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IntroductionIntroduction

Consider an observable Consider an observable R(E) R(E) and an integral transform and an integral transform (())::

(() ) ==∫∫dE K(dE K(,E) ,E) R(E)R(E)

with some kernel K(with some kernel K(,E),E)

Often it is easier to calculate Often it is easier to calculate (() ) than than R(E).R(E). Then the observable  Then the observable 
R(E)R(E) can be obtained via inversion of the integral transform.  can be obtained via inversion of the integral transform. 

In order to make the inversion sufficiently stable the kernel K(In order to make the inversion sufficiently stable the kernel K(,E) ,E) 
should resemble a kind of energy filter (Lorentzians, should resemble a kind of energy filter (Lorentzians, 
Gaussians, ...); best choice would be a Gaussians, ...); best choice would be a -function. -function.     
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IntroductionIntroduction

Reactions of particle systems induced by external probes (photons, electrons, Reactions of particle systems induced by external probes (photons, electrons, 
neutrinos) can be divided inneutrinos) can be divided in inclusive inclusive and  and exclusiveexclusive processes processes. . 

InclusiveInclusive reaction: final state of particle system after reaction is  reaction: final state of particle system after reaction is nonott observed  observed 

Corresponding cross sections have the formCorresponding cross sections have the form

                    ==                                  ΣΣii=1 =1 
ff
ii
(kinematics)(kinematics)  RRii(ω,(ω,q)q)            IInclusivenclusive

N

with N inclusive response functions R
i 
containing information on the dynamics of the particle system

d2
dd

d2
dd

zero

Electron scattering:

Photo absorption:

d2
dd

zero

= d2
dd

Mott

d2
dd

d
d
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IntroductionIntroduction

ExclusiveExclusive reaction: final state of particle system after reaction  reaction: final state of particle system after reaction is identifiedis identified

For example,  final state consists of a knocked out proton and a residual For example,  final state consists of a knocked out proton and a residual 
nucleus, energy and angle of proton have to be measured:nucleus, energy and angle of proton have to be measured:

Corresponding cross sections have the formCorresponding cross sections have the form

                          ==                                            ΣΣii=1 =1 
ff
ii
(kinematics) g((kinematics) g(φφ

pp
) r) r

ii
(ω,(ω,q,q,θθ

pp
))        

M

with M inclusive response functions r
i 
containing information 

on the dynamics of the particle system (M ≥ N)

d3
ddd

p

d3
ddd

p zero
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(ω,q) ,  i = 1, ..., N ∫

r
i
(ω,q,θ

p
)
 
d

p  
= 0 , i = N+1, ..., M 
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Example: unpolarized (e,e'):

r
1
 = r

L 
 , r

2
 = r

T

r
3
 = r

LT 
 , r

4
 = r

TT
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  Inclusive response functions have the following formInclusive response functions have the following form



where we have set for q=const: R(ω,q) R(ω)

n and E
0 
, E

n
 are eigen states and 

corresponding eigen energies of Hamiltonian H and 

Θ is transition operator inducing the reaction

∫
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where we have set for q=const: R(ω,q) R(ω)

Exclusive response functions have more complicated forms. They are 
sums of products of T-matrix elements

T
n0  

(ω)
 
= n

α
 |Θ | 0

β


n and E
0 
, E

n
 are eigen states and 

corresponding eigen energies of Hamiltonian H and 

Θ is transition operator inducing the reaction

α,β

∫
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  For a calculation of response functions one needs For a calculation of response functions one needs initialinitial and  and 
final state wave functionsfinal state wave functions of the particle system. With  of the particle system. With 

increasing particle number such calculations become more and increasing particle number such calculations become more and 
more difficultmore difficult

A=2

bound-state calculation continuum state calculation

easy easy

A=3 not  easy difficult

A=4 difficult very difficult

A>4
today possible
up to relatively large A 
(GFMC, NCSM, CC)

In last decade much progress in bound-state calculations applying
different methods

today: only below three-body 
breakup threshold
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from H.Kamada et al. (18 auhors 7 groups) PRC 64 (2001) 044001 

   AB INITIO BOUND STATE CALCULATIONS            
                     
            BE of 4He  (exp. 28.296 MeV)
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Aim: calculation of reactions involving 
A-body systems in the continuum

calculation of A-body continuum  state tremendously 
more difficult than  A-body bound state calculation
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  Motivation of  LIT  method 

Aim: calculation of reactions involving 
A-body systems in the continuum

calculation of A-body continuum  state tremendously 
more difficult than  A-body bound state calculation

Question:  Is it possible to calculate continuum 
observables without explicit knowledge of the 

corresponding continuum wave function ?

 
 Continuum state problem  

                 

YES,  via the LIT method!

bound-state-like problem 
LIT
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LITLIT - Theory for Inclusive Reactions - Theory for Inclusive Reactions

steps:

1. Solve for many 
0
 and fixed Γ

Cross section described by response functions R(ω)
∫
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2. Calculate

for a Theorem based on closure

3. Invert transform

ω
0

Γ



for given


0
 and 
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R(ω)

E-
th

dω
 (ω – ω0)

2 + Γ2
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th

∞
dω R(ω)

(ω – ω0 – iΓ) (ω – ω0 + iΓ)
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Scuola Raimondo Anni - 2013

|Ψ(Ε)〉 =  |  | 
  
〉〉  

        
+  (Ε − Η + +  (Ε − Η + iiη)η)  −1  −1  VV

  
| | 

  
〉〉  

  

  

  

 
    

LIT - Theory for Exclusive Reactions

  | | 
  
〉〉  

  
 is  “channel function” (with proper antisymmetrization), is  “channel function” (with proper antisymmetrization),

in general  fragment bound states times their free relative motion,in general  fragment bound states times their free relative motion,
V is the sum of potentials between particles belonging to different fragmentsV is the sum of potentials between particles belonging to different fragments

General form of final state wave function for a given channel
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Spectral representation for non trivial part

  | | V V (Ε − Η + (Ε − Η + iiη)η)  −1−1  ΘΘ |0 |0〉  =  〉  =  ΣΣ
n n 

(E (E − − EE
nn
) F) F

fifi
(E,E(E,E

nn
))

+ ∫
E_th

 (E –  E' +  +  iiη)η) −1  −1 FF
fifi
(E,E') dE'(E,E') dE'

∞

FF
fifi
(E,E') = (E,E') = Σ Σ ddγ γ   | | V|V|ΨΨ

γ γ 
〉 〉  Ψ Ψ

γ γ 
||  ΘΘ |0 |0〉 δ(〉 δ(E-E')E-E')∫
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F
fifi
(E,E')  has same form as the inclusive response function R((E,E')  has same form as the inclusive response function R())

therefore we can apply the same formalism, however, heretherefore we can apply the same formalism, however, here
left and right hand side are not identical, hence two LIT left and right hand side are not identical, hence two LIT 
equations are obtainedequations are obtained
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(H – 
R
+ i

I
) ΨΨ

1 1 
 = Θ = Θ |0 |0〉  ,   〉  ,   (H –(H –  

RR
+ + ii

II
) ) ΨΨ

2 2 
 =  = V|V|〉〉



  

LIT:   ΨΨ
11
| Ψ| Ψ

22
〉〉    
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1) Calculate LIT for many values of
R  

for fixed
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2) Invert LIT  ⇒  FF
fifi
(E,E')(E,E')
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1) Calculate LIT for many values of
R  

for fixed
  


I 

2) Invert LIT  ⇒  FF
fifi
(E,E')(E,E')

3) Calculate  T
FSI

T
FSI

(E)
 
= – iFF

fifi
(E,E) + (E,E) + ΡΡ∫∫

E_thE_th
  (E – E'(E – E')) −1  −1 FF

fifi
(E,E') dE'(E,E') dE'

∞
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Consider the following exclusive reaction:

4He +   n + 3He

For a conventional calculation one needs to know the four-body
continuum wave function

Very difficult to go above three-body break-up threshold: 
                                                 4He +   n + p + d
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T(E) = TT(E) = T
BORN BORN 
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FSIFSI
(E)(E) with     Twith     T

BORNBORN
((ΕΕ) ) = =   PWPW(E)(E)||ΘΘ | |((44He)He)

||PW(E)PW(E) is plane for relative motion of is plane for relative motion of 33He-n pair He-n pair 
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Very difficult to go above three-body break-up threshold: 
                                                 4He +   n + p + d
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 +  +  T T

FSIFSI
(E)(E) with     Twith     T
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((ΕΕ) ) =  =  PWPW(E)(E)||ΘΘ | |((44He)He)
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FSIFSI
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E_thE_th
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With FF
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(E,E') from inversion of the(E,E') from inversion of the LIT LIT  

∞
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LIT - Inversion

Standard LIT inversion method

Take the following ansatz for the response function  R(ω) (or FF
fifi
(E,E'))(E,E'))

R(ω') = 
m=1

 c
m
 χ

m
(ω',

i
)

M
max

with  ω'=ω-ω
th  

, given set of functions
  
χ

m  
, and unknown coefficients c

m
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(E,E'))(E,E'))

R(ω') = 
m=1

 c
m
 χ

m
(ω',

i
)

M
max

with  ω'=ω-ω
th  

, given set of functions
  
χ

m  
, and unknown coefficients c

m
  

Define:       χ
m
(σ

R
,σ

Ι
,

i
) = ∫

0
  dω' 

∞ χ
m
(ω',

i
)

(ω'- σ
R
)2 +σ

Ι
2

~

 Calculate LIT   L(σ
R
,σ

Ι
) = <|   for many σ

R 
and fixed σ

Ι
 ~ ~
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LIT - Inversion

Standard LIT inversion method

Take the following ansatz for the response function  R(ω) (or FF
fifi
(E,E'))(E,E'))

R(ω') = 
m=1

 c
m
 χ

m
(ω',

i
)

M
max

with  ω'=ω-ω
th  

, given set of functions
  
χ

m  
, and unknown coefficients c

m
  

Define:       χ
m
(σ

R
,σ

Ι
,

i
) = ∫

0
  dω' 

∞ χ
m
(ω',

i
)

(ω'- σ
R
)2 +σ

Ι
2

~

 Calculate LIT   L(σ
R
,σ

Ι
) = <|   for many σ

R 
and fixed σ

Ι
 ~ ~

~~ and expand in set χ
m
:   L(σ

R
,σ

Ι
) = 

m=1
 c

m
 χ

m
(ω',

i
)  

M
max

Determine c
m
 via best fit 
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Increase M
max

 up to the point that stable result is obtained

for R(ω). Even further increase of M
max 

might lead to oscillations

in R(ω)
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Increase M
max

 up to the point that stable result is obtained

for R(ω). Even further increase of M
max 

might lead to oscillations

in R(ω)

As basis set χ
m 

we normally use

χ
m
(ω',

i
) = (ω') exp(-

2
ω'/m)   with   m = 1, 2, ..., M

max
1
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main point of the LITmain point of the LIT : :
Schrödinger-like equation with a source

one can apply bound state methods

The         solution is unique and has bound state like  
asymptotic behavior
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LIT - Example
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LIT - Example

deuteron photodisintegration in unretarded dipole approximation

unretarded dipole approximation   = 
i=1

 z
i

1+
i,z

2

A

Z
i 
, 

i,z
: 3rd components of position and isospin coordinates of i-th nucleon

,
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deuteron photodisintegration in unretarded dipole approximation

unretarded dipole approximation   = 
i=1

 z
i

1+
i,z

2

A

Z
i 
, 

i,z
: 3rd components of position and isospin coordinates of i-th nucleon

,

  includes MEC contributions  due to Siegert theorem: ∇ ·j        [ H, ]
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LIT - Example

deuteron photodisintegration in unretarded dipole approximation

unretarded dipole approximation   = 
i=1

 z
i

1+
i,z

2

A

        

() = 42 α R()     with     R() = 

f
 |<f| |0>|2 (-E

f
-E

0
) ∫

with   |0>  and E
0  

bound-state wave function and energy

|f>  and E
f   

final-state wave function and  energy

Z
i 
, 

i,z
: 3rd components of position and isospin coordinates of i-th nucleon

,

  includes MEC contributions  due to Siegert theorem: ∇ ·j        [ H, ]
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LIT - Example

deuteron photodisintegration in unretarded dipole approximation

unretarded dipole approximation   = 
i=1

 z
i

1+
i,z

2

A

        

() = 42 α R()     with     R() = 

f
 |<f| |0>|2 (-E

f
-E

0
) ∫

with   |0>  and E
0  

bound-state wave function and energy

|f>  and E
f   

final-state wave function and  energy

Z
i 
, 

i,z
: 3rd components of position and isospin coordinates of i-th nucleon

,

  includes MEC contributions  due to Siegert theorem: ∇ ·j        [ H, ]



In unretarded dipole approximation |f> contains only 3P
0
 , 3P

1
 , 3P

2
 – 3F

2 
  NN states
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NN interaction:  Argonne V14 potential

 

LIT  

() from inversion with various M

max

10
15
20
25,26

M
max



=10 MeV
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() from inversion with various M

max
 = 25

and result from conventional calculation with explicit   
                 np continuum wave functions

x    conventional

LIT 
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LIT - Applications A>2

Total photoabsorption cross section 
in unretarded dipole approximation
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LIT - Applications A>2

Hyperspherical Harmonics Expansions (HH): CHH and EIHH

Our method for calculating bound-state and bound-state-like equations:

CHH: Additional two-body correlation functions are introduced
EIHH: Effective Interaction is constructed via Lee-Suzuki transformation 

EIHH: N. Barnea, WL, G. Orlandini, PRC 61, 054001 (2000), NPA 693, 565 (2001),
PRC 67, 054003 (2003), PRC 81, 064001 (2010)
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Total photoabsorption cross section of three-nucleon systems

First calculation with realistic NN and 3N forces was made with the LIT 
method: V.D. Efros, WL, G. Orlandini, E.L. Tomusiak, PLB 484, 223 (2000)

Later a benchmark calculation with the Faddeev technique was made
(Golak et al., Nucl. Phys. A 707, 365 (2002))
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       3H Total               
  photoabsorption
     cross section
in unret. dipole appr.
 (AV18 +UIX force)

   LIT versus Faddeev 
calculation of Golak et al.
  NPA 707, 365 (2002)
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Effect of Retardation

Combined Effects of 
Retardation and further
Eλ and  Mλ  multipoles

3H(γ)
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                    44
He total photoabsorption cross section            He total photoabsorption cross section            

  LIT methodLIT method

  Nuclear potential: central S-wave NN potentialsNuclear potential: central S-wave NN potentials

  Calculation in unretarded dipole approximationCalculation in unretarded dipole approximation
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                    44
He total photoabsorption cross section            He total photoabsorption cross section            

  LIT methodLIT method

  Nuclear potential: central S-wave NN potentialsNuclear potential: central S-wave NN potentials

  Calculation in unretarded dipole approximationCalculation in unretarded dipole approximation

experimental data: 
Berman et al. (1980)
Feldman et al. (1990)
+ others

V. Efros, WL, G. Orlandini, 
PRL 78, 4015 (1997)



Scuola Raimondo Anni - 2013

                    44
He total photoabsorption cross section            He total photoabsorption cross section            

  LIT methodLIT method

  Nuclear potential: AV18+UIXNuclear potential: AV18+UIX

  Calculation in unretarded dipole approximationCalculation in unretarded dipole approximation

experimental data: 
Berman et al. (1980)
Feldman et al. (1990)
Wells et al. (1992)
Nilsson et al. (2005)
Shima et al. (2005)
Nakayama et al. (2007)

D. Gazit, S. Bacca, N. Barnea, WL, G. Orlandini, PRL 96, 112301 (2006)
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66-Body total -Body total 
photodisintegrationphotodisintegration

EIHH

Appearance of collective motion

6Li

6He

classical GT 
mode

S. Bacca, M. Marchisio, 
N. Barnea, WL, G. Orlandini
 PRL89, 052502 (2002)

soft 
mode
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77-Body total -Body total 
photodisintegrationphotodisintegration

'75

'75

S.Bacca et al. 
PLB 603(2004) 159 

EIHH
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1616-Body total -Body total 
photodisintegrationphotodisintegration

16O

Coupled Cluster
    Idaho-N3LO

S. Bacca, N. Barnea, 
G. Hagen, G. Orlandini, 
Th. Papenbrock, 
arXiv:1303.7446
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Exclusive Reactions

4He(,p)3H and 4He(,n)3He (S. Quaglioni et al., PRC 69, 044002 (2004))

4He(e,e'p)3H  (S. Quaglioni et al., PRC 72, 064002 (2005))

4He(e,e'd)2H   (D. Andreasi et al., EPJA 27, 47 (2006))
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Exclusive Reactions

4He(,p)3H and 4He(,n)3He (S. Quaglioni et al., PRC 69, 044002 (2004))

4He(e,e'p)3H  (S. Quaglioni et al., PRC 72, 064002 (2005))

4He(e,e'd)2H   (D. Andreasi et al., EPJA 27, 47 (2006))
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PWIA

AGS

AGS

HpHe 34 ),(γ  nnm e

LIT calculation with
 MTI/III potential by
Quaglioni et al., 
PRC 69, 044002 (2004)
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New results from  HiNew results from  Hiss
for for 44He(He(,p),p)33HH

R. Raut et al., PRL 108, 042502 (2012)R. Raut et al., PRL 108, 042502 (2012)

LIT calculation with 
MTI/III potential by
Quaglioni et al., 
PRC 69, 044002 (2004)

Lower three data 
points by Shima et al.
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LIT method and LIT method and 
resonancesresonances  
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The LIT: a method with a The LIT: a method with a controlled resolutioncontrolled resolution
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LIT method and LIT method and 
resonancesresonances  

The LIT: a method with a The LIT: a method with a controlled resolutioncontrolled resolution

Case study for deuteron photodisintegration
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NN potential with fictitious resonance in 3P
1
 partial wave

V(3P
1
)   V(3P

1
) + V

add

With    V
add 

= −−                 (1-exp(−−2r2)(1+exp(       )-1
57.6 MeV

r

r−−5

0.2

and relative coordinate r in units of fm

Why such a potential?

To understand this better let us have a look on corresponding 
phaseshift 3P

1
 and deuteron photoabsorption cross section in         

 3P
1 
partial wave
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1.5

Phase shifts shows two resonances one at E
np

 = 0.48, 10.5 MeV



(3P

1
) shows two corresponding resonances: low-energy resonance very pronounced 

with small width =270 KeV, the other one is much weaker and has a larger width
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What has to be done in the LIT calculation to resolve the         
              pronounced low-energy resonance?

 is localized state of finite norm, but what is the radial 
extension of the state. Cross section structures with 
small width require smaller 


    is longer ranged

~

~

In our LIT calculation for the deuteron photodisintegration we are 
able to check it for the modified 3P

1
 interaction
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What has to be done in the LIT calculation to resolve the         
              pronounced low-energy resonance?

 is localized state of finite norm, but what is the radial 
extension of the state. Cross section structures with 
small width require smaller 


    is longer ranged

~

~

In our LIT calculation for the deuteron photodisintegration we are 
able to check it for the modified 3P

1
 interaction

Let us first check better the case for the true deuteron photodisintegration 
using the following procedure. At a distance r=R

max
 we take as boundary 

condition a very strong fall-off for the solution  and evaluate the norm

<|> = ∫
0 
   dr |(r,

R
,


)2~ ~

~

~R
max
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LIT for deuteron total photoabsorption 
cross section considering only transitions 
to 3P

1
 channel with unchanged

interaction (no resonance)

single Lorentzian with 



=10 MeV
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First LIT in the region of the low-energy resonance

Results with modified 3P
1
 potential
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LIT for deuteron total photoabsorption cross section considering 
only transitions to 3P

1
 channel with modified interaction 



=1 MeV 


=0.5 MeV
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=0.1 MeV
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LITs in the resonance region with various 

(full curves); 

comparison with single Lorentzians of corresponding 

(dashed curves)
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Incomplete Inversion

Instead of using set 
m
 defined previously we take M

max
=1 and take




1    
=  

(E
np

 – E
res

)2 + (/2)2

1 (
1+exp(-1)

1 –
1+exp((E

np
 – 

3
)/

3
)

1 )

E
res

 , , and 
3
 are fit parameters 

x    conventional

res

–
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Now to the LIT results beyond low-energy resonance

Results with modified 3P
1
 potential
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Complete inversion with set 
m
 defined previously using in addition as 

new first basis function 
1

res



 = 1 MeV, R

max
 = 30 and 50 fm, various M

max
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Complete inversion with set 
m
 defined previously using in 

addition as new first basis function 
1

res

various 

 , R

max
 = 80  fm, M

max
 =30
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Up to now direct numerical solutions of Schrödinger equation for
bound state and LIT equation for Ψ 

~

For A > 2 it is more convenient to use expansions in complete 
sets using expansions in HH or HO functions
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Reformulation of the LIT
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Up to now direct numerical solutions of Schrödinger equation for
bound state and LIT equation for Ψ 

~

For A > 2 it is more convenient to use expansions in complete 
sets using expansions in HH or HO functions

Reformulation of the LIT

LIT(R,I) = –     Im{0|† (R + E0 – H + i I)
-1  |0 }1

I

R(E = R) = –     Im{lim   0|† (R + E0 – H + i I)
-1  |0 }

1

I        0
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New example:

 deuteron photodisintegration with the 
LIT method using expansion techniques
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 deuteron photodisintegration with the 
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First we use the JISP-6 NN potential which is defined on an HO basis:
<n'| V | n>  up  n=n'=4  (n=0,1,2,...; HO quantum number, Ω = 40 MeV)
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First we use the JISP-6 NN potential which is defined on an HO basis:
<n'| V | n>  up  n=n'=4  (n=0,1,2,...; HO quantum number, Ω = 40 MeV)
 

Also deuteron wave function and  are expanded on HO basis
Note: radial parts contain Laguerre polynomials up to order N 
times Gaussians

~
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New example:

 deuteron photodisintegration with the 
LIT method using expansion techniques

First we use the JISP-6 NN potential which is defined on an HO basis:
<n'| V | n>  up  n=n'=4  (n=0,1,2,...; HO quantum number, Ω = 40 MeV)
 

Also deuteron wave function and  are expanded on HO basis
Note: radial parts contain Laguerre polynomials up to order N 
times Gaussians

~

Alternatively  exponential fall-off exp(-r/b) instead of Gaussians
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JISP-6  potential: deuteron binding energy E
d

Slow convergence for E
d

N
max

 in expansion of 

deuteron wave function
E

d 
[MeV]

10                                             2.057

20                                             2.195

50                                             2.2236

100                                           2.224555
150                                           2.224574
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Deuteron photodisintegration with the JISP-6 NN potential
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Deuteron photodisintegration with the JISP-6 NN potential

First, only considerations of transitions to the 3P
1
 np final state
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 This leads to the following LITs with Laguerre polynomials up to order N  with
exponential fall-off (b=0.5 fm): 
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Laguerre polynomials up to order N (exponential fall-off)
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Laguerre polynomials up to order N (exponential fall-off)
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LIT approach  is a method with a controlled resolution!
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Next: Effect of changing fall-off parameter b 

In addition: consideration of Gaussians instead of an 
exponential fall-off  exp(-r/b)   
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Gaussiansexponential fall-off  exp(-r/b)
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exponential fall-off  exp(-r/b) Gaussians
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Now we consider the modified interaction for 3P
1
 with resonance

Comparison of LITs from direct numerical solution and those from 
expansions with exponential fall-off exp(-r/b)
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Lanczos technique

Lanczos technique is used, e.g., for diagonalization of Hamiltonian matrix 
(dimension: M) in a bound-state calculation. 

Very efficient: total diagonalization is avoided instead only N ≪ M
Lanczos steps are needed. 

They lead to N energy eigenvalues
 
ε


, which are very good approximations 

of the lower energy eigenvalues 

of H, especially for  ≪ N.

Lanczos technique is also applicable to solve LIT equation.  
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Lanczos response

Since the Lorentzian function is a representation of the -function one 

could think of calculating R() as the limit of L(ω,σ
R
,σ

Ι
)  for  σ

Ι
 −−> 0.  

 The extrapolation would give 

R(ω) =  Σ

 r

 
δ(ω – ε


)N N
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Lanczos response

Since the Lorentzian function is a representation of the -function one 

could think of calculating R() as the limit of L(ω,σ
R
,σ

Ι
)  for  σ

Ι
 −−> 0.  

 The extrapolation would give 

R(ω) =  Σ

 r

 
δ(ω – ε


)N N

Lanczos response: -function is replaced by Lorentzian with small 


            R(ω) =  Σ

 r'


L(ω,ε




I
)NN



Scuola Raimondo Anni - 2013

Lanczos response

Since the Lorentzian function is a representation of the -function one 

could think of calculating R() as the limit of L(ω,σ
R
,σ

Ι
)  for  σ

Ι
 −−> 0.  

 The extrapolation would give 

R(ω) =  Σ

 r

 
δ(ω – ε


)N N

Lanczos response: -function is replaced by Lorentzian with small 


            R(ω) =  Σ

 r'


L(ω,ε




I
)NN

Deuteron photodisintegration:
Consider all three transitions  3P

0
 , 3P

1
 , 3P

2
 – 3F

2

 now expansion of radial LIT part in HO functions
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Lanczos response

Since the Lorentzian function is a representation of the -function one 

could think of calculating R() as the limit of L(ω,σ
R
,σ

Ι
)  for  σ

Ι
 −−> 0.  

 The extrapolation would give 

R(ω) =  Σ

 r

 
δ(ω – ε


)N N

Lanczos response: -function is replaced by Lorentzian with small 


            R(ω) =  Σ

 r'


L(ω,ε




I
)NN

Deuteron photodisintegration:
Consider all three transitions  3P

0
 , 3P

1
 , 3P

2
 – 3F

2

 now expansion of radial LIT part in HO functions
 NN potential: JISP6
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() from inversion and Lanczos response

     

=1 MeV

“true”

N
ho

=150

N
ho

=2400
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() from inversion and Lanczos response

HO  basis:
fixed Ν

HO
=2400 

“true”

Γ=1 MeV

Γ=0.25  MeV

Γ= 0.5 MeV



Scuola Raimondo Anni - 2013

Conclusion

Strength for a given discrete state of energy E is not the 
actual strength for this energy, but can only be 
interpreted correctly within an integral transform 
approach. 

The correct distribution of strength is obtained via the
inversion of the integral transform.
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LIT application for inclusive electron scattering
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 0+ resonance of 4He
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LIT application for inclusive electron scattering

 0+ resonance of 4He

 Longitudinal response function R
L
(,q) for A = 3 and 4
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LIT application for inclusive electron scattering

 0+ resonance of 4He

 Longitudinal response function R
L
(,q) for A = 3 and 4

 Transverse response function R
T
(,q) for A = 3 

 degrees of freedom

 Quasi-elastic response at higher q  (q=500-700 MeV/c)
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OO++ resonance in longitudinal response  resonance in longitudinal response 
function Rfunction R

LL
 in  in 44He(e,e') He(e,e') 

S. Bacca, N. Barnea, WL, G. Orlandini, PRL 110, 042503 (2013)S. Bacca, N. Barnea, WL, G. Orlandini, PRL 110, 042503 (2013)  
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0+ Resonance in the 
4He compound system

Resonance at ER = -8.2 MeV, i.e. above 

the 3H-p threshold. Strong evidence in 
electron scattering off 4He

G. Köbschall et al., NPA 405, 648 (1983)

= 270±70 keV
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Results of our LIT calculationResults of our LIT calculation
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i =0.001 MeVI = 0.001 MeV
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i =0.001 MeVI = 0.001 MeV

I = 1 MeV
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i =0.001 MeVI = 0.001 MeV

I = 1 MeV

I = 5 MeV
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The present precision of the calculation does not 
allow to resolve the shape of the resonance, 
therefore the width cannot be determined.
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state, but by rearranging the inversion in a suitable way:
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The present precision of the calculation does not 
allow to resolve the shape of the resonance, 
therefore the width cannot be determined.

However, the strength of the resonance can be 
determined!

Of course not by taking the strength to the discretized 
state, but by rearranging the inversion in a suitable way:

Reduce strength to the state up to the point that
the inversion does not show any resonant structure at the
resonance energy ER:

LIT(
R


   LIT(

R
) -fR  / [(ER –

R
)2  

] ≡ LIT(
R


fR

with resonance strength fR
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fR
0.028
0.0295
0.0290

Inversion results with 
different fR values
AV18+UIX, q=300 MeV/c
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Comparison to experimental resultsComparison to experimental results

Frosch et al.
Walcher
Kӧbschall et al.

LIT/EIHH Calculation for AV18+UIX and  Idaho-N3LO+N2LO

Dotted: AV8' + central 3NF (Hiyama et al.)

S. Bacca et al.
PRL 110, 042503 (2013)
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SURPRISE:
LARGE EFFECT OF 

3-BODY FORCE 
AT LOW q

44HeHe

S.Bacca et al., PRL 102, 162501

(e,e') Longitudinal Response(e,e') Longitudinal Response

data: Buki et al.

Calculation via EIHH 
with force model: 
AV18 + UIX
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Dependence on different 3-nucleon forces

S.Bacca et al., PRC 80, 064001
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44HeHe (e,e') Longitudinal Response(e,e') Longitudinal Response

SMALL EFFECT OF 
3-BODY FORCE AT HIGH q

Exp.: Saclay 
         Bates
         world data (J. Carlson et al.)

PWIA
AV18

AV18+UIX



Scuola Raimondo Anni - 2013

3-Body inclusive electrodisintegration3-Body inclusive electrodisintegration
Role of 3-Nucleon forceRole of 3-Nucleon force

        CHH
V. Efros, W.L., G. Orlandini

E. Tomusiak

PRC69, 044001 (2004)

AV18

AV18 + UIX

“low” q

LONGITUDINAL

RESPONSE

Exp: 

O Dow

△ Marchand
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Transverse response function R
T
(ω,q)
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Transverse response function R
T
(ω,q)
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Transverse response function R
T
(ω,q)

Subnuclear degrees of freedom can become important

 Meson exchange currents (MEC)

MEC with LIT method: S. Della Monaca, V.D. Efros, A. Khugaev, 
WL, G. Orlandini, E.L. Tomusiak, L. Yuan, PRC 77, 044007 (2008)



Scuola Raimondo Anni - 2013

Transverse response function R
T
(ω,q)

Subnuclear degrees of freedom can become important

 Meson exchange currents (MEC)

MEC with LIT method: S. Della Monaca, V.D. Efros, A. Khugaev, 
WL, G. Orlandini, E.L. Tomusiak, L. Yuan, PRC 77, 044007 (2008)

 ∆ isobar currents (∆-IC) 

∆-IC with LIT method: L. Yuan, V.D. Efros, WL,  E.L. Tomusiak, 
PRC 81, 064001 (2010)
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NR:           dashedNR:           dashed

NR+MEC:  dottedNR+MEC:  dotted

Rel.+MEC: fullRel.+MEC: full

RT close to break-up threshold
        (V.D. Efros, WL, G. Orlandini, E.L. Tomusiak,
         Few-Body Syst. 47, 157 (2010))

q = 174 MeV/c     q = 324 MeV/c    q = 487 MeV/c 
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ΔΔ degrees of freedom degrees of freedom
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SchrSchröödinger equation withdinger equation with   degrees of freedom degrees of freedom
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SchrSchröödinger equation with dinger equation with  degrees of freedom degrees of freedom
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SchrSchröödinger equation with dinger equation with  degrees of freedom degrees of freedom
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SchrSchröödinger equation with dinger equation with  degrees of freedom degrees of freedom
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SchrSchröödinger equation with dinger equation with  degrees of freedom degrees of freedom
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LIT equationLIT equation with  with  degrees of freedom degrees of freedom
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We take into account electromagnetic 

operators with the  (IC) represented 
by the following graphs
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LIT equationLIT equation with  with  degrees of freedom degrees of freedom
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33He (e,e') Response Functions in the He (e,e') Response Functions in the 
Quasielastic RegionQuasielastic Region

  

The quasielastic region is dominated by the one-body parts of  The quasielastic region is dominated by the one-body parts of    
and and JJ, but relativistic contributions become increasingly important , but relativistic contributions become increasingly important 

with growing momentum transfer qwith growing momentum transfer q

Our aim: non-rel. calculation + rel. correctionsOur aim: non-rel. calculation + rel. corrections

  with realistic nuclear forceswith realistic nuclear forces
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RT(,q) at various q 

Potential: BonnRA +TM'

one-body current: dashed
one+two-body current: full

  (S. Della Monaca et al., 
   PRC 77, 044007 (2008))

Bad agreement between 
theory and experiment 
because of non considered 
relativistic effects

Motivation
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RT(,q) at various q 

Potential: BonnRA +TM'

one-body current: dashed
one+two-body current: full

Bad agreement between 
theory and experiment 
because of non considered 
relativistic effects

Motivation

Quasi-elastic kinematics (q=500 MeV/c),

Kinetic energy of outgoing nucleon:

non-rel. : T = q2/2m =  133 MeV
rel.: T= (m2+q2)1/2 – m = 125 MeV
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We already considered this problem for RL and studied

RL in various reference frames:

Laboratory:                 PT = 0

Breit:                           PT = -q/2

Anti-Lab:                     PT = -q

Active Nucleon Breit:  PT = -Aq/2

non-rel.:     frame + (PT)
2/2Am = Einternal  + (PT+q)2/2Am  
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Frame dependence

calculation in various frames:

Laboratory:                 PT = 0

Breit:                           PT = -q/2

Anti-Lab:                     PT = -q

Active Nucleon Breit:  PT = -Aq/2

Result in LAB frame

RL(,q) =
q2

(qfr)2

ET 
fr

MT
RL(fr,qfr)

fr

RL(,q) at higher q

V. Efros, W.L., G. Orlandini, E. Tomusiak

       PRC 72 (2005) 011002(R)

Exp: Marchand 1985, Dow 1988, Carlson 2002

Potential: AV18+UIX



Scuola Raimondo Anni - 2013

Assume quasi-elastic kinematics:

whole energy and momentum transfer taken by  the knocked out 
nucleon (residual two-body system is in its lowest energy state) 

          ⇒    Effective two-body problem
              Treat kinematics relativistically correct
              
Take the correct relativistic relative momentum krel and

 calculate the corresponding non-relativistic relative energy

                                    Enr = (krel)
2/2

  with reduced mass  of nucleon and residual system

use Enr as internal excitation energy in your calculation

How to get more frame independent results?
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Quasielastic region: assume two-
body break-up and use the correct 
relativistic relative momentum

RL(,q) at higher q

RL calculated in ANB frame with (dashed) 

and without (full) assumption of a two-
body break-up
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 Transverse response function R
T
(q,) of 3He in the 

quasi-elastic region 

Nuclear current operator includes besides the usual non-relativistic one-body  
currents also meson exchange currents  and -isobar currents as well as 
relativistic corrections for the one-body current
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quasi-elastic region 

Nuclear current operator includes besides the usual non-relativistic one-body  
currents also meson exchange currents  and -isobar currents as well as 
relativistic corrections for the one-body current

Calculation in active nucleon Breit (ANB) frame (P
T
=−Aq/2) and subsequent 

transformation to laboratory system
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Nuclear current operator includes besides the usual non-relativistic one-body  
currents also meson exchange currents  and -isobar currents as well as 
relativistic corrections for the one-body current

Calculation in active nucleon Breit (ANB) frame (P
T
=−Aq/2) and subsequent 

transformation to laboratory system

Calculation of bound state wave function and solution of  LIT equation with 
the help of expansions in correlated  hyperspherical harmonics
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 Transverse response function R
T
(q,) of 3He in the 

quasi-elastic region 

Nuclear current operator includes besides the usual non-relativistic one-body  
currents also meson exchange currents  and -isobar currents as well as 
relativistic corrections for the one-body current

Calculation in active nucleon Breit (ANB) frame (P
T
=−Aq/2) and subsequent 

transformation to laboratory system

Calculation of bound state wave function and solution of  LIT equation with 
the help of expansions in correlated  hyperspherical harmonics

Nuclear force model: Argonne v18 NN potential and Urbana 3NF  
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Further calculation detailsFurther calculation details

The current operatorThe current operator J J

J J == J J(1)(1)  ++ J J(2)(2)

JJ(1)  (1)  = =  J J(1)(1)(q,(q,,P,P
TT
) = ) = JJ

spinspin
  + + JJ

pp
  ++  JJ

qq
 + ( + (/M) /M) JJ



              

                                                  for instance spin currentfor instance spin current

JJ
spinspin

 = exp( = exp(iiqq⋅⋅rr) ) ii   qq/2M [G/2M [G
MM
(1-q(1-q22/8M/8M22) – G) – G

EE
  22qq22/8M/8M22]]

                                                                                                                                    with  with  =1+2P=1+2P
TT
/Aq/Aq

.

.
T
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Further calculation detailsFurther calculation details

The current operatorThe current operator J J

J J == J J(1)(1)  ++ J J(2)(2)

JJ(1)  (1)  = =  J J(1)(1)(q,(q,,P,P
TT
) = ) = JJ

spinspin
  + + JJ

pp
  ++  JJ

qq
 + ( + (/M) /M) JJ



              

                                                  for instance spin currentfor instance spin current

JJ
spinspin

 = exp( = exp(iiqq⋅⋅rr) ) ii   qq/2M [G/2M [G
MM
(1-q(1-q22/8M/8M22) – G) – G

EE
  22qq22/8M/8M22]]

                                                                                                                                    with  with  =1+2P=1+2P
TT
/Aq/Aq

Transformation from ANB frame to LAB frameTransformation from ANB frame to LAB frame

RRTT
LABLAB((LABLAB,q,qLABLAB) =  R) =  R

TT
ANBANB((ANBANB,q,qANBANB)  E)  E

TT
ANBANB/M/M

TT
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ResultsResults

            

  Comparison ofComparison of

ANB and LAB calculation:ANB and LAB calculation:

strong shift of peakstrong shift of peak

to lower energies!to lower energies!

(8.7, 16.7, 29.3 MeV at (8.7, 16.7, 29.3 MeV at 

q=500, 600, 700 MeV/c)q=500, 600, 700 MeV/c)



Scuola Raimondo Anni - 2013

ResultsResults

            

  Rel. contribution:Rel. contribution:

reduction of peakreduction of peak

heightheight

(6.2%, 8.5%, 11.3 % at (6.2%, 8.5%, 11.3 % at 

q=500, 600, 700 MeV/c)q=500, 600, 700 MeV/c)
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ResultsResults

            

  MEC:MEC:

small increase of small increase of 

peak heightpeak height

(3.2%, 2.7%, 2.2% at (3.2%, 2.7%, 2.2% at 

q=500, 600, 700 MeV/c)q=500, 600, 700 MeV/c)
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Dotted: without 
Dashed with

Δ-IC contribution
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Dashed: with(as before)

Solid: same but with two- 
         fragment model

Effect of two-
fragment model

Experimental data:
Bates, Saclay,
world data (J. Carlson et al.)
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Deltuva et al. (PRC70, 034004,2004):Deltuva et al. (PRC70, 034004,2004):

Calculation of RCalculation of RT  T  of of 33He with CDBonn and CDBonn+He with CDBonn and CDBonn+::

no no  effects in peak region! effects in peak region!
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Dotted: no and no 3NF

Dashed: no but with 3NF

Solid: with and with 3NF

No  effect in peak region
In a CC calculation!

Partial compensation 
of -IC and 3NF
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Dotted: no and no 3NF

Dashed: no but with 3NF

Solid: with and with 3NF

IC contribution larger 
than 3NF effect in peak 
region!

Only Isospin 
channel T=3/2
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Experimental data:
Bates, Saclay,
world data (J. Carlson et al.)

L. Yuan et al., PLB 706, 90 (2011)
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Only Isospin channel T=3/2

Dotted: no and no 3NF

Dashed: no but with 3NF

Solid: with and with 3NF

Strong -IC effect also beyond peak

for this kinematics-IC 
     are important in 3-body       
     breakup reactions
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ConclusionsConclusions

only only bound statesbound states techniques  are needed techniques  are needed

the LIT metod opens up the possibility to    
carry out ab-initio calculations of reactions 
into the  A-body continuum for A > 2

  

  the LIT is a method with controlled resolution
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ConclusionsConclusions

only only bound statesbound states techniques  are needed techniques  are needed

the LIT metod opens up the possibility to    
carry out ab-initio calculations of reactions 
into the  A-body continuum for A > 2

  

  the LIT is a method with controlled resolution

We have discussed quite a few applications, there are still more 
(Compton scattering, pion production, weak nuclear responses)
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SummarySummary
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HOW TO SPEED UP THE CONVERGENCE?

Here comes the idea of EFFECTIVE INTERACTION

same idea as for No Core Shell Model. 
  there the many particle basis is HO
  here the many particle basis is HH

SOLUTION



Scuola Raimondo Anni - 2013

What is the main idea of an effective interaction?

whole Hilbert space

P and Q are projection operators

P+ Q = 1

K 
max

Q

P
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What is the main idea of an effective interaction?

whole Hilbert space

P and Q are projection operators

P + Q = 1

Find a transformation V ----> V
eff 

such that 

  < Ψ |  P H 
eff 

P | Ψ > = < Ψ | H | Ψ >

K 
max

Q

P

T
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What is the main idea of an effective interaction?

whole Hilbert space

P and Q are projection operators

P + Q = 1

Find a transformation V ----> V
eff 

such that 

  < Ψ |  P H 
eff 

P | Ψ > = < Ψ | H | Ψ >

K 
max

Q

P

f

T

ormally this transformation exists (Bloch-Horowitz, Lee-Suzuki),  however,
  1)  V

eff 
becomes an A-body operator

  2)  T is written in function of Q 
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What is the main idea of an effective interaction?

whole Hilbert space

P and Q are projection operators

P+ Q = 1

Find a transformation V ----> V
eff 

such that 

  < Ψ  |  P H 
eff 

P | Ψ > = <Ψ  | H | Ψ >

K 
max

Q

P

formally this transformation exists (Bloch-Horowitz, Lee-Suzuki),  however,

  1)  V
eff 

becomes an A-body operator

  2)  T is written in function of Q

Useless for practical purposes, the same as solving the full problem

V
eff 

[A]

T
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PRACTICALLY:

K 
max

Q

P

Q
2

P
2

solution
in Q

2
 is 

known!
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PRACTICALLY:

K 
max

Q

P

Q
2

P
2

known!

V
eff 

[2]V
eff 

[A]
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PRACTICALLY:

PRICE: I have to increase P (i.e. K
max

)

             up to convergence

GAIN: what is missing is less than before
-------> faster convergence!

V
eff 

[2]V
eff 

[A]

K 
max

Q

P

Q
2

P
2

known!
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H
NCSM

= Σ
k 

A-1  h
k

ho +  ( V
12

 – V
12 

HO) + ( V
13

 – V
13 

HO) +.....

 

H
EIHH

=  T +  V
12

 + V
13

 +.....

       =    1/µ  ( ∆   
ρ 

-  K2 / ρ 2) +  V ( ξ
1 
) + V( ξ

1
, ξ 

2 
, .... ξ 

Α−1
)

= hho  ( ξ
1
) + hho  ( ξ

2
) + ...  + V ( ξ

1
) 

 
- VHO( ξ

1

2) +...  

Where, in the full H, is the two-body H
2
  which I have to solve ?
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KK

convergence:

4He with MTV 
NN Potential
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