The Lorentz Integral Transform Method

- Introduction
- LIT method: * Theory
* Example (deuteron photodisintegration)
* Application for $\mathrm{A}>2$: photodisintegration
* Energy resolution (deuteron photodisintegration)
* Solution of LIT equation: direct or expansion method
* Lanczos response (deuteron photodisintegration)
* Application for $A>2$: electrodisintegration

Introduction

Consider an observable $R(E)$ and an integral transform $\Phi(\sigma)$:

$$
\Phi(\sigma)=\int \mathrm{dE} K(\sigma, E) R(E)
$$

with some kernel $\mathrm{K}(\sigma, \mathrm{E})$

Often it is easier to calculate $\Phi(\sigma)$ than $\mathrm{R}(E)$. Then the observable $R(E)$ can be obtained via inversion of the integral transform. In order to make the inversion sufficiently stable the kernel $\mathrm{K}(\sigma, \mathrm{E})$ should resemble a kind of energy filter (Lorentzians, Gaussians, ...); best choice would be a δ-function.

Introduction

Consider an observable $R(E)$ and an integral transform $\Phi(\sigma)$:

$$
\Phi(\sigma)=\int \mathrm{dE} K(\sigma, \mathrm{E}) \mathrm{R}(\mathrm{E})
$$

with some kernel $\mathrm{K}(\sigma, \mathrm{E})$

Often it is easier to calculate $\Phi(\sigma)$ than $\mathrm{R}(\mathrm{E})$. Then the observable $R(E)$ can be obtained via inversion of the integral transform.
In order to make the inversion sufficiently stable the kernel $\mathrm{K}(\sigma, \mathrm{E})$ should resemble a kind of energy filter (Lorentzians, Gaussians, ...); best choice would be a δ-function.

For the LIT we consider Lorentzians: $\mathrm{K}(\sigma, \mathrm{E})=\left[\left(\mathrm{E}-\sigma_{\mathrm{R}}\right)^{2}+\sigma_{1}^{2}\right]^{-1}$

Introduction

Reactions of particle systems induced by external probes (photons, electrons, neutrinos) can be divided in inclusive and exclusive processes.

Inclusive reaction: final state of particle system after reaction is not observed
Corresponding cross sections have the form

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} \omega}=\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} \omega} \sum_{\text {zero }}^{N} \mathrm{f}_{i}^{\mathrm{N}} \text { (kinematics) } \mathrm{R}_{i}(\omega, \mathrm{q}) \quad \text { Inclusive }
$$

with N inclusive response functions R_{i} containing information on the dynamics of the particle system

Introduction

Exclusive reaction: final state of particle system after reaction is identified For example, final state consists of a knocked out proton and a residual nucleus, energy and angle of proton have to be measured:

Corresponding cross sections have the form

$$
\frac{d^{3} \sigma}{d \Omega d \omega d \Omega_{p}}=\frac{d^{3} \sigma}{d \Omega d \omega d \Omega_{p}} \sum_{i=1}^{M} f_{i}^{M}(\text { kinematics }) g\left(\phi_{p}\right) r_{i}\left(\omega, q, \theta_{p}\right)
$$

with M inclusive response functions r_{i} containing information on the dynamics of the particle system ($\mathrm{M} \geq \mathrm{N}$)

Introduction

Exclusive reaction: final state of particle system after reaction is identified For example, final state consists of a knocked out proton and a residual nucleus, energy and angle of proton have to be measured:

Corresponding cross sections have the form

$$
\frac{d^{3} \sigma}{d \Omega d \omega d \Omega_{p}}=\left.\frac{d^{3} \sigma}{d \Omega d \omega d \Omega_{p}}\right|_{i=1} ^{M} f_{i}(\text { kinematics }) g\left(\phi_{p}\right) r_{i}\left(\omega, q, \theta_{p}\right)
$$

with M inclusive response functions r_{i} containing information on the dynamics of the particle system ($\mathrm{M} \geq \mathrm{N}$)

$$
\begin{aligned}
& \int r_{i}\left(\omega, q, \theta_{p}\right) d \Omega_{p}=R_{i}(\omega, q), i=1, \ldots, N \\
& \int r_{i}\left(\omega, q, \theta_{p}\right) d \Omega_{p}=0, i=N+1, \ldots, M
\end{aligned}
$$

Introduction

Exclusive reaction: final state of particle system after reaction is identified For example, final state consists of a knocked out proton and a residual nucleus, energy and angle of proton have to be measured:

Corresponding cross sections have the form
$\frac{d^{3} \sigma}{d \Omega d \omega d \Omega_{p}}=\left.\frac{d^{3} \sigma}{d \Omega d \omega d \Omega_{p}}\right|_{\text {zero }} ^{M} \sum_{i}^{M}($ kinematics $) g\left(\phi_{p}\right) r_{i}\left(\omega, q, \theta_{p}\right)$
with M inclusive response functions r_{i} containing information on the dynamics of the particle system ($\mathrm{M} \geq \mathrm{N}$)

$$
\begin{array}{ll}
\int r_{i}\left(\omega, q, \theta_{p}\right) d \Omega_{p}=R_{i}(\omega, q), i=1, \ldots, N & \text { Example: unpolarized (e,e'): } \\
\int r_{i}=r_{L}, r_{2}=r_{T} \\
\int\left(\omega, q, \theta_{p}\right) d \Omega_{p}=0, i=N+1, \ldots, M & r_{3}=r_{L T}, r_{4}=r_{T T}
\end{array}
$$

LIT method: Theory

Inclusive response functions have the following form

$$
\left.R(\omega)=\sum_{n}|\langle n| \Theta| 0\right\rangle\left.\right|^{2} \delta\left(\omega-E_{n}+E_{0}\right)
$$

where we have set for $q=$ const: $R(\omega, q) \longrightarrow R(\omega)$
$|0\rangle,|n\rangle$ and E_{0}, E_{n} are eigen states and
corresponding eigen energies of Hamiltonian H and
Θ is transition operator inducing the reaction

Inclusive response functions have the following form

$$
\left.R(\omega)=\sum_{n}^{n}|\langle n| \Theta| 0\right\rangle\left.\right|^{2} \delta\left(\omega-E_{n}+E_{0}\right)
$$

where we have set for $q=$ const: $R(\omega, q) \longrightarrow R(\omega)$
$|0\rangle,|n\rangle$ and E_{0}, E_{n} are eigen states and
corresponding eigen energies of Hamiltonian H and
Θ is transition operator inducing the reaction

Exclusive response functions have more complicated forms. They are sums of products of T-matrix elements

$$
\mathrm{T}_{n 0}^{\alpha, \beta}(\omega)=\left\langle\mathrm{n}_{\alpha}\right| \Theta\left|0_{\beta}\right\rangle
$$

For a calculation of response functions one needs initial and final state wave functions of the particle system. With increasing particle number such calculations become more and more difficult

	bound-state calculation	continuum state calculation
A=2	easy	easy
A=3	not easy	difficult
A=4	difficult today possible up to relatively large A difficult (GFMC, NCSM, CC)	today: only below three-body breakup threshold
A	ver	

In last decade much progress in bound-state calculations applying different methods

AB INITIO BOUND STATE CALCULATIONS

BE of ${ }^{4} \mathrm{He}$ (exp. 28.296 MeV)

TABLES

TABLE I. The expectation values (T) and (V) of kinetic and potential energise, the binding energies E_{6} in MeV and the racius in fin.

Method	(T)	(V)	Eb	$\sqrt{\left(r^{2}\right)}$
FY	102.39(5)	-18.33(10)	-25.94(5)	1.185 (3)
CrCGV	102.30	-18.00	-25.90	1.482
SIM	102.35	-18.27	-25.92	1.486
HH	102.4	-128.34	-25.90(1)	1.483
GFMC	102.3(1.0)	-128.25(1.0)	-25.93(2)	$1.490(5)$
NCSM	103.35	-129.45	$-25.80(20)$	1.485
EIHH	100.8(9)	-126.7(9)	-25.94 (10)	1.486

from H.Kamada et al. (18 auhors 7 groups) PRC 64 (2001) 044001

Motivation of LIT method

Aim: calculation of reactions involving A-body systems in the continuum
calculation of A-body continuum state tremendously more difficult than A-body bound state calculation

Motivation of LIT method

Aim: calculation of reactions involving A-body systems in the continuum
calculation of A-body continuum state tremendously more difficult than A-body bound state calculation

Question:

Motivation of LIT method

Aim: calculation of reactions involving A-body systems in the continuum
calculation of A-body continuum state tremendously more difficult than A-body bound state calculation

Question: Is it possible to calculate continuum observables without explicit knowledge of the corresponding continuum wave function?

Motivation of LIT method

Aim: calculation of reactions involving A-body systems in the continuum
calculation of A-body continuum state tremendously more difficult than A-body bound state calculation

Question: Is it possible to calculate continum observables without explicit knowledge of the corresponding continuum wave function?

YES, via the LIT method!
Continuum state problem $\xrightarrow{\text { LIT }}$ bound-state-like problem

LIT - Theory for Inclusive Reactions

Cross section described by response functions $R(\omega)$

$$
\left.R(\omega)=\sum_{n}^{n}|\langle n| \Theta| 0\right\rangle\left.\right|^{2} \delta\left(\omega-E_{n}+E_{0}\right)
$$

steps:

1. Solve for many ω_{0} and fixed Γ

$$
\left(H-E_{0}-\omega_{0}+i \Gamma\right) \tilde{\Psi}=\Theta|0\rangle
$$

2. Calculate

for given ω_{0} and Γ

for a Theorem based on closure
3. Invert transform

$$
\int_{E_{\text {th }}^{-}}^{\infty} d \omega \frac{R(\omega)}{\left(\omega-\omega_{0}\right)^{2}+\Gamma^{2}}
$$

$$
\int_{E_{t h}^{-}}^{\infty} d \omega \frac{R(\omega)}{\left(\omega-\omega_{0}\right)^{2}+\Gamma^{2}}=\int_{E_{t h}^{-}}^{\infty} d \omega \frac{R(\omega)}{\left(\omega-\omega_{0}-i \Gamma\right)\left(\omega-\omega_{0}+i \Gamma\right)}
$$

$$
\begin{aligned}
& \int_{E_{t h}^{-}}^{\infty} d \omega \frac{R(\omega)}{\left(\omega-\omega_{0}\right)^{2}+\Gamma^{2}}=\int_{E_{t h}^{-}}^{\infty} d \omega \frac{R(\omega)}{\left(\omega-\omega_{0}-i \Gamma\right)\left(\omega-\omega_{0}+i \Gamma\right)} \\
& =\int_{E_{\text {th }}^{-}}^{\infty} d \omega \frac{\int d n<0\left|\Theta^{\dagger}\right| n><n|\Theta| 0>\delta\left(\omega-E_{n}-E_{0}\right)}{\left(\omega-\omega_{0}-i \Gamma\right)\left(\omega-\omega_{0}+i \Gamma\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{E_{t h}^{-}}^{\infty} d \omega \frac{R(\omega)}{\left(\omega-\omega_{0}\right)^{2}+\Gamma^{2}}=\int_{E_{t h}^{-}}^{\infty} d \omega \frac{R(\omega)}{\left(\omega-\omega_{0}-i \Gamma\right)\left(\omega-\omega_{0}+i \Gamma\right)} \\
& =\int_{E_{t h}^{-}}^{\infty} d \omega \frac{\int d n<0\left|\Theta^{\dagger}\right| n><n|\Theta| 0>\delta\left(\omega-E_{n}-E_{0}\right)}{\left(\omega-\omega_{0}-i \Gamma\right)\left(\omega-\omega_{0}+i \Gamma\right)} \\
& =\int d n<0\left|\Theta^{\dagger}\left(E_{n}-E_{0}-\omega_{0}-i \Gamma\right)^{-1}\right| n><n\left|\left(E_{n}-E_{0}-\omega_{0}+i \Gamma\right)^{-1} \Theta\right| 0>
\end{aligned}
$$

$$
\begin{aligned}
& \int_{E_{t h}^{-}}^{\infty} d \omega \frac{R(\omega)}{\left(\omega-\omega_{0}\right)^{2}+\Gamma^{2}}=\int_{E_{t h}^{-}}^{\infty} d \omega \frac{R(\omega)}{\left(\omega-\omega_{0}-i \Gamma\right)\left(\omega-\omega_{0}+i \Gamma\right)} \\
& =\int_{E^{-}}^{\infty} d \omega \frac{\int d n<0\left|\Theta^{\dagger}\right| n><n|\Theta| 0>\delta\left(\omega-E_{n}-E_{0}\right)}{\left(\omega-\omega_{0}-i \Gamma\right)\left(\omega-\omega_{0}+i \Gamma\right)} \\
& =\int d n<0\left|\Theta^{\dagger}\left(E_{n}-E_{0}-\omega_{0}-i \Gamma\right)^{-1}\right| n><n\left|\left(E_{n}-E_{0}-\omega_{0}+i \Gamma\right)^{-1} \Theta\right| 0>
\end{aligned}
$$

$$
\begin{aligned}
& \int_{E_{t h}^{-}}^{\infty} d \omega \frac{R(\omega)}{\left(\omega-\omega_{0}\right)^{2}+\Gamma^{2}}=\int_{E_{t h}^{-}}^{\infty} d \omega \frac{R(\omega)}{\left(\omega-\omega_{0}-i \Gamma\right)\left(\omega-\omega_{0}+i \Gamma\right)} \\
& =\int_{E_{t h}^{-}}^{\infty} d \omega \frac{\int d n<0\left|\Theta^{\dagger}\right| n><n|\Theta| 0>\delta\left(\omega-E_{n}-E_{0}\right)}{\left(\omega-\omega_{0}-i \Gamma\right)\left(\omega-\omega_{0}+i \Gamma\right)} \\
& =\int d n<0\left|\Theta^{\dagger}\left(E_{n}-E_{0}-\omega_{0}-i \Gamma\right)^{-1}\right| n><n\left|\left(E_{n}-E_{0}-\omega_{0}+i \Gamma\right)^{-1} \Theta\right| 0> \\
& =<0\left|\Theta^{\dagger}\left(H-E_{0}-\omega_{0}-i \Gamma\right)^{-1}\left(H-E_{0}-\omega_{0}+i \Gamma\right)^{-1} \Theta\right| 0>
\end{aligned}
$$

$$
\begin{aligned}
& \int_{E_{t h}^{-}}^{\infty} d \omega \frac{R(\omega)}{\left(\omega-\omega_{0}\right)^{2}+\Gamma^{2}}=\int_{E_{t h}^{-}}^{\infty} d \omega \frac{R(\omega)}{\left(\omega-\omega_{0}-i \Gamma\right)\left(\omega-\omega_{0}+i \Gamma\right)} \\
& =\int_{E_{t h}^{-}}^{\infty} d \omega \frac{\int d n<0\left|\Theta^{\dagger}\right| n><n|\Theta| 0>}{\left(\omega-\omega_{0}-i \Gamma\right)\left(\omega-\omega_{0}+i \Gamma\right)} \\
& \left.=\int d n<E_{n}-E_{0}\right) \\
& =\int 0\left|\Theta^{\dagger}\left(E_{n}-E_{0}-\omega_{0}-i \Gamma\right)^{-1}\right| n><n\left|\left(E_{n}-E_{0}-\omega_{0}+i \Gamma\right)^{-1} \Theta\right| 0> \\
& =<0\left|\Theta^{\dagger}\left(H-E_{0}-\omega_{0}-i \Gamma\right)^{-1}\left(H-E_{0}-\omega_{0}+i \Gamma\right)^{-1} \Theta\right| 0>=<\widetilde{\psi}|\widetilde{\psi}\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \int_{E_{t h}^{-}}^{\infty} d \omega \frac{R(\omega)}{\left(\omega-\omega_{0}\right)^{2}+\Gamma^{2}}=\int_{E_{t h}^{-}}^{\infty} d \omega \frac{R(\omega)}{\left(\omega-\omega_{0}-i \Gamma\right)\left(\omega-\omega_{0}+i \Gamma\right)} \\
& =\int_{E_{t h}^{-}}^{\infty} d \omega \frac{\int d n<0\left|\Theta^{\dagger}\right| n><n|\Theta| 0>}{\left(\omega-\omega_{0}-i \Gamma\right)\left(\omega-\omega_{0}+i \Gamma\right)} \\
& \left.=\int d n<E_{n}-E_{0}\right) \\
& =\int 0\left|\Theta^{\dagger}\left(E_{n}-E_{0}-\omega_{0}-i \Gamma\right)^{-1}\right| n><n\left|\left(E_{n}-E_{0}-\omega_{0}+i \Gamma\right)^{-1} \Theta\right| 0> \\
& =<0\left|\Theta^{\dagger}\left(H-E_{0}-\omega_{0}-i \Gamma\right)^{-1}\left(H-E_{0}-\omega_{0}+i \Gamma\right)^{-1} \Theta\right| 0>=<\widetilde{\psi} \mid \widetilde{\psi}> \\
& \text { with } \quad\left(H-E_{0}-\omega_{0}+i \Gamma\right)|\widetilde{\psi}>=\Theta| 0>
\end{aligned}
$$

LIT - Theory for Exclusive Reactions

General form of final state wave function for a given channel

$$
|\Psi(\mathrm{E})\rangle=|\Phi(\mathrm{E})\rangle+(\mathrm{E}-\mathrm{H}+i \eta)^{-1} \mathrm{~V}|\Phi(\mathrm{E})\rangle
$$

$|\Phi(\mathrm{E})\rangle$ is "channel function" (with proper antisymmetrization), in general fragment bound states times their free relative motion, V is the sum of potentials between particles belonging to different fragments

LIT - Theory for Exclusive Reactions

General form of final state wave function for a given channel

$$
|\Psi(\mathrm{E})\rangle=|\Phi(\mathrm{E})\rangle+(\mathrm{E}-\mathrm{H}+i \eta)^{-1} \mathrm{~V}|\Phi(\mathrm{E})\rangle
$$

$|\Phi(\mathrm{E})\rangle$ is "channel function" (with proper antisymmetrization), in general fragment bound states times their free relative motion, V is the sum of potentials between particles belonging to different fragments

Transition matrix element $T_{f i}$:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{fi}} & =\langle\Psi(\mathrm{E})| \Theta|0\rangle \\
& =\langle\Phi(\mathrm{E})| \Theta|0\rangle+\langle\Phi(\mathrm{E})| \mathrm{V}(\mathrm{E}-\mathrm{H}+i \eta)^{-1} \Theta|0\rangle
\end{aligned}
$$

LIT - Theory for Exclusive Reactions

General form of final state wave function for a given channel

$$
|\Psi(\mathrm{E})\rangle=|\Phi(\mathrm{E})\rangle+(\mathrm{E}-\mathrm{H}+i \eta)^{-1} \mathrm{~V}|\Phi(\mathrm{E})\rangle
$$

$|\Phi(\mathrm{E})\rangle$ is "channel function" (with proper antisymmetrization), in general fragment bound states times their free relative motion, V is the sum of potentials between particles belonging to different fragments

Transition matrix element $T_{f i}$:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{fi}} & =\langle\Psi(\mathrm{E})| \Theta|0\rangle \\
& =\langle\Phi(\mathrm{E})| \Theta|0\rangle+\langle\Phi(\mathrm{E})| \mathrm{V}(\mathrm{E}-\mathrm{H}+i \eta)^{-1} \Theta|0\rangle \\
& \quad \text { trivial part: } \mathrm{T}_{\text {Born }}
\end{aligned}
$$

LIT - Theory for Exclusive Reactions

General form of final state wave function for a given channel

$$
|\Psi(\mathrm{E})\rangle=|\Phi(\mathrm{E})\rangle+(\mathrm{E}-\mathrm{H}+i \eta)^{-1} \mathrm{~V}|\Phi(\mathrm{E})\rangle
$$

$|\Phi(\mathrm{E})\rangle$ is "channel function" (with proper antisymmetrization), in general fragment bound states times their free relative motion, V is the sum of potentials between particles belonging to different fragments

Transition matrix element $T_{f i}$:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{fi}} & =\langle\Psi(\mathrm{E})| \Theta|0\rangle \\
= & \langle\Phi(\mathrm{E})| \Theta|0\rangle+\langle\Phi(\mathrm{E})| \mathrm{V}(\mathrm{E}-\mathrm{H}+i \eta)^{-1} \Theta|0\rangle \\
& \text { trivial part: } \mathrm{T}_{\text {Born }} \quad \text { non trivial part: } \mathrm{T}_{\text {FSI }}
\end{aligned}
$$

Spectral representation for non trivial part
$\langle\Phi(E)| V(E-H+i \eta)^{-1} \Theta|0\rangle=\Sigma_{n}\left(E-E_{n}\right) F_{f i}\left(E, E_{n}\right)$
$+\int_{E_{-} \text {th }}^{\infty}\left(E-E^{\prime}+i \eta\right)^{-1} F_{f i}\left(E, E^{\prime}\right) d E^{\prime}$
$\mathrm{F}_{\mathrm{fi}}\left(\mathrm{E}, \mathrm{E}^{\prime}\right)=\hat{\mathrm{f}} \mathrm{d} \gamma\langle\Phi(\mathrm{E})| \mathrm{V}\left|\Psi_{\gamma}\right\rangle\left\langle\Psi_{\gamma}\right| \Theta|0\rangle \delta\left(\mathrm{E}-\mathrm{E}^{\prime}\right)$

Spectral representation for non trivial part

$$
\begin{aligned}
&\langle\Phi(E)| V(E-H+i \eta)^{-1} \Theta|0\rangle= \sum_{n}\left(E-E_{n}\right) F_{f i}\left(E, E_{n}\right) \\
&+\int_{E_{-} t h}^{\infty}\left(E-E^{\prime}+i \eta\right)^{-1} F_{f f}\left(E, E^{\prime}\right) d E^{\prime} \\
& F_{f f}\left(E, E^{\prime}\right)=\hat{f} d \gamma\langle\Phi(E)| V\left|\Psi_{\gamma}\right\rangle\left\langle\Psi_{\gamma}\right| \Theta|0\rangle \delta\left(E-E^{\prime}\right)
\end{aligned}
$$

$F_{f i}\left(E, E^{\prime}\right)$ has same form as the inclusive response function $R(\omega)$ therefore we can apply the same formalism, however, here left and right hand side are not identical, hence two LIT equations are obtained

Spectral representation for non trivial part

$$
\begin{aligned}
&\langle\Phi(E)| V(E-H+i \eta)^{-1} \Theta|0\rangle= \sum_{n}\left(E-E_{n}\right) F_{f i}\left(E, E_{n}\right) \\
&+\int_{E_{-} t h}^{\infty}\left(E-E^{\prime}+i \eta\right)^{-1} F_{f f}\left(E, E^{\prime}\right) d E^{\prime} \\
& F_{f f}\left(E, E^{\prime}\right)=\hat{f} d \gamma\langle\Phi(E)| V\left|\Psi_{\gamma}\right\rangle\left\langle\Psi_{\gamma}\right| \Theta|0\rangle \delta\left(E-E^{\prime}\right)
\end{aligned}
$$

$F_{f i}\left(E, E^{\prime}\right)$ has same form as the inclusive response function $R(\omega)$ therefore we can apply the same formalism, however, here left and right hand side are not identical, hence two LIT equations are obtained

$$
\begin{gathered}
\left(\mathrm{H}-\sigma_{\mathrm{R}}+i \sigma_{1}\right) \tilde{\Psi}_{1}=\Theta|0\rangle, \quad\left(\mathrm{H}-\sigma_{\mathrm{R}}+i \sigma_{1}\right) \tilde{\Psi}_{2}=\mathrm{V}|\Phi(\mathrm{E})\rangle \\
\text { LIT: }\left\langle\widetilde{\Psi}_{1} \mid \widetilde{\Psi}_{2}\right\rangle
\end{gathered}
$$

1) Calculate LIT for many values of σ_{R} for fixed σ_{1}

1) Calculate LIT for many values of σ_{R} for fixed σ_{1}

2) Invert LIT $\Rightarrow F_{f f}\left(E, E^{\prime}\right)$
3) Calculate LIT for many values of σ_{R} for fixed σ_{1}
4) Invert LIT $\Rightarrow F_{f i}\left(E, E^{\prime}\right)$
5) Calculate $T_{\text {FSI }}$

$$
T_{F S I}(E)=-i \pi F_{f i}(E, E)+P \int_{E_{-} t h}^{\infty}\left(E-E^{\prime}\right)^{-1} F_{f i}\left(E, E^{\prime}\right) d E^{\prime}
$$

Consider the following exclusive reaction:

$$
{ }^{4} \mathrm{He}+\gamma \longrightarrow \mathrm{n}+{ }^{3} \mathrm{He}
$$

For a conventional calculation one needs to know the four-body continuum wave function

Very difficult to go above three-body break-up threshold:

$$
{ }^{4} \mathrm{He}+\gamma \longrightarrow \mathrm{n}+\mathrm{p}+\mathrm{d}
$$

Consider the following exclusive reaction:

$$
{ }^{4} \mathrm{He}+\gamma \longrightarrow \mathrm{n}+{ }^{3} \mathrm{He}
$$

For a conventional calculation one needs to know the four-body continuum wave function

Very difficult to go above three-body break-up threshold:

$$
{ }^{4} \mathrm{He}+\gamma \longrightarrow \mathrm{n}+\mathrm{p}+\mathrm{d}
$$

LIT calculation is possible! (s. Quaglioni et al. PRC 69, 044002 (2004))

Consider the following exclusive reaction:

$$
{ }^{4} \mathrm{He}+\gamma \longrightarrow \mathrm{n}+{ }^{3} \mathrm{He}
$$

For a conventional calculation one needs to know the four-body continuum wave function

Very difficult to go above three-body break-up threshold:

$$
{ }^{4} \mathrm{He}+\gamma \longrightarrow \mathrm{n}+\mathrm{p}+\mathrm{d}
$$

LIT calculation is possible!
(S. Quaglioni et al. PRC 69, 044002 (2004))
$T(E)=T_{\text {BORN }}(E)+T_{\text {FSI }}(E) \quad$ with $\quad T_{\text {BORN }}(E)=\langle P W(E)| \Theta\left|\Psi\left({ }^{4} \mathrm{He}\right)\right\rangle$
$|\mathrm{PW}(\mathrm{E})\rangle$ is plane for relative motion of ${ }^{3} \mathrm{He}-\mathrm{n}$ pair

Consider the following exclusive reaction:

$$
{ }^{4} \mathrm{He}+\gamma \longrightarrow \mathrm{n}+{ }^{3} \mathrm{He}
$$

For a conventional calculation one needs to know the four-body continuum wave function

Very difficult to go above three-body break-up threshold:

$$
{ }^{4} \mathrm{He}+\gamma \longrightarrow \mathrm{n}+\mathrm{p}+\mathrm{d}
$$

LIT calculation is possible!
(S. Quaglioni et al. PRC 69, 044002 (2004))
$T(E)=T_{\text {BORN }}(E)+T_{\text {FSI }}(E) \quad$ with $\quad T_{\text {BORN }}(E)=\langle P W(E)| \Theta\left|\Psi\left({ }^{4} \mathrm{He}\right)\right\rangle$
|PW(E) \rangle is plane for relative motion of ${ }^{3} \mathrm{He}-\mathrm{n}$ pair
$T_{F S I}(E)=-i \pi F_{f i}(E, E)+P \int_{E_{-} t}^{\infty}\left(E-E^{\prime}\right)^{-1} F_{f i}\left(E, E^{\prime}\right) d E^{\prime}$
With $F_{f i}\left(E, E^{\prime}\right)$ from inversion of the LIT

LIT - Inversion

Standard LIT inversion method

Take the following ansatz for the response function $R(\omega)$ (or $\mathrm{F}_{\mathrm{ff}}\left(\mathrm{E}, \mathrm{E}^{\prime}\right)$)

$$
R\left(\omega^{\prime}\right)=\sum_{m=1}^{M_{\max }} c_{m} \chi_{m}\left(\omega^{\prime}, \alpha_{i}\right)
$$

with $\omega^{\prime}=\omega-\omega_{\mathrm{th}}$, given set of functions χ_{m}, and unknown coefficients c_{m}

LIT - Inversion

Standard LIT inversion method

Take the following ansatz for the response function $R(\omega)$ (or $\mathrm{F}_{\mathrm{ff}}\left(\mathrm{E}, \mathrm{E}^{\prime}\right)$)

$$
R\left(\omega^{\prime}\right)=\sum_{m=1}^{M_{\max }} c_{m} \chi_{m}\left(\omega^{\prime}, \alpha_{i}\right)
$$

with $\omega^{\prime}=\omega-\omega_{\mathrm{th}}$, given set of functions χ_{m}, and unknown coefficients c_{m}

Define:

$$
\tilde{\chi}_{m}\left(\sigma_{R}, \sigma_{I^{\prime}}, \alpha_{i}\right)=\int_{0}^{\infty} d \omega^{\prime} \frac{\chi_{m}\left(\omega^{\prime}, \alpha_{i}\right)}{\left(\omega^{\prime}-\sigma_{R}\right)^{2}+\sigma_{I}^{2}}
$$

LIT - Inversion

Standard LIT inversion method

Take the following ansatz for the response function $R(\omega)$ (or $\mathrm{F}_{\mathrm{ff}}\left(\mathrm{E}, \mathrm{E}^{\prime}\right)$)

$$
R\left(\omega^{\prime}\right)=\Sigma_{m=1}^{M_{\max }} c_{m} \chi_{m}\left(\omega^{\prime}, \alpha_{i}\right)
$$

with $\omega^{\prime}=\omega-\omega_{\mathrm{th}}$, given set of functions χ_{m}, and unknown coefficients c_{m}
Define: $\quad \tilde{\chi}_{m}\left(\sigma_{R}, \sigma_{I^{\prime}} \alpha_{i}\right)=\int_{0}^{\infty} d \omega^{\prime} \frac{\chi_{m}\left(\omega^{\prime}, \alpha_{i}\right)}{\left(\omega^{\prime}-\sigma_{R}\right)^{2}+\sigma_{I}^{2}}$
Calculate LIT $L\left(\sigma_{R}, \sigma_{I}\right)=\langle\widetilde{\psi} \mid \widetilde{\Psi}\rangle$ for many σ_{R} and fixed σ_{I}

LIT - Inversion

Standard LIT inversion method

Take the following ansatz for the response function $R(\omega)$ (or $F_{f i}\left(E, E^{\prime}\right)$)

$$
R\left(\omega^{\prime}\right)=\Sigma_{m=1}^{M_{\max }} c_{m} \chi_{m}\left(\omega^{\prime}, \alpha_{i}\right)
$$

with $\omega^{\prime}=\omega-\omega_{\mathrm{th}}$, given set of functions χ_{m}, and unknown coefficients c_{m}
Define:

$$
\tilde{\chi}_{m}\left(\sigma_{R}, \sigma_{I^{\prime}}, \alpha_{i}\right)=\int_{0}^{\infty} d \omega^{\prime} \frac{\chi_{m}\left(\omega^{\prime}, \alpha_{i}\right)}{\left(\omega^{\prime}-\sigma_{R}\right)^{2}+\sigma_{I}^{2}}
$$

Calculate LIT $L\left(\sigma_{R}, \sigma_{I}\right)=\langle\widetilde{\Psi} \mid \widetilde{\Psi}\rangle$ for many σ_{R} and fixed σ_{I}
and expand in set $\tilde{\chi}_{m}: \quad L\left(\sigma_{R}, \sigma_{I}\right)=\Sigma_{m=1}^{M_{\text {max }}} c_{m} \tilde{\chi}_{m}\left(\omega^{\prime}, \alpha_{i}\right)$
Determine C_{m} via best fit

Increase $M_{\max }$ up to the point that stable result is obtained for $R(\omega)$. Even further increase of $M_{\max }$ might lead to oscillations in $R(\omega)$

Increase $M_{\max }$ up to the point that stable result is obtained for $R(\omega)$. Even further increase of $M_{\max }$ might lead to oscillations in $R(\omega)$

As basis set χ_{m} we normally use

$$
\chi_{m}\left(\omega^{\prime}, \alpha_{i}\right)=\left(\omega^{\prime}\right)^{\alpha} \exp \left(-\alpha_{2} \omega^{\prime} / m\right) \text { with } m=1,2, \ldots, M_{\max }
$$

main point of the LIT :

Schrödinger-like equation with a source

$$
\left(H-E_{0}-\omega_{0}+i \Gamma\right) \tilde{\Psi}=S
$$

The $\tilde{\Psi}$ solution is unique and has bound state like asymptotic behavior

one can apply bound state methods

LIT - Example

LIT - Example

deuteron photodisintegration in unretarded dipole approximation
unretarded dipole approximation $\Rightarrow \Theta=\sum_{i=1}^{A} z_{i} \frac{1+\tau_{i, z}}{2}$,
$Z_{i}, \tau_{i, 2}: 3^{\text {rd }}$ components of position and isospin coordinates of i-th nucleon

LIT - Example

deuteron photodisintegration in unretarded dipole approximation
unretarded dipole approximation $\Rightarrow \Theta=\sum_{i=1}^{A} z_{i} \frac{1+\tau_{i, z}}{2}$,
$Z_{i}, \tau_{i, 2}: 3^{\text {rd }}$ components of position and isospin coordinates of i-th nucleon
Θ includes MEC contributions due to Siegert theorem: $\square \nabla \cdot \boldsymbol{j} \rightarrow[\mathrm{H}, \mathrm{\rho}]$

LIT - Example

deuteron photodisintegration in unretarded dipole approximation
unretarded dipole approximation $\Rightarrow \Theta=\sum_{i=1}^{A} z_{i} \frac{1+\tau_{i, z}}{2}$,
$Z_{i}, \tau_{i, 2}: 3^{\text {rd }}$ components of position and isospin coordinates of i-th nucleon
Θ includes MEC contributions due to Siegert theorem: $[\nabla \cdot \mathbf{j} \rightarrow[H, \rho]$

$$
\stackrel{\Theta}{\Rightarrow} \quad \sigma_{\gamma}(\omega)=4 \pi^{2} \alpha \omega R(\omega) \quad \text { with } \quad R(\omega)=f_{f}|<f| \Theta|0>|^{2} \delta\left(\omega-E_{f}-E_{0}\right)
$$

with $\mid 0>$ and E_{0} bound-state wave function and energy
|f> and E_{f} final-state wave function and energy

LIT - Example

deuteron photodisintegration in unretarded dipole approximation
unretarded dipole approximation $\Rightarrow \Theta=\sum_{i=1}^{A} z_{i} \frac{1+\tau_{i, z}}{2}$,
$Z_{i}, \tau_{i, 2}: 3^{\text {rd }}$ components of position and isospin coordinates of i-th nucleon
Θ includes MEC contributions due to Siegert theorem: $[\nabla \cdot j \rightarrow[H, \rho]$

$$
\stackrel{\Theta}{\Rightarrow} \quad \sigma_{\gamma}(\omega)=4 \pi^{2} \alpha \omega R(\omega) \quad \text { with } \quad R(\omega)=f_{f}|<f| \Theta|0>|^{2} \delta\left(\omega-E_{f}-E_{0}\right)
$$

with $\mid 0>$ and E_{0} bound-state wave function and energy
|f> and E_{f} final-state wave function and energy

In unretarded dipole approximation |f> contains only ${ }^{3} P_{0},{ }^{3} P_{1},{ }^{3} P_{2}-{ }^{3} F_{2}$ NN states

NN interaction: Argonne V14 potential

LIT
$\sigma_{\gamma}(\omega)$ from inversion with various $M_{\max }$

$\sigma_{\gamma}(\omega)$ from inversion with various $M_{\max }=25$
and result from conventional calculation with explicit np continuum wave functions

LIT - Applications A>2

Total photoabsorption cross section in unretarded dipole approximation

LIT - Applications A>2

Our method for calculating bound-state and bound-state-like equations:

Hyperspherical Harmonics Expansions (HH): CHH and EIHH

CHH: Additional two-body correlation functions are introduced EIHH: Effective Interaction is constructed via Lee-Suzuki transformation

EIHH: N. Barnea, WL, G. Orlandini, PRC 61, 054001 (2000), NPA 693, 565 (2001), PRC 67, 054003 (2003), PRC 81, 064001 (2010)

Total photoabsorption cross section of three-nucleon systems

First calculation with realistic NN and 3N forces was made with the LIT method: V.D. Efros, WL, G. Orlandini, E.L. Tomusiak, PLB 484, 223 (2000)

Later a benchmark calculation with the Faddeev technique was made (Golak et al., Nucl. Phys. A 707, 365 (2002))

Fig. 1
${ }^{3} \mathrm{H}$ Total photoabsorption cross section in unret. dipole appr. (AV18 +UIX force)

LIT versus Faddeev calculation of Golak et al. NPA 707, 365 (2002)

${ }^{3} \mathrm{H}(\gamma)$

Effect of Retardation

Combined Effects of Retardation and further E λ and $\mathrm{M} \lambda$ multipoles

Fig. 2

${ }^{4}$ He total photoabsorption cross section

- LIT method
- Nuclear potential: central S-wave NN potentials
- Calculation in unretarded dipole approximation

${ }^{4} \mathrm{He}$ total photoabsorption cross section

- LIT method
- Nuclear potential: central S-wave NN potentials
- Calculation in unretarded dipole approximation

${ }^{4} \mathrm{He}$ total photoabsorption cross section

- LIT method
- Nuclear potential: AV18+UIX
- Calculation in unretarded dipole approximation

experimental data: Berman et al. (1980) Feldman et al. (1990) Wells et al. (1992)
Nilsson et al. (2005) Shima et al. (2005)
Nakayama et al. (2007)
D. Gazit, S. Bacca, N. Barnea, WL, G. Orlandini, PRL 96, 112301 (2006)

6-Body total

 photodisintegrationAppearance of collective motion

EIHH

S. Bacca, M. Marchisio,
N. Barnea, WL, G. Orlandini PRL89, 052502 (2002)

7-Body total photodisintegration

S. Bacca et al. PLB 603(2004) 159

EIHH

16-Body total photodisintegration

Coupled Cluster

 Idaho-N3LOS. Bacca, N. Barnea, G. Hagen, G. Orlandini, Th. Papenbrock, arXiv:1303.7446

Exclusive Reactions

${ }^{4} \mathrm{He}(\gamma, \mathrm{p})^{3} \mathrm{H}$ and ${ }^{4} \mathrm{He}(\gamma, \mathrm{n}){ }^{3} \mathrm{He}$ (s. Quaglioni et al., PRC 69, 044002 (2004))
${ }^{4} \mathrm{He}(\mathrm{e}, \mathrm{e} \mathrm{f}){ }^{3} \mathrm{H}$ (s. Quaglioni et al., PRC 72, 064002 (2005))
${ }^{4} \mathrm{He}(\mathrm{e}, \mathrm{e} \text { 'd) })^{2 \mathrm{H}} \quad$ (D. Andreasi et al., EPJA 27, 47 (2006))

Exclusive Reactions

[^0]
${ }^{4} H e(\gamma, \mathrm{n}){ }^{3} H e$

LIT calculation with MTI/III potential by Quaglioni et al., PRC 69, 044002 (2004)

New results from Hiys for ${ }^{4} \mathrm{He}(\gamma, p)^{3} \mathrm{H}$

R. Raut et al., PRL 108, 042502 (2012)

LIT calculation with MTI/III potential by Quaglioni et al., PRC 69, 044002 (2004)

LIT method and resonances

LIT method and resonances

The LIT: a method with a controlled resolution

LIT method and resonances

The LIT: a method with a controlled resolution

Case study for deuteron photodisintegration

NN potential with fictitious resonance in ${ }^{3} \mathrm{P}_{1}$ partial wave

$$
\mathrm{V}\left({ }^{3} \mathrm{P}_{1}\right) \longrightarrow \mathrm{V}\left({ }^{3} \mathrm{P}_{1}\right)+\mathrm{V}_{\text {add }}
$$

With $\quad V_{\text {add }}=-\frac{57.6 \mathrm{MeV}}{r}\left(1-\exp \left(-2 r^{2}\right)\left(1+\exp \left(\frac{r-5}{0.2}\right)^{-1}\right.\right.$
and relative coordinate r in units of $f m$

Why such a potential?
To understand this better let us have a look on corresponding phaseshift ${ }^{3} P_{1}$ and deuteron photoabsorption cross section in ${ }^{3} P_{1}$ partial wave

Phase shifts shows two resonances one at $E_{n p}=0.48,10.5 \mathrm{MeV}$

$\sigma_{\gamma}\left({ }^{3} \mathrm{P}_{1}\right)$ shows two corresponding resonances: low-energy resonance very pronounced with small width $\Gamma=270 \mathrm{KeV}$, the other one is much weaker and has a larger width

What has to be done in the LIT calculation to resolve the pronounced low-energy resonance?
$\widetilde{\Psi}$ is localized state of finite norm, but what is the radial extension of the state. Cross section structures with small width require smaller $\sigma_{1} \Rightarrow \widetilde{\Psi}$ is longer ranged

In our LIT calculation for the deuteron photodisintegration we are able to check it for the modified ${ }^{3} P_{1}$ interaction

What has to be done in the LIT calculation to resolve the pronounced low-energy resonance?
$\widetilde{\Psi}$ is localized state of finite norm, but what is the radial extension of the state. Cross section structures with small width require smaller $\sigma_{\mathrm{I}} \Rightarrow \widetilde{\Psi}$ is longer ranged

In our LIT calculation for the deuteron photodisintegration we are able to check it for the modified ${ }^{3} P_{1}$ interaction

Let us first check better the case for the true deuteron photodisintegration using the following procedure. At a distance $r=R_{\max }$ we take as boundary condition a very strong fall-off for the solution $\widetilde{\Psi}$ and evaluate the norm

$$
<\widetilde{\Psi}|\widetilde{\Psi}\rangle=\int_{0}^{R_{\max }} d r\left|\widetilde{\Psi}\left(r, \sigma_{R^{\prime}}, \sigma_{I}\right)\right|^{2}
$$

LIT for deuteron total photoabsorption cross section considering only transitions to ${ }^{3} P_{1}$ channel with unchanged
interaction (no resonance)

single Lorentzian with $\sigma_{\mathrm{I}}=10 \mathrm{MeV}$

Results with modified ${ }^{3} \mathrm{P}_{1}$ potential

First LIT in the region of the low-energy resonance

LIT for deuteron total photoabsorption cross section considering only transitions to ${ }^{3} \mathrm{P}_{1}$ channel with modified interaction

$$
\sigma_{\mathrm{I}}=1 \mathrm{MeV}
$$

$\sigma_{\mathrm{I}}=0.5 \mathrm{MeV}$

$$
\sigma_{\mathrm{I}}=0.1 \mathrm{MeV}
$$

LITs in the resonance region with various σ_{I} (full curves); comparison with single Lorentzians of corresponding σ_{1} (dashed curves)

Incomplete Inversion

Instead of using set χ_{m} defined previously we take $M_{\max }=1$ and take

$$
x_{1}^{r e s}=\frac{1}{\left(E_{n p}-E_{r e s}\right)^{2}+(\Gamma / 2)^{2}}\left(\frac{1}{1+\exp (-1)}-\frac{1}{1+\exp \left(\left(E_{n p}-\alpha_{3}\right) / \alpha_{3}\right)}\right)
$$

$\mathrm{E}_{\text {res }}, \Gamma$, and α_{3} are fit parameters

Results with modified ${ }^{3} P_{1}$ potential

Now to the LIT results beyond low-energy resonance

Complete inversion with set χ_{m} defined previously using in addition as new first basis function $\chi_{1}^{\text {res }}$

$$
\sigma_{\mathrm{I}}=1 \mathrm{MeV}, R_{\max }=30 \text { and } 50 \mathrm{fm} \text {, various } \mathrm{M}_{\max }
$$

Complete inversion with set χ_{m} defined previously using in addition as new first basis function $\chi_{1}^{\text {res }}$

$$
\text { various } \sigma_{I}, R_{\max }=80 \mathrm{fm}, M_{\max }=30
$$

Up to now direct numerical solutions of Schrödinger equation for bound state and LIT equation for $\widetilde{\Psi}$

For $\mathrm{A}>2$ it is more convenient to use expansions in complete sets using expansions in HH or HO functions

Up to now direct numerical solutions of Schrödinger equation for bound state and LIT equation for $\widetilde{\Psi}$

For A > 2 it is more convenient to use expansions in complete sets using expansions in HH or HO functions

Reformulation of the LIT

$$
\operatorname{LIT}\left(\sigma_{R}, \sigma_{1}\right)=-\frac{1}{\sigma_{1}} \operatorname{Im}\left\{\left\langle\Psi_{0}\right| \Theta^{\dagger}\left(\sigma_{R}+E_{0}-H+i \sigma_{1}\right)^{-1} \Theta\left|\Psi_{0}\right\rangle\right\}
$$

Up to now direct numerical solutions of Schrödinger equation for bound state and LIT equation for $\widetilde{\Psi}$

For A > 2 it is more convenient to use expansions in complete sets using expansions in HH or HO functions

Reformulation of the LIT

$$
\begin{aligned}
& \operatorname{LIT}\left(\sigma_{\sigma^{\prime}}, \sigma_{1}\right)=-\frac{1}{\sigma_{1}} \operatorname{Im}\left\{\left\langle\Psi_{0}\right| \Theta^{\dagger}\left(\sigma_{R}+E_{0}-H+i \sigma_{1}\right)^{-1} \Theta\left|\Psi_{0}\right\rangle\right\} \\
& R\left(E=\sigma_{R}\right)=-\frac{1}{\pi} \operatorname{Im}\left\{\lim _{\sigma_{1} \rightarrow 0}\left\langle\Psi_{0}\right| \Theta^{\dagger}\left(\sigma_{R}+E_{0}-H+i \sigma_{1}\right)^{-1} \Theta\left|\Psi_{0}\right\rangle\right\}
\end{aligned}
$$

New example:

deuteron photodisintegration with the LIT method using expansion techniques

New example:

deuteron photodisintegration with the LIT method using expansion techniques

First we use the JISP-6 NN potential which is defined on an HO basis: $<n '|V| n>$ up $n=n '=4$ ($n=0,1,2, \ldots$; HO quantum number, $\Omega=40 \mathrm{MeV}$)

New example:

deuteron photodisintegration with the LIT method using expansion techniques

First we use the JISP-6 NN potential which is defined on an HO basis:
$<n '|V| n>$ up $n=n '=4$ ($n=0,1,2, \ldots$; HO quantum number, $\Omega=40 \mathrm{MeV}$)

Also deuteron wave function and $\widetilde{\Psi}$ are expanded on HO basis Note: radial parts contain Laguerre polynomials up to order N times Gaussians

New example:

deuteron photodisintegration with the LIT method using expansion techniques

First we use the JISP-6 NN potential which is defined on an HO basis:
$<n '|V| n>$ up $n=n '=4$ ($n=0,1,2, \ldots$; HO quantum number, $\Omega=40 \mathrm{MeV}$)

Also deuteron wave function and $\widetilde{\Psi}$ are expanded on HO basis Note: radial parts contain Laguerre polynomials up to order N times Gaussians

Alternatively exponential fall-off exp(-r/b) instead of Gaussians

JISP-6 potential: deuteron binding energy E_{d}

Slow convergence for E_{d}	
$\mathrm{N}_{\text {max }}$ in expansion of deuteron wave function	$\mathrm{E}_{\mathrm{d}}[\mathrm{MeV}]$
10	2.057
20	2.195
50	2.2236
100	2.224555
150	2.224574

Deuteron photodisintegration with the JISP-6 NN potential

Deuteron photodisintegration with the JISP-6 NN potential

First, only considerations of transitions to the ${ }^{3} \mathrm{P}_{1} \mathrm{np}$ final state

This leads to the following LITs with Laguerre polynomials up to order N with exponential fall-off ($b=0.5 \mathrm{fm}$):

Laguerre polynomials up to order N (exponential fall-off)

Laguerre polynomials up to order N (exponential fall-off)

LIT approach is a method with a controlled resolution!

Next: Effect of changing fall-off parameter b
In addition: consideration of Gaussians instead of an exponential fall-off $\exp (-r / b)$

exponential fall-off $\exp (-r / b)$

Gaussians

exponential fall-off $\exp (-r / b)$

Gaussians

Now we consider the modified interaction for ${ }^{3} P_{1}$ with resonance

Comparison of LITs from direct numerical solution and those from expansions with exponential fall-off exp(-r/b)

Lanczos technique

Lanczos technique is used, e.g., for diagonalization of Hamiltonian matrix (dimension: M) in a bound-state calculation.

Very efficient: total diagonalization is avoided instead only $\mathrm{N} \ll \mathrm{M}$ Lanczos steps are needed.

They lead to N energy eigenvalues ε_{v}, which are very good approximations of the lower energy eigenvalues of H, especially for $v \ll N$.

Lanczos technique is also applicable to solve LIT equation.

Lanczos response

Since the Lorentzian function is a representation of the δ-function one could think of calculating $R(\omega)$ as the limit of $L\left(\omega, \sigma_{R}, \sigma_{1}\right)$ for $\sigma_{1}-->0$.
The extrapolation would give

$$
R(\omega)=\sum_{v}^{N} r_{v} \delta\left(\omega-\varepsilon_{v}^{N}\right)
$$

Lanczos response

Since the Lorentzian function is a representation of the δ-function one could think of calculating $R(\omega)$ as the limit of $L\left(\omega, \sigma_{R}, \sigma_{\mathrm{I}}\right)$ for $\sigma_{\mathrm{I}}-->0$.
The extrapolation would give

$$
R(\omega)=\sum_{v}^{N} r_{v} \delta\left(\omega-\varepsilon_{v}^{N}\right)
$$

Lanczos response: δ-function is replaced by Lorentzian with small σ_{1}

$$
R(\omega)=\sum_{v}^{N} r_{v}^{\prime} L\left(\omega, \varepsilon_{v}^{N}, \sigma_{I}\right)
$$

Lanczos response

Since the Lorentzian function is a representation of the δ-function one could think of calculating $R(\omega)$ as the limit of $L\left(\omega, \sigma_{R}, \sigma_{I}\right)$ for $\sigma_{I}-->0$.
The extrapolation would give

$$
R(\omega)=\sum_{v}^{N} r_{v} \delta\left(\omega-\varepsilon_{v}^{N}\right)
$$

Lanczos response: δ-function is replaced by Lorentzian with small σ_{1}

$$
R(\omega)=\sum_{v}^{N} r_{v}^{\prime} L\left(\omega, \varepsilon_{v}^{N}, \sigma_{I}\right)
$$

Deuteron photodisintegration:
Consider all three transitions ${ }^{3} \mathrm{P}_{0},{ }^{3} \mathrm{P}_{1},{ }^{3} \mathrm{P}_{2}-{ }^{3} \mathrm{~F}_{2}$
now expansion of radial LIT part in HO functions

Lanczos response

Since the Lorentzian function is a representation of the δ-function one could think of calculating $R(\omega)$ as the limit of $L\left(\omega, \sigma_{R}, \sigma_{I}\right)$ for $\sigma_{I}-->0$.
The extrapolation would give

$$
R(\omega)=\sum_{v}^{N} r_{v} \delta\left(\omega-\varepsilon_{v}^{N}\right)
$$

Lanczos response: δ-function is replaced by Lorentzian with small σ_{1}

$$
R(\omega)=\sum_{v}^{N} r_{v}^{\prime} L\left(\omega, \varepsilon_{v}^{N}, \sigma_{I}\right)
$$

Deuteron photodisintegration:
Consider all three transitions ${ }^{3} \mathrm{P}_{0},{ }^{3} \mathrm{P}_{1},{ }^{3} \mathrm{P}_{2}-{ }^{3} \mathrm{~F}_{2}$ now expansion of radial LIT part in HO functions
NN potential: JISP6
$\sigma_{\gamma}(\omega)$ from inversion and Lanczos response "true"

$\sigma_{\gamma}(\omega)$ from inversion and Lanczos response

Scuola Raimondo Anni - 2013

Conclusion

Strength for a given discrete state of energy E is not the actual strength for this energy, but can only be interpreted correctly within an integral transform approach.

The correct distribution of strength is obtained via the inversion of the integral transform.

LIT application for inclusive electron scattering

LIT application for inclusive electron scattering

- 0^{+}resonance of ${ }^{4} \mathrm{He}$

LIT application for inclusive electron scattering

- 0^{+}resonance of ${ }^{4} \mathrm{He}$
- Longitudinal response function $\mathrm{R}_{\mathrm{L}}(\omega, \mathrm{q})$ for $\mathrm{A}=3$ and 4

LIT application for inclusive electron scattering

- 0^{+}resonance of ${ }^{4} \mathrm{He}$
- Longitudinal response function $\mathrm{R}_{\mathrm{L}}(\omega, \mathrm{q})$ for $\mathrm{A}=3$ and 4
- Transverse response function $R_{T}(\omega, q)$ for $A=3$
$\star \Delta$ degrees of freedom
\star Quasi-elastic response at higher q ($q=500-700 \mathrm{MeV} / \mathrm{c}$)

O^{+}resonance in longitudinal response function R_{L} in ${ }^{4} \mathrm{He}\left(\mathrm{e}, \mathrm{e}^{\prime}\right)$
 S. Bacca, N. Barnea, WL, G. Orlandini, PRL 110, 042503 (2013)

0+ Resonance in the ${ }^{4}$ He compound system

Resonance at $E_{R}=-8.2 \mathrm{MeV}$, i.e. above the ${ }^{3} \mathrm{H}$-p threshold. Strong evidence in electron scattering off ${ }^{4} \mathrm{He}$

G. Köbschall et al., NPA 405, 648 (1983)

Results of our LIT calculation

The present precision of the calculation does not allow to resolve the shape of the resonance, therefore the width cannot be determined.

The present precision of the calculation does not allow to resolve the shape of the resonance, therefore the width cannot be determined.

However, the strength of the resonance can be determined!

The present precision of the calculation does not allow to resolve the shape of the resonance, therefore the width cannot be determined.

However, the strength of the resonance can be determined!

Of course not by taking the strength to the discretized state, but by rearranging the inversion in a suitable way:

The present precision of the calculation does not allow to resolve the shape of the resonance, therefore the width cannot be determined.

However, the strength of the resonance can be determined!

Of course not by taking the strength to the discretized state, but by rearranging the inversion in a suitable way:

Reduce strength to the state up to the point that the inversion does not show any resonant structure at the resonance energy $\mathrm{E}_{\mathbf{R}}$:
$\operatorname{LIT}\left(\sigma_{R}, \sigma_{\mathrm{I}}\right) \rightarrow \operatorname{LIT}\left(\sigma_{R}, \sigma_{\mathrm{I}}\right)-f_{R} /\left[\left(E_{R}-\sigma_{R}\right)^{2}+\sigma_{\mathrm{I}}^{2}\right] \equiv \operatorname{LIT}\left(\sigma_{\mathrm{R}}, \sigma_{\mathrm{I}}, f_{R}\right)$
with resonance strength f_{R}

Inversion results with different f_{R} values AV18+UIX, q=300 MeV/c

Comparison to experimental results

LIT/EIHH Calculation for AV18+UIX and Idaho-N3LO+N2LO
Dotted: AV8' + central 3NF (Hiyama et al.)

(e,e') Longitudinal Response

SURPRISE:

LARGE EFFECT OF 3-BODY FORCE AT LOW q

Calculation via EIHH with force model:
AV18 + UIX

S.Bacca et al., PRL 102, 162501

Dependence on different 3-nucleon forces

${ }^{4} \mathrm{He}(\mathrm{e}, \mathrm{e}$ ') Longitudinal Response

SMALL EFFECT OF

3-BODY FORCE AT HIGH q

Exp.: Saclay Bates world data (J. Carlson et al.)

Scuola Raimondo Anni - 2013

3-Body inclusive electrodisintegration Role of 3-Nucleon force

LONGITUDINAL

 RESPONSE"low" q
AV18
AV18 + UIX

СНН

V. Efros, W.L., G. Orlandini E. Tomusiak PRC69, 044001 (2004)

Exp:
ϕ Dow
4 Marchand

Scuola Raimondo Anni - 2013

Transverse response function $R_{T}(\omega, q)$

Transverse response function $R_{T}(\omega, q)$

Subnuclear degrees of freedom can become important

Transverse response function $\mathrm{R}_{\mathrm{T}}(\omega, \mathrm{q})$

Subnuclear degrees of freedom can become important

- Meson exchange currents (MEC)

MEC with LIT method: S. Della Monaca, V.D. Efros, A. Khugaev, WL, G. Orlandini, E.L. Tomusiak, L. Yuan, PRC 77, 044007 (2008)

Transverse response function $\mathrm{R}_{\mathrm{T}}(\omega, \mathrm{q})$

Subnuclear degrees of freedom can become important

- Meson exchange currents (MEC)

MEC with LIT method: S. Della Monaca, V.D. Efros, A. Khugaev, WL, G. Orlandini, E.L. Tomusiak, L. Yuan, PRC 77, 044007 (2008)

- Δ isobar currents (Δ-IC)
Δ-IC with LIT method: L. Yuan, V.D. Efros, WL, E.L. Tomusiak, PRC 81, 064001 (2010)

NR:
dashed
NR+MEC: dotted
Rel.+MEC: full

$$
q=174 \mathrm{MeV} / \mathrm{c} \quad \mathrm{q}=324 \mathrm{MeV} / \mathrm{c} \quad \mathrm{q}=487 \mathrm{MeV} / \mathrm{c}
$$

R_{T} close to break-up threshold

(V.D. Efros, WL, G. Orlandini, E.L. Tomusiak, Few-Body Syst. 47, 157 (2010))

Δ degrees of freedom

Schrödinger equation with Δ degrees of freedom

$$
\begin{gathered}
\Psi=\Psi_{N}+\Psi_{\Delta} \\
\left(T_{N}+V_{N N}-E\right) \Psi_{N}=-V_{N N, N \Delta} \Psi_{\Delta} \\
\left(\delta m+T_{\Delta}+V_{N \Delta}-E\right) \Psi_{\Delta}=-V_{N \Delta, N N} \Psi_{N} \\
V_{N N, N \Delta}\left(V_{N N}\right) \text { and } V_{N \Delta N N}\left(V_{N \Delta}\right) \text { transition (diagonal) potentials between } \\
N N N \text { and } N N \Delta \text { spaces (A }=3), \delta m=M_{\Delta}-M_{N}
\end{gathered}
$$

Schrödinger equation with Δ degrees of freedom

$$
\begin{gathered}
\Psi=\Psi_{N}+\Psi_{\Delta} \\
\left(T_{N}+V_{N N}-E\right) \Psi_{N}=-V_{N N, N \Delta} \Psi_{\Delta} \quad \text { coupled channel calculation } \\
\left(\delta m+T_{\Delta}+V_{N \Delta}-E\right) \Psi_{\Delta}=-V_{N \Delta, N N} \Psi_{N} \text { solve eqs. simultaneously } \\
V_{N N, N \Delta}\left(V_{N N}\right) \text { and } V_{N \Delta, N N}\left(V_{N \Delta}\right) \text { transition (diagonal) potentials between } \\
N N N \text { and } N N \Delta \text { spaces }(A=3), \delta m=M_{\Delta}-M_{N}
\end{gathered}
$$

Schrödinger equation with Δ degrees of freedom

$$
\begin{gathered}
\Psi=\Psi_{N}+\Psi_{\Delta} \\
\left(T_{N}+V_{N N}-E\right) \Psi_{N}=-V_{N N, N \Delta} \Psi_{\Delta} \quad \text { Impulse approximation } \\
\left(\delta m+T_{\Delta}+V_{N \Delta}-E\right) \Psi_{\Delta}=-V_{N \Delta, N N} \Psi_{N} \quad \text { Solve formally for } \Psi_{\Delta} \\
=H_{\Delta} \\
V_{N N, N \Delta}\left(V_{N N}\right) \text { and } V_{N \Delta, N N}\left(V_{N \Delta}\right) \text { transition (diagonal) potentials between } \\
N N N \text { and } N N \Delta \text { spaces }(A=3), \delta m=M_{\Delta}-M_{N}
\end{gathered}
$$

Schrödinger equation with Δ degrees of freedom

$$
\begin{gathered}
\Psi=\Psi_{N}+\Psi_{\Delta} \\
\left(T_{N}+V_{N N}-E\right) \Psi_{N}=-V_{N N, N \Delta} \Psi_{\Delta} \\
\left(\delta m+T_{\Delta}+V_{N \Delta}-E\right) \Psi_{\Delta}=-V_{N \Delta, N N} \Psi_{N} \\
=H_{\Delta} \\
V_{N N, N \Delta}\left(V_{N N}\right) \text { and } V_{N \Delta, N N}\left(V_{N \Delta}\right) \text { transition (diagonal) potentials between } \\
N N N \text { and } N N \Delta \text { spaces }(A=3), \delta m=M_{\Delta}-M_{N} \\
\Psi_{\Delta}=-\left(H_{\Delta}-E\right)^{-1} V_{N \Delta, N N} \Psi_{N}
\end{gathered}
$$

Schrödinger equation with Δ degrees of freedom

$$
\begin{gathered}
\Psi=\Psi_{N}+\Psi_{\Delta} \\
\left(T_{N}+V_{N N}-E\right) \Psi_{N}=-V_{N N, N \Delta} \Psi_{\Delta}^{(*)} \\
\left(\delta m+T_{\Delta}+V_{N \Delta}-E\right) \Psi_{\Delta}=-V_{N \Delta, N N} \Psi_{N} \\
=H_{\Delta} \\
V_{N N, N \Delta}\left(V_{N N}\right) \text { and } V_{N \Delta, N N}\left(V_{N \Delta}\right) \text { transition (diagonal) potentials between } \\
N N N \text { and } N N \Delta \text { spaces }(A=3), \delta m=M_{\Delta}-M_{N} \\
\Psi_{\Delta}=-\left(H_{\Delta}-E\right)^{-1} V_{N \Delta, N N} \Psi_{N} \text { Insert formal solution in (*) } \\
\left(T_{N}+V_{N N}-V_{N N, N \Delta}\left(H_{\Delta}-E\right)^{-1} V_{N \Delta, N N}-E\right) \Psi_{N}=0 \\
\cong V_{N N}^{\text {realistic }}
\end{gathered}
$$

Schrödinger equation with Δ degrees of freedom

$$
\begin{gathered}
\Psi=\Psi_{N}+\Psi_{\Delta} \\
\left(T_{N}+V_{N N}-E\right) \Psi_{N}=-V_{N N, N \Delta} \Psi_{\Delta}(*) \\
\left(\delta m+T_{\Delta}+V_{N \Delta}-E\right) \Psi_{\Delta}=-V_{N \Delta, N N} \Psi_{N} \\
=H_{\Delta} \\
V_{N N, N \Delta}\left(V_{N N}\right) \text { and } V_{N \Delta, N N}\left(V_{N \Delta}\right) \text { transition (diagonal) potentials between } \\
N N N \text { and } N N \Delta \text { spaces }(A=3), \delta m=M_{\Delta}-M_{N} \\
\Psi_{\Delta}=-\left(H_{\Delta}-E\right)^{-1} V_{N \Delta, N N} \Psi_{N} \quad \text { (IA) } \\
\left(T_{N}+V_{N N}-V_{N N, N \Delta}\left(H_{\Delta}-E\right)^{-1} V_{N \Delta, N N}-E\right) \Psi_{N}=0 \quad(* *) \\
\cong V_{N N}^{\text {realistic }} \quad \begin{array}{l}
\text { Step 1: solve (**) with realistic } V_{N N}+3 N F \\
\text { Step 2: solve } \Psi_{\Delta} \text { in IA }
\end{array}
\end{gathered}
$$

LIT equation with Δ degrees of freedom

$$
\begin{gathered}
\widetilde{\Psi}=\widetilde{\Psi}_{N}+\widetilde{\Psi}_{\Delta} \\
\left(T_{N}+V_{N N}-\sigma\right) \widetilde{\Psi}_{N}=-V_{N N, N \Delta} \widetilde{\Psi}_{\Delta}+O_{N N} \Psi_{0, N}+O_{N \Delta} \Psi_{0, \Delta} \\
\left(\delta m+T_{\Delta \Delta}+V_{N \Delta}-\sigma\right) \widetilde{\Psi}_{\Delta}=-V_{N \Delta, N N} \widetilde{\Psi}_{N}+O_{\Delta N} \Psi_{0, N}+O_{\Delta \Delta} \Psi_{0, \Delta} \\
=H_{\Delta} \\
V_{N N, N \Delta}\left(V_{N N}\right) \text { and } V_{N \Delta, N N}\left(V_{N \Delta}\right) \text { transition (diagonal) potentials between } \\
N N N \text { and } N N \Delta \text { spaces }(A=3), \delta m=M_{\Delta}-M_{N}
\end{gathered}
$$

LIT equation with Δ degrees of freedom

$$
\begin{gathered}
\widetilde{\Psi}^{=}=\widetilde{\Psi}_{N}+\widetilde{\Psi}_{\Delta} \\
\left(T_{N}+V_{N N}-\sigma\right) \widetilde{\Psi}_{N}=-V_{N N, N \Delta} \widetilde{\Psi}_{\Delta}+O_{N N} \Psi_{0, N}+O_{N \Delta} \Psi_{0, \Delta} \\
\left(\delta m+T_{\Delta}+V_{N \Delta}-\sigma\right) \widetilde{\Psi}_{\Delta}=-V_{N \Delta, N N} \widetilde{\Psi}_{N}+O_{\Delta N} \Psi_{0, N}+O_{\Delta \Delta} \Psi_{0, \Delta} \\
=H_{\Delta} \\
V_{N N, N \Delta}\left(V_{N N}\right) \text { and } V_{N \Delta N N}\left(V_{N \Delta}\right) \text { transition (diagonal) potentials between } \\
\text { NNN and NN } \Delta \text { spaces }(A=3), \delta m=M_{\Delta}-M_{N}
\end{gathered}
$$

We take into account electromagnetic operators with the $\Delta(\Delta-I C)$ represented by the following graphs

LIT equation with Δ degrees of freedom

$$
\begin{gathered}
\widetilde{\Psi}=\widetilde{\Psi}_{N}+\widetilde{\Psi}_{\Delta} \\
\left(T_{N}+V_{N N}-\sigma\right) \widetilde{\Psi}_{N}=-V_{N N, N \Delta} \widetilde{\Psi}_{\Delta}+O_{N N} \Psi_{0, N}+O_{N \Delta} \Psi_{0, \Delta} \\
\left(\delta m+T_{\Delta}+V_{N \Delta}-\sigma\right) \widetilde{\Psi}_{\Delta}=-V_{N \Delta, N N} \widetilde{\Psi}_{N}+O_{\Delta N} \Psi_{0, N}+O_{\Delta \Delta} \Psi_{0, \Delta} \\
=H_{\Delta} \\
V_{N N, N \Delta}\left(V_{N N}\right) \text { and } V_{N \Delta, N N}\left(V_{N \Delta}\right) \text { transition (diagonal) potentials between } \\
N N N \text { and NN } \Delta \text { spaces }(A=3), \delta m=M_{\Delta}-M_{N}
\end{gathered}
$$

${ }^{3} \mathrm{He}(\mathrm{e}, \mathrm{e}$ ') Response Functions in the Quasielastic Region

The quasielastic region is dominated by the one-body parts of ρ and J, but relativistic contributions become increasingly important with growing momentum transfer q

Our aim: non-rel. calculation + rel. corrections with realistic nuclear forces

Motivation

$\mathrm{R}_{\mathrm{T}}(\omega, \mathrm{q})$ at various q

Potential: BonnRA + TM'
one-body current: dashed one+two-body current: full
(S. Della Monaca et al., PRC 77, 044007 (2008))

Motivation

$\mathrm{R}_{\mathrm{T}}(\omega, \mathrm{q})$ at various q

Potential: BonnRA +TM'
one-body current: dashed one+two-body current: full

Quasi-elastic kinematics ($\mathrm{q}=500 \mathrm{MeV} / \mathrm{c}$), Kinetic energy of outgoing nucleon:
non-rel. : $T=q^{2} / 2 m=133 \mathrm{MeV}$ rel.: $T=\left(m^{2}+q^{2}\right)^{1 / 2}-m=125 \mathrm{MeV}$

Bad agreement between theory and experiment because of non considered relativistic effects

We already considered this problem for R_{L} and studied R_{L} in various reference frames:

Laboratory:

$$
P_{T}=0
$$

Breit:
Anti-Lab:

$$
P_{T}=-q / 2
$$

$$
P_{T}=-q
$$

Active Nucleon Breit: $P_{\mathbf{T}}=-A q / 2$
non-rel.: $\quad \omega_{\text {frame }}+\left(\mathrm{P}_{\mathrm{T}}\right)^{2} / 2 \mathrm{Am}=\mathrm{E}_{\text {internal }}+\left(\mathrm{P}_{\mathrm{T}}+\mathrm{q}\right)^{2} / 2 \mathrm{Am}$

$\mathbf{R}_{\mathrm{L}}(\omega, \mathbf{q})$ at higher \mathbf{q}

Frame dependence

calculation in various frames:
Laboratory:

$$
\begin{aligned}
& P_{\mathbf{T}}=0 \\
& P_{\mathbf{T}}=-q / 2 \\
& P_{\mathbf{T}}=-q
\end{aligned}
$$

Anti-Lab:
Active Nucleon Breit: $P_{T}=-A q / 2$

Potential: AV18+UIX

Result in LAB frame
$R_{L}(\omega, q)=\frac{q^{2}}{\left(q_{f r}\right)^{2}} \frac{E_{T}^{f r}}{M_{T}} \quad R_{L}^{f r}\left(\omega^{f r}, q^{f r}\right)$
V. Efros, W.L., G. Orlandini, E. Tomusiak PRC 72 (2005) 011002(R)

How to get more frame independent results?

Assume quasi-elastic kinematics:
whole energy and momentum transfer taken by the knocked out nucleon (residual two-body system is in its lowest energy state)
\Rightarrow Effective two-body problem Treat kinematics relativistically correct

Take the correct relativistic relative momentum $\mathrm{k}_{\text {rel }}$ and calculate the corresponding non-relativistic relative energy

$$
E_{n r}=\left(k_{\mathrm{rel}}\right)^{2} / 2 \mu
$$

with reduced mass μ of nucleon and residual system
use $E_{n r}$ as internal excitation energy in your calculation

R_{L} calculated in ANB frame with (dashed) and without (full) assumption of a twobody break-up

Transverse response function $R_{T}(q, \omega)$ of ${ }^{3} \mathrm{He}$ in the quasi-elastic region

Nuclear current operator includes besides the usual non-relativistic one-body currents also meson exchange currents and Δ-isobar currents as well as relativistic corrections for the one-body current

Transverse response function $R_{T}(q, \omega)$ of ${ }^{3} \mathrm{He}$ in the quasi-elastic region

Nuclear current operator includes besides the usual non-relativistic one-body currents also meson exchange currents and Δ-isobar currents as well as relativistic corrections for the one-body current

Calculation in active nucleon Breit (ANB) frame ($P_{T}=-A q / 2$) and subsequent transformation to laboratory system

Transverse response function $R_{T}(q, \omega)$ of ${ }^{3} \mathrm{He}$ in the quasi-elastic region

Nuclear current operator includes besides the usual non-relativistic one-body currents also meson exchange currents and Δ-isobar currents as well as relativistic corrections for the one-body current

Calculation in active nucleon Breit (ANB) frame ($P_{T}=-A q / 2$) and subsequent transformation to laboratory system

Calculation of bound state wave function and solution of LIT equation with the help of expansions in correlated hyperspherical harmonics

Transverse response function $R_{T}(q, \omega)$ of ${ }^{3} \mathrm{He}$ in the quasi-elastic region

Nuclear current operator includes besides the usual non-relativistic one-body currents also meson exchange currents and Δ-isobar currents as well as relativistic corrections for the one-body current

Calculation in active nucleon Breit (ANB) frame ($P_{T}=-A q / 2$) and subsequent transformation to laboratory system

Calculation of bound state wave function and solution of LIT equation with the help of expansions in correlated hyperspherical harmonics

Nuclear force model: Argonne v18 NN potential and Urbana 3NF

Further calculation details

The current operator J

$$
\begin{aligned}
& J=J^{(1)}+J^{(2)} \\
& J^{(1)}=J^{(1)}\left(q, \omega, P_{T}\right)=J_{\text {spin }}+J_{p}+J_{q}+(\omega / M) J_{\omega}
\end{aligned}
$$

for instance spin current
$J_{\text {spin }}=\exp (i \mathbf{q} \cdot \mathbf{r}) i \sigma \times \mathbf{q} / 2 \mathrm{M}\left[\mathrm{G}_{\mathrm{M}}\left(1-\mathrm{q}^{2} / 8 \mathrm{M}^{2}\right)-\mathrm{G}_{\mathbf{E}} \mathrm{K}^{2} \mathbf{q}^{2} / 8 \mathrm{M}^{2}\right]$
with $\mathrm{K}=1+2 \mathrm{P}_{\mathrm{T}} / \mathrm{Aq}$

Further calculation details

The current operator J

$$
\begin{aligned}
& J=J^{(1)}+J^{(2)} \\
& J^{(1)}=J^{(1)}\left(q, \omega, P_{T}\right)=J_{\text {spin }}+J_{p}+J_{q}+(\omega / M) J_{\omega}
\end{aligned}
$$

for instance spin current
$J_{\text {spin }}=\exp (i \mathbf{q} \cdot \mathbf{r}) i \sigma \times \mathbf{q} / 2 \mathrm{M}\left[\mathrm{G}_{\mathrm{M}}\left(1-\mathrm{q}^{2} / 8 \mathrm{M}^{2}\right)-\mathrm{G}_{\mathbf{E}} \mathrm{K}^{2} \mathbf{q}^{2} / 8 \mathrm{M}^{2}\right]$
with $\mathrm{K}=1+2 \mathrm{P}_{\mathrm{T}} / \mathrm{Aq}$

Transformation from ANB frame to LAB frame

$$
R_{T}{ }^{L A B}\left(\omega^{L A B}, q^{L A B}\right)=R_{T}^{A N B}\left(\omega^{A N B}, q^{A N B}\right) \quad E_{T}^{A N B} / M_{T}
$$

Results

จ Comparison of
ANB and LAB calculation: strong shift of peak to lower energies! (8.7, 16.7, 29.3 MeV at $\mathrm{q}=500,600,700 \mathrm{MeV} / \mathrm{c})$

Results

\& Rel. contribution: reduction of peak height (6.2\%, 8.5\%, 11.3 \% at $q=500,600,700 \mathrm{MeV} / \mathrm{c}$)

Results

* MEC:
small increase of peak height (3.2\%, 2.7\%, 2.2\% at $\mathrm{q}=500,600,700 \mathrm{MeV} / \mathrm{c})$

Scuola Raimondo Anni - 2013

Δ-IC contribution

Dotted: without Δ
Dashed with Δ

Effect of twofragment model

Dashed: with Δ (as before) Solid: same but with twofragment model

Deltuva et al. (PRC70, 034004,2004):
Calculation of $\mathrm{R}_{\mathbf{T}}$ of ${ }^{3} \mathrm{He}$ with CDBonn and CDBonn $+\Delta$: no Δ effects in peak region!

Partial compensation of Δ-IC and 3 NF

Dotted: no Δ and no 3NF Dashed: no Δ but with $3 N F$ Solid: with Δ and with $3 N F$

No Δ effect in peak region In a CC calculation!

Only Isospin channel T=3/2

Dotted: no Δ and no 3NF Dashed: no Δ but with 3NF Solid: with Δ and with $3 N F$
Δ-IC contribution larger than 3NF effect in peak region!

L. Yuan et al., PLB 706, 90 (2011)

Experimental data:
Bates, Saclay,
world data (J. Carlson et al.)

Only Isospin channel T=3/2
Dotted: no Δ and no 3NF Dashed: no Δ but with 3NF Solid: with Δ and with $3 N F$

Strong Δ-IC effect also beyond peak
\Rightarrow for this kinematics Δ-IC are important in 3-body breakup reactions

Conclusions

- the LIT metod opens up the possibility to carry out ab-initio calculations of reactions into the A-body continuum for $\mathrm{A}>2$
- only bound states techniques are needed
- the LIT is a method with controlled resolution

Conclusions

- the LIT metod opens up the possibility to carry out ab-initio calculations of reactions into the A-body continuum for $\mathrm{A}>2$
- only bound states techniques are needed
- the LIT is a method with controlled resolution

We have discussed quite a few applications, there are still more (Compton scattering, pion production, weak nuclear responses)

Summary

HOW TO SPEED UP THE CONVERGENCE?

SOLUTION

Here comes the idea of EFFECTIVE INTERACTION
same idea as for No Core Shell Model. there the many particle basis is HO here the many particle basis is HH

What is the main idea of an effective interaction?

What is the main idea of an effective interaction?

What is the main idea of an effective interaction?

formally this transformation exists (Bloch-Horowitz, Lee-Suzuki), however, 1) V becomes an A-body operator
2) T is written in function of \mathbf{Q}

What is the main idea of an effective interaction?

formally this transformation exists (Bloch-Horowitz, Lee-Suzuki), however, 1) V becomes an A-body operator [A]
2) T is written in function of \mathbf{Q}

Useless for practical purposes, the same as solving the full problem

PRACTICALLY:

PRACTICALLY:

[2]

PRACTICALLY:

PRICE: I have to increase P (i.e. $\mathrm{K}_{\text {max }}$) up to convergence

GAIN: what is missing is less than before -------> faster convergence!

[2]

Where, in the full H , is the two-body H_{2} which I have to solve ?

$$
H_{N C S M}=\sum_{k}^{A-1} h_{k}^{h o}+\left(V_{12}-V_{12}^{H O}\right)+\left(V_{13}-V_{13}^{H O}\right)+\ldots .
$$

$\left(\xi_{1}\right)+h^{h \circ}\left(\xi_{2}\right)+\ldots+V\left(\vec{\xi}_{1}\right)-$

$$
\begin{aligned}
H_{\mathrm{EIHH}} & =T+V_{12}+V_{13}+\ldots . \\
& =1 / \mu\left(\Delta \Delta_{\rho}-\mathbb{K}^{2} I \rho^{2}\right)+V\left(\xi_{1}\right)+V\left(\xi_{1}, \xi_{2}, \ldots \xi_{A-1}\right)
\end{aligned}
$$

convergence:

${ }^{4} \mathrm{He}$ with MTV NN Potential

[^0]: ${ }^{4} \mathrm{He}(\gamma, \mathrm{p})^{3} \mathrm{H}$ and ${ }^{4} \mathrm{He}(\gamma, \mathrm{n})^{3} \mathrm{He}(\mathrm{s}$. Quaglioni et al., PRC 69, 044002 (2004))
 ${ }^{4} \mathrm{He}(\mathrm{e}, \mathrm{e} \mathrm{p})^{3} \mathrm{H}$ (s. Quaglioni et al., PRC 72, 064002 (2005))
 ${ }^{4} \mathrm{He}(\mathrm{e}, \mathrm{e} \mathrm{C})^{2} \mathrm{H} \quad$ (D. Andreasi et al., EPJA 27, 47 (2006))

