Electroweak responses of few-body systems at low energies.

M. Viviani

INFN, Sezione di Pisa & Department of Physics, University of Pisa Pisa (Italy)

LECTURE 4

Raimondo Anni School, 6th Course, May 27-31, 2013

INFN Istituto Nazionale di Fisica Nucleare

May 31, 2013

Outline

Transition operators

Muon capture

pp capture

Reactions of astrophysical interest ($A \le 4$)

Discussed in this talk:

- μ-capture on light nuclei: a stringent test for the theory
- $p + p \rightarrow {}^{2}\mathrm{H} + e^{+} + \nu_{e}$
- $p + {}^{3}\mathrm{He} \rightarrow {}^{4}\mathrm{He} + e^{+} + \nu_{e}$

Historical perspective

- pp fusion:
 - first estimate: Bethe & Critchfield, 1938
 - "Standard Nuclear Physics Approach" (SNPA): → Schiavilla *et al.*, 1998
- "hep" reaction:
 - "SNPA": Marcucci et al., 2001 (four nucleon dynamics)

New interest

Re-compute the cross sections (astrophysical factors) using $\chi {\sf EFT}$

- more contact with QCD
- systematic and controlled expansion of nuclear potential/transition operators

Re-compute the cross sections (astrophysical factors) using χEFT

Weak current $\mathcal{J}_{\mu} = \mathcal{V}_{\mu} - \mathcal{A}_{\mu}$

Weak transition operators: [Park, Rho & Kubodera (1995)]

• "Vector" part: from CVC it is derived from the EM operators

• EM current
$$j_{\mu}^{EM} = \bar{\psi}\gamma_{\mu}(1+\tau_z)/2\psi$$

- Weak current $j_{\mu}^{weak} = ar{\psi}(\gamma_{\mu} g_A \gamma_{\mu} \gamma^5) \tau_+ \psi$
- CVC hypothesis: V_{μ} obtained from the isovector part of j_{μ}^{EM} via the substitution $\tau_z \rightarrow \tau_x + i\tau_y$
- Verified in the standard model

 $\psi = \left(\begin{array}{c} \psi_p \\ \psi_n \end{array}\right)$

Wave functions for A > 2

NN potentials

- "Old models": Argonne V18, CD-Bonn, Nijmengen ($\chi^2 \approx 1$)
- Fit of 3N data using non-locality in P-waves (INOY [Doleschall, 2008])
- Effective field theory (EFT)
 - J-N3LO [Epelbaum and Coll, 1998-2006]
 - N3LO [Entem & Machleidt, 2003]

3N potentials

- "Old models": Tucson-Melbourne [Coon et al, 1979, Friar et al, 1999]; Brazil [Robilotta & Coelho, 1986]; Urbana [Pudliner et al, 1995]
- Effective field theory
 - at N2LO [Epelbaum *et al*, 2002], [Navratil, 2007]
- Illinois [Pieper et al, 2001]
- Under progress: N3LO, N4LO

Accurate nuclear wave functions

- Methods for A ≥ 3: Faddeev-Yakubovsky Equations, GFMC, Variational methods (Gaussians, NCSM, HH)
 - HH method [Kievsky, MV, et al., J. Phys. G 35, 063101 (2008)]
 - EIHH method [Barnea *et al.*, PRC **61**, 054001 (2000)], [Bacca *et al.*, arXiv:1210.7255]

NN potential from χEFT

- NN potential: N³LO "N3LO" model [Entem & Machleidt, 2003]
- 3N potential: N²LO "N2LO" model [Navratil, 2007], [Marcucci et al., 2012]

M. Viviani (INFN-Pisa)

EW processes at low energies

The HH method

HH functions

- hyperradius $\rho^2 = \frac{2}{A} \sum_{i < j} r_{ij}^2$
- hyperangles $\Omega = \{\frac{x_1}{\rho}, \dots, \frac{x_{A-1}}{\rho}\}$ (x_i Jacobi vectors)

•
$$T = T\rho + T_{\Omega}$$

• The HH functions $\mathcal{Y}_{[\kappa]}(\Omega)$ are the eigenstates of \mathcal{T}_{Ω}

The HH method

HH functions

- hyperradius $\rho^2 = \frac{2}{A} \sum_{i < j} r_{ij}^2$
- hyperangles $\Omega = \{\frac{x_1}{\rho}, \dots, \frac{x_{A-1}}{\rho}\}$ (x_i Jacobi vectors)
- $T = T\rho + T_{\Omega}$
- The HH functions $\mathcal{Y}_{[\kappa]}(\Omega)$ are the eigenstates of \mathcal{T}_{Ω}

$$\begin{split} |\Psi\rangle &= \sum_{\mu} a_{\mu} |\mu\rangle \\ \langle \mathbf{r}_{1}, \dots, \mathbf{r}_{A} |\mu\rangle &= L_{n}^{(3A-4)}(\gamma \rho) e^{-\gamma \rho/2} \mathcal{Y}_{[K]}(\Omega) \end{split}$$

The HH method

HH functions

- hyperradius $\rho^2 = \frac{2}{A} \sum_{i < j} r_{ij}^2$
- hyperangles $\Omega = \{\frac{x_1}{\rho}, \dots, \frac{x_{A-1}}{\rho}\}$ (x_i Jacobi vectors)
- $T = T\rho + T_{\Omega}$
- The HH functions $\mathcal{Y}_{[\kappa]}(\Omega)$ are the eigenstates of \mathcal{T}_{Ω}

$$\begin{split} |\Psi\rangle &= \sum_{\mu} a_{\mu} |\mu\rangle \\ \langle \mathbf{r}_{1}, \dots, \mathbf{r}_{A} |\mu\rangle &= L_{n}^{(3A-4)} (\gamma \rho) e^{-\gamma \rho/2} \mathcal{Y}_{[\mathcal{K}]}(\Omega) \end{split}$$

Advantages - bound state

Simplified calculation of the matrix elements of

- Iocal/non-local NN & 3N potentials
- given in coordinate/momentum space

Example: A - B elastic scattering for a given J^{π}

$$\Omega_{LS}^{F}(A,B) = \sum_{perm.=1}^{N} \left[Y_{L}(\hat{\mathbf{r}}_{AB}) [\phi_{A}\phi_{B}]_{S} \right]_{JJ_{z}} \frac{F_{L}(\eta, q_{AB}r_{AB})}{q_{AB}r_{AB}}$$

$$\Omega_{LS}^{G}(A,B) = \sum_{perm.=1}^{N} \left[Y_{L}(\hat{\mathbf{r}}_{AB}) [\phi_{A}\phi_{B}]_{S} \right]_{JJ_{z}} \frac{G_{L}(\eta, q_{AB}r_{AB})}{q_{AB}r_{AB}} (1 - e^{-\gamma r_{AB}})^{2L+1}$$

$$\Omega_{LS}^{\pm}(A,B) = \Omega_{LS}^{G}(A,B) \pm i\Omega_{LS}^{F}(A,B)$$

$$|\Psi_{LS}
angle = \sum_{lpha} c_{LS,lpha} \Phi_{lpha} + |\Omega^{F}_{LS}(p,{}^{3}\mathrm{He})
angle + \sum_{L'S'} \mathcal{T}_{LS,L'S'} |\Omega^{+}_{L'S'}(p,{}^{3}\mathrm{He})
angle$$

Example: A - B elastic scattering for a given J^{π}

$$\Omega_{LS}^{F}(A,B) = \sum_{perm.=1}^{N} \left[Y_{L}(\hat{\mathbf{r}}_{AB})[\phi_{A}\phi_{B}]_{S} \right]_{JJ_{z}} \frac{F_{L}(\eta, q_{AB}r_{AB})}{q_{AB}r_{AB}}$$
$$\Omega_{LS}^{G}(A,B) = \sum_{perm.=1}^{N} \left[Y_{L}(\hat{\mathbf{r}}_{AB})[\phi_{A}\phi_{B}]_{S} \right]_{JJ_{z}} \frac{G_{L}(\eta, q_{AB}r_{AB})}{q_{AB}r_{AB}} (1 - e^{-\gamma r_{AB}})^{2L+1}$$
$$\Omega_{LS}^{\pm}(A,B) = \Omega_{LS}^{G}(A,B) \pm i\Omega_{LS}^{F}(A,B)$$

$$|\Psi_{LS}
angle = \sum_{lpha} c_{LS,lpha} \Phi_{lpha} + |\Omega^{F}_{LS}(p,{}^{3}\mathrm{He})
angle + \sum_{L'S'} \mathcal{T}_{LS,L'S'} |\Omega^{+}_{L'S'}(p,{}^{3}\mathrm{He})
angle$$

- Sum over *LS* such that $\vec{L} + \vec{S} = \vec{J}$ and $(-)^L = \pi$
- *T_{LS,L'S'}* = T-matrix elements
- c_{LS,n} and T_{LS,L'S'} determined using the Kohn variational principle (KVP)

Scattering state calculation (2)

Kohn Variational Principle

 $\mathcal{F}(c_{LS,\alpha}, T_{LS,L'S'}) = T_{LS,L'S'} - \langle \mathcal{T}\Psi_{L'S'} | H - E | \Psi_{LS} \rangle$

• $\mathcal{T}\Psi_{L'S'}$ = "time reversed" wave function

• Problem: evaluation of the matrix elements $A^{X}_{\alpha,LS} = \langle \mathcal{T}\Phi_{\alpha}|H - E|\Omega^{X}_{LS}\rangle$ and $B^{XX'}_{LS,L'S'} = \langle \mathcal{T}\Omega^{X}_{LS}|H - E|\Omega^{X'}_{L'S'}\rangle$ (X = F, G)

• Ω_{LS}^{χ} are decomposed in partial waves

$$\begin{pmatrix} H_{1,1}-E & \cdots & H_{1,\mathcal{N}} & A_{1,LS}^{G} \\ \cdots & \cdots & \cdots \\ H_{\mathcal{N},1} & \cdots & H_{\mathcal{N},\mathcal{N}}-E & A_{\mathcal{N},LS}^{G} \\ A_{1,LS}^{G} & \cdots & A_{\mathcal{N},LS}^{G} & B_{LS,LS}^{GG} \end{pmatrix} \begin{pmatrix} c_{LS,1} \\ \cdots \\ c_{LS,\mathcal{N}} \\ T_{LS,LS} \end{pmatrix} = \begin{pmatrix} -A_{LS,1}^{\chi} \\ \cdots \\ -A_{LS,\mathcal{N}}^{\chi} \\ 1 - B_{LS,LS}^{GF} - B_{LS,LS}^{FG} \end{pmatrix}$$

A high-precision variational approach to three- and four-nucleon bound and zero-energy scattering states, A. Kievsky, S. Rosati, M. Viviani, L.E. Marcucci, and L. Girlanda J. Phys. G, **35**, 063101 (2008)

Some results for A = 2-4

A = 2	AV18	N3LO	Exp.
B_d (MeV)	2.22457	2.22456	2.224574(9)
a _{nn} (fm)	-18.487	-18.900	-18.9(4)
$^{1}a_{np}$ (fm)	-23.732	-23.732	-23.740(20)
$^{3}a_{np}$ (fm)	5.412	5.417	5.419(7)
A = 3	AV18/UIX	N3LO/N2LO	Exp.
$B_{^{3}\mathrm{H}}$ (MeV)	8.479	8.474	8.482
$B_{^{3}\mathrm{He}}$ (MeV)	7.750	7.733	7.718
² a _{nd} (fm)	0.590	0.675	0.645(10)
⁴ a _{nd} (fm)	6.343	6.342	6.35(2)
A = 4	AV18/UIX	N3LO/N2LO	Exp.
$B_{^{4}\mathrm{He}}$ (MeV)	28.45	28.36	28.30
$^{0}a_{n^{3}\mathrm{He}}$ (fm)	7.81	7.61	7.57(3)
$^{1}a_{n^{3}\mathrm{He}}$ (fm)	3.39	3.37	3.36(1)

Accuracy of the calculation tested in several benchmarks Bound states: [Kamada *et al.*, 2001] – Scattering states [MV *et al.*, 2011]

M. Viviani (INFN-Pisa)

EW processes at low energies

N-d elastic scattering

p-d scattering at $E_p = 2.5$ MeV

Benchmark test of 4N scattering calculations [PRC 84, 054010 (2011)]

 $p - {}^{3}\mathrm{He}$ elastic scattering

Benchmark test of 4N scattering calculations [PRC 84, 054010 (2011)]

 $p - {}^{3}\mathrm{He}$ elastic scattering

Benchmark test of 4N scattering calculations [PRC 84, 054010 (2011)]

 $p - {}^{3}\mathrm{He}$ elastic scattering

 $p-{}^{3}\mathrm{He} \overline{A_{y}}$

$p - {}^{3}\mathrm{He}$ Observables

 $E_p = 5.54 \text{ MeV}$

cyan band: only NN potentials blue band: inclusion of 3N potentials

M. Viviani (INFN-Pisa)

EW processes at low energies

R. Anni School, 2013 15 / 40

Nuclear weak transition operators

- Nuclear weak transition operators: [ρ^(A,V), j^(A,V)]
 - Standard Nuclear Physics Approach SNPA [Schiavilla et al., PRC 58, 1263 (1998); Marcucci et al., PRC 63, 015801 (2000)]
 - Chiral Effective Field Theory Approach χEFT [Park, Min, & Rho, Phys. Rep. 233, 341 (1993); Park *et al.*, PRC 67, 055206 (2003)]

SNPA transition operators

- One-body operators: NRR of $j_i^{\mu} \rightarrow O(1/m^2)$
- Two-body operators: π -, ρ -, ω -, ... exchanges + Δ d.o.f. excitations
- $\rho^{(V)}$ and $\mathbf{j}^{(V)}$: CVC \rightarrow EM operators (constructed to verify current conservation)

	$\mu(^{3}H)$	$\mu(^{3}\text{He})$
1b	2.5745	-1.7634
Full	2.9525	-2.1299
Exp.	2.9790	-2.1276

AV18/UIX, \Rightarrow Full=1b+2b+3b [Marcucci *et al.*, PRC **72**, 014001 (2005)]

SNPA transition operators (2)

- Two-body $\rho^{(A)}$: PCAC + low-energy theorem $\rightarrow \pi$ -exchange and short-range terms
- Two-body $\mathbf{j}^{(A)}$: π and ρ -exchange, $\pi\rho$ mechanism, and $\mathbf{j}^{(A)}(\Delta)$

 g^*_A fit to observable: GT_{exp} of tritium β -decay

$$t_{1/2}(^{3}\mathrm{H}) = rac{K/G_{V}^{2}}{f_{V}|\langle F
angle|^{2} + f_{A}g_{A}^{2}|\langle GT
angle|^{2}}rac{1}{1 + \delta_{R}}$$

- $\langle F \rangle \equiv \langle {}^{3}\text{He} || \sum_{i} \tau_{i}^{+} || {}^{3}\text{H} \rangle$, $\langle GT \rangle \equiv \langle {}^{3}\text{He} || \sum_{i} \tau_{i}^{+} \sigma_{i} || {}^{3}\text{H} \rangle$
- δ_R radiative corrections (~ 2%)
- $\rightarrow \langle GT \rangle_{\text{expt}} = 1.657 \pm 0.005$
- Only one-body contribution $\langle GT \rangle \sim 1.60$: fix g_A^* to reproduce $\langle GT \rangle_{expt}$

Nuclear transition operators: χ EFT at N³LO

- One-body operators \equiv SNPA
- Two-body operators: from [Park, Min, & Rho, Phys. Rep. 233, 341 (1993)], [Song *et al.*, PRC 79, 064002 (2009)]
 - Two-body $\rho^{(A)}$: soft π -exchange dominant
 - Two-body $\rho^{(V)} = 0$ at N³LO
 - Two-body $\mathbf{j}^{(V)}$: CVC \rightarrow EM current here $1\pi + 2\pi + CT \rightarrow$ two LECs $(g_{4S} \& g_{4V}) \Rightarrow$ from $\mu(^{3}\text{H} - {}^{3}\text{He})$
 - Two-body $\mathbf{j}^{(A)}$: $1\pi + \mathsf{CT} \rightarrow \mathsf{one} \ \mathsf{LEC} \ (d_R) \Rightarrow \mathsf{from} \ \mathcal{GT}_{exp} \ \mathsf{of} \ ^3\mathrm{H} \ \beta$ -decay
- "hybrid" (χ EFT*) \Rightarrow AV18/UIX \Rightarrow current and potentials "uncorrelated"
- "Consistent" χ EFT: the same LEC's enter the nuclear potential and transition operators
- \Rightarrow N3LO/N2LO interaction
 - Warning: in the current derived by Park *et al.* several LEC's are determined indipendently
 - Fully consistent calculations in progress [Epelbaum *et al.*], [Barone *et al.*] \rightarrow a step forward: d_R LEC

χ charge & current: chiral counting

Contributions from each type of current at $\mathbf{q} = \mathbf{p}_e + \mathbf{p}_{\mu} = 0$.

J^{μ}	LO	NLO	N ² LO	N ³ LO	N ⁴ LO
j ^A	1B	_	1B-RC	2B	1B-RC, 2B-1L and 3B
ρ^{A}	-	1B	2B	1B-RC	1B-RC, 2B-1L
j ^V	-	1B	2B	1B-RC	1B-RC, 2B-1L
ρ^{V}	1B	_	_	2B	1B-RC, 2B-1L and 3B

2B-1L

Example: the LEC d_R

M. Viviani (INFN-Pisa)

EW processes at low energies

R. Anni School, 2013 20 / 40

Remaining LEC's: g_{45} and g_{4V} in the vector current \Rightarrow fit to the A = 3 magnetic moments

	$\{c_D; c_E\}$	g 45	<i>g</i> ₄ _V
Λ =500 MeV	{-0.20; -0.208}	0.207 ± 0.007	0.765 ± 0.004
	$\{-0.04; -0.184\}$	0.200 ± 0.007	0.771 ± 0.004
Λ=600 MeV	{-0.32; -0.857}	0.146 ± 0.008	0.585 ± 0.004
	$\{-0.19; -0.833\}$	0.145 ± 0.008	0.590 ± 0.004

Radiative corrections¹ ARE included

¹ Czarnecki et al., PRL 99, 032003 (2007)

$\mathcal{J}^{(h),\mu} = \{\rho^V - \rho^A, \mathbf{J}^V - \mathbf{J}^A\}$

• charge, longitudinal, electric and magnetic operators

$$T_{JM}^{C} = \int d^{3}x \, \rho^{(h)}(\mathbf{x}) \Big[j_{J}(qx) Y_{J,0}(\hat{\mathbf{x}}) \Big]$$

$$T_{JM}^{L} = \frac{i}{q} \int d^{3}x \, \mathbf{J}^{(h)}(\mathbf{x}) \cdot \boldsymbol{\nabla} \Big[j_{J}(qx) Y_{J,0}(\hat{\mathbf{x}}) \Big]$$

$$T_{J,M}^{E} = \frac{1}{q} \int d^{3}x \, \mathbf{J}^{(h)}(\mathbf{x}) \cdot \boldsymbol{\nabla} \times j_{J}(qx) \mathbf{Y}_{J,J,1}^{\lambda}(\hat{\mathbf{x}})$$

$$T_{J,M}^{M} = \frac{1}{q} \int d^{3}x \, \mathbf{J}^{(h)}(\mathbf{x}) \cdot j_{J}(qx) \mathbf{Y}_{J,J,1}^{\lambda}(\hat{\mathbf{x}})$$

Muon capture

Muon catpures:

- $\mu^- + d \rightarrow n + n + \nu_\mu$
- $\mu^{-} + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + \nu_{\mu}$ (70%)
- $\mu^{-} + {}^{3}\text{He} \rightarrow n + d + \nu_{\mu}$ (20%)
- $\mu^{-} + {}^{3}\text{He} \rightarrow n + n + p + \nu_{\mu}$ (10%)

- $\Gamma(\mu d) = 300 500 \text{ s}^{-1} \rightarrow [\text{MuSun Experiment (PSI)}]$
- $\Gamma(\mu {}^{3}\text{He}) = 1496(4) \text{ s}^{-1}$ [Ackerbauer *et al.*, (1998)]

Stringent test of the nuclear wave functions/transition operators Extraction of the pseudoscalar form factor of the nucleon factor

$$j^{\mu} = \overline{u_{P}} \left[F_{1}(q^{2})\gamma^{\mu} + F_{2}(q^{2}) \frac{i\sigma^{\mu\nu}q_{\nu}}{2M_{N}} - G_{A}(q^{2})\gamma^{\mu}\gamma^{5} - G_{PS}(q^{2})\frac{q^{\mu}\gamma^{5}}{2M_{N}} \right] u_{n}$$

Muon capture: Experimental situation

$\mu^- + d \rightarrow n + n + \nu_\mu$

- Two hyperfine states: f = 1/2 and 3/2
- Dominant capture from f = 1/2 $\rightarrow \Gamma^D$

• New measurement in progress: MuSun

$\mu^- + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + \nu_{\mu}$

• Hyperfine states: $(f, f_z) = (1, \{\pm 1, 0\})$ and (0, 0)

 $\frac{d\Gamma}{d(\cos\theta)} = \frac{1}{2} \Gamma_0 \left[1 + A_v P_v \cos\theta + A_t P_t \left(\frac{3\cos^2\theta - 1}{2} \right) + A_\Delta P_\Delta \right] \right]$ $P_v = P_{1,1} - P_{1,-1}$ $P_t = P_{1,1} + P_{1,-1} - 2P_{1,0}$ $P_\Delta = 1 - 4P_{0,0}$

- Γ₀= total capture rate, A_{v,t,Δ}= angular correlation parameters
- Ackerbauer *et al.*, (1998):

 $\Gamma_0 = 1496(4) \text{ s}^{-1}$

Souder et al., (1998): A_v=0.63 ± 0.09 (stat.)^{+0.11}_{-0.14} (syst.)

EW processes at low energies

24 / 40

Multipole analysis of the $\mu^- + {}^{3}\mathrm{He}$ capture

$$\begin{aligned} T_{f,f_z} &= \langle^{3}\mathrm{H}, s'_{3}; \nu_{\mu}, s'_{\nu} | V_{W} | (\mu^{-}, {}^{3}\mathrm{He}), ff_{z} \rangle \\ &= \frac{G_{V}}{\sqrt{2}} \psi_{1s}(0) \sum_{s_{\mu}s_{3}} (\frac{1}{2}, s_{\mu}, \frac{1}{2}, s_{3} | f, f_{z}) I^{\sigma}(s'_{\nu}, s_{\mu}) \langle^{3}\mathrm{H}, s'_{3} | \int d^{3}x \, \mathcal{J}_{\sigma}^{(h)} e^{-i\mathbf{q}\cdot\mathbf{x}} |^{3}\mathrm{He}, s_{3} \rangle \end{aligned}$$

 $\frac{1}{2}^+ \rightarrow \frac{1}{2}^+$ transition

Contributing RMEs				
С	L	E	М	
$C_0(V), C_1(A)$	$L_0(V), L_1(A)$	$E_1(A)$	$M_1(V)$	

• $\psi_{1s}(0)$ atomic wave function = $\mathcal{R}(2\alpha\mu)^3/\pi$

• Factor $\mathcal{R} = 0.98$: finite extent of the nuclear charge distribution

$$\begin{aligned} \frac{d\Gamma}{d(\cos\theta)} &= \frac{1}{2}\Gamma_0 \Big[1 + A_v P_v \cos\theta + A_t P_t \Big(\frac{3\cos^2\theta - 1}{2} \Big) + A_\Delta P_\Delta \Big] \\ P_v &= P_{1,1} - P_{1,-1} \\ P_t &= P_{1,1} + P_{1,-1} - 2P_{1,0} \\ P_\Delta &= 1 - 4P_{0,0} \end{aligned}$$

$$\begin{split} &\Gamma_0 &= |C_0(V) - L_0(V)|^2 + |C_1(A) - L_1(A)|^2 + |M_1(V) - E_1(A)|^2 \\ &A_{\nu} &= 1 + \frac{1}{\Gamma_0} \left\{ 2\Im \Big[(C_0(V) - L_0(V)) (C_1(A) - L_1(A))^* \Big] - |M_1(V) - E_1(A)|^2 \right\} \\ &\cdots \\ &\cdots \\ \end{split}$$

Results: $\Gamma_0(\mu^- + {}^3\mathrm{He})$

SNPA(AV18/UIX)	Γ ₀
$g_A = 1.2654(42)$	1486(8)
$g_A = 1.2695(29)$	1486(5)
χ EFT(N3LO/N2LO)	Γ ₀
$IA - \Lambda = 500 \text{ MeV}$	1362
$IA-\Lambda=600~MeV$	1360
$FULL - \Lambda = 500 \text{ MeV}$	1488(9)
$FULL-\Lambda=600~MeV$	1499(9)

[Marcucci et al., PRL 108, 052502 (2012)]

$$\Gamma_0 = 1494(13) s^{-1}$$

vs.
$$\Gamma_0(exp)=1496(4) s^{-1}$$

• [Gazit, PLB 666, 472 (2008)] χ EFT* – AV18/UIX \rightarrow 1499(16) s⁻¹

• If
$$G_{PS}$$
 is left free \Rightarrow $G_{PS} = 8.2 \pm 0.7$ vs. $G_{PS}^{\chi PT} = 7.99 \pm 0.20$
• MUCAP experiment ($\mu^- - p$ capture) $G_{PS}^{\chi expt} = 8.06 \pm 0.48 \pm 0.28$
[arXiv:1210.6545]

SNPA(AV18)	${}^{1}S_{0}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	${}^{1}D_{2}$	${}^{3}F_{2}$	Total
$g_A = 1.2654(42)$	246.6(7)	20.1	46.7	71.6	4.5	0.9	390.4(7)
$g_A = 1.2695(29)$	246.8(5)	20.1	46.8	71.8	4.5	0.9	390.9(7)
χ EFT (N3LO)	${}^{1}S_{0}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	${}^{1}D_{2}$	${}^{3}F_{2}$	Total
$IA - \Lambda = 500 \text{ MeV}$	238.8	21.1	44.0	72.4	4.4	0.9	381.7
$IA - \Lambda = 600 \text{ MeV}$	238.7	20.9	43.8	72.0	4.4	0.9	380.8
$FULL - \Lambda = 500 \text{ MeV}$	254(1)	20.5	46.8	72.1	4.4	0.9	399(1)
$FULL - \Lambda = 600 \text{ MeV}$	255(1)	20.3	46.6	71.6	4.4	0.9	399(1)

 $\Gamma^{D} = 399(3) \text{ s}^{-1}$ (conservative assumption)

Theoretical "error": from the uncertainties in c_D, c_E, g_{45}, g_{4V} Calculation performed assuming $G_{PS} = G_{PS}^{\chi PT} = 7.99 \pm 0.20$ [Marcucci et al., PRC 83, 014002 (2011), PRL 108, 052502 (2012)]

Comparison with data and previous calculations

$(p+p ightarrow d+e^++ u_e$ astrophysical factor

$$\sigma(E) = \frac{1}{(2\pi)^3} \frac{G_V^2}{v} m_e^5 f(E) \sum_M |\langle d, M | \mathbf{A}_- | pp \rangle|^2$$

Goal: < 1% accuracy

- Dominant contribution from the ¹S₀ wave
- P-wave contribution: $\sim 1\%$
- Two-body contribution: $\sim 1\%$

$S_{11}(E) = S_{11}(0) + S'_{11}(0)E + \frac{1}{2}S''_{11}(0)E^2 + \dots$

pp wave function

• EM interaction:

$$V_{C1} + V_{C2} + V_{DF} + V_{VP} + \cdots$$

- $V_{VP} \sim \exp(-2m_e r)$: sizeable effect at low energies
- Necessity to solve the Schroedinger equation up to 1,000 fm
- 1% effect

SNPA: [Schiavilla *et al.*, 1998], χ EFT*: [Park *et al.*, 2003] $S_{11}(0) = 3.94(1 \pm 0.0015 \pm 0.0010)$ (only ${}^{1}S_{0}$ wave) errors from uncertainties in g_{A} , fit of the tritium β -decay, etc; fully χ EFT calc. needed

See also the review paper: [E. G. Adelberger *et al.*, Rev. Mod. Phys. **83**, 195 (2011) [arXiv:1004.2318]]

M. Viviani (INFN-Pisa)

EW processes at low energies

Results with the 'Less hybrid" $\chi {\rm EFT}$

N3LO potential – PRELIMINARY

 d_R , g_{45} , g_{4V} fixed using the N3LO/N2LO wave functions - only V_{C1} EM int. calculation performed between 0 < E < 10 keV

	S ₁₁ (0) [×10 ⁻²⁵ MeV b]		$S'_{11}(0)/S_{11}(0)$ [MeV ⁻¹]	
	$^{1}S_{0}$	S + P	$^{1}S_{0}$	S + P
IA(500)	3.96	3.98	11.16	11.68
IA(600)	3.94	3.96	11.17	11.68
FULL(500)	4.025(5)	4.052(5)	11.17	11.68
FULL(600)	4.007(5)	4.033(5)	11.17	11.68
		6		

Summary: ¹S₀ All waves $S_{11}(0) = 4.00 \div 4.03 \times 10^{-25} \text{ MeV b}$ $S_{11}(0) = 4.03 \div 4.06 \times 10^{-25} \text{ MeV b}$ (1%) $\frac{S'_{11}(0)}{S_{11}(0)} = 11.17 \text{ MeV}^{-1}$ $\frac{S'_{11}(0)}{S_{11}(0)} = 11.68 \text{ MeV}^{-1}$ (4%)

Pionless EFT at N²LO [Wei *et al.*, 2012] $S_{11}(0) = (3.99 \pm 0.14)10^{-25}$ MeV b, $S'_{11}(0)/S_{11}(0) = (11.3 \pm 0.1)$ MeV⁻¹

New interest: $S_{11}^{\prime\prime}(0)$

S(E) calculated in the range 0 – 100 keV

Effect of two-body currents

Calculation with AV18 - only the ${}^{1}S_{0}$ wave

M. Viviani (INFN-Pisa)

EW processes at low energies

S(E) calculated in the range 0 – 100 keV

Test of the quadratic approximation

Calculation with AV18 - only the ${}^{1}S_{0}$ wave

M. Viviani (INFN-Pisa)

EW processes at low energies

R. Anni School, 2013 33 / 40

Small effects

Quadratic vs. cubic fit

	$\begin{array}{rcl} S(E) & = & S(0) \\ S(E) & = & S(0) \end{array}$	$(+a_0E + a_1E^2)$ $(+a_0E + a_1E^2 + a_2E^3)$	
	$S(0) imes 10^{23}$ [MeV fm ²]	S'(0)/S(0) [MeV ⁻¹]	S''(0)/S(0) [MeV ⁻²]
quadratic fit	4.00	12.23	175.0
cubic fit	4.00	11.47	233.3
Wei <i>et al.</i>	3.99 ± 0.14	11.3 ± 0.1	170 ± 2

Effect of the EM interactions $V_{C2} + V_{DF} + V_{VP} + \cdots$

Calculation performed so far only for the AV18 interaction

	$S(0) imes 10^{23} [{ m MeV} { m fm}^2]$	S'(0)/S(0) [MeV ⁻¹]	S''(0)/S(0) [MeV ⁻²]
AV18+V _{C1}	4.03	11.59	226.5
$AV18+V_{EM}$	4.00	11.47	233.3

"hep" reaction

$p + {}^{3}\mathrm{He} ightarrow {}^{4}\mathrm{He} + e^{+} + \nu_{e}$

- Source of the most energetic neutrinos from the sun
- Calculation of the reaction rate rather difficult (A = 4 bound and scattering states)
- Gamow peak $E \approx 10$ keV
- Astrophysical factor $S(E) = E\sigma(E) \exp(4\pi\alpha/v)$
- relative incoming momentum p along z

Ψ_{2}^{\prime}	$p_{s_1,s_3}^{p^3\mathrm{He}} = \sqrt{4\pi} \sum_{LSJJ}$	$\frac{1}{2}(\frac{1}{2}, s_1, \frac{1}{2})$	$, s_3 SJ_z)(s_3 SJ_z)(s_3 SJ_z)(s_3 SJ_z))$	$L, 0, S, J_z$	$J, J_z) \Psi_{LSJJ}$
-		(Contributi	iong RME	s
	Wave ^{2S+1} L _J	С	L	E	М
	${}^{1}S_{0}$	$C_0(V)$	$L_0(V)$	_	_
	${}^{3}S_{1}$	$C_1(A)$	$L_1(A)$	$E_1(A)$	$M_1(V)$
	${}^{3}P_{0}$	$C_0(A)$	$L_0(A)$	_	_
	${}^{1}P_{1}$	$C_1(V)$	$L_1(V)$	$E_1(V)$	$M_1(A)$
	${}^{3}P_{1}$	$C_1(V)$	$L_1(V)$	$E_1(V)$	$M_1(A)$
	${}^{3}P_{2}$	$C_2(A)$	$L_2(A)$	$E_2(A)$	$M_2(V)$

- In p^{3} He S-wave scattering is suppressed (Pauli repulsion)
- Interaction in P-waves is attractive
- 4 resonances in ${}^{3}P_{2}$, ${}^{3}P_{1}$, ${}^{1}P_{1}$, ${}^{3}P_{0}$ waves
- ullet \to non-negligible contribution from P-waves
- (due to Coulomb repulsion also S-wave capture is suppressed)
- Calculation performed only in SNPA [Marcucci et al., PRC 63 015801 (2000)

	"hep" <i>S</i> (<i>E</i> =	0) [10 ⁻ 20 keV b]
Wave ^{2S+1} L _J	AV18/UIX	AV18
$^{1}S_{0}$	0.02	0.01
${}^{3}S_{1}$	6.38	7.69
${}^{3}P_{0}$	0.82	0.89
${}^{1}P_{1}$	1.00	1.14
${}^{3}P_{1}$	0.30	0.52
${}^{3}P_{2}$	0.97	1.78
тот	9.64	12.1

Suppression of ${}^{1}S_{0}$ contribution

• LWA approximation for T_{00}^{C} and T_{00}^{L}

$$T^{C}_{00}pprox rac{1}{\sqrt{4\pi}}\sum_{j=1}^{A} au_{j+} = rac{1}{\sqrt{4\pi}}\,T_{+} \qquad T^{C}_{00}pprox -rac{1}{\sqrt{4\pi}\;q}\left[H,\,T_{+}
ight]$$

• ⁴He has total isospin = 0, $p - {}^{3}$ He has total isospin = 1

•
$$\rightarrow \langle T = 0 | T_+ | T = 1 \rangle = 0$$

- Final result: S(E) at E = 10 keV
- $S(E) = (10.16 \pm 0.6) \times 10^{-20}$ keV b
- Around a factor 4.5 larger than assumed in Solar Standar Model (SSN) calculations [Bahcall and Krastev, Phys. Lett. B 436, 243 (1998)]

SuperKamiokande enhancement

I would like to thank

- L. Girlanda INFN & Salento University, Lecce (Italy)
- R. Schiavilla Jefferson Lab. & ODU, Norfolk (VA, USA)
- M. Piarulli & A. Barone (PhD students) ODU, Norfolk (VA, USA)
- A. Kievsky & L. E. Marcucci INFN & Pisa University, Pisa (Italy)
- F. Spadoni (graduate student) & D. Cartisano (undergraduate student) *Pisa University, Pisa (Italy)*

Thank you for your attention!