7 \times h_{ ho}^{1}$	$-0.38 \rightarrow 0$	-0.19	-2.77
$10^7 \times h_{\rho}^2$	$-11.02 \rightarrow -7.6$	-9.5	-13.7
$10^7 \times h_{\omega}^{0}$	$-10.26 \rightarrow 5.7$	-1.90	3.23
$10^7 imes h_{\omega}^1$	$-1.9 \rightarrow -0.76$	-1.14	1.94
$10^7 imes h_{\omega}^{\prime 1}$	pprox 0	0	0

Ramsey-Musolf & Page, 2006

Experiments in medium-heavy nuclei

Enhancement of PV effects

- circular polarization in the γ-decay of ¹⁸F
- anapole moment of Cesium and other nuclei

Theoretical analysis uncertain

Experiments in light nuclei

PV effects tiny - few-body dynamics under control

- Iongitudinal asymmetry in pp scattering
- NPDGAMMA experiments (LANSCE, ORNL)
- neutron spin rotation $\vec{n}p$, $\vec{n}d$, $\vec{n}\alpha$ (NIST, ORNL)
- $n + {}^{3}\text{He} \rightarrow p + {}^{3}\text{H}$ (ORNL)

Inconsistency

Taken from Ramsey-Musolf & Page, 2006

M. Viviani (INFN-Pisa)

EW processes at low energies

R. Anni School, 2013 15 / 18

æ

PV Lagrangian – EFT approach

Expression up to one four-gradient [Kaplan & Savage, 1992] LEC'c ~ $G_F t_{\pi}^2 \approx 10^{-7}$ $u_{\mu}, X_{L,P}^a, \dots$ quantities expressed in terms of the pion field

$$\begin{split} \mathcal{L}_{\Delta T=1}^{PV,-1} &= -\frac{h_{\pi}^{1} f_{\pi}}{2\sqrt{2}} \overline{N} X_{-}^{3} N \\ \mathcal{L}_{\Delta T=0}^{PV,0} &= -h_{V}^{0} \overline{N} u_{\mu} \gamma^{\mu} N \\ \mathcal{L}_{\Delta T=1}^{PV,0} &= +\frac{h_{V}^{1}}{2} \overline{N} \gamma^{\mu} N \text{Tr}(u_{\mu} X_{+}^{3}) - \frac{h_{A}^{1}}{2} \overline{N} \gamma^{\mu} \gamma^{5} N \text{Tr}(u_{\mu} X_{-}^{3}) \\ \mathcal{L}_{\Delta T=2}^{PV,0} &= h_{V}^{2} I^{ab} \overline{N} (X_{R}^{a} u_{\mu} X_{R}^{b} + X_{L}^{a} u_{\mu} X_{L}^{b}) \gamma^{\mu} N \\ &- \frac{h_{A}^{2}}{2} I^{ab} \overline{N} (X_{R}^{a} u_{\mu} X_{R}^{b} - X_{L}^{a} u_{\mu} X_{L}^{b}) \gamma^{\mu} \gamma^{5} N \end{split}$$

+ contact terms of order Q (7 in [Zhu et al.] \rightarrow 5 [Girlanda, 2008])

Multipole amalysis of A_z

NPDGAMMA experiment

- Ultracold neutrons from SNS at Oak Ridge
- Initial state: only S-waves
- Multipoles: only magnetic an electric dipoles
- $A_z(\theta) = a_z \cos \theta$

$$a_{z} = \frac{-\sqrt{2}\Re\Big[M_{1}({}^{1}S_{0})^{*}E_{1}({}^{3}S_{1}) + M_{1}({}^{3}S_{1})^{*}E_{1}({}^{1}S_{0})\Big] + \Re\Big[M_{1}({}^{3}S_{1})^{*}E_{1}({}^{3}S_{1})\Big]}{|M_{1}({}^{1}S_{0})|^{2} + |M_{1}({}^{3}S_{1})|^{2}}$$

- $E_1({}^3S_1)$ and $E_1({}^1S_0)$ deriving from PV interaction $\sim 10^{-7}$
- $a_z \times 10^8 \sim -0.11 \frac{h_{\pi}^1}{\mu_{\pi}}$ using DDH
- Calculation in progress for the EFT PV interaction & PV current

End of Lecture 3

Thank for your attention

M. Viviani (INFN-Pisa)

EW processes at low energies

R. Anni School, 2013 18 / 18

2

・ロト ・ 四ト ・ ヨト ・ ヨト