Introduction

Consider an observable $R(E)$ and an integral transform $\Phi(\sigma)$:

$$
\Phi(\sigma)=\int \mathrm{dE} K(\sigma, \mathrm{E}) \mathrm{R}(\mathrm{E})
$$

with some kernel $\mathrm{K}(\sigma, \mathrm{E})$

Often it is easier to calculate $\Phi(\sigma)$ than $\mathrm{R}(\mathrm{E})$. Then the observable $R(E)$ can be obtained via inversion of the integral transform.
In order to make the inversion sufficiently stable the kernel $\mathrm{K}(\sigma, \mathrm{E})$ should resemble a kind of energy filter (Lorentzians, Gaussians, ...); best choice would be a δ-function.

For the LIT we consider Lorentzians: $\mathrm{K}(\sigma, \mathrm{E})=\left[\left(\mathrm{E}-\sigma_{\mathrm{R}}\right)^{2}+\sigma_{1}^{2}\right]^{-1}$

Inclusive response functions have the following form

$$
\left.R(\omega)=\sum_{n}|\langle n| \Theta| 0\right\rangle\left.\right|^{2} \delta\left(\omega-E_{n}+E_{0}\right)
$$

where we have set for $q=$ const: $R(\omega, q) \longrightarrow R(\omega)$
$|0\rangle,|n\rangle$ and E_{0}, E_{n} are eigen states and
corresponding eigen energies of Hamiltonian H and
Θ is transition operator inducing the reaction

main point of the LIT :

Schrödinger-like equation with a source

$$
\left(H-E_{0}-\omega_{0}+i \Gamma\right) \tilde{\Psi}=S
$$

The $\tilde{\Psi}$ solution is unique and has bound state like asymptotic behavior

one can apply bound state methods

LIT - Example

deuteron photodisintegration in unretarded dipole approximation
unretarded dipole approximation $\Rightarrow \Theta=\sum_{i=1}^{A} z_{i} \frac{1+\tau_{i, z}}{2}$,
$Z_{i}, \tau_{i, 2}: 3^{\text {rd }}$ components of position and isospin coordinates of i-th nucleon

NN interaction: Argonne V14 potential

LIT
$\sigma_{\gamma}(\omega)$ from inversion with various $M_{\max }$

$\sigma_{\gamma}(\omega)$ from inversion with various $M_{\max }=25$
and result from conventional calculation with explicit np continuum wave functions

LIT method and resonances

The LIT: a method with a controlled resolution

Phase shifts shows two resonances one at $E_{n p}=0.48,10.5 \mathrm{MeV}$

$\sigma_{\gamma}\left({ }^{3} \mathrm{P}_{1}\right)$ shows two corresponding resonances: low-energy resonance very pronounced with small width $\Gamma=270 \mathrm{KeV}$, the other one is much weaker and has a larger width

Complete inversion with set χ_{m} defined previously using in addition as new first basis function $\chi_{1}^{\text {res }}$

$$
\text { various } \sigma_{I}, R_{\max }=80 \mathrm{fm}, M_{\max }=30
$$

Up to now direct numerical solutions of Schrödinger equation for bound state and LIT equation for $\widetilde{\Psi}$

For A > 2 it is more convenient to use expansions in complete sets using expansions in HH or HO functions

Reformulation of the LIT

$$
\begin{aligned}
& \operatorname{LIT}\left(\sigma_{\sigma^{\prime}}, \sigma_{1}\right)=-\frac{1}{\sigma_{1}} \operatorname{Im}\left\{\left\langle\Psi_{0}\right| \Theta^{\dagger}\left(\sigma_{R}+E_{0}-H+i \sigma_{1}\right)^{-1} \Theta\left|\Psi_{0}\right\rangle\right\} \\
& R\left(E=\sigma_{R}\right)=-\frac{1}{\pi} \operatorname{Im}\left\{\lim _{\sigma_{1} \rightarrow 0}\left\langle\Psi_{0}\right| \Theta^{\dagger}\left(\sigma_{R}+E_{0}-H+i \sigma_{1}\right)^{-1} \Theta\left|\Psi_{0}\right\rangle\right\}
\end{aligned}
$$

New example:

deuteron photodisintegration with the LIT method using expansion techniques

First we use the JISP-6 NN potential which is defined on an HO basis:
$<n '|V| n>$ up $n=n '=4$ ($n=0,1,2, \ldots$; HO quantum number, $\Omega=40 \mathrm{MeV}$)

Also deuteron wave function and $\widetilde{\Psi}$ are expanded on HO basis Note: radial parts contain Laguerre polynomials up to order N times Gaussians

Alternatively exponential fall-off exp(-r/b) instead of Gaussians

This leads to the following LITs with Laguerre polynomials up to order N with exponential fall-off ($b=0.5 \mathrm{fm}$):

Scuola Raimondo Anni - 2013

Laguerre polynomials up to order N (exponential fall-off)

Scuola Raimondo Anni - 2013

Laguerre polynomials up to order N (exponential fall-off)

Scuola Raimondo Anni - 2013

Laguerre polynomials up to order N (exponential fall-off)

LIT approach is a method with a controlled resolution!

Lanczos response

Since the Lorentzian function is a representation of the δ-function one could think of calculating $R(\omega)$ as the limit of $L\left(\omega, \sigma_{R}, \sigma_{1}\right)$ for $\sigma_{1}-->0$.
The extrapolation would give

$$
R(\omega)=\sum_{v}^{N} r_{v} \delta\left(\omega-\varepsilon_{v}^{N}\right)
$$

Lanczos response

Since the Lorentzian function is a representation of the δ-function one could think of calculating $R(\omega)$ as the limit of $L\left(\omega, \sigma_{R}, \sigma_{\mathrm{I}}\right)$ for $\sigma_{\mathrm{I}}-->0$.
The extrapolation would give

$$
R(\omega)=\sum_{v}^{N} r_{v} \delta\left(\omega-\varepsilon_{v}^{N}\right)
$$

Lanczos response: δ-function is replaced by Lorentzian with small σ_{1}

$$
R(\omega)=\sum_{v}^{N} r_{v}^{\prime} L\left(\omega, \varepsilon_{v}^{N}, \sigma_{I}\right)
$$

Lanczos response

Since the Lorentzian function is a representation of the δ-function one could think of calculating $R(\omega)$ as the limit of $L\left(\omega, \sigma_{R}, \sigma_{I}\right)$ for $\sigma_{I}-->0$.
The extrapolation would give

$$
R(\omega)=\sum_{v}^{N} r_{v} \delta\left(\omega-\varepsilon_{v}^{N}\right)
$$

Lanczos response: δ-function is replaced by Lorentzian with small σ_{1}

$$
R(\omega)=\sum_{v}^{N} r_{v}^{\prime} L\left(\omega, \varepsilon_{v}^{N}, \sigma_{I}\right)
$$

Deuteron photodisintegration:
Consider all three transitions ${ }^{3} \mathrm{P}_{0},{ }^{3} \mathrm{P}_{1},{ }^{3} \mathrm{P}_{2}-{ }^{3} \mathrm{~F}_{2}$ now expansion of radial LIT part in HO functions
NN potential: JISP6
$\sigma_{\gamma}(\omega)$ from inversion and Lanczos response "true"

$\sigma_{\gamma}(\omega)$ from inversion and Lanczos response

Scuola Raimondo Anni - 2013

Conclusion

Strength for a given discrete state of energy E is not the actual strength for this energy, but can only be interpreted correctly within an integral transform approach.

The correct distribution of strength is obtained via the inversion of the integral transform.

LIT application for inclusive electron scattering

LIT application for inclusive electron scattering

- 0^{+}resonance of ${ }^{4} \mathrm{He}$

LIT application for inclusive electron scattering

- 0^{+}resonance of ${ }^{4} \mathrm{He}$
- Longitudinal response function $\mathrm{R}_{\mathrm{L}}(\omega, \mathrm{q})$ for $\mathrm{A}=3$ and 4

LIT application for inclusive electron scattering

- 0^{+}resonance of ${ }^{4} \mathrm{He}$
- Longitudinal response function $\mathrm{R}_{\mathrm{L}}(\omega, \mathrm{q})$ for $\mathrm{A}=3$ and 4
- Transverse response function $R_{T}(\omega, q)$ for $A=3$
$\star \Delta$ degrees of freedom
\star Quasi-elastic response at higher q ($q=500-700 \mathrm{MeV} / \mathrm{c}$)

O^{+}resonance in longitudinal response function R_{L} in ${ }^{4} \mathrm{He}\left(\mathrm{e}, \mathrm{e}^{\prime}\right)$
 S. Bacca, N. Barnea, WL, G. Orlandini, PRL 110, 042503 (2013)

0+ Resonance in the ${ }^{4}$ He compound system

Resonance at $E_{R}=-8.2 \mathrm{MeV}$, i.e. above the ${ }^{3} \mathrm{H}$-p threshold. Strong evidence in electron scattering off ${ }^{4} \mathrm{He}$

G. Köbschall et al., NPA 405, 648 (1983)

Results of our LIT calculation

The present precision of the calculation does not allow to resolve the shape of the resonance, therefore the width cannot be determined.

The present precision of the calculation does not allow to resolve the shape of the resonance, therefore the width cannot be determined.

However, the strength of the resonance can be determined!

The present precision of the calculation does not allow to resolve the shape of the resonance, therefore the width cannot be determined.

However, the strength of the resonance can be determined!

Of course not by taking the strength to the discretized state, but by rearranging the inversion in a suitable way:

The present precision of the calculation does not allow to resolve the shape of the resonance, therefore the width cannot be determined.

However, the strength of the resonance can be determined!

Of course not by taking the strength to the discretized state, but by rearranging the inversion in a suitable way:

Reduce strength to the state up to the point that the inversion does not show any resonant structure at the resonance energy $\mathrm{E}_{\mathbf{R}}$:
$\operatorname{LIT}\left(\sigma_{R}, \sigma_{\mathrm{I}}\right) \rightarrow \operatorname{LIT}\left(\sigma_{R}, \sigma_{\mathrm{I}}\right)-f_{R} /\left[\left(E_{R}-\sigma_{R}\right)^{2}+\sigma_{\mathrm{I}}^{2}\right] \equiv \operatorname{LIT}\left(\sigma_{\mathrm{R}}, \sigma_{\mathrm{I}}, f_{R}\right)$
with resonance strength f_{R}

Inversion results with different f_{R} values AV18+UIX, q=300 MeV/c

Comparison to experimental results

LIT/EIHH Calculation for AV18+UIX and Idaho-N3LO+N2LO
Dotted: AV8' + central 3NF (Hiyama et al.)

(e,e') Longitudinal Response

SURPRISE:

LARGE EFFECT OF 3-BODY FORCE AT LOW q

Calculation via EIHH with force model:
AV18 + UIX

S.Bacca et al., PRL 102, 162501

Dependence on different 3-nucleon forces

${ }^{4} \mathrm{He}(\mathrm{e}, \mathrm{e}$ ') Longitudinal Response

SMALL EFFECT OF

3-BODY FORCE AT HIGH q

Exp.: Saclay Bates world data (J. Carlson et al.)

Scuola Raimondo Anni - 2013

3-Body inclusive electrodisintegration Role of 3-Nucleon force

LONGITUDINAL

 RESPONSE"low" q
AV18
AV18 + UIX

СНН

V. Efros, W.L., G. Orlandini E. Tomusiak PRC69, 044001 (2004)

Exp:
ϕ Dow
4 Marchand

Scuola Raimondo Anni - 2013

Transverse response function $R_{T}(\omega, q)$

Transverse response function $R_{T}(\omega, q)$

Subnuclear degrees of freedom can become important

Transverse response function $\mathrm{R}_{\mathrm{T}}(\omega, \mathrm{q})$

Subnuclear degrees of freedom can become important

- Meson exchange currents (MEC)

MEC with LIT method: S. Della Monaca, V.D. Efros, A. Khugaev, WL, G. Orlandini, E.L. Tomusiak, L. Yuan, PRC 77, 044007 (2008)

Transverse response function $\mathrm{R}_{\mathrm{T}}(\omega, \mathrm{q})$

Subnuclear degrees of freedom can become important

- Meson exchange currents (MEC)

MEC with LIT method: S. Della Monaca, V.D. Efros, A. Khugaev, WL, G. Orlandini, E.L. Tomusiak, L. Yuan, PRC 77, 044007 (2008)

- Δ isobar currents (Δ-IC)
Δ-IC with LIT method: L. Yuan, V.D. Efros, WL, E.L. Tomusiak, PRC 81, 064001 (2010)

NR:
dashed
NR+MEC: dotted
Rel.+MEC: full

$$
q=174 \mathrm{MeV} / \mathrm{c} \quad \mathrm{q}=324 \mathrm{MeV} / \mathrm{c} \quad \mathrm{q}=487 \mathrm{MeV} / \mathrm{c}
$$

R_{T} close to break-up threshold

(V.D. Efros, WL, G. Orlandini, E.L. Tomusiak, Few-Body Syst. 47, 157 (2010))

Δ degrees of freedom

Schrödinger equation with Δ degrees of freedom

$$
\begin{gathered}
\Psi=\Psi_{N}+\Psi_{\Delta} \\
\left(T_{N}+V_{N N}-E\right) \Psi_{N}=-V_{N N, N \Delta} \Psi_{\Delta} \\
\left(\delta m+T_{\Delta}+V_{N \Delta}-E\right) \Psi_{\Delta}=-V_{N \Delta, N N} \Psi_{N} \\
V_{N N, N \Delta}\left(V_{N N}\right) \text { and } V_{N \Delta N N}\left(V_{N \Delta}\right) \text { transition (diagonal) potentials between } \\
N N N \text { and } N N \Delta \text { spaces (A }=3), \delta m=M_{\Delta}-M_{N}
\end{gathered}
$$

Schrödinger equation with Δ degrees of freedom

$$
\begin{gathered}
\Psi=\Psi_{N}+\Psi_{\Delta} \\
\left(T_{N}+V_{N N}-E\right) \Psi_{N}=-V_{N N, N \Delta} \Psi_{\Delta} \quad \text { coupled channel calculation } \\
\left(\delta m+T_{\Delta}+V_{N \Delta}-E\right) \Psi_{\Delta}=-V_{N \Delta, N N} \Psi_{N} \text { solve eqs. simultaneously } \\
V_{N N, N \Delta}\left(V_{N N}\right) \text { and } V_{N \Delta, N N}\left(V_{N \Delta}\right) \text { transition (diagonal) potentials between } \\
N N N \text { and } N N \Delta \text { spaces }(A=3), \delta m=M_{\Delta}-M_{N}
\end{gathered}
$$

Schrödinger equation with Δ degrees of freedom

$$
\begin{gathered}
\Psi=\Psi_{N}+\Psi_{\Delta} \\
\left(T_{N}+V_{N N}-E\right) \Psi_{N}=-V_{N N, N \Delta} \Psi_{\Delta} \quad \text { Impulse approximation } \\
\left(\delta m+T_{\Delta}+V_{N \Delta}-E\right) \Psi_{\Delta}=-V_{N \Delta, N N} \Psi_{N} \quad \text { Solve formally for } \Psi_{\Delta} \\
=H_{\Delta} \\
V_{N N, N \Delta}\left(V_{N N}\right) \text { and } V_{N \Delta, N N}\left(V_{N \Delta}\right) \text { transition (diagonal) potentials between } \\
N N N \text { and } N N \Delta \text { spaces }(A=3), \delta m=M_{\Delta}-M_{N}
\end{gathered}
$$

Schrödinger equation with Δ degrees of freedom

$$
\begin{gathered}
\Psi=\Psi_{N}+\Psi_{\Delta} \\
\left(T_{N}+V_{N N}-E\right) \Psi_{N}=-V_{N N, N \Delta} \Psi_{\Delta} \\
\left(\delta m+T_{\Delta}+V_{N \Delta}-E\right) \Psi_{\Delta}=-V_{N \Delta, N N} \Psi_{N} \\
=H_{\Delta} \\
V_{N N, N \Delta}\left(V_{N N}\right) \text { and } V_{N \Delta, N N}\left(V_{N \Delta}\right) \text { transition (diagonal) potentials between } \\
N N N \text { and } N N \Delta \text { spaces }(A=3), \delta m=M_{\Delta}-M_{N} \\
\Psi_{\Delta}=-\left(H_{\Delta}-E\right)^{-1} V_{N \Delta, N N} \Psi_{N}
\end{gathered}
$$

Schrödinger equation with Δ degrees of freedom

$$
\begin{gathered}
\Psi=\Psi_{N}+\Psi_{\Delta} \\
\left(T_{N}+V_{N N}-E\right) \Psi_{N}=-V_{N N, N \Delta} \Psi_{\Delta}^{(*)} \\
\left(\delta m+T_{\Delta}+V_{N \Delta}-E\right) \Psi_{\Delta}=-V_{N \Delta, N N} \Psi_{N} \\
=H_{\Delta} \\
V_{N N, N \Delta}\left(V_{N N}\right) \text { and } V_{N \Delta, N N}\left(V_{N \Delta}\right) \text { transition (diagonal) potentials between } \\
N N N \text { and } N N \Delta \text { spaces }(A=3), \delta m=M_{\Delta}-M_{N} \\
\Psi_{\Delta}=-\left(H_{\Delta}-E\right)^{-1} V_{N \Delta, N N} \Psi_{N} \text { Insert formal solution in (*) } \\
\left(T_{N}+V_{N N}-V_{N N, N \Delta}\left(H_{\Delta}-E\right)^{-1} V_{N \Delta, N N}-E\right) \Psi_{N}=0 \\
\cong V_{N N}^{\text {realistic }}
\end{gathered}
$$

Schrödinger equation with Δ degrees of freedom

$$
\begin{gathered}
\Psi=\Psi_{N}+\Psi_{\Delta} \\
\left(T_{N}+V_{N N}-E\right) \Psi_{N}=-V_{N N, N \Delta} \Psi_{\Delta}^{(*)} \\
\left(\delta m+T_{\Delta}+V_{N \Delta}-E\right) \Psi_{\Delta}=-V_{N \Delta, N N} \Psi_{N} \\
=H_{\Delta} \\
V_{N N, N \Delta}\left(V_{N N}\right) \text { and } V_{N \Delta, N N}\left(V_{N \Delta}\right) \text { transition (diagonal) potentials between } \\
N N N \text { and } N N \Delta \text { spaces }(A=3), \delta m=M_{\Delta}-M_{N} \\
\Psi_{\Delta}=-\left(H_{\Delta}-E\right)^{-1} V_{N \Delta, N N} \Psi_{N} \quad(I A) \\
\left(T_{N}+V_{N N}-V_{N N, N \Delta}\left(H_{\Delta}-E\right)^{-1} V_{N \Delta, N N}-E\right) \Psi_{N}=0 \quad(* *) \\
\cong V^{\text {realistic }} \quad \begin{array}{l}
\text { Step 1: solve (**) with realistic } V_{N N}+3 N F \\
\text { Step 2: solve } \Psi_{\Delta} \text { in IA }
\end{array} \\
\hline
\end{gathered}
$$

LIT equation with Δ degrees of freedom

$$
\begin{gathered}
\widetilde{\Psi}=\widetilde{\Psi}_{N}+\widetilde{\Psi}_{\Delta} \\
\left(T_{N}+V_{N N}-\sigma\right) \widetilde{\Psi}_{N}=-V_{N N, N \Delta} \widetilde{\Psi}_{\Delta}+O_{N N} \Psi_{0, N}+O_{N \Delta} \Psi_{0, \Delta} \\
\left(\delta m+T_{\Delta \Delta}+V_{N \Delta}-\sigma\right) \widetilde{\Psi}_{\Delta}=-V_{N \Delta, N N} \widetilde{\Psi}_{N}+O_{\Delta N} \Psi_{0, N}+O_{\Delta \Delta} \Psi_{0, \Delta} \\
=H_{\Delta} \\
V_{N N, N \Delta}\left(V_{N N}\right) \text { and } V_{N \Delta, N N}\left(V_{N \Delta}\right) \text { transition (diagonal) potentials between } \\
N N N \text { and } N N \Delta \text { spaces }(A=3), \delta m=M_{\Delta}-M_{N}
\end{gathered}
$$

LIT equation with Δ degrees of freedom

$$
\begin{gathered}
\widetilde{\Psi}^{=}=\widetilde{\Psi}_{N}+\widetilde{\Psi}_{\Delta} \\
\left(T_{N}+V_{N N}-\sigma\right) \widetilde{\Psi}_{N}=-V_{N N, N \Delta} \widetilde{\Psi}_{\Delta}+O_{N N} \Psi_{0, N}+O_{N \Delta} \Psi_{0, \Delta} \\
\left(\delta m+T_{\Delta}+V_{N \Delta}-\sigma\right) \widetilde{\Psi}_{\Delta}=-V_{N \Delta, N N} \widetilde{\Psi}_{N}+O_{\Delta N} \Psi_{0, N}+O_{\Delta \Delta} \Psi_{0, \Delta} \\
=H_{\Delta} \\
V_{N N, N \Delta}\left(V_{N N}\right) \text { and } V_{N \Delta N N}\left(V_{N \Delta}\right) \text { transition (diagonal) potentials between } \\
\text { NNN and NN } \Delta \text { spaces }(A=3), \delta m=M_{\Delta}-M_{N}
\end{gathered}
$$

We take into account electromagnetic operators with the $\Delta(\Delta-I C)$ represented by the following graphs

LIT equation with Δ degrees of freedom

$$
\begin{gathered}
\widetilde{\Psi}=\widetilde{\Psi}_{N}+\widetilde{\Psi}_{\Delta} \\
\left(T_{N}+V_{N N}-\sigma\right) \widetilde{\Psi}_{N}=-V_{N N, N \Delta} \widetilde{\Psi}_{\Delta}+O_{N N} \Psi_{0, N}+O_{N \Delta} \Psi_{0, \Delta} \\
\left(\delta m+T_{\Delta}+V_{N \Delta}-\sigma\right) \widetilde{\Psi}_{\Delta}=-V_{N \Delta, N N} \widetilde{\Psi}_{N}+O_{\Delta N} \Psi_{0, N}+O_{\Delta \Delta} \Psi_{0, \Delta} \\
=H_{\Delta} \\
V_{N N, N \Delta}\left(V_{N N}\right) \text { and } V_{N \Delta, N N}\left(V_{N \Delta}\right) \text { transition (diagonal) potentials between } \\
N N N \text { and NN } \Delta \text { spaces }(A=3), \delta m=M_{\Delta}-M_{N}
\end{gathered}
$$

${ }^{3} \mathrm{He}(\mathrm{e}, \mathrm{e}$ ') Response Functions in the Quasielastic Region

The quasielastic region is dominated by the one-body parts of ρ and J, but relativistic contributions become increasingly important with growing momentum transfer q

Our aim: non-rel. calculation + rel. corrections with realistic nuclear forces

Motivation

$\mathrm{R}_{\mathrm{T}}(\omega, \mathrm{q})$ at various q

Potential: BonnRA + TM'
one-body current: dashed one+two-body current: full
(S. Della Monaca et al., PRC 77, 044007 (2008))

Motivation

$\mathrm{R}_{\mathrm{T}}(\omega, \mathrm{q})$ at various q

Potential: BonnRA +TM'
one-body current: dashed one+two-body current: full

Quasi-elastic kinematics ($\mathrm{q}=500 \mathrm{MeV} / \mathrm{c}$), Kinetic energy of outgoing nucleon:
non-rel. : $T=q^{2} / 2 m=133 \mathrm{MeV}$
rel.: $T=\left(m^{2}+q^{2}\right)^{1 / 2}-m=125 \mathrm{MeV}$

Bad agreement between theory and experiment because of non considered relativistic effects

We already considered this problem for R_{L} and studied R_{L} in various reference frames:

Laboratory:
Breit:
Anti-Lab:
Active Nucleon Breit: $\mathrm{P}_{\mathrm{T}}=-\mathrm{Aq} / 2$

$\mathbf{R}_{\mathrm{L}}(\omega, \mathbf{q})$ at higher \mathbf{q}

Frame dependence

calculation in various frames:
Laboratory:

$$
\begin{aligned}
& P_{\mathbf{T}}=0 \\
& P_{\mathbf{T}}=-q / 2 \\
& P_{\mathbf{T}}=-q
\end{aligned}
$$

Anti-Lab:
Active Nucleon Breit: $P_{T}=-A q / 2$

Potential: AV18+UIX

Result in LAB frame
$R_{L}(\omega, q)=\frac{q^{2}}{\left(q_{f r}\right)^{2}} \frac{E_{T}^{f r}}{M_{T}} \quad R_{L}^{f r}\left(\omega^{f r}, q^{f r}\right)$
V. Efros, W.L., G. Orlandini, E. Tomusiak PRC 72 (2005) 011002(R)

How to get more frame independent results?

Assume quasi-elastic kinematics:
whole energy and momentum transfer taken by the knocked out nucleon (residual two-body system is in its lowest energy state)
\Rightarrow Effective two-body problem Treat kinematics relativistically correct

Take the correct relativistic relative momentum $\mathrm{k}_{\text {rel }}$ and calculate the corresponding non-relativistic relative energy

$$
E_{n r}=\left(k_{\mathrm{rel}}\right)^{2} / 2 \mu
$$

with reduced mass μ of nucleon and residual system
use $E_{n r}$ as internal excitation energy in your calculation

$\mathbf{R}_{\mathrm{L}}(\omega, \mathbf{q})$ at higher \mathbf{q}

Quasielastic region: assume twobody break-up and use the correct relativistic relative momentum

Transverse response function $R_{T}(q, \omega)$ of ${ }^{3} \mathrm{He}$ in the quasi-elastic region

Nuclear current operator includes besides the usual non-relativistic one-body currents also meson exchange currents and Δ-isobar currents as well as relativistic corrections for the one-body current

Transverse response function $R_{T}(q, \omega)$ of ${ }^{3} \mathrm{He}$ in the quasi-elastic region

Nuclear current operator includes besides the usual non-relativistic one-body currents also meson exchange currents and Δ-isobar currents as well as relativistic corrections for the one-body current

Calculation in active nucleon Breit (ANB) frame ($P_{T}=-A q / 2$) and subsequent transformation to laboratory system

Transverse response function $R_{T}(q, \omega)$ of ${ }^{3} \mathrm{He}$ in the quasi-elastic region

Nuclear current operator includes besides the usual non-relativistic one-body currents also meson exchange currents and Δ-isobar currents as well as relativistic corrections for the one-body current

Calculation in active nucleon Breit (ANB) frame ($P_{T}=-A q / 2$) and subsequent transformation to laboratory system

Calculation of bound state wave function and solution of LIT equation with the help of expansions in correlated hyperspherical harmonics

Transverse response function $R_{T}(q, \omega)$ of ${ }^{3} \mathrm{He}$ in the quasi-elastic region

Nuclear current operator includes besides the usual non-relativistic one-body currents also meson exchange currents and Δ-isobar currents as well as relativistic corrections for the one-body current

Calculation in active nucleon Breit (ANB) frame ($P_{T}=-A q / 2$) and subsequent transformation to laboratory system

Calculation of bound state wave function and solution of LIT equation with the help of expansions in correlated hyperspherical harmonics

Nuclear force model: Argonne v18 NN potential and Urbana 3NF

Further calculation details

The current operator J

$$
\begin{aligned}
& J=J^{(1)}+J^{(2)} \\
& J^{(1)}=J^{(1)}\left(q, \omega, P_{T}\right)=J_{\text {spin }}+J_{p}+J_{q}+(\omega / M) J_{\oplus}
\end{aligned}
$$

for instance spin current
$J_{\text {spin }}=\exp (i \mathbf{q} \cdot \mathbf{r}) i \sigma \times \mathbf{q} / 2 \mathrm{M}\left[\mathrm{G}_{\mathrm{M}}\left(1-\mathrm{q}^{2} / 8 \mathrm{M}^{2}\right)-\mathrm{G}_{\mathbf{E}} \mathrm{K}^{2} \mathbf{q}^{2} / 8 \mathrm{M}^{2}\right]$
with $\mathrm{K}=1+2 \mathrm{P}_{\mathrm{T}} / \mathrm{Aq}$

Further calculation details

The current operator J

$$
\begin{aligned}
& J=J^{(1)}+J^{(2)} \\
& J^{(1)}=J^{(1)}\left(q, \omega, P_{T}\right)=J_{\text {spin }}+J_{p}+J_{q}+(\omega / M) J_{\omega}
\end{aligned}
$$

for instance spin current
$J_{\text {spin }}=\exp (i \mathbf{q} \cdot \mathbf{r}) i \sigma \times \mathbf{q} / 2 \mathrm{M}\left[\mathrm{G}_{\mathrm{M}}\left(1-\mathrm{q}^{2} / 8 \mathrm{M}^{2}\right)-\mathrm{G}_{\mathbf{E}} \mathrm{K}^{2} \mathbf{q}^{2} / 8 \mathrm{M}^{2}\right]$
with $\mathrm{K}=1+2 \mathrm{P}_{\mathrm{T}} / \mathrm{Aq}$

Transformation from ANB frame to LAB frame

$$
R_{T}{ }^{L A B}\left(\omega^{L A B}, q^{L A B}\right)=R_{T}^{A N B}\left(\omega^{A N B}, q^{A N B}\right) \quad E_{T}^{A N B} / M_{T}
$$

Results

จ Comparison of
ANB and LAB calculation: strong shift of peak to lower energies! (8.7, 16.7, 29.3 MeV at $\mathrm{q}=500,600,700 \mathrm{MeV} / \mathrm{c})$

Results

\& Rel. contribution: reduction of peak height (6.2\%, 8.5\%, 11.3 \% at $q=500,600,700 \mathrm{MeV} / \mathrm{c}$)

Results

* MEC:
small increase of peak height (3.2\%, 2.7\%, 2.2\% at $\mathrm{q}=500,600,700 \mathrm{MeV} / \mathrm{c})$

Scuola Raimondo Anni - 2013

Δ-IC contribution

Dotted: without Δ
Dashed with Δ

Effect of twofragment model

Dashed: with Δ (as before) Solid: same but with twofragment model

Deltuva et al. (PRC70, 034004,2004):
Calculation of $\mathrm{R}_{\mathbf{T}}$ of ${ }^{3} \mathrm{He}$ with CDBonn and CDBonn $+\Delta$: no Δ effects in peak region!

Partial compensation of Δ-IC and 3 NF

Dotted: no Δ and no 3NF Dashed: no Δ but with $3 N F$ Solid: with Δ and with $3 N F$

No Δ effect in peak region In a CC calculation!

Only Isospin channel T=3/2

Dotted: no Δ and no 3NF Dashed: no Δ but with 3NF Solid: with Δ and with $3 N F$
Δ-IC contribution larger than 3NF effect in peak region!

Only Isospin channel T=3/2
Dotted: no Δ and no 3NF Dashed: no Δ but with 3NF Solid: with Δ and with $3 N F$

Strong Δ-IC effect also beyond peak
\Rightarrow for this kinematics Δ-IC are important in 3-body breakup reactions

Conclusions

- the LIT metod opens up the possibility to carry out ab-initio calculations of reactions into the A-body continuum for $\mathrm{A}>2$
- only bound states techniques are needed
- the LIT is a method with controlled resolution

Conclusions

- the LIT metod opens up the possibility to carry out ab-initio calculations of reactions into the A-body continuum for $\mathrm{A}>2$
- only bound states techniques are needed
- the LIT is a method with controlled resolution

We have discussed quite a few applications, there are still more (Compton scattering, pion production, weak nuclear responses)

HOW TO SPEED UP THE CONVERGENCE?

SOLUTION

Here comes the idea of EFFECTIVE INTERACTION
same idea as for No Core Shell Model. there the many particle basis is HO here the many particle basis is HH

What is the main idea of an effective interaction?

What is the main idea of an effective interaction?

What is the main idea of an effective interaction?

formally this transformation exists (Bloch-Horowitz, Lee-Suzuki), however, 1) V becomes an A-body operator
2) T is written in function of \mathbf{Q}

What is the main idea of an effective interaction?

formally this transformation exists (Bloch-Horowitz, Lee-Suzuki), however, 1) V becomes an A-body operator [A]
2) T is written in function of \mathbf{Q}

Useless for practical purposes, the same as solving the full problem

PRACTICALLY:

PRACTICALLY:

[2]

PRACTICALLY:

PRICE: I have to increase P (i.e. $\mathrm{K}_{\text {max }}$) up to convergence

GAIN: what is missing is less than before -------> faster convergence!

[2]

Where, in the full H , is the two-body H_{2} which I have to solve ?

$$
H_{N C S M}=\sum_{k}^{A-1} h_{k}^{h o}+\left(V_{12}-V_{12}^{H O}\right)+\left(V_{13}-V_{13}^{H O}\right)+\ldots .
$$

$\left(\xi_{1}\right)+h^{h \circ}\left(\xi_{2}\right)+\ldots+V\left(\vec{\xi}_{1}\right)-$

$$
\begin{aligned}
H_{\mathrm{EIHH}} & =T+V_{12}+V_{13}+\ldots . \\
& =1 / \mu\left(\Delta \Delta_{\rho}-\mathbb{K}^{2} I \rho^{2}\right)+V\left(\xi_{1}\right)+V\left(\xi_{1}, \xi_{2}, \ldots \xi_{A-1}\right)
\end{aligned}
$$

convergence:

${ }^{4} \mathrm{He}$ with MTV NN Potential

TABLE I. Convergence of the HH expansion for the ${ }^{4} \mathrm{He}$ groundstate energy (in MeV) and the ${ }^{4} \mathrm{He}$ ground-state energy for the ${ }^{4} \mathrm{He}$ radius root-mean-square radius (in fm) with the bare nonlocal IdahoN3LO potential

$K_{\max }$	Bare			Effective	
	$\langle H\rangle$	$\sqrt{\left\langle r^{2}\right\rangle}$		$\langle H\rangle$	$\sqrt{\left\langle r^{2}\right\rangle}$
2	-3.507	1.935		-17.773	1.620
4	-13.356	1.523		-22.188	1.533
6	-20.135	1.446		-24.228	1.496
8	-23.721	1.451		-25.445	1.498
10	-24.617	1.470		-25.363	1.506
12	-25.115	1.491		-25.439	1.515
14	-25.259	1.501		-25.398	1.516
16	-25.310	1.509		-25.390	1.518
18	-25.359	1.513		-25.385	1.518
20	-25.370	1.515		-25.381	1.518
	$-25.37(2)$	$1.515(4)$	$-25.38(1)$	$1.518(1)$	
HH [20]	-25.38	1.516			
FY [20,21]	-25.37	-			
NCSM [22]	$-25.39(1)$	$1.515(2)$			

TABLE I. Convergence of the HH expansion for the ${ }^{4} \mathrm{He}$ groundstate energy (in MeV) and the ${ }^{4} \mathrm{He}$ ground-state energy for the ${ }^{4} \mathrm{He}$ radius root-mean-square radius (in fm) with the bare nonlocal IdahoN3LO potential

$K_{\text {max }}$	Bare			Effective	
	$\langle H\rangle$	$\sqrt{\left\langle r^{2}\right\rangle}$		$\langle H\rangle$	$\sqrt{\left\langle r^{2}\right\rangle}$
2	-3.507	1.935		-17.773	1.620
4	-13.356	1.523		-22.188	1.533
6	-20.135	1.446		-24.228	1.496
8	-23.721	1.451		-25.445	1.498
10	-24.617	1.470		-25.363	1.506
12	-25.115	1.491		-25.439	1.515
14	-25.259	1.501		-25.398	1.516
16	-25.310	1.509		-25.390	1.518
18	-25.359	1.513		-25.385	1.518
20	-25.370	1.515		-25.381	1.518
	$-25.37(2)$	$1.515(4)$		$-25.38(1)$	$1.518(1)$
HH [20]	-25.38	1.516			
FY[20,21]	-25.37	$-25.39(1)$	$1.515(2)$		
NCSM [22]	-20				

FIG. 2. (Color online) The ground-state energies of ${ }^{6} \mathrm{He}$ and ${ }^{6} \mathrm{Li}$

